

Sam Newman

Microservices

Konzeption und Design
Übersetzung aus dem Amerikanischen
von Knut Lorenzen

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen National-
bibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.d-nb.de>
abrufbar.

ISBN 978-3-95845-082-0
1. Auflage 2015

www.mitp.de
E-Mail: mitp-verlag@sigloch.de
Telefon: +49 7953 / 7189 - 079
Telefax: +49 7953 / 7189 - 082

© 2015 mitp Verlags GmbH & Co. KG

Dieses Werk, einschließlich aller seiner Teile, ist urheberrechtlich geschützt. Jede Verwer-
tung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des
Verlages unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Überset-
zungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen
Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in die-
sem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass
solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu
betrachten wären und daher von jedermann benutzt werden dürften.

Authorized German translation of the English edition of Building Microservices
ISBN 9781491950357 © 2015 Sam Newman. This translation is published and sold by
permission of O’Reilly Media, Inc., which owns or controls all rights to publish and sell
the same.

Lektorat: Sabine Schulz
Sprachkorrektorat: Maren Feilen
Coverbild: © Irochka, fotolia.de
Satz: III-satz, Husby, www.drei-satz.de

Inhaltsverzeichnis

Einleitung . 15

Über den Autor . 20

1 Microservices . 21

1.1 Was sind Microservices? . 22

1.1.1 Klein und darauf spezialisiert, eine bestimmte
Aufgabe richtig gut zu erledigen . 22

1.1.2 Eigenständigkeit . 23

1.2 Die wichtigsten Vorteile . 24

1.2.1 Verschiedenartige Technologien . 24

1.2.2 Belastbarkeit . 26

1.2.3 Skalierung . 26

1.2.4 Komfortables Deployment . 27

1.2.5 Betriebliche Abstimmung . 28

1.2.6 Modularer Aufbau . 28

1.2.7 Austauschbarkeit . 29

1.3 Was ist mit serviceorientierten Architekturen? 29

1.4 Weitere Verfahren zur Aufspaltung . 30

1.4.1 Programmbibliotheken . 31

1.4.2 Module . 31

1.5 Kein Patentrezept . 33

1.6 Fazit . 33

2 Der fortentwickelte Systemarchitekt . 35

2.1 Unangebrachte Vergleiche . 35

2.2 Das Zukunftsbild eines Systemarchitekten . 37

2.3 Zoneneinteilung . 39

2.4 Ein grundsätzlicher Ansatz. 40

2.4.1 Strategische Ziele . 41

2.4.2 Prinzipien . 41

2.4.3 Praktiken . 42
5

Inhaltsverzeichnis

6

2.4.4 Prinzipien und Praktiken vereinigen 42

2.4.5 Ein Praxisbeispiel . 43

2.5 Mindestvorgaben . 44

2.5.1 Monitoring . 44

2.5.2 Schnittstellen. 45

2.5.3 Architektonische Sicherheit . 45

2.6 Lenkung durch Code . 46

2.6.1 Musterbeispiele. 46

2.6.2 Maßgeschneiderte Servicevorlagen . 46

2.7 Technische Schulden. 48

2.8 Ausnahmebehandlung . 49

2.9 Governance und Steuerung aus der Mitte . 50

2.10 Aufbau eines Entwicklerteams . 52

2.11 Fazit . 52

3 Gestaltung von Services. 55

3.1 Kurz vorgestellt: MusicCorp . 55

3.2 Wodurch zeichnet sich ein guter Service aus?. 56

3.2.1 Lose Kopplung . 56

3.2.2 Hochgradige Geschlossenheit . 56

3.3 Begrenzter Kontext . 57

3.3.1 Geteilte und verborgene Modelle . 58

3.3.2 Module und Services . 59

3.3.3 Verfrühte Aufteilung . 60

3.4 Funktionalitäten des Kontexts. 61

3.5 Schildkröten bis ganz unten . 61

3.6 Kommunikation unter geschäftlichen Aspekten 63

3.7 Der technische Rahmen . 63

3.8 Fazit . 65

4 Integration . 67

4.1 Die Suche nach der optimalen Integrationsmethode 67

4.1.1 Zu Ausfällen führende Änderungen vermeiden 67

4.1.2 Technologieunabhängige APIs verwenden 67

4.1.3 Services für den Nutzer vereinfachen 68

4.1.4 Implementierungsdetails verbergen . 68

4.2 Kundendatensätze . 68

4.3 Gemeinsame Nutzung der Datenbank . 69

4.4 Synchrone kontra asynchrone Kommunikation 70

Inhaltsverzeichnis
4.5 Orchestrierung kontra Choreografie . 72

4.6 Aufruf entfernter Prozeduren (RPC) . 75

4.6.1 Kopplung von Technologien . 76

4.6.2 Lokale Aufrufe sind keine entfernten Aufrufe 76

4.6.3 Fragilität . 77

4.6.4 Ist RPC ein Übel? . 78

4.7 REST . 79

4.7.1 REST und HTTP . 80

4.7.2 HATEOAS. 81

4.7.3 JSON, XML oder etwas anderes?. 83

4.7.4 Vorsicht vor zu viel Komfort . 84

4.7.5 Nachteile von REST über HTTP . 85

4.8 Implementierung asynchroner ereignisgesteuerter
Kollaboration . 86

4.8.1 Verfügbare Technologien . 86

4.8.2 Die Kompliziertheit asynchroner Architekturen 88

4.9 Services als Zustandsautomaten . 90

4.10 Reactive Extensions . 90

4.11 DRY und die Gefahren der Wiederverwendung von
Code im Microservices-Umfeld . 91

4.11.1 Client-Bibliotheken . 92

4.12 Zugriff über Referenzen . 93

4.13 Versionierung . 95

4.13.1 Solange wie möglich hinauszögern . 95

4.13.2 Zu Ausfällen führende Änderungen rechtzeitig
erkennen . 96

4.13.3 Verwendung semantischer Versionierung 97

4.13.4 Mehrere Endpunkte gleichzeitig betreiben 98

4.13.5 Mehrere Serviceversionen gleichzeitig betreiben 99

4.14 Benutzerschnittstellen. 101

4.14.1 Zunehmend digital. 101

4.14.2 Voraussetzungen . 102

4.14.3 Aufbau der API. 102

4.14.4 Bausteine der Benutzeroberfläche . 104

4.14.5 Back-Ends für Front-Ends . 106

4.14.6 Ein Hybridansatz . 108

4.15 Integration der Software von Drittherstellern 108

4.15.1 Fehlende Entscheidungsmöglichkeiten 109
7

Inhaltsverzeichnis

8

4.15.2 Anpassungen . 109

4.15.3 Integrationswirrwarr . 110

4.15.4 Auf sich selbst gestellt . 110

4.15.5 Das Strangler-Pattern . 113

4.16 Fazit . 114

5 Die Aufspaltung des Monolithen . 115

5.1 Seams . 115

5.2 Aufspaltung von MusicCorp . 116

5.3 Gründe zur Aufspaltung des Monolithen . 117

5.3.1 Tempo der Änderungen . 117

5.3.2 Teamstruktur . 118

5.3.3 Sicherheitsaspekte . 118

5.3.4 Technologie . 118

5.4 Verwickelte Abhängigkeiten . 118

5.5 Die Datenbank . 119

5.6 Dem Problem zu Leibe rücken . 119

5.7 Beispiel: Auflösen von Fremdschlüssel-Relationen 120

5.8 Beispiel: Statische Daten gemeinsam nutzen 122

5.9 Beispiel: Veränderliche Daten gemeinsam nutzen 123

5.10 Beispiel: Tabellen gemeinsam nutzen . 125

5.11 Refactoring von Datenbanken. 126

5.11.1 Die Aufspaltung umsetzen . 126

5.12 Abgrenzung von Transaktionen . 127

5.12.1 Versuchen Sie es später noch mal . 129

5.12.2 Abbruch des gesamten Vorgangs . 129

5.12.3 Verteilte Transaktionen . 130

5.12.4 Was also tun? . 131

5.13 Berichte. 131

5.14 Datenbanken zur Berichterstellung . 132

5.15 Datenabruf über Serviceaufrufe . 134

5.16 Datenpumpen . 135

5.16.1 Alternative Ziele . 137

5.17 Ereignis-Datenpumpen . 137

5.18 Backup-Datenpumpe . 139

5.19 Benachrichtigung in Echtzeit . 139

5.20 Änderungen verursachen Aufwand . 140

5.21 Erkennen der eigentlichen Ursachen . 141

5.22 Fazit . 141

Inhaltsverzeichnis
6 Deployment . 143

6.1 Continuous Integration für Einsteiger. 143

6.1.1 Machen Sie es auch richtig? . 144

6.2 Continuous Integration und Microservices . 145

6.3 Build Pipelines und Continuous Delivery . 148

6.3.1 Die unvermeidlichen Ausnahmen . 149

6.4 Plattformspezifische Artefakte . 150

6.5 Betriebssystemspezifische Artefakte . 151

6.6 Selbsterstellte Images . 152

6.6.1 Images als Artefakte . 154

6.6.2 Unveränderliche Server . 155

6.7 Umgebungen . 155

6.7.1 Servicekonfiguration . 157

6.7.2 Zuordnung der Services zu den Hosts 158

6.7.3 Mehrere Services pro Host . 158

6.7.4 Anwendungscontainer . 161

6.7.5 Ein Service pro Host. 162

6.7.6 Platform-as-a-Service (PaaS) . 163

6.8 Automatisierung . 164

6.8.1 Zwei Fallstudien zur Leistungsfähigkeit der
Automatisierung. 165

6.9 Physisch wird virtuell . 166

6.9.1 Herkömmliche Virtualisierung . 166

6.9.2 Vagrant . 168

6.9.3 Linux-Container . 168

6.9.4 Docker . 170

6.10 Schnittstelle für das Deployment . 171

6.10.1 Definition der Umgebung . 173

6.11 Fazit . 174

7 Testen . 177

7.1 Testtypen . 177

7.2 Testumfang . 178

7.2.1 Unit-Tests . 180

7.2.2 Servicetests . 181

7.2.3 End-to-End-Tests . 182

7.2.4 Nachteile . 182

7.2.5 Wie viele Tests? . 183
9

Inhaltsverzeichnis

10
7.3 Implementierung von Servicetests . 183

7.3.1 Mock-Objekte kontra Platzhalter . 184

7.3.2 Ein intelligenterer Platzhalterservice 185

7.4 Knifflige End-to-End-Tests . 185

7.5 Nachteile von End-to-End-Tests . 187

7.5.1 Unzuverlässige und fragile Tests . 187

7.5.2 Wer programmiert die Tests? . 188

7.5.3 Testdauer . 189

7.5.4 Das große Auftürmen . 190

7.5.5 Die Metaversion . 191

7.6 Abläufe testen, nicht Funktionalitäten . 191

7.7 Abhilfe durch Consumer-Driven Tests . 192

7.7.1 Pact . 194

7.7.2 Konversationen . 195

7.8 End-to-End-Tests: Pro und Kontra . 196

7.9 Testen nach der Veröffentlichung . 196

7.9.1 Deployment und Veröffentlichung trennen 197

7.9.2 Canary-Veröffentlichung . 198

7.9.3 MTTR kontra MTBR. 200

7.10 Funktionsübergreifende Tests . 201

7.10.1 Geschwindigkeitstests . 202

7.11 Fazit . 203

8 Monitoring . 205

8.1 Ein Service, ein Server . 206

8.2 Ein Service, mehrere Server . 207

8.3 Mehrere Services, mehrere Server . 208

8.4 Protokolle, Protokolle und noch mehr Protokolle 208

8.5 Kennzahlen mehrerer Services . 209

8.6 Servicekennzahlen . 211

8.7 Monitoringung von Pseudo-Ereignissen . 212

8.7.1 Implementierung des semantischen Monitorings. 213

8.8 Korrelations-IDs . 213

8.9 Die Aufrufkette . 216

8.10 Standardisierung . 216

8.11 Zielgruppen . 217

8.12 Wie geht es weiter? . 218

8.13 Fazit . 219

Inhaltsverzeichnis
9 Sicherheit . 221

9.1 Authentifizierung und Autorisierung . 221

9.1.1 Gängige Single-Sign-On-Implementierungen 222

9.1.2 Single-Sign-On-Gateway . 223

9.1.3 Fein unterteilte Authentifizierung . 225

9.2 Authentifizierung und Autorisierung von Services 226

9.2.1 Im internen Netzwerk ist alles erlaubt 226

9.2.2 Authentifizierung über HTTP(S) . 226

9.2.3 Verwendung von SAML oder OpenID Connect. 227

9.2.4 Client-Zertifikate . 228

9.2.5 HMAC über HTTP. 229

9.2.6 API-Schlüssel . 230

9.2.7 Das Stellvertreterproblem . 231

9.3 Schutz ruhender Daten . 233

9.3.1 Wohlbekannte Verfahren einsetzen . 234

9.3.2 Die Bedeutung der Schlüssel. 235

9.3.3 Was soll verschlüsselt werden? . 235

9.3.4 Entschlüsselung bei Bedarf . 236

9.3.5 Backups verschlüsseln . 236

9.4 Gestaffelte Sicherheitsstrategie . 236

9.4.1 Firewalls . 236

9.4.2 Protokollierung . 236

9.4.3 Intrusion-Detection-Systeme . 237

9.4.4 Unterteilung des Netzwerks . 237

9.4.5 Betriebssystem . 238

9.5 Ein ausgearbeitetes Beispiel . 239

9.6 Datensparsamkeit . 241

9.7 Der Faktor Mensch . 242

9.8 Eine Goldene Regel . 242

9.9 Integrierte Sicherheit . 243

9.10 Externe Prüfung. 243

9.11 Fazit . 244

10 Conways Gesetz und Systemdesign . 245

10.1 Beweise. 245

10.1.1 Lose und eng gekoppelte Organisationen 246

10.1.2 Windows Vista . 246

10.2 Netflix und Amazon . 246

10.3 Was kann man damit anfangen? . 247
11

Inhaltsverzeichnis

12
10.4 Anpassung an Kommunikationswege . 247

10.5 Verantwortlichkeit für Services. 249

10.6 Gemeinschaftliche Verantwortlichkeit für Services 249

10.6.1 Schwierige Aufspaltung . 249

10.6.2 Feature-Teams . 250

10.6.3 Engpässe bei der Auslieferung . 250

10.7 Interner Open-Source-Code . 251

10.7.1 Aufgaben der Koordinatoren . 252

10.7.2 Ausgereifte Services . 253

10.7.3 Werkzeugsammlungen . 253

10.8 Begrenzte Kontexte und Teamstrukturen . 253

10.9 Verwaiste Services? . 254

10.10 Fallstudie: RealEstate.com.au . 254

10.11 Conways Gesetz auf den Kopf gestellt . 256

10.12 Menschen . 257

10.13 Fazit . 258

11 Microservices skalieren . 259

11.1 Ausfälle gibt es immer. 259

11.2 Wie viel ist zu viel?. 260

11.3 Schrittweiser Abbau der Funktionalität . 261

11.4 Architektonische Sicherheitsmaßnahmen. 262

11.5 Die antifragile Organisation . 265

11.5.1 Timeouts . 266

11.5.2 Circuit Breaker . 266

11.5.3 Das Bulkhead-Pattern . 269

11.5.4 Isolierung . 270

11.6 Idempotenz . 270

11.7 Skalierung . 272

11.7.1 Mehr Leistung. 272

11.7.2 Arbeitslast aufteilen . 273

11.7.3 Risikoverteilung . 273

11.7.4 Lastverteilung . 274

11.7.5 Worker-Systeme . 276

11.7.6 Neuanfang . 277

11.8 Datenbanken skalieren . 278

11.8.1 Verfügbarkeit des Services kontra Lebensdauer
der Daten . 278

11.8.2 Skalierung bei Lesevorgängen . 279

Inhaltsverzeichnis
11.8.3 Skalierung bei Schreibvorgängen . 280

11.8.4 Gemeinsam genutzte Datenbankinfrastruktur 281

11.8.5 CQRS. 281

11.9 Caching. 282

11.9.1 Clientseitiges Caching, Proxy und serverseitiges

Caching . 283

11.9.2 Caching und HTTP . 284

11.9.3 Caching bei Schreibvorgängen . 285

11.9.4 Caching zur Erhöhung der Belastbarkeit 286

11.9.5 Den Ursprung verbergen . 286

11.9.6 Möglichst einfach . 287

11.9.7 Cache Poisoning: Ein warnendes Beispiel 288

11.10 Automatische Skalierung . 289

11.11 Das CAP-Theorem. 290

11.11.1 Aufgabe der Konsistenz . 292

11.11.2 Aufgabe der Verfügbarkeit. 292

11.11.3 Aufgabe der Partitionstoleranz? . 294

11.11.4 AP oder CP? . 294

11.11.5 Keine Frage eines Entweder-Oders . 294

11.11.6 Abbildung der Wirklichkeit . 295

11.12 Serviceerkennung . 296

11.12.1 DNS . 296

11.13 Dynamische Registrierung von Services . 298

11.13.1 Zookeeper . 298

11.13.2 Consul . 300

11.13.3 Eureka . 301

11.13.4 Eigene Serviceregistrierung. 301

11.13.5 Menschliches Interesse . 302

11.14 Services dokumentieren . 302

11.14.1 Swagger . 302

11.14.2 HAL und der HAL-Browser . 303

11.15 Ein sich selbst beschreibendes System . 304

11.16 Fazit . 305

12 Auf den Punkt gebracht . 307

12.1 Prinzipien. 307

12.1.1 Geschäftsvorgänge modellieren . 308

12.1.2 Automatisierung kultivieren . 308

12.1.3 Implementierungsdetails verbergen . 309
13

Inhaltsverzeichnis

14
12.1.4 Dezentralisierung . 309

12.1.5 Unabhängiges Deployment . 310

12.1.6 Ausfälle eingrenzen . 310

12.1.7 Umfassendes Monitoring . 311

12.2 Wann sollte man auf Microservices verzichten? 311

12.3 Schlusswort . 312

Stichwortverzeichnis . 313

Einleitung

Microservices sind ein Ansatz für verteilte Systeme, die die Nutzung feingranularer
Services mit eigenen Entwicklungszyklen fördern, die sich gegenseitig zuarbei-
ten. Da Microservices vornehmlich im geschäftlichen Umfeld Anwendung finden,
werden die bei herkömmlichen abgestuften Architekturen auftretenden Schwie-
rigkeiten umgangen. Microservices nutzen außerdem die während des letzten
Jahrzehnts entwickelten Technologien und Verfahren und vermeiden dadurch die
Fallstricke, die mit vielen serviceorientierten Architekturen einhergehen.

Dieses Buch enthält eine Reihe konkreter Beispiele dafür, wie Microservices welt-
weit eingesetzt werden, etwa in Unternehmen wie Netflix, Amazon, Gilt und der
REA-Gruppe, die allesamt festgestellt haben, dass ihnen die erhöhte Unabhängig-
keit dieser Architektur große Vorteile bringt.

Wer sollte dieses Buch lesen?

Der Anwendungsbereich dieses Buches umfasst ein breites Spektrum, ebenso wie
auch die Auswirkungen einer feingranularen Microservice-Architektur vielgestal-
tig sind. Es soll Leser ansprechen, die an verschiedenen Aspekten des Designs, der
Entwicklung, des Deployments, des Testens und der Wartung dieser Systeme inte-
ressiert sind. Diejenigen Leser, die bereits damit begonnen haben, sich mit feiner
unterteilten Architekturen zu beschäftigen – sei es nun einer vollkommen neuen
Anwendung oder der Aufteilung eines bereits vorhandenen, eher monolithischen
Systems –, werden viele praktische Ratschläge finden. Und auch denjenigen
Lesern, die im Grunde nur wissen möchten, was der ganze Rummel eigentlich
soll, wird geholfen, damit sie entscheiden können, ob Microservices für ihre
Zwecke geeignet sind.

Der Grund für dieses Buch

Als es vor vielen Jahren zu meinen Aufgaben gehörte, anderen dabei zu helfen,
Software schneller fertigzustellen, fing ich an, mich mit Anwendungsarchitektu-
ren zu befassen. Mir war klar, dass automatisierte Infrastrukturen, Tests und kon-
tinuierliche Weiterentwicklungen zwar durchaus hilfreich sind, man aber bald an
die Grenzen des Machbaren stößt, wenn das grundlegende Design eines Systems
es nicht erlaubt, schnell und einfach Modifizierungen daran vorzunehmen.
15

Einleitung

16
Zur selben Zeit experimentierten viele Unternehmen mit feiner unterteilten
Architekturen, um vergleichbare Ergebnisse zu erzielen. Gleichzeitig sollten aber
auch eine verbesserte Skalierbarkeit, eine größere Unabhängigkeit der Entwickler-
teams oder eine vereinfachte Übernahme neuer Technologien ermöglicht werden.
Sowohl meine eigenen Erfahrungen als auch die meiner Kollegen bei Thought-
Works und anderen Unternehmen bestätigten die Tatsache, dass eine größere
Zahl eingesetzter unabhängiger Services mit eigenen Entwicklungszyklen unwei-
gerlich zu weiteren Problemen führt, mit denen man sich auseinandersetzen
muss. Dieses Buch soll in gewisser Weise eine Art zentrale Anlaufstelle sein und
helfen, die breite Palette von Themen, die zum Verständnis von Microservices
nötig ist, zu beschreiben. So etwas hätte mir seinerzeit wirklich außerordentlich
geholfen!

Zum Stand der Dinge

Das Thema »Microservices« ist einem ständigen Wandel unterworfen. Obwohl die
Idee an sich nicht neu ist (auch wenn der Begriff es ist), haben die Erfahrungen
der Nutzer auf der ganzen Welt zusammen mit dem Aufkommen neuer Technolo-
gien maßgeblichen Einfluss auf die Verwendungsweise. Aufgrund der schnellen
Fortentwicklung in diesem Bereich habe ich versucht, mich in den folgenden
Kapiteln weniger auf bestimmte Technologien als vielmehr auf die grundlegenden
Konzepte zu konzentrieren, und zwar wohlwissend, dass sich Details der Imple-
mentierung stets schneller ändern als die dahinterstehenden Ideen. Dessen unge-
achtet erwarte ich absolut, dass wir in einigen Jahren noch besser verstehen
werden, wann der Einsatz von Microservices angebracht ist und wie sie vernünfti-
gerweise eingesetzt werden.

Aufbau des Buches

Der Aufbau dieses Buches orientiert sich vornehmlich an den behandelten The-
men. Sie können daher direkt zu einem bestimmten Thema springen, das Sie am
meisten interessiert. Ich habe mich bemüht, wichtige Begriffe und Konzepte
gleich in den ersten Kapiteln zu erläutern und gehe davon aus, dass selbst Leser,
die sich als recht erfahren einschätzen, in jedem Kapitel noch etwas von Interesse
entdecken. Grundsätzlich empfehle ich Ihnen, sich Kapitel 2 anzusehen, das
einen Eindruck von der Tiefe des Themas vermittelt und umreißt, wie ich im wei-
teren Verlauf des Buches vorgehe, falls Sie sich mit den nachfolgenden Inhalten
eingehender beschäftigen möchten.

Ich hoffe, ich habe die Kapitel für Leser, denen das Thema neu ist, in der richtigen
Reihenfolge angeordnet, damit das Buch in sinnvoller Weise von vorn bis hinten
durchgelesen werden kann.

Aufbau des Buches
Hier ein Überblick über den Inhalt des Buches:

Kapitel 1 – Microservices Wir beginnen mit einer Einführung in das Thema Micro-
services, in der die wesentlichen Vorteile, aber auch einige der Nachteile darge-
stellt werden.

Kapitel 2 – Der fortentwickelte Systemarchitekt In diesem Kapitel kommen die
Schwierigkeiten zur Sprache, denen man als Systemarchitekt gegenübersteht,
weil man Kompromisse eingehen muss. Außerdem wird erörtert, was bei der Ver-
wendung von Microservices alles zu beachten ist.

Kapitel 3 – Gestaltung von Services Hier werden die Grenzen der Microservices
erkundet. Um uns auf das Wesentliche zu konzentrieren, kommen dabei Verfah-
ren des vom Anwendungsbereich geprägten Designs (Domain-Driven Design,
DDD) zum Einsatz.

Kapitel 4 – Integration An dieser Stelle beschäftigen wir uns eingehender mit
bestimmten Auswirkungen der Technologien und erörtern, welche Arten der
Zusammenarbeit von Services am nützlichsten sind. Des Weiteren werden wir auf
die Themen Benutzerschnittstelle und Integration vorhandener und seriengefer-
tigter Produkte (Commercial off-the-shelf , COTS) eingehen.

Kapitel 5 – Die Aufspaltung des Monolithen In vielen Fällen richtet sich das Inte-
resse auf die Microservices, um sie in großen, nur schwer änderbaren monolithi-
schen Systemen sozusagen als Gegenmittel einzusetzen. Genau dieser Ansatz
wird in diesem Kapitel ausführlich untersucht.

Kapitel 6 – Deployment Das Buch ist zwar weitgehend theoretischer Natur, aller-
dings wurde kaum ein anderes der behandelten Themen so sehr durch die jüngs-
ten technologischen Neuerungen beeinflusst wie das Deployment. Dieser Aspekt
wird hier eingehender betrachtet.

Kapitel 7 – Testen Dieses Kapitel geht dem Thema Testen auf den Grund – einem
Bereich, der gerade beim Deployment mehrerer eigenständiger Services von Be-
deutung ist. Besonders interessant ist hier die Rolle, die Consumer-Driven Contracts
(CDCs) für die Gewährleistung der Qualität unserer Software spielen.

Kapitel 8 – Monitoring Die vor der Auslieferung durchgeführten Tests helfen uns
nicht weiter, wenn Probleme erst auftreten, nachdem die Software bereits online
gestellt wurde. In diesem Kapitel wird untersucht, wie sich verteilte Systeme über-
wachen lassen und wie man die bei solchen Systemen auftretende Komplexität
handhabt.

Kapitel 9 – Sicherheit Hier betrachten wir die Sicherheitsaspekte von Microser-
vices und untersuchen, wie Authentifizierung und Autorisierung zwischen Benut-
zer und Service bzw. zwischen Services gehandhabt werden. Sicherheit ist ein sehr
wichtiges Thema, das allzu leicht vernachlässigt wird. Ich bin zwar keineswegs ein
17

Einleitung

18
Sicherheitsexperte, hoffe jedoch, dass dieses Kapitel Ihnen dabei hilft, beim Auf-
bau Ihrer Systeme bedeutsame Sicherheitsaspekte in Betracht zu ziehen – insbe-
sondere, wenn es sich um Microservice-Systeme handelt.

Kapitel 10 – Conways Gesetz und Systemdesign Dieses Kapitel widmet sich dem
Zusammenspiel zwischen Organisationsstruktur und Systemarchitektur. Wie viele
Unternehmen bereits feststellen mussten, führt es zu Problemen, wenn diese
beiden Faktoren nicht aufeinander abgestimmt sind. Wir werden versuchen, die
Ursachen dieses Dilemmas zu erörtern und betrachten verschiedene Möglichkei-
ten, das Systemdesign an die Struktur des Entwicklerteams anzugleichen.

Kapitel 11 – Microservices skalieren Hier werden wir uns ansehen, wie Micro-
services skalieren, damit wir die bei einer großen Zahl von Services und hohem
Datenaufkommen wachsende Wahrscheinlichkeit eines Systemausfalls handha-
ben können.

Kapitel 12 – Auf den Punkt gebracht Das letzte Kapitel bemüht sich, die Beson-
derheiten von Microservices hervorzuheben. Es enthält eine Liste von sieben
für Microservices geltende Prinzipien und arbeitet die Kernpunkte des Buches
heraus.

Konventionen dieses Buches

In diesem Buch gelten folgende typografische Konventionen:

� Neue Begriffe, Dateinamen und Dateinamenerweiterungen sind kursiv gedruckt.

� URLs und E-Mail-Adressen sind im Hyperlink-Format dargestellt.

� Für Programmlistings oder im Fließtext vorkommende Variablen- oder Funk-
tionsnamen, Datenbanken, Datentypen, Umgebungsvariablen, Anweisungen
und Schlüsselwörter wird eine nicht-proportionale Schrift verwendet.

� Für vom Benutzer einzugebende Befehle und Texte wird eine fette nicht-
proportionale Schrift benutzt.

� Texte, die vom Benutzer durch eigene Eingaben oder aus dem Kontext ersicht-
liche Werte ersetzt werden sollen, sind in einer kursiven nicht-proportio-
nalen Schrift gedruckt.

Danksagungen

Ohne Lindy Stephens würde es dieses Buch, das ihr gewidmet ist, nicht geben. Sie
hat mich ermuntert, es in Angriff zu nehmen, hat mich bei dem oftmals anstren-
genden Entstehungsprozess unterstützt und ist die beste Partnerin, die man
sich nur wünschen kann. Ich möchte dieses Buch auch meinem Vater Howard
Newman widmen, der immer für mich da war. Für euch beide ist dieses Buch.

Danksagungen
Besonderer Dank gilt Ben Christensen, Vivek Subramaniam und Martin Fowler,
die mir beim Schreiben dieses Buches ausführliche Rückmeldungen gaben und
das vorliegende Werk dadurch mitgestalteten. Ich möchte auch James Lewis dan-
ken, mit dem ich bei der Besprechung der im Buch vorgestellten Ideen so man-
ches Bier getrunken habe. Ohne eure Hilfe und Beratung wäre dieses Buch nur
ein Schatten seiner selbst.

Außerdem haben viele andere mitgeholfen und die ersten Versionen des Buches
kommentiert. Ich möchte insbesondere (in wahlloser Reihenfolge) folgenden
Personen danken: Kane Venables, Anand Krishnaswamy, Kent McNeil, Charles
Haynes, Chris Ford, Aidy Lewis, Will Thames, Jon Eaves, Rolf Russell, Badrinath
Janakiraman, Daniel Bryant, Ian Robinson, Jim Webber, Stewart Gleadow, Evan
Bottcher, Eric Sword, Olivia Leonard, sowie allen anderen Kollegen bei Thought-
Works und in der Branche, die mir dabei geholfen haben, so viel zu erreichen.

Schließlich möchte ich auch der Belegschaft von O’Reilly USA danken, insbeson-
dere Mike Loukides, der mich angeheuert hat, meinem Lektor Brian MacDonald
sowie Rachel Monaghan, Kristen Brown, Betsy Waliszewski und all den anderen
Leuten, die auf mir unbekannte Weise an der Entstehung dieses Buches beteiligt
waren.
19

Über den Autor

20
Über den Autor

Sam Newman ist als Technologe bei ThoughtWorks tätig, wo er einerseits als Bera-
ter für Klienten arbeitet und andererseits auch als Systemarchitekt für Thought-
Works’ interne Systeme verantwortlich ist. Im Rahmen seiner Beratertätigkeit
arbeitete er mit zahlreichen internationalen Unternehmen aus den unterschied-
lichsten Geschäftsbereichen zusammen, wobei er oft mit einem Bein im Lager der
Entwickler und mit dem anderen im Lager des IT-Betriebs stand. Wenn Sie ihn
nach seiner Tätigkeit befragen, würde er sagen: »Ich helfe den Leuten dabei, bes-
sere Softwaresysteme zu entwickeln.« Er veröffentlicht Artikel, hält Vorträge auf
Fachtagungen und arbeitet hin und wieder auch an Open-Source-Projekten mit.

Kapitel 1

Microservices

Seit vielen Jahren erkunden wir inzwischen immer bessere Methoden für die Sys-
tementwicklung. Wir haben aus den Erfahrungen der Vergangenheit gelernt, neue
Technologien adaptiert und erleben nun, wie eine neue Generation von Technolo-
gieunternehmen ganz verschiedene Ansätze bei der Errichtung von IT-Systemen
verfolgt, die nicht nur ihre Kunden, sondern auch die eigenen Entwickler zufriede-
ner stellen.

Eric Evans Buch Domain-Driven Design (Addison-Wesley) hat uns gelehrt, wie
wichtig es ist, die reale Welt in unserem Code widerzuspiegeln und bessere Mög-
lichkeiten aufgezeigt, unsere Systeme zu modellieren. Das Konzept Continuous
Delivery führt vor, wie es gelingen kann, die Software effektiver und effizienter zur
Serienreife zu bringen und schärft uns den Grundgedanken ein, jede einzelne
Version wie einen zur Veröffentlichung geeigneten Release Candidate zu behan-
deln. Unsere Einsicht in die Funktionsweise des Webs hat uns dazu gebracht,
bessere Methoden zur Kommunikation zwischen Computern zu entwickeln.
Alistair Cockburns Konzept der hexagonalen Architektur (http://alistair.
cockburn.us/Hexagonal+architecture) wies uns den Weg fort von abgestuften
Architekturen, in denen sich die Anwendungslogik verbergen konnte. Virtualisie-
rungsplattformen erlaubten es uns, Maschinen beliebiger Größe bereitzustellen
und diese dank automatisierter Infrastrukturen in großem Maßstab einzusetzen.
Einige große und erfolgreiche Unternehmen wie Amazon und Google befürwor-
ten die Ansicht, dass kleine Entwicklerteams für den vollständigen Entwicklungs-
zyklus ihrer Services zuständig sein sollten. Und erst in jüngster Zeit hat Netflix
uns den Aufbau robuster Systeme von einer Größe vorgeführt, die vor nur zehn
Jahren kaum vorstellbar war.

Domain-Driven Design. Continuous Delivery. Virtualisierung nach Bedarf. Auto-
matisierte Infrastrukturen. Kleine, eigenständige Entwicklerteams. Skalierbare
Systeme. Aus diesem Umfeld sind die Microservices hervorgegangen. Sie wurden
nicht vorab entwickelt oder geplant, sondern entstanden vielmehr aus den bei der
praktischen Anwendung zu beobachtenden Tendenzen oder Mustern heraus.
Microservices existieren also im Grunde genommen nur, weil es all die anderen
genannten Dinge gibt. Ich werde im weiteren Verlauf des Buches immer wieder
Verbindungen zu diesen vorausgehenden Entwicklungen aufzeigen, so dass sich
schlussendlich beim Aufbau, der Verwaltung und der Fortentwicklung von Micro-
services ein geschlossenes Gesamtbild ergibt.
21

Kapitel 1
Microservices

22
Viele Unternehmen haben nach der Einführung feingranularer Microservice-
Architekturen festgestellt, dass ihre Software schneller zur Serienreife gelangt und
selbst neue Technologien leicht übernommen werden können. Microservices
gestatten uns eine deutlich größere Entscheidungsfreiheit, um auf die unvermeid-
lichen Änderungen reagieren zu können, die uns alle betreffen.

1.1 Was sind Microservices?

Microservices sind kleine, eigenständige Services, die kollaborieren bzw. sich ge-
genseitig zuarbeiten. Lassen Sie uns diese Definition im Folgenden etwas genauer
fassen und die besonderen Eigenschaften der Microservices betrachten.

1.1.1 Klein und darauf spezialisiert, eine bestimmte
Aufgabe richtig gut zu erledigen

Zur Ergänzung neuer Funktionalitäten schreiben wir zusätzlichen Code und
erweitern damit zwangsläufig auch die Codebasis. Im Laufe der Zeit kann es aller-
dings schwierig werden, die Stelle zu finden, an der eine Modifikation erforderlich
ist, weil die Codebasis so umfangreich geworden ist. Trotz des Strebens nach einer
klar strukturierten, modularen monolithischen Codebasis werden die willkürlich
gezogenen Grenzen nur allzu oft überschritten. Der zu ähnlichen Funktionen
gehörende Code beginnt sich überall auszubreiten und erschwert es, Fehler zu
beheben oder Änderungen vorzunehmen.

Bei monolithischen Systemen kämpfen wir dagegen an, indem wir versuchen,
zusammenhängenden Code zu schreiben, nicht selten durch Abstrahierung oder
das Erstellen von Modulen. Diese Geschlossenheit, also das Bestreben, zusam-
mengehörigen Code auch zusammenzuhalten, spielt bei Microservices eine wich-
tige Rolle. Das wird auch durch das von Robert C. Martin definierte Prinzip einer
einzigen Zuständigkeit bestätigt, das besagt: »Fasse Dinge zusammen, die aus dem-
selben Grund geändert werden, und trenne Dinge, die aus unterschiedlichen
Gründen geändert werden.«

Microservices verfolgen denselben Ansatz bezüglich voneinander unabhängiger
Services. Wir beschränken unsere Services auf eng begrenzte Geschäftsvorgänge,
damit offensichtlich ist, wo sich der zu einer bestimmten Funktionalität zugehö-
rige Code befindet. Durch diese Fokussierung eines Services auf eine explizite
Schnittstelle entgeht man der Versuchung, den Code zu groß werden zu lassen –
und damit auch all den anderen Schwierigkeiten, die damit einhergehen können.

Man stellt mir oft die Frage: Wie klein ist klein? Hier eine Anzahl von Codezeilen
anzugeben, ist problematisch, weil manche Programmiersprachen ausdrucks-
stärker sind als andere und daher dieselben Aufgaben in weniger Codezeilen
verrichten können. Außerdem ist zu berücksichtigen, dass wir möglicherweise
mehrfache Abhängigkeiten von anderem Code einbringen, der seinerseits aus

1.1
Was sind Microservices?
vielen Zeilen besteht. Darüber hinaus sind manche Teile Ihrer Anwendung
möglicherweise aus gutem Grund komplex und erfordern daher mehr Code. Jon
Eaves (http://RealEstate.com.au) beschreibt einen Microservice als etwas,
das in zwei Wochen neu geschrieben werden kann – eine Faustregel, die bei sei-
nen besonderen Rahmenbedingungen tatsächlich sinnvoll ist.

Eine weitere, etwas banale Antwort auf obige Frage lautet: Klein genug, aber nicht
zu klein. Als Redner auf Fachtagungen stelle ich fast immer die Frage: Wer betreibt
ein zu großes System und würde es gern aufspalten? Nahezu jeder der Anwesenden
hebt dann die Hand. Wir scheinen einen ausgeprägten Sinn dafür zu besitzen,
etwas zu Großes zu erkennen. Folglich könnte man argumentieren, dass Code,
der nicht mehr zu umfangreich erscheint, wahrscheinlich kompakt genug ist.

Bei der Beantwortung der Frage Wie klein? spielt es eine wichtige Rolle, in wel-
chem Ausmaß der Service auf die Struktur des Entwicklerteams abgestimmt ist.
Wenn die Codebasis zu groß ist, um von einem kleinen Entwicklerteam gehand-
habt zu werden, ist es sinnvoll, sie aufzuspalten. Diese Abstimmung auf betriebli-
che Gegebenheiten wird später noch zur Sprache kommen.

Wenn es darum geht, wie klein denn nun klein genug ist, stelle ich mir das gern
folgendermaßen vor: Je kleiner ein Service ist, desto stärker kommen die Vor- und
Nachteile der Microservice-Architektur zum Tragen. Kleinere Services ziehen grö-
ßere Vorteile aus der wechselseitigen Abhängigkeit. Gleichzeitig steigt aber auch
die Komplexität, die sich aus dem Vorhandensein von immer mehr veränderlichen
Systembestandteilen ergibt, was wir im weiteren Verlauf des Buches immer wie-
der untersuchen werden. Sobald man die Komplexität besser in den Griff
bekommt, kann man auch immer kleinere Services anstreben.

1.1.2 Eigenständigkeit

Unser Microservice ist ein eigenständiges Gebilde. Dabei kann es sich um einen
isolierten PaaS-Service (Platform-as-a-Service, Bereitstellung einer Computerplatt-
form in der Cloud) handeln oder um einen eigenen Betriebssystemprozess. Wir
versuchen zu vermeiden, mehrere Services auf derselben Maschine zu betreiben,
auch wenn der Begriff Maschine heutzutage ziemlich vage ist. Diese Isolierung
kann zwar etwas Verwaltungsaufwand verursachen, aber die damit einhergehende
Vereinfachung trägt sehr dazu bei, das verteilte System besser zu verstehen.
Außerdem werden viele der bei dieser Form des Deployments auftretenden Pro-
bleme durch neue Technologien deutlich entschärft.

Die Kommunikation der Services untereinander erfolgt durch Aufrufe über das
Netzwerk. Dadurch wird die Isolierung der Services betont und man geht den
Gefahren einer engen Kopplung aus dem Weg.

Die Services müssen unabhängig voneinander geändert und erneut bereitgestellt
werden können und ohne Änderungen aufseiten der Consumer auskommen. Wir
23

Kapitel 1
Microservices

24
müssen uns Gedanken darüber machen, welche Informationen die Services preis-
geben sollten und welche sie verbergen dürfen. Wenn zu viele Informationen
gemeinsam genutzt werden, führt das zu einer Kopplung der Consumer an die
interne Darstellung. Das vermindert die Eigenständigkeit, weil dadurch bei Ände-
rungen eine zusätzliche Abstimmung mit den Consumern erforderlich wird.

Unser Service bietet eine API (Application Programming Interface, Programmier-
schnittstelle) an, über die die anderen mit unserem Service kollaborierenden Ser-
vices mit ihm kommunizieren. Wir müssen außerdem darüber nachdenken,
welche Technologie am besten geeignet ist, damit durch die API selbst keine
Kopplung an Consumer entsteht. Dazu kann es erforderlich sein, technologieun-
abhängige APIs einzusetzen, damit die Auswahl der eingesetzten Technologien
nicht beschränkt wird. Wir werden im Verlauf des Buches immer wieder auf die
Bedeutung einer guten entkoppelten API zurückkommen.

Ohne Entkopplung fällt alles wie ein Kartenhaus in sich zusammen. Die Gret-
chenfrage lautet: Können Sie eine Änderung an einem Service vornehmen und
ihn erneut deployen, ohne irgendetwas anderes zu ändern? Lautet die Antwort
Nein, werden sich viele der im Buch erörterten Vorteile nur schwer erzielen
lassen.

1.2 Die wichtigsten Vorteile

Microservices besitzen zahlreiche und vielgestaltige Vorteile. Viele davon bringt
jedes verteilte System ohnehin mit sich, allerdings schöpfen Microservices das
Potenzial dieser Vorteile tendenziell vor allem deswegen besser aus, weil sie bei
der Umsetzung der Konzepte verteilter Systeme und serviceorientierter Architek-
turen (Service-Oriented Architecture, SOA) viel weiter gehen.

1.2.1 Verschiedenartige Technologien

Bei einem aus mehreren kollaborierenden Services bestehendem System können
bei den einzelnen Services unterschiedliche Technologien zum Einsatz kommen.
Dadurch ist es möglich, für jede Aufgabe das am besten geeignete Werkzeug aus-
zuwählen, anstatt sich mit standardisierten Allzwecklösungen zufriedengeben zu
müssen, die sich oftmals als kleinster gemeinsamer Nenner herausstellen.

Falls ein bestimmter Teil unseres Systems beschleunigt werden soll, könnten wir
uns dazu entschließen, eine andere Technologie einzusetzen, die besser dafür
geeignet ist, die erforderliche Geschwindigkeit zu erzielen. Es wäre ebenfalls
möglich, die in verschiedenen Teilen des Systems anfallenden Daten auf unter-
schiedliche Weise zu speichern. Bei Anwendungen eines sozialen Netzwerks bei-
spielsweise könnten wir die Interaktionen der Benutzer in einer grafikfähigen
Datenbank speichern, um die hochgradig verknüpften Verbindungen in Form

1.2
Die wichtigsten Vorteile
eines Social Graph widerzuspiegeln. Die Nachrichten der Benutzer hingegen
könnten in einem dokumentorientierten Datenspeicher abgelegt werden, was zu
einer heterogenen Architektur wie der in Abbildung 1.1 gezeigten führt.

Abb. 1.1: Microservices gestatten eine einfachere Übernahme unterschiedlicher Technologien.

Microservices ermöglichen außerdem eine schnellere Übernahme von Technolo-
gien, und wir können uns gegebenenfalls auch Verbesserungen zunutze mache.
Die größten Hürden beim Ausprobieren und bei der Übernahme neuer Technolo-
gien sind die damit verbundenen Risiken. Wenn ich bei einer monolithischen
Anwendung eine neue Programmiersprache, eine andere Datenbank oder ein
Framework ausprobieren möchte, sind bei jeder Änderung weite Teile meines Sys-
tems betroffen. Bei einem aus mehreren Services bestehenden System stehen mir
zum Austesten neuer Technologien hingegen gleich mehrere Möglichkeiten zur
Verfügung. Ich kann mir einen unkritischen Service aussuchen, dessen Ausfall
nur mit geringem Risiko verbunden wäre, und die Technologie dort einsetzen,
wohlwissend, dass ich nur sehr begrenzten Schaden anrichten kann. Viele Unter-
nehmen betrachten diese Möglichkeit, neue Technologien einzubinden, als echten
Vorteil.

Die Integration mehrerer Technologien ist natürlich ohne einen gewissen Mehr-
aufwand nicht machbar. Manche Unternehmen schränken etwa die Auswahl der
Programmiersprache ein. Netflix und Twitter beispielsweise verwenden als Platt-
form vornehmlich die Java Virtual Machine (JVM), weil sie über ein sehr gutes Ver-
ständnis der Zuverlässigkeit und der Leistungsfähigkeit dieses Systems verfügen.
Beide Unternehmen entwickeln auch Bibliotheken und Hilfswerkzeuge für die
JVM, was den Betrieb im großen Maßstab sehr erleichtert, aber den Einsatz nicht
auf Java beruhender Services oder Clients erschwert. Jedoch beschränken sich
selbst Twitter und Netflix nicht für sämtliche Aufgaben nur auf diese eine Techno-
logie. Ein weiterer Kontrapunkt hinsichtlich der Bedenken, Technologien mitein-
ander zu vermischen, ist auch die Größe der Codebasis: Wenn ich meinen
Microservice tatsächlich in zwei Wochen komplett neu programmieren kann, sind
die mit der Übernahme neuer Technologien verbundenen Risiken weitgehend
entschärft.
25

Kapitel 1
Microservices

26
Sie werden bei der Lektüre des Buches feststellen, dass es bei vielen Dingen, die
Microservices betreffen, immer wieder darum geht, das richtige Gleichgewicht zu
finden. Die Auswahl passender Technologien wird in Kapitel 2 erläutert, das sich
vornehmlich mit der Fortentwicklung der Systemarchitektur beschäftigt. In
Kapitel 4, das die Integration zum Thema hat, werden Sie erfahren, wie Sie Ihre
Services voneinander unabhängig weiterentwickeln können, ohne sie übermäßig
miteinander zu koppeln.

1.2.2 Belastbarkeit

Bei der Gewährleistung einer hohen Belastbarkeit spielt das Abschotten der Ser-
vices voneinander eine entscheidende Rolle: Wenn eine Komponente des Systems
ausfällt, ohne die anderen in Mitleidenschaft zu ziehen, können Sie die betref-
fende Komponente isolieren und der Rest des Systems läuft weiter. Es liegt nahe,
die Abschottung den Aufgaben der Services entsprechend vorzunehmen. Wenn
bei einer monolithischen Anwendung ein Service ausfällt, funktioniert gar nichts
mehr. Man kann monolithische Systeme auf mehreren Maschinen betreiben, um
die Ausfallwahrscheinlichkeit zu verringern – bei der Verwendung von Microser-
vices ist es allerdings möglich, Systeme zu entwickeln, deren Funktionalität bei
einem Totalausfall von Services nur schrittweise abgebaut wird.

Wir sollten aber dennoch vorsichtig bleiben. Man muss die neuen Fehlerquellen,
mit der verteilte Systeme vornehmlich zu kämpfen haben, genau verstehen, damit
gewährleistet ist, dass unser Microservice-System Vorteile aus der erhöhten Belast-
barkeit zieht. Netzwerke können nun einmal ausfallen – und das tun sie auch.
Gleiches gilt für die Maschinen, auf denen das System läuft. Wir müssen daher
wissen, wie Ausfälle zu handhaben sind und welche Auswirkungen, sofern vor-
handen, diese Ausfälle für den Endbenutzer der Software haben.

In Kapitel 11 werden wir uns noch eingehender mit der Verbesserung der Belast-
barkeit und der Handhabung von Fehlerzuständen beschäftigen.

1.2.3 Skalierung

Bei einem großen, monolithischen Service muss alles gleichzeitig skaliert werden.
Wenn auch nur ein kleiner Teil des Gesamtsystems nicht hinreichend leistungsfä-
hig ist, dieser Teil aber in einer riesigen monolithischen Anwendung »einge-
sperrt« ist, muss das System als Ganzes skaliert werden. Bei der Verwendung
kleinerer Services hingegen reicht es aus, nur die Leistungsfähigkeit der betroffe-
nen Services zu erhöhen, was es ermöglicht, andere Teile des Systems auf weniger
leistungsstarker Hardware zu betreiben (Abbildung 1.2).

Der Online-Modehändler Gilt hat Microservices aus genau diesem Grund einge-
führt. Als Gilt 2007 seine Geschäftstätigkeit aufnahm, setzte das Unternehmen
eine monolithische Rails-Anwendung ein. Ab 2009 konnte das System die zuneh-

1.2
Die wichtigsten Vorteile
mende Last jedoch nicht mehr bewältigen. Nach der Aufspaltung wesentlicher
Teile des Systems war Gilt dann aber wieder in der Lage, den aufkommenden
Datenverkehr auch in Stoßzeiten zu handhaben. Heute laufen dort mehr als 450
Microservices, jeder davon auf mehreren unabhängigen Maschinen.

Abb. 1.2: Es reicht aus, nur die Leistungsfähigkeit betroffener Microservices zu erhöhen.

Beim Einsatz von Systemen, die Ressourcen nach Bedarf bereitstellen, wie z.B.
Amazon Web Services (AWS), ist es sogar möglich, auch die Skalierung nur nach
Bedarf vorzunehmen, nämlich nur für die Systembestandteile, bei denen es erfor-
derlich ist. Dadurch wird es möglich, die anfallenden Kosten wesentlich effektiver
zu steuern. Es kommt nur selten vor, dass ein architektonischer Ansatz so eng mit
nahezu sofortigen Kosteneinsparungen verknüpft ist.

1.2.4 Komfortables Deployment

Wenn bei einer aus Millionen Codezeilen bestehenden monolithischen Anwen-
dung auch nur eine Zeile geändert wird, muss das Deployment für die gesamte
Anwendung erneut durchgeführt werden, um diese Änderung zur Verfügung zu
stellen. Das kann allerdings erhebliche Auswirkungen nach sich ziehen und birgt
Risiken. In der Praxis werden solche risikobehafteten Deployments mit weitrei-
chenden Auswirkungen aufgrund der verständlichen Sorgen, die man sich in die-
sem Zusammenhang macht, nur selten durchgeführt. Das bedeutet aber leider
auch, dass sich die Modifikationen bis zum nächsten Release anhäufen und tat-
sächlich veröffentlichte Versionen somit jede Menge Anpassungen und Modifika-
tionen aufweisen. Und je größer die Unterschiede zwischen den Versionen sind,
desto höher ist auch das Risiko, Fehler zu begehen!
27

Kapitel 1
Microservices

28
Bei der Verwendung von Microservices können wir dagegen Änderungen an einem
einzelnen Service vornehmen und diesen dann unabhängig vom übrigen System
deployen. Das ermöglicht es uns, den neuen Code schneller zu deployen. Falls ein
Problem auftritt, kann es schnell einem bestimmten Service zugeordnet werden,
was es wiederum erlaubt, Änderungen gegebenenfalls auch schnell wieder rück-
gängig zu machen. Darüber hinaus kann man auf diese Weise dem Kunden neue
Funktionalitäten schneller zur Verfügung stellen. Das ist einer der Hauptgründe
dafür, dass Unternehmen wie Amazon und Netflix diese Architektur verwenden –
um zu gewährleisten, dass es bei der Veröffentlichung neuer Software so wenig
Hindernisse wie möglich gibt.

Die auf diesem Gebiet eingesetzte Technologie hat sich in den letzten Jahren dras-
tisch verändert. In Kapitel 6 werden wir das Deployment im Microservices-Um-
feld noch genauer in Augenschein nehmen.

1.2.5 Betriebliche Abstimmung

Viele von uns wissen aus eigener Erfahrung um die Schwierigkeiten, die große
Entwicklerteams und eine große Codebasis bereiten können. Diese Probleme kön-
nen sich bei verteilten Teams noch verschärfen. Außerdem ist bekannt, dass klei-
nere Teams, die mit einer kleineren Codebasis arbeiten, tendenziell produktiver
sind.

Microservices ermöglichen eine bessere Abstimmung der Architektur auf die
Unternehmensstruktur und helfen uns dabei, die Anzahl der an einer bestimmten
Codebasis arbeitenden Entwickler zu minimieren und so ein optimales Verhältnis
zwischen Teamgröße und Produktivität zu erreichen. Außerdem können die
Zuständigkeiten der Entwicklerteams umverteilt werden, damit die an einem
bestimmten Service arbeitenden Entwickler am selben Ort tätig sind. Wir werden
dieses Thema noch genauer betrachten, wenn in Kapitel 10 Conways Gesetz erör-
tert wird.

1.2.6 Modularer Aufbau

Man verspricht sich vom Einsatz verteilter Systeme und serviceorientierter Archi-
tekturen insbesondere, dass dadurch Möglichkeiten zur Wiederverwendung von
Funktionalitäten eröffnet werden. Im Fall der Microservices ist vorgesehen, dass
die Funktionalitäten auf verschiedene Weise für unterschiedliche Aufgaben nutz-
bar sind. Das kann besonders wichtig sein, wenn wir darüber nachdenken, wie die
Nutzer unsere Software verwenden. Die Zeiten, in denen wir unsere Überlegun-
gen entweder auf die Websiteversion für Desktoprechner oder Mobilgeräte
beschränken konnten, sind lange vorbei. Heutzutage sind eine Unzahl von Kom-
binationen der Möglichkeiten des Webs, nativer Anwendungen, des mobilen
Webs sowie von Tablet-Anwendungen oder tragbaren Geräten (»Wearables«) zu
berücksichtigen. Während die Unternehmen dabei sind, sich von diesen ein-

1.3
Was ist mit serviceorientierten Architekturen?
engenden Kommunikationskanälen zu verabschieden und sich eher ganzheit-
lichen Konzepten zur Kundenbindung zuwenden, benötigen wir Architekturen,
die damit schritthalten können.

Mit Microservices öffnen wir unsere Systeme gewissermaßen einen Spaltbreit
und machen einen Teil davon Außenstehenden zugänglich. Wenn sich die Um-
stände ändern, können wir unser System zur Anpassung anders aufbauen. Bei
monolithischen Anwendungen steht mir als Außenstehendem oft nur ein ver-
gleichsweise grobgranularer Zugang zur Verfügung. Wenn ich diesen Zugang
weiter aufspalten möchte, um etwas Nützlicheres zu erhalten, brauche ich einen
Vorschlaghammer! In Kapitel 5 werden wir erörtern, wie man bereits vorhandene
monolithische Systeme aufspaltet und sie in hoffentlich wiederverwendbare und
neu zusammensetzbare Microservices umwandelt.

1.2.7 Austauschbarkeit

Wenn Sie in einem Unternehmen mittlerer Größe oder sogar in einer großen
Organisation tätig sind, stehen die Chancen nicht schlecht, dass dort ein großes,
garstiges, veraltetes System in irgendeiner Ecke ein trauriges Dasein fristet. Das
System, mit dem niemand etwas zu tun haben will. Das System, das für die
Arbeitsweise Ihres Unternehmens unentbehrlich ist, aber in einem seltsamen
Fortran-Dialekt programmiert ist und nur auf einer Hardware läuft, die besser vor
25 Jahren ausrangiert worden wäre. Warum wurde es nicht schon längst ersetzt?
Sie ahnen es schon: Es wäre zu umständlich und zu riskant.

Bei einzelnen, kleinen Services ist der Aufwand für das Ersetzen einiger oder
sogar aller Services durch eine verbesserte Implementierung viel leichter zu hand-
haben. Wie oft haben Sie schon an einem einzigen Tag mehr als hundert Codezei-
len verworfen, ohne sich dabei allzu große Sorgen gemacht zu haben? Bei der
Verwendung von Microservices, die oft von vergleichbarer Größe sind, fällt es
nicht besonders schwer, sich dazu durchzuringen, einen Service neu zu schreiben
oder vollständig zu entfernen.

Entwicklerteams, die den Microservice-Ansatz verfolgen, haben überhaupt kein
Problem damit, bei Bedarf Services komplett neu zu programmieren oder über-
flüssige Services zu löschen. Wenn die Codebasis nur einige hundert Zeilen lang
ist, wird wohl kaum jemand eine emotionale Bindung dazu aufbauen, und der
Aufwand für das Ersetzen eines Services ist ziemlich gering.

1.3 Was ist mit serviceorientierten Architekturen?

Bei serviceorientierten Architekturen (Service-Oriented Architecture, SOA) handelt
es sich um einen Designansatz, bei dem mehrere Services kollaborieren, um letz-
ten Endes einen Satz an Funktionalitäten bereitzustellen. Hier ist mit dem Begriff
»Service« typischerweise ein eigenständiger Betriebssystemprozess gemeint. Die
29

Kapitel 1
Microservices

30
Kommunikation zwischen diesen Services erfolgt über das Netzwerk, nicht durch
Funktionsaufrufe innerhalb eines Prozesses.

SOA wurde entwickelt, um den Herausforderungen großer monolithischer An-
wendungen etwas entgegenzusetzen. Dieser Ansatz zielt darauf ab, die Wiederver-
wendbarkeit von Software zu fördern. Beispielsweise könnten zwei oder mehr
Programme für Endanwender dieselben Services nutzen. Die Wartung oder das
Umschreiben von Software soll dadurch erleichtert werden, denn theoretisch könn-
ten wir einen Service durch einen anderen ersetzen, ohne dass irgendjemand das
bemerkt, sofern sich die Verwendungsweise des Services nicht allzu sehr ändert.

Im Grunde genommen ist SOA eine sehr vernünftige Idee, allerdings gibt es – trotz
einer ganzen Reihe von Anläufen – keinen echten Konsens, wie SOA richtig
umzusetzen ist. Meiner Ansicht nach betrachtet ein Großteil der Branche das Pro-
blem nicht ganzheitlich genug und präsentiert eine verlockende Alternative zur
Sichtweise einiger Anbieter in diesem Umfeld.

Viele der Probleme, die SOA angelastet werden, hängen eigentlich mit anderen
Dingen zusammen: Kommunikationsprotokolle (z.B. SOAP, Simple Object Access
Protocol), Software zum Datenaustausch (Middleware) verschiedener Hersteller,
fehlende Orientierungshilfe bei der Aufteilung der Services oder falsche Empfeh-
lungen zur Auswahl der Stelle, an der ein System aufgespalten werden sollte. Ein
Zyniker würde sagen, dass die Hersteller den SOA-Trend für sich vereinnahmt
(und in einigen Fällen gefördert) haben, um die Verkäufe ihrer Produkte anzukur-
beln, und dass ebendiese Produkte die SOA-Ziele letzten Endes untergraben.

Die landläufige Meinung über SOA trägt nicht zum Verständnis bei, wie etwas Gro-
ßes in etwas Kleines aufgespalten wird. Es geht nicht darum, wie groß zu groß ist.
Es geht hingegen zu wenig um realistische, praxisnahe Methoden, die gewährleis-
ten, dass Services nicht zu eng gekoppelt werden. Die Summe der ungesagten
Dinge ist der Ursprung für viele der Fallstricke, die mit SOA in Verbindung ge-
bracht werden.

Der Microservice-Ansatz ist aus praktischen Anwendungen hervorgegangen und
baut dabei auf unser besseres Verständnis der Systeme und Architekturen auf, um
SOA richtig umzusetzen. Stellen Sie sich also Microservices lieber als einen
bestimmten SOA-Ansatz vor, in derselben Weise, wie XP (Extreme Programming)
oder Scrum bestimmte Ansätze der agilen Softwareentwicklung sind.

1.4 Weitere Verfahren zur Aufspaltung

Wenn man der Sache auf den Grund geht, stellt man fest, dass viele der Vorteile
einer Microservice-basierten Architektur auf zwei Dingen beruhen: der Aufteilung
der Services und der Tatsache, dass eine viel größere Auswahl an möglichen Her-
angehensweisen für Problemlösungen zur Verfügung steht. Aber könnten auch
andere vergleichbare Verfahren zur Aufspaltung dieselben Vorteile bringen?

1.4
Weitere Verfahren zur Aufspaltung
1.4.1 Programmbibliotheken

Ein Standardverfahren zur Aufspaltung, das in praktisch jeder Programmierspra-
che vorkommt, ist die Aufteilung der Codebasis in mehrere Bibliotheken. Solche
Bibliotheken können von Drittherstellern stammen oder in Ihrem Unternehmen
erstellt worden sein.

Bibliotheken ermöglichen es, Funktionalitäten mit anderen Entwicklerteams oder
anderen Services zu teilen. Ich könnte beispielsweise einen Satz nützlicher Hilfs-
programme zur Handhabung von Objektsammlungen erstellen oder vielleicht
eine wiederverwendbare Statistikbibliothek programmieren.

Entwicklerteams können sich entsprechend solcher Bibliotheken organisieren,
und die Bibliotheken selbst sind wiederverwendbar. Es gibt aber auch einige Nach-
teile.

Erstens geht die echte Nutzung verschiedenartiger Technologien verloren, denn
die Bibliothek muss typischerweise in derselben Sprache wie der Code program-
miert sein, zumindest aber auf derselben Plattform laufen. Zweitens wird die
Leichtigkeit beschnitten, mit der Sie Teile Ihres Systems voneinander unabhängig
skalieren können. Drittens können Sie keine neue Bibliothek deployen, ohne auch
den gesamten Prozess erneut zu deployen, sofern Sie keine dynamisch eingebun-
denen Bibliotheken verwenden. Dadurch schränken sich Ihre Möglichkeiten ein,
isolierte Änderungen vorzunehmen. Das eigentliche Problem ist aber vermutlich,
dass es nun keinen naheliegenden Zugang mehr gibt, über den Sie die architek-
tonischen Sicherheitsmaßnahmen (siehe Kapitel 11) zur Aufrechterhaltung der
Belastbarkeit des Systems einrichten können.

Dennoch haben Programmbibliotheken ihre Berechtigung. Sie werden für häufig
anfallende Aufgaben, die unabhängig von einem bestimmten Geschäftsfeld sind,
vermutlich Code erstellen, den Sie im gesamten Unternehmen wiederverwenden
möchten – hier liegt es auf der Hand, eine wiederverwendbare Bibliothek einzu-
setzen. Seien Sie aber dennoch vorsichtig: Gemeinsam genutzter Code, der zur
Kommunikation zwischen Services eingesetzt wird, kann zu einer Kopplung füh-
ren. Mehr dazu in Kapitel 4.

Services können auf Bibliotheken von Drittherstellern zugreifen und sollten auch
regen Gebrauch davon machen, um häufig vorkommenden Code wiederzuver-
wenden. Die alleinige Lösung ist das aber nicht.

1.4.2 Module

Manche Programmiersprachen stellen eigene Verfahren zur Aufspaltung zur Ver-
fügung, die die Möglichkeiten einfacher Bibliotheken übertreffen. Dabei kann die
Lebensdauer solcher Module gesteuert werden, indem sie aktiviert und deaktiviert
werden, was es ermöglicht, sie laufenden Prozessen bereitzustellen. Auf diese
31

Kapitel 1
Microservices

32
Weise können Sie Änderungen vornehmen, ohne den ganzen Prozess beenden zu
müssen.

Hier ist insbesondere die Open Source Gateway Initiative (OSGI) als Ansatz zur
Modularisierung zu nennen. Java an sich kennt noch keine richtigen Module und
wir werden mindestens auf die Java-Version 9 warten müssen, bis die Sprache
dahingehend erweitert wird. OSGI wurde in Form eines Frameworks entwickelt,
das es ermöglicht, in der Java-IDE Eclipse Plug-ins zu installieren und wird nun
dazu verwendet, in Java über eine Bibliothek ein Modulkonzept nachzurüsten.

Das Problem ist, dass OSGI Funktionalitäten wie die Steuerung der Lebensdauer
von Modulen zu erzwingen versucht, ohne dass die Sprache selbst dies hinrei-
chend unterstützt. Das führt dazu, dass die Modulautoren mehr Arbeit aufwenden
müssen, um die Module ordnungsgemäß zu isolieren. Außerdem gerät man
innerhalb eines einzelnen Prozesses allzu leicht in Versuchung, die verschiedenen
Module zu sehr zu koppeln, was wiederum die verschiedensten Probleme hervor-
rufen kann. Ich weiß aus eigener Erfahrung, die mit derjenigen von Kollegen aus
der Branche übereinstimmt, dass OSGI selbst bei guten Entwicklerteams schnell
zu einer Komplexität führen kann, die von den Vorteilen nicht aufgewogen wird.

Die Programmiersprache Erlang verfolgt einen anderen Ansatz, bei dem Module
zu einem Bestandteil der Laufzeitumgebung werden. Erlang ist somit eine sehr
ausgereifte Verfahrensweise zur Modularisierung. Erlang-Module lassen sich pro-
blemlos stoppen, neu starten und aktualisieren. Diese Programmiersprache
gestattet es sogar, mehrere Versionen eines Moduls gleichzeitig laufen zu lassen,
wodurch es möglich ist, Module auf elegante Weise zu aktualisieren.

Die Fähigkeiten der Erlang-Module sind tatsächlich beeindruckend, aber selbst
wenn wir das Glück haben, eine Plattform mit diesen Fähigkeiten zu verwenden,
verbleiben immer noch die Unzulänglichkeiten, die wir von herkömmlichen Pro-
grammbibliotheken kennen. Unsere Möglichkeiten, neue Technologien einzuset-
zen, sind sehr beschränkt: Wir können nur in begrenztem Maße unabhängig
skalieren, laufen Gefahr, zu stark koppelnde Integrationsverfahren zu verwenden,
und es fehlt der Zugang zu architektonischen Sicherheitsmaßnahmen.

Es gibt an dieser Stelle aber noch eine weitere erwähnenswerte Überlegung. Rein
technisch sollte es möglich sein, innerhalb eines einzelnen monolithischen Pro-
zesses ordnungsgemäß aufgeteilte, unabhängige Module zu erstellen. Dessen
ungeachtet sieht man dergleichen nur selten. Die Module selbst werden schon
bald eng mit dem übrigen Code gekoppelt sein und geben damit einen ihrer wich-
tigsten Vorteile preis. Eine deutliche Trennung der Prozesse zwingt in dieser Hin-
sicht zu »sauberer« Programmierung (oder erschwert es zumindest, etwas falsch
zu machen!). Ich will natürlich nicht behaupten, dass dies der entscheidende
Antrieb zur Trennung von Prozessen sein sollte, aber es ist interessant festzustel-

