Sam
Newman

\

Mlcroserwces
Konptlo/n und Design

,l'
e~

mitp

Hinweis des Verlages zum Urheberrecht und
Digitalen Rechtemanagement (DRM)

Der Verlag raumt Ihnen mit dem Kauf des ebooks das
Recht ein, die Inhalte im Rahmen des geltenden
Urheberrechts zu nutzen. Dieses Werk, einschlieBlich
aller seiner Teile, ist urheberrechtlich geschitzt. Jede
Verwertung auberhalb der engen Grenzen des Urhe-
berrechtsgesetzes ist ohne Zustimmung des Verlages
unzulassig und strafbar. Dies gilt insbesondere fur Ver-
vielfaltigungen, Ubersetzungen, Mikroverfilmungen und
Einspeicherung und Verarbeitung in elektronischen
Systemen.

Der Verlag schiitzt seine ebooks vor Missbrauch des
Urheberrechts durch ein digitales Rechtemanagement.
Bei Kauf im Webshop des Verlages werden die ebooks
mit einem nicht sichtbaren digitalen Wasserzeichen
individuell pro Nutzer signiert.

Bei Kauf in anderen ebook-Webshops erfolgt die Signa-
tur durch die Shopbetreiber. Angaben zu diesem DRM
finden Sie auf den Seiten der jeweiligen Anbieter.

Sam Newman

Microservices

Konzeption und Design

Ubersetzung aus dem Amerikanischen
von Knut Lorenzen

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen National-
bibliografie; detaillierte bibliografische Daten sind im Internet iiber <http://dnb.d-nb.de>
abrufbar.

ISBN 978-3-95845-082-0
1. Auflage 2015

www.mitp.de
E-Mail: mitp-verlag@sigloch.de

Telefon: +49 7953 / 7189 - 079
Telefax: +49 7953 / 7189 - 082

© 2015 mitp Verlags GmbH & Co. KG

Dieses Werk, einschlieflich aller seiner Teile, ist urheberrechtlich geschiitzt. Jede Verwer-
tung auflerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des
Verlages unzulissig und strafbar. Dies gilt insbesondere fiir Vervielfiltigungen, Uberset-
zungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen
Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in die-
sem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass
solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu
betrachten wiren und daher von jedermann benutzt werden diirften.

Authorized German translation of the English edition of Building Microservices

ISBN 9781491950357 © 2015 Sam Newman. This translation is published and sold by
permission of O’Reilly Media, Inc., which owns or controls all rights to publish and sell
the same.

Lektorat: Sabine Schulz
Sprachkorrektorat: Maren Feilen
Coverbild: © Irochka, fotolia.de

Satz: I1I-satz, Husby, www.drei-satz.de

Inhaltsverzeichnis

I.2

1.3
1.4

Einleitung.

Uberden AUtOT oot e

I.I.I

I.I.2

Klein und darauf spezialisiert, eine bestimmte
Aufgabe richtig gut zu erledigen.
Eigenstindigkeit.......... i i

Die wichtigsten Vorteile i

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6

1.2.7

Verschiedenartige Technologien.......................
Belastbarkeit...........
Skalierung.o
Komfortables Deployment.
Betriebliche Abstimmung
Modularer Aufbau
Austauschbarkeit

Weitere Verfahren zur Aufspaltung.

1.4.1
1.4.2

Programmbibliotheken
Module ...

Kein Patentrezepto i

Fazit

Der fortentwickelte Systemarchitekt
Unangebrachte Vergleiche
Das Zukunftsbild eines Systemarchitekten.....................
Zoneneinteilung

Ein grundsitzlicher Ansatz. o i

2.4.1

2.4.2

2.4.3

Strategische Ziele............ .. i L.
Prinzipienottt
Praktiken....... ..o oo

15

20

21
22

22
23
24
24
26
26
27
28
28
29
29
30
31
31
33
33

35
35
37
39
40
41
41
42

Inhaltsverzeichnis

2.5

2.6

2.7
2.8

2.9
2.10

2.11

3.1
3.2

33

4.2
43
44

2.4.4 Prinzipien und Praktiken vereinigen . .
2.4.5 Ein Praxisbeispiel

Mindestvorgaben
2,51 Monitoring L
2.5.2 Schnittstellen.

2.5.3 Architektonische Sicherheit..........

Lenkungdurch Code...... i
2.6.1 Musterbeispiele.

2.6.2 Mafigeschneiderte Servicevorlagen. . ..

Technische Schulden.

Ausnahmebehandlung
Governance und Steuerung aus der Mitte.
Aufbau eines Entwicklerteams

Gestaltung von Services.
Kurz vorgestellt: MusicCorp

3.2.1 Lose Kopplung
3.2.2 Hochgradige Geschlossenheit.
Begrenzter Kontext
3.3.1 Geteilte und verborgene Modelle
3.3.2 Module und Services
3.3.3 Verfrithte Aufteilung
Funktionalititen des Kontexts.
Schildkréten bis ganzunten................
Kommunikation unter geschiftlichen Aspekten
Der technische Rahmen

Integration

Die Suche nach der optimalen Integrationsmethode

4.1.1 Zu Ausfillen fithrende Anderungen vermeiden

4.1.2 Technologieunabhingige APIs verwenden

4.1.3 Services fiir den Nutzer vereinfachen. .
4.1.4 Implementierungsdetails verbergen. . .
Kundendatensdtze
Gemeinsame Nutzung der Datenbank
Synchrone kontra asynchrone Kommunikation

42
43
44
44
45
45
46
46
46
48
49
50
52
52

55
55
56
56
56
57
58
59
60
61
61
63
63
65

67
67
67
67
68
68
68
69
70

Inhaltsverzeichnis

4.5 Orchestrierung kontra Choreografie 72
4.6 Aufruf entfernter Prozeduren (RPC).............. 75
4.6.1 Kopplung von Technologien 76
4.6.2 Lokale Aufrufe sind keine entfernten Aufrufe............ 76
4.6.3 Fragilitdt 77
4.6.4 IstRPCeinUbel?......... ..., 78
4.7 REST . o e 79
471 RESTund HTTP 80
4.7.2 HATEOAS. .. e 81
4.7.3 JSON, XML oder etwas anderes?. 83
4.7.4 Vorsicht vor zu viel Komfort 84
4.7.5 Nachteile von REST tber HTTP 85
4.8 Implementierung asynchroner ereignisgesteuerter
Kollaborationttt 86
4.8.1 Verfuigbare Technologien 86
4.8.2 Die Kompliziertheit asynchroner Architekturen 88
4.9 Services als Zustandsautomaten o ... 90
4.10 Reactive Extensions............ i i 90
4.11 DRY und die Gefahren der Wiederverwendung von
Code im Microservices-Umfeld 91
4.11.1 Client-Bibliotheken 92
4.12 Zugrifftiber Referenzen......... o i 93
4.13 VerSIONIerungiuniiiniiniiiiiiiian. 95
4.13.1 Solange wie moglich hinauszégern 95
4.13.2 Zu Ausfillen fithrende Anderungen rechtzeitig
erkennen............ i 96
4.13.3 Verwendung semantischer Versionierung. 97
4.13.4 Mehrere Endpunkte gleichzeitig betreiben 98
4.13.5 Mehrere Serviceversionen gleichzeitig betreiben 99
4.14 Benutzerschnittstellen. 101
4.14.1 Zunehmenddigital. il 101
4.14.2 VOraussetzungenouiuiiiiiiia... 102
4.14.3 Aufbauder APL..... 102
4.14.4 Bausteine der Benutzeroberfliche 104
4.14.5 Back-Ends fiir Front-Ends L. 106
4.14.6 Ein Hybridansatz, 108
4.15 Integration der Software von Drittherstellern................... 108

4.15.1 Fehlende Entscheidungsmoglichkeiten 109

Inhaltsverzeichnis

5-4
55
5.6
5-7
5.8
5-9
5.10
5.1I1

5.12

513
5-14
5-15
5.16

5-17
5.18
519
5.20
5.21
5.22

4.15.2 ANPaSSUNGENttt 109
4.15.3 Integrationswirrwarr 110
4.15.4 Aufsichselbstgestellt, 110
4.15.5 Das Strangler-Pattern........... 113
Fazit ... 114
Die Aufspaltung des Monolithen 115
SEAMIS . L 115
Aufspaltung von MusicCorp.ovuineen . 116
Griinde zur Aufspaltung des Monolithen 117
5.3.1 Tempo der Anderungen., 117
5.3.2 Teamstruktur i 118
5.3.3 Sicherheitsaspekte o L 118
5.3.4 Technologie............ L. 118
Verwickelte Abhdngigkeiten.............. 118
Die Datenbank i 119
Dem Problem zu Leibe riicken....................... 119
Beispiel: Auflésen von Fremdschliissel-Relationen 120
Beispiel: Statische Daten gemeinsam nutzen 122
Beispiel: Verinderliche Daten gemeinsam nutzen............... 123
Beispiel: Tabellen gemeinsamnutzen......................... 125
Refactoring von Datenbanken. 126
5.11.1 Die Aufspaltungumsetzen 126
Abgrenzung von Transaktionen.................oovuiiieo... 127
5.12.1 Versuchen Sie es spaternochmal...................... 129
5.12.2 Abbruch des gesamten Vorgangs 129
5.12.3 Verteilte Transaktionen 130
5.02.4 Wasalsotun? ... 131
Berichte........ 131
Datenbanken zur Berichterstellung 132
Datenabruf iber Serviceaufrufe L. 134
Datenpumpeniuinin i 135
5.16.1 Alternative Ziele i 137
Ereignis-Datenpumpen 137
Backup-Datenpumpe.oiiii 139
Benachrichtigung in Echtzeit 139
Anderungen verursachen Aufwand 140
Erkennen der eigentlichen Ursachen.......................... 141
Fazit ... 141

6.8

Inhaltsverzeichnis

Deployment oo
Continuous Integration fiir Einsteiger.
6.1.1 Machen Sieesauchrichtig?
Continuous Integration und Microservices.
Build Pipelines und Continuous Delivery......................
6.3.1 Die unvermeidlichen Ausnahmen
Plattformspezifische Artefakte L
Betriebssystemspezifische Artefakte
Selbsterstellte Imageso ottt i
6.6.1 Imagesals Artefakte........ i
6.6.2 Unverinderliche Server.................,
Umgebungen.t
6.7.1 Servicekonfiguration L.
6.7.2 Zuordnung der Services zuden Hosts
6.7.3 Mehrere ServicesproHost L
6.7.4 Anwendungscontainer................,
6.7.5 Ein ServiceproHost.
6.7.6 Platform-as-a-Service (PaaS)
AutomatiSierungo
6.8.1 Zwei Fallstudien zur Leistungsfihigkeit der
Automatisierung. i
Physisch wird virtuell
6.9.1 Herkommliche Virtualisierung.
6.9.2 Vagrant ...
6.9.3 Linux-Containeruuuuunnnneeeenennnnnn.
6.9.4 DoCKer.
Schnittstelle fiir das Deployment.
6.10.1 Definition der Umgebung.............
Fazit
Testen
Testtypen
Testumfangttt
7.2 Unit-Tests ...
7.2.2 ServicetestS
7.2.3 Endto-End-Tests ...,
7.2.4 Nachteile...... ...

7.2.5 Wieviele Tests?ot

10

Inhaltsverzeichnis

73

7.4
7:5

7.6
77

7.8
7:9

7.10

7.11

8.1
8.2

8.4
8.3
8.6
8.7

8.8

8.9

8.10
8.11
8.12

8.13

Implementierung von Servicetests. 183
7.3.1 Mock-Objekte kontra Platzhalter....................... 184
7.3.2 Ein intelligenterer Platzhalterservice 185
Knifflige End-to-End-Tests ..., 185
Nachteile von End-to-End-Tests ..., 187
7.5.1 Unzuverlissige und fragile Tests 187
7.5.2 Wer programmiert die Tests?, 188
7.53 Testdauer.......... ... 189
7.5.4 Dasgrofle Auftirmen 190
7.5.5 Die Metaversionc.ouuiuniniininninenn.n. 191
Abliufe testen, nicht Funktionalititen. 191
Abhilfe durch Consumer-Driven Tests 192
7.7.0 0 Pact .o 194
7.7.2 Konversationen................oiiiiiininnann... 195
End-to-End-Tests: Pround Kontra 196
Testen nach der Verdffentlichung, 196
7.9.1 Deployment und Veréffentlichung trennen.............. 197
7.9.2 Canary-Veroffentlichung 198
7.9.3 MTTRkontraMTBR. 200
Funktionsiibergreifende Tests, .. 201
7.10.1 Geschwindigkeitstests 202
Fazit .. 203
Monitoring 205
Ein Service, €N SeIVeT . . . oo vttt e et e e e e e e e e e e e e e 206
Ein Service, mehrere Server L. 207
Mehrere Services, mehrere Servert 208
Protokolle, Protokolle und noch mehr Protokolle. 208
Kennzahlen mehrerer Services. 209
Servicekennzahlen........ i 21
Monitoringung von Pseudo-Ereignissen 212
8.7.1 Implementierung des semantischen Monitorings. 213
Korrelations-IDs.ottt 213
Die Aufrufkette 216
Standardisierung 216
ZIEIGIUPPEI . o ottt 217
Wie gehtes weiter? o 218
Fazit ... 219

9.2

93

9-4

9-5

97
9.8
99
9.10
9.11

10
I0.1

10.2
10.3

Inhaltsverzeichnis

Sicherheit...... 221
Authentifizierung und Autorisierung 221
9.1.1 Gingige Single-Sign-On-Implementierungen............ 222
9.1.2 Single-Sign-On-Gatewayccooveiinnneonn. 223
9.1.3 Fein unterteilte Authentifizierung 225
Authentifizierung und Autorisierung von Services 226
9.2.1 Im internen Netzwerk ist alles erlaubt.................. 226
9.2.2 Authentifizierung itber HTTP(S) 226
9.2.3 Verwendung von SAML oder OpenID Connect. 227
9.2.4 Client-Zertifikate 228
9.2.5 HMACber HTTP.ooiiiiiiiieee e 229
9.2.6 API-Schliisselo i 230
9.2.7 Das Stellvertreterproblem 231
Schutz ruhender Daten.o i 233
9.3.1 Wohlbekannte Verfahren einsetzen 234
9.3.2 Die Bedeutung der Schliissel. 235
9.3.3 Was soll verschliisselt werden? 235
9.3.4 Entschliisselungbei Bedarf................. 236
9.3.5 Backupsverschliisseln......... L 236
Gestaffelte Sicherheitsstrategie 236
9.4.1 Firewalls 236
9.4.2 Protokollierung. 236
9.4.3 Intrusion-Detection-Systeme. 237
9.4.4 Unterteilung des Netzwerks 237
9.4.5 Betriebssystem o i 238
Ein ausgearbeitetes Beispiel L. 239
DatensparsamKeitt 241
Der Faktor Menscho i 242
Eine Goldene Regel i 242
Integrierte Sicherheit 243
Externe Prifung. 243
Fazit ... 244
Conways Gesetz und Systemdesign. 245
Beweise. 245
10.1.1 Lose und eng gekoppelte Organisationen 246
10.1.2 Windows Vista ... 246
Netflix und Amazon ..., 246
Was kann man damit anfangen? 247

1

12

Inhaltsverzeichnis

10.4
10.5
10.6

10.7

10.8
10.9
10.10
10.1I
10.12
10.13

11
IL.I
II.2
11.3

II.4
1L.5

11.6
1.7

11.8

Anpassung an Kommunikationswege
Verantwortlichkeit fiir Services.
Gemeinschaftliche Verantwortlichkeit fiir Services
10.6.1 Schwierige Aufspaltung..........
10.6.2 Feature-Teamscoiiiiiiiiinnnnnnnnn...
10.6.3 Engpisse bei der Auslieferung
Interner Open-Source-Codeoviiiiiinenn ..
10.7.1 Aufgaben der Koordinatoren..........................
10.7.2 Ausgereifte Services
10.7.3 Werkzeugsammlungen
Begrenzte Kontexte und Teamstrukturen
Verwaiste Services?ttt
Fallstudie: RealEstate.com.au.
Conways Gesetz auf den Kopfgestellt.........................
Menschen.

Die antifragile Organisation oo, ..
ILG.I TImMeouts..........ooouiiunii i
11.5.2 CircuitBreaker
11.5.3 Das Bulkhead-Pattern................... ...,
11.5.4 Isolierung
Idempotenzottt
Skalierung ...
11.7.1 MehrLeistung.oooii i
11.7.2 Arbeitslastaufteilen o il
11.7.3 Risikoverteilung i
11.7.4 Lastverteilung i
11.7.5 Worker-Systeme i
11.7.6 Neuanfang........... ... i
Datenbanken skalieren i il
11.8.1 Verfiigbarkeit des Services kontra Lebensdauer

derDaten.o
11.8.2 Skalierung bei Lesevorgingen.........................

1.9

II1.10

II.IT

II.I2

I1.13

I1.14

I1.1§
11.16

12
I2.1

Inhaltsverzeichnis

11.8.3 Skalierung bei Schreibvorgdngen 280
11.8.4 Gemeinsam genutzte Datenbankinfrastruktur 281
1IL.8.5 CQRS. ... 281
Caching. 282
11.9.1 Clientseitiges Caching, Proxy und serverseitiges

Caching........... 283
11.9.2 Cachingund HTTP 284
11.9.3 Caching bei Schreibvorgangen 285
11.9.4 Caching zur Erhéhung der Belastbarkeit................ 286
11.9.5 Den Ursprung verbergen............................. 286
11.9.6 Moglichsteinfach........... i L 287
11.9.7 Cache Poisoning: Ein warnendes Beispiel 288
Automatische Skalierungol 289
Das CAP-Theorem.oviiiittt i 290
1r.11.1 Aufgabe der Konsistenz., 292
1r.11.2 Aufgabe der Verfiigbarkeit. o o oL 292
11.11.3 Aufgabe der Partitionstoleranz? 294
ILI1.4 APoder CP? o 294
11.11.5 Keine Frage eines Entweder-Oders..................... 294
11.11.6 Abbildung der Wirklichkeit.................... 295
Serviceerkennungt 296
2. DNS. oo 296
Dynamische Registrierung von Services 298
I1.I3.1 ZOOKEEPET . ..ottt ettt et e 298
11.13.2 Consul. ... 300
11.13.3 Eureka. ... 301
11.13.4 Eigene Serviceregistrierung.............. 301
11.13.5 Menschliches Interesse 302
Services dokumentieren o o 302
ILI4I SWAGEET. . oottt ettt e e et 302
11.14.2 HAL und der HAL-Browser.oouunn... 303
Ein sich selbst beschreibendes System 304
Fazit ... 305
Aufden Punktgebracht L. 307
Prinzipien.ot e 307
12.1.1 Geschiftsvorginge modellieren 308
12.1.2 Automatisierung kultivieren 308
12.1.3 Implementierungsdetails verbergen.................... 309

13

14

Inhaltsverzeichnis

12.2
12.3

12.1.4 Dezentralisierung...........l 309
12.1.5 Unabhingiges Deployment........................... 310
12.1.6 Ausfilleeingrenzen 310
12.1.7 Umfassendes Monitoring 3N
Wann sollte man auf Microservices verzichten? 3N
Schlusswort 312
Stichwortverzeichnis L. 313

Einleitung

Microservices sind ein Ansatz fiir verteilte Systeme, die die Nutzung feingranularer
Services mit eigenen Entwicklungszyklen férdern, die sich gegenseitig zuarbei-
ten. Da Microservices vornehmlich im geschiftlichen Umfeld Anwendung finden,
werden die bei herkdmmlichen abgestuften Architekturen auftretenden Schwie-
rigkeiten umgangen. Microservices nutzen auflerdem die wihrend des letzten
Jahrzehnts entwickelten Technologien und Verfahren und vermeiden dadurch die
Fallstricke, die mit vielen serviceorientierten Architekturen einhergehen.

Dieses Buch enthilt eine Reihe konkreter Beispiele dafiir, wie Microservices welt-
weit eingesetzt werden, etwa in Unternehmen wie Netflix, Amazon, Gilt und der
REA-Gruppe, die allesamt festgestellt haben, dass ihnen die erh6hte Unabhingig-
keit dieser Architektur grofie Vorteile bringt.

Wer sollte dieses Buch lesen?

Der Anwendungsbereich dieses Buches umfasst ein breites Spektrum, ebenso wie
auch die Auswirkungen einer feingranularen Microservice-Architektur vielgestal-
tig sind. Es soll Leser ansprechen, die an verschiedenen Aspekten des Designs, der
Entwicklung, des Deployments, des Testens und der Wartung dieser Systeme inte-
ressiert sind. Diejenigen Leser, die bereits damit begonnen haben, sich mit feiner
unterteilten Architekturen zu beschiftigen — sei es nun einer vollkommen neuen
Anwendung oder der Aufteilung eines bereits vorhandenen, eher monolithischen
Systems —, werden viele praktische Ratschlige finden. Und auch denjenigen
Lesern, die im Grunde nur wissen mochten, was der ganze Rummel eigentlich
soll, wird geholfen, damit sie entscheiden kénnen, ob Microservices fiir ihre
Zwecke geeignet sind.

Der Grund fiir dieses Buch

Als es vor vielen Jahren zu meinen Aufgaben gehorte, anderen dabei zu helfen,
Software schneller fertigzustellen, fing ich an, mich mit Anwendungsarchitektu-
ren zu befassen. Mir war klar, dass automatisierte Infrastrukturen, Tests und kon-
tinuierliche Weiterentwicklungen zwar durchaus hilfreich sind, man aber bald an
die Grenzen des Machbaren st6f3t, wenn das grundlegende Design eines Systems
es nicht erlaubt, schnell und einfach Modifizierungen daran vorzunehmen.

15

16

Einleitung

Zur selben Zeit experimentierten viele Unternehmen mit feiner unterteilten
Architekturen, um vergleichbare Ergebnisse zu erzielen. Gleichzeitig sollten aber
auch eine verbesserte Skalierbarkeit, eine groflere Unabhingigkeit der Entwickler-
teams oder eine vereinfachte Ubernahme neuer Technologien ermdglicht werden.
Sowohl meine eigenen Erfahrungen als auch die meiner Kollegen bei Thought-
Works und anderen Unternehmen bestitigten die Tatsache, dass eine gréflere
Zahl eingesetzter unabhingiger Services mit eigenen Entwicklungszyklen unwei-
gerlich zu weiteren Problemen fithrt, mit denen man sich auseinandersetzen
muss. Dieses Buch soll in gewisser Weise eine Art zentrale Anlaufstelle sein und
helfen, die breite Palette von Themen, die zum Verstindnis von Microservices
nétig ist, zu beschreiben. So etwas hitte mir seinerzeit wirklich aufSerordentlich
geholfen!

Zum Stand der Dinge

Das Thema »Microservices« ist einem stindigen Wandel unterworfen. Obwohl die
Idee an sich nicht neu ist (auch wenn der Begriff es ist), haben die Erfahrungen
der Nutzer auf der ganzen Welt zusammen mit dem Aufkommen neuer Technolo-
gien mafigeblichen Einfluss auf die Verwendungsweise. Aufgrund der schnellen
Fortentwicklung in diesem Bereich habe ich versucht, mich in den folgenden
Kapiteln weniger auf bestimmte Technologien als vielmehr auf die grundlegenden
Konzepte zu konzentrieren, und zwar wohlwissend, dass sich Details der Imple-
mentierung stets schneller dndern als die dahinterstehenden Ideen. Dessen unge-
achtet erwarte ich absolut, dass wir in einigen Jahren noch besser verstehen
werden, wann der Einsatz von Microservices angebracht ist und wie sie verniinfti-
gerweise eingesetzt werden.

Aufbau des Buches

Der Aufbau dieses Buches orientiert sich vornehmlich an den behandelten The-
men. Sie kénnen daher direkt zu einem bestimmten Thema springen, das Sie am
meisten interessiert. Ich habe mich bemiiht, wichtige Begriffe und Konzepte
gleich in den ersten Kapiteln zu erldutern und gehe davon aus, dass selbst Leser,
die sich als recht erfahren einschitzen, in jedem Kapitel noch etwas von Interesse
entdecken. Grundsitzlich empfehle ich Thnen, sich Kapitel 2 anzusehen, das
einen Eindruck von der Tiefe des Themas vermittelt und umreifit, wie ich im wei-
teren Verlauf des Buches vorgehe, falls Sie sich mit den nachfolgenden Inhalten
eingehender beschiftigen mochten.

Ich hoffe, ich habe die Kapitel fiir Leser, denen das Thema neu ist, in der richtigen
Reihenfolge angeordnet, damit das Buch in sinnvoller Weise von vorn bis hinten
durchgelesen werden kann.

Aufbau des Buches

Hier ein Uberblick tiber den Inhalt des Buches:

Kapitel 1 — Microservices Wir beginnen mit einer Einfithrung in das Thema Micro-
services, in der die wesentlichen Vorteile, aber auch einige der Nachteile darge-
stellt werden.

Kapitel 2 — Der fortentwickelte Systemarchitekt In diesem Kapitel kommen die
Schwierigkeiten zur Sprache, denen man als Systemarchitekt gegeniibersteht,
weil man Kompromisse eingehen muss. Auflerdem wird erértert, was bei der Ver-
wendung von Microservices alles zu beachten ist.

Kapitel 3 — Gestaltung von Services Hier werden die Grenzen der Microservices
erkundet. Um uns auf das Wesentliche zu konzentrieren, kommen dabei Verfah-
ren des vom Anwendungsbereich geprigten Designs (Domain-Driven Design,
DDD) zum Einsatz.

Kapitel 4 — Integration An dieser Stelle beschiftigen wir uns eingehender mit
bestimmten Auswirkungen der Technologien und erértern, welche Arten der
Zusammenarbeit von Services am niitzlichsten sind. Des Weiteren werden wir auf
die Themen Benutzerschnittstelle und Integration vorhandener und seriengefer-
tigter Produkte (Commercial off-the-shelf, COTS) eingehen.

Kapitel 5 — Die Aufspaltung des Monolithen In vielen Fillen richtet sich das Inte-
resse auf die Microservices, um sie in groflen, nur schwer dnderbaren monolithi-
schen Systemen sozusagen als Gegenmittel einzusetzen. Genau dieser Ansatz
wird in diesem Kapitel ausfiithrlich untersucht.

Kapitel 6 — Deployment Das Buch ist zwar weitgehend theoretischer Natur, aller-
dings wurde kaum ein anderes der behandelten Themen so sehr durch die jiings-
ten technologischen Neuerungen beeinflusst wie das Deployment. Dieser Aspekt
wird hier eingehender betrachtet.

Kapitel 7 — Testen Dieses Kapitel geht dem Thema Testen auf den Grund — einem
Bereich, der gerade beim Deployment mehrerer eigenstindiger Services von Be-
deutung ist. Besonders interessant ist hier die Rolle, die Consumer-Driven Contracts
(CDCs) fur die Gewihrleistung der Qualitit unserer Software spielen.

Kapitel 8 — Monitoring Die vor der Auslieferung durchgefiihrten Tests helfen uns
nicht weiter, wenn Probleme erst auftreten, nachdem die Software bereits online
gestellt wurde. In diesem Kapitel wird untersucht, wie sich verteilte Systeme tiber-
wachen lassen und wie man die bei solchen Systemen auftretende Komplexitit
handhabt.

Kapitel 9 — Sicherheit Hier betrachten wir die Sicherheitsaspekte von Microser-
vices und untersuchen, wie Authentifizierung und Autorisierung zwischen Benut-
zer und Service bzw. zwischen Services gehandhabt werden. Sicherheit ist ein sehr
wichtiges Thema, das allzu leicht vernachlissigt wird. Ich bin zwar keineswegs ein

17

18

Einleitung

Sicherheitsexperte, hoffe jedoch, dass dieses Kapitel Thnen dabei hilft, beim Auf-
bau Ihrer Systeme bedeutsame Sicherheitsaspekte in Betracht zu ziehen — insbe-
sondere, wenn es sich um Microservice-Systeme handelt.

Kapitel 10 — Conways Gesetz und Systemdesign Dieses Kapitel widmet sich dem
Zusammenspiel zwischen Organisationsstruktur und Systemarchitektur. Wie viele
Unternehmen bereits feststellen mussten, fithrt es zu Problemen, wenn diese
beiden Faktoren nicht aufeinander abgestimmt sind. Wir werden versuchen, die
Ursachen dieses Dilemmas zu erdrtern und betrachten verschiedene Moglichkei-
ten, das Systemdesign an die Struktur des Entwicklerteams anzugleichen.

Kapitel 11 — Microservices skalieren Hier werden wir uns ansehen, wie Micro-
services skalieren, damit wir die bei einer grofRen Zahl von Services und hohem
Datenaufkommen wachsende Wahrscheinlichkeit eines Systemausfalls handha-
ben konnen.

Kapitel 12 — Auf den Punkt gebracht Das letzte Kapitel bemiiht sich, die Beson-
derheiten von Microservices hervorzuheben. Es enthilt eine Liste von sieben
fiir Microservices geltende Prinzipien und arbeitet die Kernpunkte des Buches
heraus.

Konventionen dieses Buches

In diesem Buch gelten folgende typografische Konventionen:

m Neue Begriffe, Dateinamen und Dateinamenerweiterungen sind kursiv gedruckt.
m URLs und E-Mail-Adressen sind im Hyper1ink-Format dargestellt.

m Fir Programmlistings oder im Flieftext vorkommende Variablen- oder Funk-
tionsnamen, Datenbanken, Datentypen, Umgebungsvariablen, Anweisungen
und Schliisselworter wird eine nicht-proportionale Schrift verwendet.

m Fir vom Benutzer einzugebende Befehle und Texte wird eine fette nicht-
proportionale Schrift benutzt.

m Texte, die vom Benutzer durch eigene Eingaben oder aus dem Kontext ersicht-
liche Werte ersetzt werden sollen, sind in einer kursiven nicht-proportio-
nalen Schrift gedruckt.

Danksagungen

Ohne Lindy Stephens wiirde es dieses Buch, das ihr gewidmet ist, nicht geben. Sie
hat mich ermuntert, es in Angriff zu nehmen, hat mich bei dem oftmals anstren-
genden Entstehungsprozess unterstiitzt und ist die beste Partnerin, die man
sich nur wiinschen kann. Ich méchte dieses Buch auch meinem Vater Howard
Newman widmen, der immer fiir mich da war. Fiir euch beide ist dieses Buch.

Danksagungen

Besonderer Dank gilt Ben Christensen, Vivek Subramaniam und Martin Fowler,
die mir beim Schreiben dieses Buches ausfiihrliche Riickmeldungen gaben und
das vorliegende Werk dadurch mitgestalteten. Ich méchte auch James Lewis dan-
ken, mit dem ich bei der Besprechung der im Buch vorgestellten Ideen so man-
ches Bier getrunken habe. Ohne eure Hilfe und Beratung wire dieses Buch nur
ein Schatten seiner selbst.

Auflerdem haben viele andere mitgeholfen und die ersten Versionen des Buches
kommentiert. Ich mochte insbesondere (in wahlloser Reihenfolge) folgenden
Personen danken: Kane Venables, Anand Krishnaswamy, Kent McNeil, Charles
Haynes, Chris Ford, Aidy Lewis, Will Thames, Jon Eaves, Rolf Russell, Badrinath
Janakiraman, Daniel Bryant, Ian Robinson, Jim Webber, Stewart Gleadow, Evan
Bottcher, Eric Sword, Olivia Leonard, sowie allen anderen Kollegen bei Thought-
Works und in der Branche, die mir dabei geholfen haben, so viel zu erreichen.

SchlieRlich méchte ich auch der Belegschaft von O’Reilly USA danken, insbeson-
dere Mike Loukides, der mich angeheuert hat, meinem Lektor Brian MacDonald
sowie Rachel Monaghan, Kristen Brown, Betsy Waliszewski und all den anderen
Leuten, die auf mir unbekannte Weise an der Entstehung dieses Buches beteiligt
waren.

19

20

Uber den Autor

Uber den Autor

Sam Newman ist als Technologe bei ThoughtWorks titig, wo er einerseits als Bera-
ter fiir Klienten arbeitet und andererseits auch als Systemarchitekt fiir Thought-
Works’ interne Systeme verantwortlich ist. Im Rahmen seiner Beratertitigkeit
arbeitete er mit zahlreichen internationalen Unternehmen aus den unterschied-
lichsten Geschiftsbereichen zusammen, wobei er oft mit einem Bein im Lager der
Entwickler und mit dem anderen im Lager des IT-Betriebs stand. Wenn Sie ihn
nach seiner Titigkeit befragen, wiirde er sagen: »Ich helfe den Leuten dabei, bes-
sere Softwaresysteme zu entwickeln.« Er veréffentlicht Artikel, hilt Vortrige auf
Fachtagungen und arbeitet hin und wieder auch an Open-Source-Projekten mit.

Microservices

Seit vielen Jahren erkunden wir inzwischen immer bessere Methoden fiir die Sys-
tementwicklung. Wir haben aus den Erfahrungen der Vergangenheit gelernt, neue
Technologien adaptiert und erleben nun, wie eine neue Generation von Technolo-
gieunternehmen ganz verschiedene Ansitze bei der Errichtung von IT-Systemen
verfolgt, die nicht nur ihre Kunden, sondern auch die eigenen Entwickler zufriede-
ner stellen.

Eric Evans Buch Domain-Driven Design (Addison-Wesley) hat uns gelehrt, wie
wichtig es ist, die reale Welt in unserem Code widerzuspiegeln und bessere Mog-
lichkeiten aufgezeigt, unsere Systeme zu modellieren. Das Konzept Continuous
Delivery fiihrt vor, wie es gelingen kann, die Software effektiver und effizienter zur
Serienreife zu bringen und schirft uns den Grundgedanken ein, jede einzelne
Version wie einen zur Verdffentlichung geeigneten Release Candidate zu behan-
deln. Unsere Einsicht in die Funktionsweise des Webs hat uns dazu gebracht,
bessere Methoden zur Kommunikation zwischen Computern zu entwickeln.
Alistair Cockburns Konzept der hexagonalen Architektur (http://alistair.
cockburn.us/Hexagonal+architecture) wies uns den Weg fort von abgestuften
Architekturen, in denen sich die Anwendungslogik verbergen konnte. Virtualisie-
rungsplattformen erlaubten es uns, Maschinen beliebiger Gréfee bereitzustellen
und diese dank automatisierter Infrastrukturen in grofRem Mafistab einzusetzen.
Einige grofle und erfolgreiche Unternehmen wie Amazon und Google beftirwor-
ten die Ansicht, dass kleine Entwicklerteams fiir den vollstindigen Entwicklungs-
zyklus ihrer Services zustindig sein sollten. Und erst in jiingster Zeit hat Netflix
uns den Aufbau robuster Systeme von einer Groéfe vorgefiihrt, die vor nur zehn
Jahren kaum vorstellbar war.

Domain-Driven Design. Continuous Delivery. Virtualisierung nach Bedarf. Auto-
matisierte Infrastrukturen. Kleine, eigenstindige Entwicklerteams. Skalierbare
Systeme. Aus diesem Umfeld sind die Microservices hervorgegangen. Sie wurden
nicht vorab entwickelt oder geplant, sondern entstanden vielmehr aus den bei der
praktischen Anwendung zu beobachtenden Tendenzen oder Mustern heraus.
Microservices existieren also im Grunde genommen nur, weil es all die anderen
genannten Dinge gibt. Ich werde im weiteren Verlauf des Buches immer wieder
Verbindungen zu diesen vorausgehenden Entwicklungen aufzeigen, so dass sich
schlussendlich beim Aufbau, der Verwaltung und der Fortentwicklung von Micro-
services ein geschlossenes Gesamtbild ergibt.

21

Kapitel 1
Microservices

Viele Unternehmen haben nach der Einfithrung feingranularer Microservice-
Architekturen festgestellt, dass ihre Software schneller zur Serienreife gelangt und
selbst neue Technologien leicht iibernommen werden kénnen. Microservices
gestatten uns eine deutlich groflere Entscheidungsfreiheit, um auf die unvermeid-
lichen Anderungen reagieren zu kénnen, die uns alle betreffen.

1.1 Was sind Microservices?

Microservices sind kleine, eigenstindige Services, die kollaborieren bzw. sich ge-
genseitig zuarbeiten. Lassen Sie uns diese Definition im Folgenden etwas genauer
fassen und die besonderen Eigenschaften der Microservices betrachten.

11,1 Klein und darauf spezialisiert, eine bestimmte
Aufgabe richtig gut zu erledigen

Zur Erginzung neuer Funktionalititen schreiben wir zusitzlichen Code und
erweitern damit zwangsliufig auch die Codebasis. Im Laufe der Zeit kann es aller-
dings schwierig werden, die Stelle zu finden, an der eine Modifikation erforderlich
ist, weil die Codebasis so umfangreich geworden ist. Trotz des Strebens nach einer
klar strukturierten, modularen monolithischen Codebasis werden die willkiirlich
gezogenen Grenzen nur allzu oft iberschritten. Der zu dhnlichen Funktionen
gehorende Code beginnt sich iiberall auszubreiten und erschwert es, Fehler zu
beheben oder Anderungen vorzunehmen.

Bei monolithischen Systemen kimpfen wir dagegen an, indem wir versuchen,
zusammenhingenden Code zu schreiben, nicht selten durch Abstrahierung oder
das Erstellen von Modulen. Diese Geschlossenheit, also das Bestreben, zusam-
mengehdrigen Code auch zusammenzuhalten, spielt bei Microservices eine wich-
tige Rolle. Das wird auch durch das von Robert C. Martin definierte Prinzip einer
einzigen Zustdndigkeit bestitigt, das besagt: »Fasse Dinge zusammen, die aus dem-
selben Grund geindert werden, und trenne Dinge, die aus unterschiedlichen
Griinden geindert werden.«

Microservices verfolgen denselben Ansatz beziiglich voneinander unabhingiger
Services. Wir beschrinken unsere Services auf eng begrenzte Geschiftsvorginge,
damit offensichtlich ist, wo sich der zu einer bestimmten Funktionalitit zugeho-
rige Code befindet. Durch diese Fokussierung eines Services auf eine explizite
Schnittstelle entgeht man der Versuchung, den Code zu grofs werden zu lassen —
und damit auch all den anderen Schwierigkeiten, die damit einhergehen konnen.

Man stellt mir oft die Frage: Wie klein ist klein? Hier eine Anzahl von Codezeilen
anzugeben, ist problematisch, weil manche Programmiersprachen ausdrucks-
stirker sind als andere und daher dieselben Aufgaben in weniger Codezeilen
verrichten kénnen. Auflerdem ist zu beriicksichtigen, dass wir moglicherweise
mehrfache Abhingigkeiten von anderem Code einbringen, der seinerseits aus

Was sind Microservices?

vielen Zeilen besteht. Dariiber hinaus sind manche Teile Threr Anwendung
moglicherweise aus gutem Grund komplex und erfordern daher mehr Code. Jon
Eaves (http://RealEstate.com.au) beschreibt einen Microservice als etwas,
das in zwei Wochen neu geschrieben werden kann — eine Faustregel, die bei sei-
nen besonderen Rahmenbedingungen tatsichlich sinnvoll ist.

Eine weitere, etwas banale Antwort auf obige Frage lautet: Klein genug, aber nicht
zu klein. Als Redner auf Fachtagungen stelle ich fast immer die Frage: Wer betreibt
ein zu grofies System und wiirde es gern aufspalten? Nahezu jeder der Anwesenden
hebt dann die Hand. Wir scheinen einen ausgeprigten Sinn dafiir zu besitzen,
etwas zu Grofles zu erkennen. Folglich kénnte man argumentieren, dass Code,
der nicht mehr zu umfangreich erscheint, wahrscheinlich kompakt genug ist.

Bei der Beantwortung der Frage Wie klein? spielt es eine wichtige Rolle, in wel-
chem Ausmaf der Service auf die Struktur des Entwicklerteams abgestimmt ist.
Wenn die Codebasis zu grof} ist, um von einem kleinen Entwicklerteam gehand-
habt zu werden, ist es sinnvoll, sie aufzuspalten. Diese Abstimmung auf betriebli-
che Gegebenheiten wird spiter noch zur Sprache kommen.

Wenn es darum geht, wie klein denn nun klein genug ist, stelle ich mir das gern
folgendermafien vor: Je kleiner ein Service ist, desto stirker kommen die Vor- und
Nachteile der Microservice-Architektur zum Tragen. Kleinere Services ziehen gré-
Rere Vorteile aus der wechselseitigen Abhingigkeit. Gleichzeitig steigt aber auch
die Komplexitit, die sich aus dem Vorhandensein von immer mehr verinderlichen
Systembestandteilen ergibt, was wir im weiteren Verlauf des Buches immer wie-
der untersuchen werden. Sobald man die Komplexitit besser in den Griff
bekommt, kann man auch immer kleinere Services anstreben.

1.1.2 Eigenstandigkeit

Unser Microservice ist ein eigenstindiges Gebilde. Dabei kann es sich um einen
isolierten PaaS-Service (Platform-as-a-Service, Bereitstellung einer Computerplatt-
form in der Cloud) handeln oder um einen eigenen Betriebssystemprozess. Wir
versuchen zu vermeiden, mehrere Services auf derselben Maschine zu betreiben,
auch wenn der Begriff Maschine heutzutage ziemlich vage ist. Diese Isolierung
kann zwar etwas Verwaltungsaufwand verursachen, aber die damit einhergehende
Vereinfachung tragt sehr dazu bei, das verteilte System besser zu verstehen.
Auflerdem werden viele der bei dieser Form des Deployments auftretenden Pro-
bleme durch neue Technologien deutlich entschirft.

Die Kommunikation der Services untereinander erfolgt durch Aufrufe tiber das
Netzwerk. Dadurch wird die Isolierung der Services betont und man geht den
Gefahren einer engen Kopplung aus dem Weg.

Die Services miissen unabhingig voneinander geindert und erneut bereitgestellt
werden kénnen und ohne Anderungen aufseiten der Consumer auskommen. Wir

1.1

23

Kapitel 1
Microservices

miissen uns Gedanken dariiber machen, welche Informationen die Services preis-
geben sollten und welche sie verbergen diirfen. Wenn zu viele Informationen
gemeinsam genutzt werden, fithrt das zu einer Kopplung der Consumer an die
interne Darstellung. Das vermindert die Eigenstindigkeit, weil dadurch bei Ande-
rungen eine zusitzliche Abstimmung mit den Consumern erforderlich wird.

Unser Service bietet eine API (Application Programming Interface, Programmier-
schnittstelle) an, iiber die die anderen mit unserem Service kollaborierenden Ser-
vices mit ihm kommunizieren. Wir miissen auflerdem dariiber nachdenken,
welche Technologie am besten geeignet ist, damit durch die API selbst keine
Kopplung an Consumer entsteht. Dazu kann es erforderlich sein, technologieun-
abhingige APIs einzusetzen, damit die Auswahl der eingesetzten Technologien
nicht beschrinkt wird. Wir werden im Verlauf des Buches immer wieder auf die
Bedeutung einer guten entkoppelten API zuriickkommen.

Ohne Entkopplung fillt alles wie ein Kartenhaus in sich zusammen. Die Gret-
chenfrage lautet: Kénnen Sie eine Anderung an einem Service vornehmen und
ihn erneut deployen, ohne irgendetwas anderes zu dndern? Lautet die Antwort
Nein, werden sich viele der im Buch erorterten Vorteile nur schwer erzielen
lassen.

1.2 Die wichtigsten Vorteile

Microservices besitzen zahlreiche und vielgestaltige Vorteile. Viele davon bringt
jedes verteilte System ohnehin mit sich, allerdings schopfen Microservices das
Potenzial dieser Vorteile tendenziell vor allem deswegen besser aus, weil sie bei
der Umsetzung der Konzepte verteilter Systeme und serviceorientierter Architek-
turen (Service-Oriented Architecture, SOA) viel weiter gehen.

1.2.1 Verschiedenartige Technologien

Bei einem aus mehreren kollaborierenden Services bestehendem System kénnen
bei den einzelnen Services unterschiedliche Technologien zum Einsatz kommen.
Dadurch ist es moglich, fiir jede Aufgabe das am besten geeignete Werkzeug aus-
zuwihlen, anstatt sich mit standardisierten Allzwecklésungen zufriedengeben zu
miissen, die sich oftmals als kleinster gemeinsamer Nenner herausstellen.

Falls ein bestimmter Teil unseres Systems beschleunigt werden soll, kénnten wir
uns dazu entschlieflen, eine andere Technologie einzusetzen, die besser dafiir
geeignet ist, die erforderliche Geschwindigkeit zu erzielen. Es wire ebenfalls
moglich, die in verschiedenen Teilen des Systems anfallenden Daten auf unter-
schiedliche Weise zu speichern. Bei Anwendungen eines sozialen Netzwerks bei-
spielsweise konnten wir die Interaktionen der Benutzer in einer grafikfihigen
Datenbank speichern, um die hochgradig verkniipften Verbindungen in Form

1.2

Die wichtigsten Vorteile

eines Social Graph widerzuspiegeln. Die Nachrichten der Benutzer hingegen
konnten in einem dokumentorientierten Datenspeicher abgelegt werden, was zu
einer heterogenen Architektur wie der in Abbildung 1.1 gezeigten fiihrt.

Nachrichten | Freunde o Bilder
<<ruby>> [T <<golang>> <<java=:>

Datenspeicher
fiir
Dokumente

Grafikfahige Datenbank fir
Datenbank Bindrobjekte

Abb. 1.1: Microservices gestatten eine einfachere Ubernahme unterschiedlicher Technologien.

Microservices ermdglichen auerdem eine schnellere Ubernahme von Technolo-
gien, und wir konnen uns gegebenenfalls auch Verbesserungen zunutze mache.
Die gréften Hiirden beim Ausprobieren und bei der Ubernahme neuer Technolo-
gien sind die damit verbundenen Risiken. Wenn ich bei einer monolithischen
Anwendung eine neue Programmiersprache, eine andere Datenbank oder ein
Framework ausprobieren méchte, sind bei jeder Anderung weite Teile meines Sys-
tems betroffen. Bei einem aus mehreren Services bestehenden System stehen mir
zum Austesten neuer Technologien hingegen gleich mehrere Méglichkeiten zur
Verfiigung. Ich kann mir einen unkritischen Service aussuchen, dessen Ausfall
nur mit geringem Risiko verbunden wire, und die Technologie dort einsetzen,
wohlwissend, dass ich nur sehr begrenzten Schaden anrichten kann. Viele Unter-
nehmen betrachten diese Méglichkeit, neue Technologien einzubinden, als echten
Vorteil.

Die Integration mehrerer Technologien ist natiirlich ohne einen gewissen Mehr-
aufwand nicht machbar. Manche Unternehmen schrinken etwa die Auswahl der
Programmiersprache ein. Netflix und Twitter beispielsweise verwenden als Platt-
form vornehmlich die Java Virtual Machine (JVM), weil sie tiber ein sehr gutes Ver-
stindnis der Zuverlissigkeit und der Leistungsfihigkeit dieses Systems verfiigen.
Beide Unternehmen entwickeln auch Bibliotheken und Hilfswerkzeuge fiir die
JVM, was den Betrieb im groffen Mafstab sehr erleichtert, aber den Einsatz nicht
auf Java beruhender Services oder Clients erschwert. Jedoch beschrinken sich
selbst Twitter und Netflix nicht fiir simtliche Aufgaben nur auf diese eine Techno-
logie. Ein weiterer Kontrapunkt hinsichtlich der Bedenken, Technologien mitein-
ander zu vermischen, ist auch die Grofe der Codebasis: Wenn ich meinen
Microservice tatsichlich in zwei Wochen komplett neu programmieren kann, sind
die mit der Ubernahme neuer Technologien verbundenen Risiken weitgehend
entscharft.

25

Kapitel 1
Microservices

Sie werden bei der Lektiire des Buches feststellen, dass es bei vielen Dingen, die
Microservices betreffen, immer wieder darum geht, das richtige Gleichgewicht zu
finden. Die Auswahl passender Technologien wird in Kapitel 2 erldutert, das sich
vornehmlich mit der Fortentwicklung der Systemarchitektur beschiftigt. In
Kapitel 4, das die Integration zum Thema hat, werden Sie erfahren, wie Sie Thre
Services voneinander unabhingig weiterentwickeln kénnen, ohne sie tibermiflig
miteinander zu koppeln.

1.2.2 Belastbarkeit

Bei der Gewihrleistung einer hohen Belastbarkeit spielt das Abschotten der Ser-
vices voneinander eine entscheidende Rolle: Wenn eine Komponente des Systems
ausfillt, ohne die anderen in Mitleidenschaft zu ziehen, kénnen Sie die betref-
fende Komponente isolieren und der Rest des Systems liuft weiter. Es liegt nahe,
die Abschottung den Aufgaben der Services entsprechend vorzunehmen. Wenn
bei einer monolithischen Anwendung ein Service ausfillt, funktioniert gar nichts
mehr. Man kann monolithische Systeme auf mehreren Maschinen betreiben, um
die Ausfallwahrscheinlichkeit zu verringern — bei der Verwendung von Microser-
vices ist es allerdings moglich, Systeme zu entwickeln, deren Funktionalitit bei
einem Totalausfall von Services nur schrittweise abgebaut wird.

Wir sollten aber dennoch vorsichtig bleiben. Man muss die neuen Fehlerquellen,
mit der verteilte Systeme vornehmlich zu kimpfen haben, genau verstehen, damit
gewihrleistet ist, dass unser Microservice-System Vorteile aus der erhéhten Belast-
barkeit zieht. Netzwerke konnen nun einmal ausfallen — und das tun sie auch.
Gleiches gilt fiir die Maschinen, auf denen das System liuft. Wir miissen daher
wissen, wie Ausfille zu handhaben sind und welche Auswirkungen, sofern vor-
handen, diese Ausfille fiir den Endbenutzer der Software haben.

In Kapitel 11 werden wir uns noch eingehender mit der Verbesserung der Belast-
barkeit und der Handhabung von Fehlerzustinden beschiftigen.

1.2.3 Skalierung

Bei einem grofden, monolithischen Service muss alles gleichzeitig skaliert werden.
Wenn auch nur ein kleiner Teil des Gesamtsystems nicht hinreichend leistungsfi-
hig ist, dieser Teil aber in einer riesigen monolithischen Anwendung »einge-
sperrt« ist, muss das System als Ganzes skaliert werden. Bei der Verwendung
kleinerer Services hingegen reicht es aus, nur die Leistungsfihigkeit der betroffe-
nen Services zu erhohen, was es ermdglicht, andere Teile des Systems auf weniger
leistungsstarker Hardware zu betreiben (Abbildung 1.2).

Der Online-Modehindler Gilt hat Microservices aus genau diesem Grund einge-
fihrt. Als Gilt 2007 seine Geschiftstitigkeit aufnahm, setzte das Unternehmen
eine monolithische Rails-Anwendung ein. Ab 2009 konnte das System die zuneh-

1.2
Die wichtigsten Vorteile

mende Last jedoch nicht mehr bewiltigen. Nach der Aufspaltung wesentlicher
Teile des Systems war Gilt dann aber wieder in der Lage, den aufkommenden
Datenverkehr auch in Stofizeiten zu handhaben. Heute laufen dort mehr als 450
Microservices, jeder davon auf mehreren unabhingigen Maschinen.

Bilder
Instanz 1 Instanz 2 Instanz 3
Nachrichten
Instanz 1 Instanz 2 Instanz 3 Instanz 4 Instanz 5 Instanz 6

Freunde

Instanz 1 Instanz 2

Abb. 1.2: Es reicht aus, nur die Leistungsfihigkeit betroffener Microservices zu erhéhen.

Beim Einsatz von Systemen, die Ressourcen nach Bedarf bereitstellen, wie z.B.
Amazon Web Services (AWS), ist es sogar moglich, auch die Skalierung nur nach
Bedarf vorzunehmen, nimlich nur fiir die Systembestandteile, bei denen es erfor-
derlich ist. Dadurch wird es moglich, die anfallenden Kosten wesentlich effektiver
zu steuern. Es kommt nur selten vor, dass ein architektonischer Ansatz so eng mit
nahezu sofortigen Kosteneinsparungen verkniipft ist.

1.2.4 Komfortables Deployment

Wenn bei einer aus Millionen Codezeilen bestehenden monolithischen Anwen-
dung auch nur eine Zeile geindert wird, muss das Deployment fiir die gesamte
Anwendung erneut durchgefiihrt werden, um diese Anderung zur Verfiigung zu
stellen. Das kann allerdings erhebliche Auswirkungen nach sich ziehen und birgt
Risiken. In der Praxis werden solche risikobehafteten Deployments mit weitrei-
chenden Auswirkungen aufgrund der verstindlichen Sorgen, die man sich in die-
sem Zusammenhang macht, nur selten durchgefiihrt. Das bedeutet aber leider
auch, dass sich die Modifikationen bis zum nichsten Release anhiufen und tat-
sachlich veréffentlichte Versionen somit jede Menge Anpassungen und Modifika-
tionen aufweisen. Und je grofer die Unterschiede zwischen den Versionen sind,
desto hoher ist auch das Risiko, Fehler zu begehen!

27

Kapitel 1
Microservices

Bei der Verwendung von Microservices kénnen wir dagegen Anderungen an einem
einzelnen Service vornehmen und diesen dann unabhingig vom iibrigen System
deployen. Das ermoglicht es uns, den neuen Code schneller zu deployen. Falls ein
Problem auftritt, kann es schnell einem bestimmten Service zugeordnet werden,
was es wiederum erlaubt, Anderungen gegebenenfalls auch schnell wieder riick-
gingig zu machen. Dariiber hinaus kann man auf diese Weise dem Kunden neue
Funktionalititen schneller zur Verfiigung stellen. Das ist einer der Hauptgriinde
dafiir, dass Unternehmen wie Amazon und Netflix diese Architektur verwenden —
um zu gewihrleisten, dass es bei der Verdffentlichung neuer Software so wenig
Hindernisse wie moglich gibt.

Die auf diesem Gebiet eingesetzte Technologie hat sich in den letzten Jahren dras-
tisch veridndert. In Kapitel 6 werden wir das Deployment im Microservices-Um-
feld noch genauer in Augenschein nehmen.

1.2.5 Betriebliche Abstimmung

Viele von uns wissen aus eigener Erfahrung um die Schwierigkeiten, die grofle
Entwicklerteams und eine grofle Codebasis bereiten kénnen. Diese Probleme kén-
nen sich bei verteilten Teams noch verschirfen. AuRerdem ist bekannt, dass klei-
nere Teams, die mit einer kleineren Codebasis arbeiten, tendenziell produktiver
sind.

Microservices ermoglichen eine bessere Abstimmung der Architektur auf die
Unternehmensstruktur und helfen uns dabei, die Anzahl der an einer bestimmten
Codebasis arbeitenden Entwickler zu minimieren und so ein optimales Verhiltnis
zwischen Teamgrofle und Produktivitit zu erreichen. Auferdem koénnen die
Zustindigkeiten der Entwicklerteams umverteilt werden, damit die an einem
bestimmten Service arbeitenden Entwickler am selben Ort titig sind. Wir werden
dieses Thema noch genauer betrachten, wenn in Kapitel 10 Conways Gesetz erdr-
tert wird.

1.2.6 Modularer Aufbau

Man verspricht sich vom Einsatz verteilter Systeme und serviceorientierter Archi-
tekturen insbesondere, dass dadurch Moglichkeiten zur Wiederverwendung von
Funktionalititen erdffnet werden. Im Fall der Microservices ist vorgesehen, dass
die Funktionalititen auf verschiedene Weise fiir unterschiedliche Aufgaben nutz-
bar sind. Das kann besonders wichtig sein, wenn wir dariiber nachdenken, wie die
Nutzer unsere Software verwenden. Die Zeiten, in denen wir unsere Uberlegun-
gen entweder auf die Websiteversion fiir Desktoprechner oder Mobilgerite
beschrinken konnten, sind lange vorbei. Heutzutage sind eine Unzahl von Kom-
binationen der Moglichkeiten des Webs, nativer Anwendungen, des mobilen
Webs sowie von Tablet-Anwendungen oder tragbaren Geriten (»Wearables«) zu
beriicksichtigen. Wihrend die Unternehmen dabei sind, sich von diesen ein-

1.3

Was ist mit serviceorientierten Architekturen?

engenden Kommunikationskanilen zu verabschieden und sich eher ganzheit-
lichen Konzepten zur Kundenbindung zuwenden, benétigen wir Architekturen,
die damit schritthalten kénnen.

Mit Microservices 6ffnen wir unsere Systeme gewissermafien einen Spaltbreit
und machen einen Teil davon Auflenstehenden zuginglich. Wenn sich die Um-
stinde dndern, kénnen wir unser System zur Anpassung anders aufbauen. Bei
monolithischen Anwendungen steht mir als Auflenstehendem oft nur ein ver-
gleichsweise grobgranularer Zugang zur Verfiigung. Wenn ich diesen Zugang
weiter aufspalten mochte, um etwas Niitzlicheres zu erhalten, brauche ich einen
Vorschlaghammer! In Kapitel 5 werden wir erértern, wie man bereits vorhandene
monolithische Systeme aufspaltet und sie in hoffentlich wiederverwendbare und
neu zusammensetzbare Microservices umwandelt.

1.2.7 Austauschbarkeit

Wenn Sie in einem Unternehmen mittlerer Gréfle oder sogar in einer grofden
Organisation titig sind, stehen die Chancen nicht schlecht, dass dort ein grofes,
garstiges, veraltetes System in irgendeiner Ecke ein trauriges Dasein fristet. Das
System, mit dem niemand etwas zu tun haben will. Das System, das fur die
Arbeitsweise Thres Unternehmens unentbehrlich ist, aber in einem seltsamen
Fortran-Dialekt programmiert ist und nur auf einer Hardware lauft, die besser vor
25 Jahren ausrangiert worden wire. Warum wurde es nicht schon lingst ersetzt?
Sie ahnen es schon: Es wire zu umstindlich und zu riskant.

Bei einzelnen, kleinen Services ist der Aufwand flir das Ersetzen einiger oder
sogar aller Services durch eine verbesserte Implementierung viel leichter zu hand-
haben. Wie oft haben Sie schon an einem einzigen Tag mehr als hundert Codezei-
len verworfen, ohne sich dabei allzu grofle Sorgen gemacht zu haben? Bei der
Verwendung von Microservices, die oft von vergleichbarer GroRe sind, fillt es
nicht besonders schwer, sich dazu durchzuringen, einen Service neu zu schreiben
oder vollstindig zu entfernen.

Entwicklerteams, die den Microservice-Ansatz verfolgen, haben tiberhaupt kein
Problem damit, bei Bedarf Services komplett neu zu programmieren oder tiber-
fliissige Services zu 16schen. Wenn die Codebasis nur einige hundert Zeilen lang
ist, wird wohl kaum jemand eine emotionale Bindung dazu aufbauen, und der
Aufwand fiir das Ersetzen eines Services ist ziemlich gering.

1.3 Was ist mit serviceorientierten Architekturen?

Bei serviceorientierten Architekturen (Service-Oriented Architecture, SOA) handelt
es sich um einen Designansatz, bei dem mehrere Services kollaborieren, um letz-
ten Endes einen Satz an Funktionalititen bereitzustellen. Hier ist mit dem Begriff
»Service« typischerweise ein eigenstindiger Betriebssystemprozess gemeint. Die

29

Kapitel 1
Microservices

Kommunikation zwischen diesen Services erfolgt iiber das Netzwerk, nicht durch
Funktionsaufrufe innerhalb eines Prozesses.

SOA wurde entwickelt, um den Herausforderungen grofler monolithischer An-
wendungen etwas entgegenzusetzen. Dieser Ansatz zielt darauf ab, die Wiederver-
wendbarkeit von Software zu foérdern. Beispielsweise kénnten zwei oder mehr
Programme fiir Endanwender dieselben Services nutzen. Die Wartung oder das
Umschreiben von Software soll dadurch erleichtert werden, denn theoretisch kénn-
ten wir einen Service durch einen anderen ersetzen, ohne dass irgendjemand das
bemerkt, sofern sich die Verwendungsweise des Services nicht allzu sehr dndert.

Im Grunde genommen ist SOA eine sehr verniinftige Idee, allerdings gibt es — trotz
einer ganzen Reihe von Anliufen — keinen echten Konsens, wie SOA richtig
umzusetzen ist. Meiner Ansicht nach betrachtet ein Grofiteil der Branche das Pro-
blem nicht ganzheitlich genug und prisentiert eine verlockende Alternative zur
Sichtweise einiger Anbieter in diesem Umfeld.

Viele der Probleme, die SOA angelastet werden, hingen eigentlich mit anderen
Dingen zusammen: Kommunikationsprotokolle (z.B. SOAP, Simple Object Access
Protocol), Software zum Datenaustausch (Middleware) verschiedener Hersteller,
fehlende Orientierungshilfe bei der Aufteilung der Services oder falsche Empfeh-
lungen zur Auswahl der Stelle, an der ein System aufgespalten werden sollte. Ein
Zyniker wiirde sagen, dass die Hersteller den SOA-Trend fiir sich vereinnahmt
(und in einigen Fillen geférdert) haben, um die Verkiufe ihrer Produkte anzukur-
beln, und dass ebendiese Produkte die SOA-Ziele letzten Endes untergraben.

Die landldufige Meinung tiber SOA trigt nicht zum Verstindnis bei, wie etwas Gro-
Res in etwas Kleines aufgespalten wird. Es geht nicht darum, wie grofd zu grof ist.
Es geht hingegen zu wenig um realistische, praxisnahe Methoden, die gewihrleis-
ten, dass Services nicht zu eng gekoppelt werden. Die Summe der ungesagten
Dinge ist der Ursprung fiir viele der Fallstricke, die mit SOA in Verbindung ge-
bracht werden.

Der Microservice-Ansatz ist aus praktischen Anwendungen hervorgegangen und
baut dabei auf unser besseres Verstindnis der Systeme und Architekturen auf, um
SOA richtig umzusetzen. Stellen Sie sich also Microservices lieber als einen
bestimmten SOA-Ansatz vor, in derselben Weise, wie XP (Extreme Programming)
oder Scrum bestimmte Ansitze der agilen Softwareentwicklung sind.

1.4 Weitere Verfahren zur Aufspaltung

Wenn man der Sache auf den Grund geht, stellt man fest, dass viele der Vorteile
einer Microservice-basierten Architektur auf zwei Dingen beruhen: der Aufteilung
der Services und der Tatsache, dass eine viel gréfiere Auswahl an moglichen Her-
angehensweisen fiir Problemlésungen zur Verfiigung steht. Aber kénnten auch
andere vergleichbare Verfahren zur Aufspaltung dieselben Vorteile bringen?

14

Weitere Verfahren zur Aufspaltung

1.4.1 Programmbibliotheken

Ein Standardverfahren zur Aufspaltung, das in praktisch jeder Programmierspra-
che vorkommt, ist die Aufteilung der Codebasis in mehrere Bibliotheken. Solche
Bibliotheken kénnen von Drittherstellern stammen oder in IThrem Unternehmen
erstellt worden sein.

Bibliotheken erméglichen es, Funktionalititen mit anderen Entwicklerteams oder
anderen Services zu teilen. Ich konnte beispielsweise einen Satz niitzlicher Hilfs-
programme zur Handhabung von Objektsammlungen erstellen oder vielleicht
eine wiederverwendbare Statistikbibliothek programmieren.

Entwicklerteams kénnen sich entsprechend solcher Bibliotheken organisieren,
und die Bibliotheken selbst sind wiederverwendbar. Es gibt aber auch einige Nach-
teile.

Erstens geht die echte Nutzung verschiedenartiger Technologien verloren, denn
die Bibliothek muss typischerweise in derselben Sprache wie der Code program-
miert sein, zumindest aber auf derselben Plattform laufen. Zweitens wird die
Leichtigkeit beschnitten, mit der Sie Teile Ihres Systems voneinander unabhingig
skalieren konnen. Drittens kénnen Sie keine neue Bibliothek deployen, ohne auch
den gesamten Prozess erneut zu deployen, sofern Sie keine dynamisch eingebun-
denen Bibliotheken verwenden. Dadurch schrinken sich Thre Méglichkeiten ein,
isolierte Anderungen vorzunehmen. Das eigentliche Problem ist aber vermutlich,
dass es nun keinen naheliegenden Zugang mehr gibt, {iber den Sie die architek-
tonischen Sicherheitsmafnahmen (siehe Kapitel 11) zur Aufrechterhaltung der
Belastbarkeit des Systems einrichten kénnen.

Dennoch haben Programmbibliotheken ihre Berechtigung. Sie werden fiir haufig
anfallende Aufgaben, die unabhingig von einem bestimmten Geschiftsfeld sind,
vermutlich Code erstellen, den Sie im gesamten Unternehmen wiederverwenden
mochten — hier liegt es auf der Hand, eine wiederverwendbare Bibliothek einzu-
setzen. Seien Sie aber dennoch vorsichtig: Gemeinsam genutzter Code, der zur
Kommunikation zwischen Services eingesetzt wird, kann zu einer Kopplung fiih-
ren. Mehr dazu in Kapitel 4.

Services konnen auf Bibliotheken von Drittherstellern zugreifen und sollten auch
regen Gebrauch davon machen, um hiufig vorkommenden Code wiederzuver-
wenden. Die alleinige Losung ist das aber nicht.

1.4.2 Module

Manche Programmiersprachen stellen eigene Verfahren zur Aufspaltung zur Ver-
fugung, die die Moglichkeiten einfacher Bibliotheken iibertreffen. Dabei kann die
Lebensdauer solcher Module gesteuert werden, indem sie aktiviert und deaktiviert
werden, was es ermoglicht, sie laufenden Prozessen bereitzustellen. Auf diese

31

Kapitel 1
Microservices

Weise konnen Sie Anderungen vornehmen, ohne den ganzen Prozess beenden zu
miissen.

Hier ist insbesondere die Open Source Gateway Initiative (OSGI) als Ansatz zur
Modularisierung zu nennen. Java an sich kennt noch keine richtigen Module und
wir werden mindestens auf die Java-Version 9 warten miissen, bis die Sprache
dahingehend erweitert wird. OSGI wurde in Form eines Frameworks entwickelt,
das es ermdglicht, in der Java-IDE Eclipse Plug-ins zu installieren und wird nun
dazu verwendet, in Java {iber eine Bibliothek ein Modulkonzept nachzuriisten.

Das Problem ist, dass OSGI Funktionalititen wie die Steuerung der Lebensdauer
von Modulen zu erzwingen versucht, ohne dass die Sprache selbst dies hinrei-
chend unterstiitzt. Das fithrt dazu, dass die Modulautoren mehr Arbeit aufwenden
miissen, um die Module ordnungsgemifs zu isolieren. Auflerdem gerit man
innerhalb eines einzelnen Prozesses allzu leicht in Versuchung, die verschiedenen
Module zu sehr zu koppeln, was wiederum die verschiedensten Probleme hervor-
rufen kann. Ich weif} aus eigener Erfahrung, die mit derjenigen von Kollegen aus
der Branche iibereinstimmt, dass OSGI selbst bei guten Entwicklerteams schnell
zu einer Komplexitit fithren kann, die von den Vorteilen nicht aufgewogen wird.

Die Programmiersprache Erlang verfolgt einen anderen Ansatz, bei dem Module
zu einem Bestandteil der Laufzeitumgebung werden. Erlang ist somit eine sehr
ausgereifte Verfahrensweise zur Modularisierung. Erlang-Module lassen sich pro-
blemlos stoppen, neu starten und aktualisieren. Diese Programmiersprache
gestattet es sogar, mehrere Versionen eines Moduls gleichzeitig laufen zu lassen,
wodurch es moglich ist, Module auf elegante Weise zu aktualisieren.

Die Fihigkeiten der Erlang-Module sind tatsdchlich beeindruckend, aber selbst
wenn wir das Gliick haben, eine Plattform mit diesen Fihigkeiten zu verwenden,
verbleiben immer noch die Unzulinglichkeiten, die wir von herkémmlichen Pro-
grammbibliotheken kennen. Unsere Méglichkeiten, neue Technologien einzuset-
zen, sind sehr beschrankt: Wir kénnen nur in begrenztem Mafle unabhingig
skalieren, laufen Gefahr, zu stark koppelnde Integrationsverfahren zu verwenden,
und es fehlt der Zugang zu architektonischen Sicherheitsmafinahmen.

Es gibt an dieser Stelle aber noch eine weitere erwihnenswerte Uberlegung. Rein
technisch sollte es moglich sein, innerhalb eines einzelnen monolithischen Pro-
zesses ordnungsgemifl aufgeteilte, unabhingige Module zu erstellen. Dessen
ungeachtet sieht man dergleichen nur selten. Die Module selbst werden schon
bald eng mit dem iibrigen Code gekoppelt sein und geben damit einen ihrer wich-
tigsten Vorteile preis. Eine deutliche Trennung der Prozesse zwingt in dieser Hin-
sicht zu »sauberer« Programmierung (oder erschwert es zumindest, etwas falsch
zu machen!). Ich will natiirlich nicht behaupten, dass dies der entscheidende
Antrieb zur Trennung von Prozessen sein sollte, aber es ist interessant festzustel-

