

OpenAI GPT For Python Developers
The art and science of building AI-powered apps with
GPT-4, Whisper, Weaviate, and beyond

Copyright © 2024, Aymen El Amri.

Published by FAUN.

The illegal distribution of this work may result in civil and criminal
penalties. This work is protected under French law through the Code de la
Propriété Intellectuelle. No part of this publication may be reproduced,
distributed, or transmitted in any form or by any means, including
photocopying, recording, or other electronic or mechanical methods,
without the prior written permission of the author, except in the case of
brief quotations embodied in critical reviews and certain other
noncommercial uses permitted by copyright law. The reproduction,
modification, representation, distribution, or transmission of any part or all
of this work, without the author's prior written consent, is illegal and
prosecuted under Articles L.335-2 and following of the Code de la Propriété
Intellectuelle.

The author reserves the right to be identified as the author of this work and
retains all moral rights, including the right to respect for the work's integrity
and the right to oppose any distortion, mutilation, or other modification of
the work that would be prejudicial to the author's honor or reputation.

For permission requests, write to the author at the provided email address:
aymen@faun.dev

This book is provided 'as is' without any guarantees or warranty. In
association with the product, the author makes no warranties of any kind,
either express or implied, including but not limited to warranties of
merchantability, fitness for a particular purpose, of title, or of non-
infringement of third party rights. Use of the book by a user is at the user’s
risk.

Trademarks All trademarks and registered trademarks appearing in this
work are the property of their respective owners. FAUN is not associated
with any product or vendor mentioned in this book.

For general information on our other products and services or to obtain
technical support, please contact us at sales@faun.dev

FAUN is a registered trademark of eralabs SASU, a French company.

Table of Contents
Preface

About the Author

The Story of OpenAI and ChatGPT
About This Guide
The Companion Toolkit
Stay Connected

How Does GPT Work?

Setting Up the Development Environment
Notes
Installing Python, pip, and a Virtual Development Environment
Obtain Your OpenAI API Keys
Install the Official Python Bindings
Test our API Keys

Understanding the Available Models and Which One to
Use

OpenAI Available Models and Important Considerations
Which Model to Use?
OpenAI Model Series

GPT-4 Series
GPT-3.5 Series
InstructGPT-3 Series
Base GPT-3 Series
Codex Series
Content Filter
DALL-E Series
TTS Series
Whisper Model
Embedding Model

OpenAI Models and Pricing

What’s Next?

Using GPT Chat Completions
An Introductory Example
System, User, and Assistant Roles

The System Role
The User Role
The Assistant Role

Few-shot Learning with Chat Completions
Formatting the Output
Controlling the Output’s Token Count
Controlling When the Completion Output Stops
Temperature and Hallucination
Sampling with Top_p
Temperature vs Top_p: What’s the Difference? Which One Should I
Use?
Streaming the API Response
Controlling Repetitiveness: Frequency and Presence Penalties
Frequency vs. Presence Penalty
Controlling the Number of Results from the API
Conclusion

Advanced Examples and Prompt Engineering
What is Prompt Engineering?
Few Shot Learning: A Key Prompt Engineering Technique
Overgeneration and Selection
General Knowledge Prompting (GKP): Generating a Rap Song
Context Stuffing: Is Apple a Fruit or a Company?
Dynamic Max Tokens
Creating an Interactive CLI-Based Assistant
What’s Next?

Embedding
What is an Embedding?
Use Cases: From Modern Search Engines to Self-Driving Cars

Tesla: How Embeddings Are Used in Self-Driving Cars
Kalendar AI: The Power of Embeddings in Sales Outreach

Notion: Enhanced Search Capabilities
DALL·E 2: Text-to-Image Conversion

Understanding Text Embedding
Embeddings for Multiple Inputs
Use case: Semantic Search
Cosine Similarity: A Deeper Look
Semantic Search and OpenAI’s Text Embeddings
Behind the Scenes: How Embeddings Work

Advanced Embedding Examples
Predicting Your Preferred Coffee
Creating a “Fuzzier” Search
Predicting News Category: Zero-Shot Classification with Embeddings
Evaluating the Accuracy of a Zero-Shot Classifier
Precision in Zero-Shot Classifier Applications: Examples

Fine-Tuning and Best Practices
Few-Shot Learning
Enhancing Few-Shot Learning
Practical Application of Fine-Tuning
Fine-Tuning Best Practices

Choosing the Model
Validating the Dataset
Token Limit
Dataset Size
Testing and Improving Training (Hyperparameters)
Epochs

Learning Rate Multiplier
Batch Size
Consider Estimated Costs
Dataset Quality
Combining Fine-Tuning with Other Techniques
Experiment and Learn
Use a Validation Set
Test the Model
Analyze the Results

Advanced Fine-Tuning: Mental Health Coach
Dataset Used in the Example

Preparing the Data
Using the Model in Real-World Applications and Challenges

Context & Memory: Making AI More Real
The Problem: No Memory
No Context = Chaos of Randomness and Confusion
History = Context
The Problem with Carrying Over History
Last In First Out (LIFO) Memory
The Problem with Last In, First Out Memory
Selective Context

Using a Vector Database with OpenAI
Introduction
What is a Vector Database?
Example 1: Using Weaviate to Make Our Model More Context-Aware
Example 2: Using Weaviate and OpenAI in Semantic Search
Example 3: Using Weaviate and OpenAI for Generative Search

Speech Recognition and Translation Using Whisper
What is Whisper?
How to Get Started?
Transcribe and Translate
Using Whisper SDK in Python
Using OpenAI Speech to Text API

Transcription API
Translation API

Improving Whisper Transcription
Cleaning the Audio
Using the Prompt Parameter
Post-Processing the Transcription

Text-to-Speech with OpenAI TTS Models

Autonomous AI-to-AI Discussion Using OpenAI,
Weaviate, and AI Avatars

Generating the Audio Files

Using AI Avatar Models
What’s Next?

Afterword

Preface
When asked about my profession, I often find it challenging to provide a
simple answer. My career has taken me through various paths and roles
over time. As someone deeply passionate about learning and exploring new
things, I’ve had the opportunity to work in numerous fields.

I’ve worked in software development, advertising, marketing, network and
telecom, systems administration, training, technical writing, computer
repair, and other fields. I’ve always been driven by the desire to learn more
and expand my horizons. As I learned new technologies, met new people,
and explored new concepts, my mind became more open, and my
perspective widened. I began to see connections and possibilities that I had
never seen before.

The more I learned, the more I desired to teach, even for free sometimes. I
cherish the moment when someone finally understands a concept they’ve
been struggling with. Being a teacher at heart, I’ve always enjoyed sharing
my knowledge.

This is precisely what inspired me to write this guide.

While writing this guide, I constantly considered its future readers. My aim
was to create an accessible, easy-to-follow guide on NLP, GPT, and related
topics for Python developers with limited knowledge in these areas. My
goal was to provide practical information that readers could use to build
their own intelligent systems without needing to spend years learning the
theory behind these concepts.

In this practical, hands-on guide, I share my knowledge and experience with
OpenAI’s AI models, specifically GPT-3 and GPT-4, as well as other
models. I explain how Python developers can use them to add intelligence
to their new or existing applications.

This guide is designed as a step-by-step manual that covers the fundamental
concepts and techniques of using AI/ML and OpenAI models, providing a
hands-on approach to learning.

My inbox is always full, as I receive numerous emails. However, the most
rewarding ones are from readers who have found my online guides and
courses useful. Please feel free to reach out to me at aymen@faun.dev and
share your testimonial - I would love to hear from you.

I hope you enjoy reading this guide as much as I enjoyed writing it.

About the Author
Aymen El Amri is an author, entrepreneur, trainer, and polymath software
engineer. He has worked in various roles, responsibilities, and projects in
the technology field, including DevOps & Cloud Native, Cloud
Architecture, Python, NLP, Data Science, and more.

Aymen has trained thousands of software engineers and has written multiple
books and courses read by thousands of other developers and software
engineers.

His teaching approach is practical, based on simplifying complex concepts
into easy-to-understand language and providing real-world examples that
resonate with his audience.

He founded projects such as FAUN, eralabs, and Marketto. You can find
Aymen on Twitter and Linkedin.

mailto:aymen@faun.dev
https://faun.dev/
https://eralabs.io/
https://marketto.dev/
https://twitter.com/@eon01
https://www.linkedin.com/in/elamriaymen/

The Story of OpenAI and
ChatGPT
In December 2015, a group of brilliant minds united with a shared goal: to
foster and develop friendly AI for the benefit of all humanity.

Sam Altman, Elon Musk, Greg Brockman, Reid Hoffman, Jessica
Livingston, Peter Thiel, Amazon Web Services (AWS), Infosys, and YC
Research announced the establishment of OpenAI, pledging over US$1
billion to the initiative. The organization declared its intention to “freely
collaborate” with other institutions and researchers by making its patents
and research publicly available.

OpenAI’s headquarters are located in the Pioneer Building in San
Francisco’s Mission District. In April 2016, OpenAI launched a public beta
of “OpenAI Gym”, a platform for reinforcement learning research. In
December 2016, OpenAI unveiled “Universe”, a software platform
designed to measure and train an AI’s general intelligence across a wide
array of games, websites, and other applications.

In 2018, Elon Musk stepped down from his board seat, citing “a potential
future conflict of interest” with Tesla’s AI development for self-driving
cars, but continued to support the organization as a donor. In 2019, OpenAI
transitioned from a non-profit to a capped-profit entity, with a profit cap set
at 100 times any investment. The company distributed equity to its
employees and formed a partnership with Microsoft, which announced an
investment of US$1 billion in the company. OpenAI subsequently
announced plans to commercially license its technologies.

In 2020, OpenAI unveiled GPT-3, a language model trained on trillions of
words from the internet. They also announced that an associated API,
simply named “the API”, would form the basis of its first commercial
product. GPT-3 is designed to answer questions in natural language, but it
can also translate between languages and generate coherent improvised text.

https://en.wikipedia.org/wiki/Sam_Altman
https://en.wikipedia.org/wiki/Elon_Musk
https://en.wikipedia.org/wiki/Greg_Brockman
https://en.wikipedia.org/wiki/Reid_Hoffman
https://en.wikipedia.org/wiki/Jessica_Livingston
https://en.wikipedia.org/wiki/Peter_Thiel
https://openai.com/blog/universe/

In 2021, OpenAI introduced DALL-E, a deep-learning model capable of
generating digital images from natural language descriptions.

Fast forward to December 2022, OpenAI received widespread media
coverage after launching a free preview of ChatGPT. According to OpenAI,
the preview attracted over a million signups within the first five days.
Anonymous sources cited by Reuters in December 2022 projected
OpenAI’s revenue at US$200 million for 2023 and US$1 billion for 2024.
As of January 2023, the company was in discussions for funding that would
value it at $29 billion.

This is the brief history of OpenAI, an artificial intelligence research
laboratory composed of the for-profit OpenAI LP and its parent company,
the non-profit OpenAI Inc.

Most people were unaware of OpenAI until the company released its
popular ChatGPT.

The primary purpose of ChatGPT was to mimic human behavior and
engage in natural conversations with people. However, the chatbot can learn
and teach itself based on the conversations it has with different users. This
AI has conversational capabilities and can write tutorials and code,
compose music, and perform other tasks. The use cases for ChatGPT are
quite diverse and potentially limitless, as users have demonstrated. Some
use cases are creative (e.g., writing a rap song), others are malicious (e.g.,
generating malicious code or commands), and still, others are business-
oriented (e.g., SEO, content marketing, email marketing, cold emails, and
business productivity).

ChatGPT, standing for Generative Pre-trained Transformer, is built on top
of OpenAI’s GPT family of large language models (LLMs). The chatbot is
fine-tuned using both supervised and reinforcement learning techniques.

GPT-3 served as the foundation for ChatGPT before the release of GPT-3.5
on March 15, 2022, followed by GPT-4 on March 14, 2023. ChatGPT is a
project that utilizes GPT-3.5 and GPT-4, and adds a web interface, memory,
and more user-friendly features. After reading this guide, you will be

capable of building your own chatbot, potentially better than ChatGPT,
since you can customize it to your specific needs.

You may have seen the chart comparing the two versions of GPT, showing
the number of parameters in GPT-3 (175 billion) and GPT-4 (100 trillion).

GPT-3 vs 4

Altman referred to this viral illustration as “complete nonsense.”

“The GPT-4 rumor mill is a ridiculous thing. I don’t know where it all
comes from. People are setting themselves up for disappointment, and
they will be. The hype is just like… We don’t have an actual AGI, and
that’s sort of what’s expected of us.”

The internet is rife with rumors, speculations, and low-quality content. This
is true even in the AI world. You might have come across numerous

tutorials and books promising to teach you how to use OpenAI GPT
models, only to find a collection of copy-pasted prompts from the internet.
This guide is different. Learning how to use OpenAI models isn’t about
having a cheat sheet of prompts; it’s about understanding the principles and
techniques behind these models, how to utilize them in building your
applications, and how they can integrate with your existing systems and
other AI/ML tools.

Currently, many projects are leveraging OpenAI models as the backbone for
their products. Some of the most notable ones include:

GitHub Copilot: This uses the OpenAI Codex model, a derivative of
GPT-3, fine-tuned for generating code.
Copy.ai and Jasper.ai: These are used for content generation for
marketing purposes.
Drexel University: This is used for the detection of early signs of
Alzheimer’s disease.
Algolia: This is used to enhance their search engine capabilities.
Your next AI startup?

By following this guide, you’ll learn how to effectively use OpenAI models
in your projects, and you might be the next one to join this list.

About This Guide
The knowledge you’ll acquire from this guide will be applicable to the
current families of GPT models (GPT-3, GPT-3.5, GPT-4, etc.) and will
likely also be relevant to GPT-5, should it ever be released.

OpenAI provides APIs (Application Programming Interfaces) to access
their AI. The goal of an API is to abstract the underlying models by creating
a universal interface for all versions, allowing users to use GPT regardless
of its version.

This guide aims to provide a comprehensive, step-by-step tutorial on how to
utilize GPT-3.5 and GPT-4 in your projects via this API. It also covers other
models, such as Whisper and Text-to-Speech.

https://github.com/features/copilot
http://copy.ai/
http://jasper.ai/
https://drexel.edu/
https://www.algolia.com/

If you’re developing a chatbot, an AI assistant, or a web application that
utilizes AI-generated data, this guide will assist you in achieving your
objectives.

If you have a basic understanding of the Python programming language and
are willing to learn a few additional techniques, such as using Pandas
Dataframes and some NLP methods, you possess all the necessary tools to
start building intelligent systems with OpenAI tools.

Rest assured, you don’t need to be a data scientist, machine learning
engineer, or AI expert to comprehend and implement the concepts,
techniques, and tutorials presented in this guide. The explanations provided
are straightforward and easy to understand, featuring simple Python code,
examples, and hands-on exercises.

This guide emphasizes practical, hands-on learning and is designed to assist
readers in building real-world applications. It is example-driven and
provides numerous practical examples to help readers understand the
concepts and apply them to real-life scenarios to solve real-world problems.

By the end of your learning journey, you will have developed applications
such as:

Fine-tuned, domain-specific chatbots.
An intelligent conversational system with memory and context.
A semantic modern search engine using RAG and other techniques.
An intelligent coffee recommendation system based on your taste.
A chatbot assistant to assist with Linux commands.
A fine-tuned news category prediction system.
An AI-to-AI autonomous discussion system to simulate human-like
conversations or solve problems.
An AI-based mental health coach trained on a large dataset of mental
health conversations.
and more!

By reading this guide and following the examples, you will be able to:

Understand the different models available, and how and when to use
each one.
Generate human-like text for various purposes, such as answering
questions, creating content, and other creative uses.
Control the creativity of GPT models and adopt the best practices to
generate high-quality text.
Transform and edit the text to perform translation, formatting, and
other useful tasks.
Optimize the performance of GPT models using various parameters
and options such as max_tokens, temperature, top_p, n, stream,
logprobs, stop, presence_penalty, frequency_penalty, best_of,
and others.
Stem, lemmatize, and reduce your costs when using the API.
Understand Context Stuffing, chaining, and practice prompt
engineering.
Implement a chatbot with memory and context.
Create prediction algorithms and zero-shot techniques and evaluate
their accuracy.
Understand, practice, and improve few-shot learning.
Understand fine-tuning and leverage its power to create your own fine-
tuned models.
Understand and use fine-tuning best practices.
Practice training and classification techniques using GPT.
Understand embedding and how companies such as Tesla and Notion
are using it.
Understand and implement semantic search, RAG and other advanced
tools and concepts.
Integrate a Vector Database (e.g.: Weaviate) with your intelligent
systems.

The Companion Toolkit
For an enhanced learning experience, we have created a companion toolkit
that includes all the code snippets, files, and datasets used in this guide. You
can download it using the following URL: from.faun.to/r/AyEg.

http://from.faun.to/r/AyEg

Stay Connected
If you are interested in staying updated with the rapid advancements in the
Python and AI ecosystems, I warmly invite you to join our vibrant
developer community at www.faun.dev/join. As a member of our
community, you will receive weekly newsletters designed to keep you
informed and ahead of the curve. These newsletters are meticulously
curated, filled with must-read tutorials, the latest news, and profound
insights from leading experts in the software engineering community. By
leveraging this resource, you will ensure that you are always up-to-date
with the latest trends and developments in the Python and AI fields, giving
you an advantage in your technological journey.

https://www.faun.dev/join

How Does GPT Work?
The Generative Pre-trained Transformer, or GPT, is a generative text model.
This model can produce new text by predicting what comes next based on
the input it receives.

GPT-4 is another model that is larger and more performant than any
previous GPT model, including GPT-1/2/3/3.5.

The 4th generation was trained on a large corpus of text, such as books,
articles, and publicly accessible websites like Reddit and other forums. It
uses this training data to learn patterns and relationships between words and
phrases.

GPT-4’s key innovation lies in its impressive size - boasting billions of
parameters - making it one of the most massive and powerful language
models ever devised. Its extensive training on such a vast dataset enables it
to generate human-like text, execute various natural language processing
tasks, and complete tasks with impressive accuracy.

GPT is a type of neural network known as a transformer, which is
specifically designed for natural language processing tasks. The architecture
of a transformer is based on a series of self-attention mechanisms that allow
the model to process input text in parallel and weigh the importance of each
word or token based on its context.

Self-attention is a mechanism used in deep learning models for natural
language processing (NLP). It allows a model to weigh the importance of
different parts of a sentence or multiple sentences when making predictions.
As part of the Transformer architecture, it enables a neural network to
achieve satisfactory performance in NLP tasks. The concept of self-
attention is based on the idea that each word in a sentence can be influenced
by other words in the sentence, and the importance of each word can be
determined based on its context. The original work on self-attention was
introduced in the paper “Attention is All You Need”.

https://arxiv.org/abs/1706.03762

To better illustrate the concept of self-attention, consider the following
analogy:

Imagine attending a large dinner party where everyone is sharing stories
simultaneously. You’re trying to follow all the conversations around you,
but naturally, you focus more on the stories that are relevant to you or
contain important information. As people speak, you give your attention to
the storyteller whose narrative is currently most interesting or relevant,
sometimes switching focus based on new information or connections you
make to other stories being told.

In this analogy, you are akin to the transformer model in GPT. The dinner
party symbolizes the input text, where each guest’s story represents a word
or token in the sequence. Your capacity to listen to multiple stories
simultaneously and decide which one to focus on is similar to the self-
attention mechanism. This mechanism enables the model to process all
parts of the input at the same time and determine the relevance or
importance of each word in the context of all the others, much like you
tuning into the most engaging story at any given moment.

Let’s examine a quick code example. This is an instance of using Hugging
Face Transformers for GPT-2 inference:

from transformers import pipeline
generator = pipeline(
 'text-generation',
 model = 'gpt2'
)
generator(
 "Hello, I'm a language model",
 max_length = 30,
 num_return_sequences=3
)

This is an example of an output from the code above:

[
 {
 'generated_text':
 "Hello, I'm a language model. So while writing this, ..."
 },

 {
 'generated_text':
 "Hello, I'm a language model. I write and maintain ..."
 }
]

By default, a model has no memory, meaning that each input is processed
independently, without any information being carried over from previous
inputs. When GPT generates text, it doesn’t have any preconceived notions
about what should come next based on previous inputs. Instead, it generates
each word based on the probability of it being the next likely word given
the previous input. This results in text that can be surprising and creative.

Here is another example of code that uses a GPT model to generate text
based on user input.

Import the necessary libraries
from transformers import GPT2Tokenizer, GPT2LMHeadModel

Load the pre-trained GPT-2 tokenizer and model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')

Set the model to evaluation mode
model.eval()

Define a prompt for the model to complete
prompt = input("You: ")

Tokenize the prompt and generate text
input_ids = tokenizer.encode(prompt, return_tensors='pt')
output = model.generate(input_ids, max_length=50, do_sample=True)

Decode the generated text and print it to the console
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print("AI: " + generated_text)

GPT-4 was designed as a general-purpose large multimodal model, which
means that it can be used for a wide variety of natural language processing
tasks (such as language translation, text summarization, and question
answering) and multimodal tasks (such as text-to-image generation and
image captioning). OpenAI has trained GPT-4, but you can base your own
model on your fine-tuned datasets. This allows for more creative and

specific use cases, in addition to the default tasks the model can assist with,
such as generating text, poetry, and stories. It can also be used for building
chatbots that are experts in a specific domain, other conversational
interfaces, and more!

In this guide, we will dive deeply into OpenAI models (GPT, embeddings,
and more) and how to use them in Python, including how to effectively
utilize the API and the tools provided by the company and the AI/ML
community to prototype powerful and creative tools and systems. This will
not only enhance your proficiency in using the GPT API but also broaden
your understanding of the concepts and techniques used in natural language
processing, AI/ML, and other related fields.

GPT is regarded as a significant advancement in natural language
processing due to its extensive scale. However, some experts have
expressed concerns about the potential for the model to generate biased or
harmful content. Like any technology, it’s extremely important to pause and
consider the ethical implications of its use. This guide will not address the
ethical issues but will solely focus on the practical technical aspects.

Happy coding!

Setting Up the Development
Environment
Notes
This guide frequently employs the “heredoc” syntax for creating files and
inserting content directly from the command line or within scripts and
programs.

ℹ️ Heredoc, short for “here document,” is a feature of shell scripting
that simplifies the creation of multiline strings.

The heredoc syntax begins with << followed by a delimiter token of your
choice, continues with the content you wish to include, and ends with the
same delimiter token on a new line. This syntax is particularly useful for
scripting and programming tasks that necessitate file generation or multiple
lines of input for a command.

To utilize the heredoc syntax for file creation or content appending, follow
the structure below:

cat << EOF > filename
This is line #1
This is line #2
..
EOF

In this example, <<EOF denotes the commencement of the heredoc section,
and EOF on a separate line signifies its conclusion. The content between
these markers is redirected into “filename”. Replace “filename” with your
preferred file name and adjust the content as needed.

The primary reason for using the heredoc syntax in this guide is to allow
readers to create files accurately and effortlessly with a single copy-paste
action. This method ensures that the author’s exact content is duplicated in
the reader’s environment, minimizing the chance of manual errors and
enhancing the learning experience.

I recommend copying and pasting the heredoc examples directly into your
terminal to create the files and content as intended.

Windows users can execute the heredoc examples using the Windows
Subsystem for Linux (WSL). Alternatively, you can manually create the
files and paste the content using a text editor. However, I suggest using a
Unix-like environment (preferably a Debian-based system) to follow the
examples in this guide.

If you’re using a different system, you may need to modify some minor
details, such as the package manager, the installation process for packages,
and the method for creating files and directories. This should not be an
issue, as the examples are straightforward and can be easily adapted to any
system.

Another important note worth mentioning is that this guide is structured in a
way where each chapter builds upon the previous one. Topics and concepts
are interwoven throughout to form a comprehensive understanding of the
subject matter. It’s crucial for you to progress through the chapters
sequentially, fully grasping each section before moving on to the next.
Patience and attention to detail will greatly enhance your learning
experience, allowing you to fully benefit from the structured progression.

The code presented in this guide is not meant to be passively read but
actively executed. Engaging with the code - running it, modifying it, and
observing the outcomes—is crucial for a deep understanding of the
concepts discussed. This hands-on approach will help you internalize the
material and develop the skills necessary to apply the concepts in your own
projects.

Installing Python, pip, and a Virtual
Development Environment
First and foremost, you’ll need Python. For the purposes of this guide, we’ll
be using Python 3.9.5.

We’ll also be using pip, which is a package installer for Python. Pip allows
you to install packages from the Python Package Index and other indexes.

Don’t worry if you don’t have Python 3.9.5 installed on your system. We’re
going to create a virtual development environment, so regardless of the
version you currently have, your development environment will be isolated
from your system and will use Python 3.9.5.

If Python isn’t already installed on your system, head over to
www.python.org/downloads/, download, and install one of the Python 3.x
versions. The instructions you’ll need to follow will vary depending on your
operating system.

To manage our development environment, we’ll be using
virtualenvwrapper. You can find the installation instructions in the official
documentation.

pip install --upgrade pip
pip install virtualenv
pip install virtualenvwrapper

For Windows users, the following command can be used to install
virtualenvwrapper-win:

pip install --upgrade pip
pip install virtualenv
pip install virtualenvwrapper-win

Note: If you’re accustomed to using virtualenv, Poetry, Conda, or any other
environment, feel free to continue using it. There’s no need to install

https://www.python.org/downloads/
https://github.com/python-virtualenvwrapper/virtualenvwrapper
https://virtualenvwrapper.readthedocs.io/en/latest/install.html
https://github.com/davidmarble/virtualenvwrapper-win/

virtualenvwrapper in this case.

If pip isn’t installed, the simplest way to install it is by using the “get-
pip.py” script:

curl https://bootstrap.pypa.io/get-pip.py | python3

Windows users can use the following command:

curl https://bootstrap.pypa.io/get-pip.py
py get-pip.py

In summary, your system should have the following packages installed:

Python 3.9
Pip
Virtualenv
virtualenvwrapper (optional, as you can use virtualenv or Poetry
instead)

Again, I strongly recommend Windows users to create a Debian-based
virtual machine, as the examples provided in this guide were tested on a
Debian-based system. While most of the commands and code snippets will
work on Windows, some may need to be adapted.

Next, we’ll create a virtual environment:

mkvirtualenv -p python3.9 openaigptforpythondevelopers

Once it’s created, activate it:

workon openaigptforpythondevelopers

https://bootstrap.pypa.io/get-pip.py

Obtain Your OpenAI API Keys
The next step involves generating API keys that will grant you access to the
official API provided by OpenAI.

Visit platform.openai.com to create an account, then generate your API
keys.

An API key can be associated with an organization, and you’ll be prompted
to create one. In this guide, we’ll name it: “LearningGPT”.

Ensure to store the generated secret key in a safe and accessible location.
You won’t be able to retrieve it again through your OpenAI account.

Install the Official Python Bindings
While you can interact with the API using HTTP requests from any
language, this can be done either via the official Python bindings, the
official Node.js library, or a community-maintained library.

In this guide, we will utilize the official library provided by OpenAI.
Another option is Chronology, an unofficial library offered by OthersideAI.
However, this library appears to be no longer maintained, and its use in
production is not recommended.

To install the official Python bindings, execute the following command:

pip install openai==1.9.0

Ensure that you are installing the library in the virtual environment we
created earlier.

https://platform.openai.com/
https://platform.openai.com/api-keys
https://github.com/OthersideAI/chronology

Test our API Keys
First, let’s set the API key and the organization ID as environment
variables:

export API_KEY=xxx
export ORG_ID=xxx

Now, you can run the following command to test the API:

curl \
 https://api.openai.com/v1/models \
 -H 'Authorization: Bearer '$API_KEY'' \
 -H 'OpenAI-Organization: '$ORG_ID''

If you only have one organization in your OpenAI account, you can run the
same command without specifying the organization ID.

curl \
 https://api.openai.com/v1/models \
 -H 'Authorization: Bearer '$API_KEY''

The curl command should return a list of models provided by the API, such
as “davinci”, “ada”, and many others.

The second test we will conduct involves using the Python SDK.

Start by creating a file named “.env”, where you will store the API key and
organization ID:

cat << EOF > .env
API_KEY=$API_KEY
ORG_ID=$ORG_ID
EOF

To test the API using the Python SDK, execute the following code:

cat << EOF > test_api.py
import os
from openai import OpenAI
from pprint import pprint

reading variables from .env file,
namely API_KEY and ORG_ID.
with open(".env") as env:
 for line in env:
 key, value = line.strip().split("=")
 os.environ[key] = value

Initializing the API key and organization id
client = OpenAI(
 api_key=os.environ['API_KEY'],
 organization=os.environ['ORG_ID']
)

Printing the client object
pprint(vars(client))
EOF

Run the above code by executing the following command:

python test_api.py

We will authenticate using the API key and organization ID in each code
snippet throughout this guide. That’s why we are organizing our code in the
following manner:

Create a folder named “src” and inside it, create a file named “api.py”:

cat << EOF > src/api.py
import os
from openai import OpenAI

reading variables from .env file,
namely API_KEY and ORG_ID.
with open("src/.env") as env:
 for line in env:
 key, value = line.strip().split("=")
 os.environ[key] = value

Instantiating the client at module level
client = OpenAI(
 api_key=os.environ['API_KEY'],
 organization=os.environ['ORG_ID']
)
EOF

Set up the “.env” file as follows:

cat << EOF > src/.env
API_KEY=$API_KEY
ORG_ID=$ORG_ID
EOF

To test the API, execute the following code:

cat << EOF > src/test_api.py
from api import client
from pprint import pprint

Printing the client object
pprint(vars(client))
EOF

Run the above code by executing the following command:

python src/test_api.py

We will use this same structure for the rest of the code snippets in this
guide.

Understanding the Available
Models and Which One to Use
OpenAI Available Models and Important
Considerations
Using the API’s models endpoint, you can list all available models. Let’s see how
this works in practice:

cat << EOF > src/test_api.py
from api import client

models = client.models.list()
for model in models:
 print(vars(model))
EOF

Run the code:

python src/test_api.py

You should see a similar output to this:

{
 'id': 'curie-search-query',
 'created': 1651172509,
 'object': 'model',
 'owned_by': 'openai-dev'
}

{
 'id': 'babbage-search-query',
 'created': 1651172509,
 'object': 'model',
 'owned_by': 'openai-dev'
}

 {
 'id': 'dall-e-3',
 'created': 1698785189,
 'object': 'model',
 'owned_by': 'system'

}
... etc

The OpenAI Python SDK is intuitive and easy to use. We simply use the list()
method to list all the available models.

Let’s print just the IDs of the models:

cat << EOF > src/test_api.py
from api import client

models = client.models.list()
for model in models:
 print(model.id)
EOF

Run the code:

python src/test_api.py

The result should contain a list of all the available models; these are the most
common ones:

dall-e-3
dall-e-2
GPT-4
davinci-002
babbage-002
whisper-1
GPT-3.5-Turbo-16k
GPT-3.5-Turbo
GPT-3.5-Turbo-Instruct

The models Babbage-002 and Davinci-002 are both part of the GPT-3 series
developed by OpenAI, and they serve as replacements or upgrades to previous
models:

Babbage-002: Serves as a replacement for the GPT-3 Ada and Babbage base
models. It’s optimized for tasks that require a balance between performance
and cost-efficiency and is suitable for moderately complex tasks like text
classification, semantic search, and basic language understanding.
Davinci-002: Replaces the GPT-3 Curie and Davinci base models. It’s known
for its advanced language understanding and generation capabilities and is
ideal for more complex tasks that require nuanced understanding, such as

content creation, complex language translation, and solving sophisticated
problems.
DALL-E 3 and DALL-E 2: Both are image generation models. DALL-E 3 is
an improvement over DALL-E 2 - a basic model, with more advanced
capabilities in generating high-resolution, realistic images from text
descriptions.
Whisper-1: This model is specialized in speech recognition and transcription. It
was designed to convert spoken language into written text accurately. In the
future, you may see more advanced versions of this model (e.g., Whisper-2,
Whisper-3, etc.).
GPT-3.5-Turbo and GPT-3.5-Turbo-Instruct: All of these models are variants
of GPT-3.5 designed for more efficient and responsive text generation.
GPT-4: This is a large multimodal model that can accept both text and image
inputs. It is the successor to GPT-3 and is capable of performing a wide range
of tasks.

Some of the models listed in the output are dynamic, as they are subject to
continuous updates by OpenAI. For example, GPT-3.5-Turbo, GPT-4, and GPT-4-
32k point to the latest model version. At the time of writing, the latest GPT-4 model
is GPT-4-0613, so when your code calls the GPT-4 API endpoint, you are actually
using GPT-4-0613. In the future, when OpenAI releases a new GPT-4 model, the
API endpoint will point to the new model. This is why it is recommended to use a
specific version of the model in your code if you have specific requirements.

Historically, models were called “engines”, but OpenAI deprecated the term
“engine” in favor of “model”. Some resources use these terms interchangeably, but
the correct term is “model”. When using the API, requests that use the old names
will still work, as OpenAI has ensured backward compatibility, but this could
change in the future. However, some models should be manually replaced by newer
ones. It is recommended that you use the updated models to avoid any issues in the
future.

Some models are not listed above, like the moderation models. These models are
used to detect inappropriate content in text and to filter it out. The usage of these
models is optional but highly recommended if you are building a public application.
You don’t want your users to receive inappropriate results.

Which Model to Use?
There is no single answer to this question. It depends on your use case and the type
of application you are building. In general, you should use the most recent model
available. For example, from a functionality perspective, if you are building a
chatbot, you should use the GPT-3.5-Turbo-Instruct model. If you are building an
application that generates images from text, you should use the DALL-E 3 model. If
your application requires more capabilities, you should use the GPT-4 model.

The second factor to consider is pricing. Some models are more expensive than
others. For example, GPT-3.5-Turbo is the most cost-effective model in the GPT-3.5
series.

Another important factor is the context window. Some models have a larger context
window than others. For example, the GPT-4-32k model has a context window of
32,768 tokens (about 50 pages of text), while the GPT-4-0613 model has a context
window of 8,192 tokens (about 12 pages of text). This means that the GPT-4-32k
model can process more text than the GPT-4-0613 model.

In the following sections, we’re going to take a closer look at the main models
available. This will help you understand the differences between them and choose
the right model for your application. However, it’s important to understand that
some of the models listed below are deprecated and likely won’t be available in the
future. OpenAI is constantly improving its models and deprecating old ones.

OpenAI Model Series

GPT-4 Series

GPT-4 is the latest model series developed by OpenAI and is the successor to GPT-
3. One of the main differences from GPT-3 is that GPT-4 models are multimodal.
This means that GPT-4 can accept both image and text inputs.

ℹ️ In general, multimodal deep learning is a subfield of deep learning that
enriches models with information collected from various data modalities, such
as text, images, video, audio, and sensor data. This puts it a step ahead of
traditional machine learning, which was confined to a single modality, thus
addressing the complexity surrounding real-world data that often blends
various sources. The objective is to create a unified representation space,

