<packd

Clang Compiler Frontend

Get to grips with the internals of a C/C++ compiler
frontend and create your own tools

IVAN MURASHKO



Clang Compiler Frontend

Get to grips with the internals of a C/C++ compiler
frontend and create your own tools

Ilvan Murashko



Clang Compiler Frontend

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,

except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held

liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing

cannot guarantee the accuracy of this information.

Associate Group Product Manager: Kunal Sawant
Senior Editor: Rounak Kulkarni

Senior Content Development Editor: Rosal Colaco
Technical Editor: Jubit Pincy

Copy Editor: Safis Editing

Project Coordinator: Deeksha Thakkar

Indexer: Pratik Shirodkar

Production Designer: Vijay Kamble

Business Development Executive: Debadrita Chatterjee

Senior Developer Relations Marketing Executive: Shrinidhi Monaharan
First published: March 2024

Production reference: 1290224

Published by Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK

ISBN 978-1-83763-098-1

www . packtpub.com


www.packtpub.com

Contributors

About the author

Ivan Murashko is a C++ software engineer. He earned his Ph.D. in Physics from Peter the
Great St. Petersburg Polytechnic University and has over 20 years of C++ programming
experience, mostly on Linux. Since 2020, he has worked with LLVM compilers and has
been an LLVM committer since 2021. His areas of interest include the Clang compiler
frontend, Clang Tools (such as Clang-Tidy and Clangd), and performance optimizations for

compilers and compiler tools.

I want to thank my wife, Irina, who was patient and supported me throughout

the writing of this book.



About the reviewer
Aditya Agrawal comes from the city of joy, Kolkata, West Bengal. He is currently working

as a Software Engineer in the Systems Domain. He graduated with a master’s degree in
Computer Science from the reputed Indian Institute of Technology, Madras where he was
introduced to the world of Compilers, Parallel Programming, and systems. Aditya has
published a research paper that allows one to add point-to-point synchronizations for their
OpenMP parallel programs (called UWPro). He has read a lot of books and tutorials on how
to work with Compilers and the like. Aditya has experience working with RISCV during
his tenure at MIPS Embedded Technologies as a full-time RISCV Developer. In his spare
time, he loves to play video games and take part in various community events involving

LLVM Social, RV Bangalore User Group, and so on.



Table of Contents

Preface xiii
Part 1: Clang Setup and Architecture 1
Chapter 1: Environment Setup 3
1.1 Technical requirements ................ooiiiiiiiiiiiiiii it 4
1.1.1 CMake as project configuration tool ................ccooiiiiiiL. 4

1.1.2 Ninja as build tool ...... ... ... 5

1.2 Getting to know LLVM ... . 5
1.2.1 Short LLVM hiStory .........iiiiiit e 6

1.2.2 OS SUPPOIt ... 7
Linux .o 7

Darwin (macOS) ... e 7

WIRAOWS .o 8

1.2.3 LLVM/Clang project Structure ..............couiieeiiiiiiineeeeenninnnn. 8

1.3 Source code compilation .......... .. 11
1.3.1 Configuration with CMake .......... ... i 11

1.3.2 Build .o 15

1.3.3 The LLVM debugger, its build, and usage ................coooiiiiiiina... 16

1.4 Test project — syntax check with a Clang tool .................... ... ... . 19

1.5 SUMMATY oo e e 26



vi Table of Contents

1.6 Further reading ............oiiiiiiiiiiii i 26
Chapter 2: Clang Architecture 27
2.1 Technical requirements ...............ooiuiiiiiiiiiieiiiin i, 28
2.2 Getting started with compilers ............ ..o 28
2.2.1 Exploring the compiler workflow ..............c.. i, 28

2.22 Frontend ... 31
Lexer ... 32

Parser ... 32

The codegen ............ouuu e 36

2.3 Clang driver OVeIVIEW .............oiiiiiiiiiiiiiiiiiiiiiiii i 37
2.3.1 Example program ... 38

2.3.2 Compilation phases ............ i 39

2.3.3 Tool eXxecution ...........oiiiiiiiiiiiii 41

2.3.4 Combining it all together ............ . ... 43

2.3.5 Debugging Clang .........cooouiiieitiii 45

2.4 Clang frontend OVEIrVIEW ...........oceeeiiiuiieeitiiiie et 50
2.4.1 Frontend action ...........coiiiiiiiiii 51

2.4.2 PIEPIOCESSOT .ttt ettt ettt e e e e 54

243 Parser and SEIMa .........oieiiiiiii e 57

2.5 SUIMIMATY .ottt e et 67
2.6 Furtherreading ............oooiiiiiiiiiiii i e 67
Chapter 3: Clang AST 69
3.1 Technical requirements ...............ooouiiiiiiiiiiiiiiiin i, 70
3.2 A T e 70
3.2.1 Statements ... 71

3.2.2 Declarations ...........uueeeiuiiii e 72



Table of Contents vii

3.3 AST traversal ......oo.iiiii i e 75
3.3.1 DeclVisitor test tool ............oooiiiiiiiii i 75

3.3.2 Visitor implementation ...............ooiiiiiiiiiiii i 83

3.4 Recursive AST VISItOT ........c..iiiiiiiiiii i i e 86
3.5 ASTmatchers .......oooiiiiiiii 90
3.6 Explore Clang AST with clang-query ............ccooiiiiiiiiiiiiiiiiiiinn e 95
3.7 Processing AST in the case of €rrors ...........ccoviiiiiiiiiiiiiiiiiiiinneeee 97
3.8 SUININATY . .iniii e e e e e e 100
3.9 Furtherreading ................ 100
Chapter 4: Basic Libraries and Tools 101
4.1 Technical requirements ............. .ottt 102
42 LLVM coding style ............. i 102
4.3 LLVM basic libraries ............oooiiiiiiiiiii 104
4.3.1 RTTI replacement and cast operators ................ccoovveiiineinneaon.. 104

4.3.2 ContaiNers ..........coo.iiiiiiiiiii 108
SEFING OPErations .......c..ouien ettt e 108

Sequential CONTAINErS ...........ouiie it 111

Map-like cONLAINETs ..........oiiiuii i e 112

4.3.3 Smart pOINEeIS .. .o..iuti e 113

4.4 Clang basic libraries ... 114
4.4.1 SourceManager and SourceLocation ................cooiiiiiiiiiiiin, 114

4.4.2 Diagnostics SUPPOrt ..........couiiniiiiii e 119

4.5 LLVM supporting tools ...........iiiiiiiiiiti it 121
4.5.1 TableGen ......oiiuiii 121

4.5.2 LLVM test framework ........ ..o 124

4.6 Clang plugin project ...........ooeouiiiiuiiiiiiii i 126
4.6.1 Environment SEtUP ........ouiiiiiiii i e 126

4.6.2 CMake build configuration for plugin ...l 127

4.6.3 Recursive VISItOr Class .........o.iuiiiiii 128



viii Table of Contents

4.6.4 Plugin AST consumer class ...........ccoooiiiiiiiiiiniiiiiiiiin i, 130

4.6.5 Plugin AST action class ...........ooiiiiiiiiiiiiiii i 131

4.6.6 Plugin code .........oiiiiiiii 133

4.6.7 Building and running plugin code .............. ..., 133

4.6.8 LIT tests for clang plugin ... 135

LIT config files .. ...t 135

CMake configuration for LIT teSts ..........oueeuiiiiiiiiiiinaiinaennnn.. 138

Running LIT tests .......o.iiuii i 139

4.7 SUININATY oottt 140
4.8 Further reading ..........oooiiiiiiiii i e 140
Part 2: Clang Tools 141
Chapter 5: Clang-Tidy Linter Framework 143
5.1 Technical requirements ................ooiiiiiiiiiiiiiiin i, 144
5.2 Overview of Clang-Tidy and usage examples ..................iiiiiiiiee 144
5.2.1 Building and testing Clang-Tidy ...............ccoooiiiiit. 145

5.2.2 Clang-Tidy USQZE ... oeouutttit et e 147

5.2.3 Clang-Tidy checks ........ .o 150

5.3 Clang-Tidy’s internal design ..............oooiiiiiiiiiiiiiiiiii i 152
5.3.1 Internal organization ........... ..o 152

5.3.2 Configuration and integration ..............c..oiiiiiiiiiiiiiiiiiiii 154
Clang-Tidy cOnfiguration .................oiueiiieiiii i, 154

5.4 Custom Clang-Tidy check ................ .. 156
5.4.1 Creating a skeleton for the check .............. ... ... ... 156

5.4.2 Clang-Tidy check implementation ...................coiiiiiiiiiiiiina.. 157

5.4.3 LIT St oot e 161

5.4.4 Results in the case of compilation errors ...............ccooooiiiiii. 162

5.4.5 Compilation errors as edge Cases ...........c.ooviiiiiiiiiniiiiiiiininain. 164

5.5 SUININATY oottt e e e e 168



Table of Contents ix
5.6 Further reading ............coooiiiiiiiiiiii i e 168
Chapter 6: Advanced Code Analysis 169
6.1 Technical requirements ...............cooiiiiiiiiiiiiiiniiiiiiiii i 170
6.2 Staticanalysis .............o 170
6.3 CFG o e e e e e e e e e 172
6.4 Custom CFG check ..............oo i 175
6.4.1 Creating the project skeleton ............ ..., 175
6.4.2 Check implementation ...............ooiiiiiiiiiiii i 176
6.4.3 Building and testing the cyclomatic complexity check ................... 178
6.5 CFG On Clang ........uiiiiiiiiiit it e e ee 180
6.5.1 CFG construction by example ...t 180
6.5.2 CFG construction implementation details ........................oooo 183
6.6 Brief description of Clang analysis tools .......................coiiiiiii, 188
6.7 Knowing the limitations of analysis ..............c....o i, 189
6.8 SUININATY ..ottt e ettt eneens 190
6.9 Future reading ...........coiiiiiiiiiii it e 191
Chapter 7: Refactoring Tools 193
7.1 Technical requirements ................ooiiiiiiiiiii ittt 194
7.2 Custom code modification tool ........... ... . . 194
7.2.1 Code modification support at Clang .....................ooooiiiiiiiL 194
7.2.2 TSt Class ..ttt e 195
7.2.3 Visitor class implementation .................cooiiiiiiiiiiiiiiii, 196
7.2.4 Consumer class implementation ...................oooiiii, 201
7.2.5 Build configuration and main function ..................oo 202
7.2.6 Running the code modification tool ............. ... 204
7.3 Clang-Tidy as a code modification tool ..................c....ciiiiiiiiit. 206
7.3.1 FIixIEHINt oo 206
7.3.2 Creating project skeleton ........... ..o 208



X Table of Contents

7.3.3 Check implementation ...t 210

7.3.4 Buildand runthe check ........ ... .. .. 213

7.4 Code modification and Clang-Format ...................cco it 216
7.4.1 Clang-Format configuration and usage examples ........................ 216

7.4.2 Design considerations ...............ooviiiiiiiiii it 218

7.4.3 Clang-Tidy and Clang-Format ..., 219

7.5 SUININATY ..ottt ittt ettt et eenes 222
7.6 Further reading ........ ... i 222
Chapter 8: IDE Support and Clangd 223
8.1 Technical requirements ...............ooouiiiiiiiiiiiiiiiiin i, 224
8.2 Language Server Protocol ........... .. i 224
8.3 Environment setup ... 226
83.1 Clangd build ........ ... ..o i 226

8.3.2 VS Code installation and setup ...........oooiiiiiiiiiiiii i 227
BALSP AEMO ... 230
8.4.1 Demo desCription ..........co.uieiiiii e 231

8.4.2 LSP SESSION ...ttt 235
Initialization .......... .. 237

OPen dOCUMENT ... ....oooi e e 239

GO-10 definition  ...........uueii i 244

Change doCUTENt ...........ooiouiee e 246

Closing a dOCUTENT ... . ..ottt e 249

8.5 Integration with Clang tools .............. i 250
8.5.1 Clangd support for code formatting using LSP messages ................ 251
Formatting entire doCUments ...............ooiueiiiiiiiiiiiiiiinieaeonn. 251
Formatting specific code ranges ................coiiiiiiiiiiiiiiiiii, 252

8.5.2 Clang-Tidy ......coiiiiiiiii 255
Clang-Tidy integration with LSP ........... oottt 255

Applying fixes in the IDE ... ... oo i i 258



Table of Contents xi

8.6 Performance optimizations ................ooiiiiiiiiiiiiiiiiiiiniiiiiiiiieaeee 260
8.6.1 Optimizations for modified documents ......................oioiiil 260
Source code preamble .......... ... 260
AST build at Clangd ... i 262
8.6.2 Building preamble optimization ...............ccoiiiiiiiiii, 263
8.7 SUININATY ..ttt ettt ettt et eeens 265
8.8 Furtherreading ............oooiiiiiiiiiiiiiii i e 265
Part 3: Appendix 267
Appendix 9: Appendix 1: Compilation Database 269
Compilation database definition .............. ... 269
CDB creation ............oiiiiiiiiii i 272
Generating a CDB with CMake ... 272
Ninja to Generate a CDB ... ... .. . i 273
ClangtoolsandaCDB ........ ... i 273
Clang-Tidy Configuration for Large Projects .................................. 274
Clangd Setup for Large Projects ...........coiiiiiiiiiiiiiiiiiiiiin i, 274
Further reading ...........ooiiiiiiiiiii i e 276
Appendix 10: Appendix 2: Build Speed Optimization 277
Technical requirements ................iiiiiiiiiiii i, 278
Precompiled headers .......... .. i e 278
Clang modules ...t e 281
Test project description ............oooooiiiiii i e 282
Modulemap file ... ... 283
Explicit modules .........cooiii i 284
Implicit modules ......... .o 287
Some problems related to modules ............. .. 288

Further reading ...........cooiiiiiiiiiii i e 290



xii Table of Contents

Index 295

Other Books You Might Enjoy 302




Preface

Low Level Virtual Machine (LLVM)), is a collection of modular and reusable compiler
and toolchain technologies used to develop compilers and compiler tools, such as linters
and refactoring tools. LLVM is written in C++ and can be considered a good example of a
well-structured project that uses interesting techniques aimed at making it reusable and
efficient. The project can also be considered an excellent example of compiler architecture;
diving into it will give you a sense of how compilers are organized and how they function.

This should help to understand usage patterns and apply them accordingly.

One of the key components of LLVM is the C/C++ compiler known as Clang. This compiler
is widely used across various companies and has been designated as the default compiler
for certain development environments, notably for macOS development. Clang will be the
primary focus of our investigation in this book, with particular attention to its frontend—the
part that is closest to the C/C++ programming language. Specifically, the book will include

examples demonstrating how the C++ standard is implemented within the compiler.

A pivotal aspect of LLVM’s design is its modularity, which facilitates the creation of custom
tools that exploit the compiler’s comprehensive capabilities. A notable example covered in
the book is the Clang-Tidy linter framework, designed to identify undesirable code patterns
and recommend corrections. Although it includes several hundred checks, you may not
find one specific to your project’s needs. However, the book will provide you with the

foundation necessary to develop such a check from the beginning.

LLVM is an actively evolving project with two major releases each year. At the time the

book was written, the latest stable release was version 17. Meanwhile, a release candidate



Xiv Preface

for version 18 was introduced in January 2024, with its official release anticipated to coincide
with the publication of the book. The book’s content has been verified against the latest
compiler version, 18, ensuring it provides insights based on the most current compiler

implementation available.

Who this book is for

The book is written for C++ engineers who don’t have prior knowledge of compilers but
wish to gain this knowledge and apply it to their daily activities. It provides an overview
of the Clang compiler frontend, an essential yet often underestimated part of LLVM. This
section of the compiler, along with a collection of powerful tools, enables programmers
to enhance code quality and the overall development process. For example, Clang-Tidy
offers more than 500 different lint checks that detect anti-patterns in code (such as use after
move) and help maintain code style and standards. Another notable tool is Clang-Format,
which allows specifying various formatting rules suitable for your project. These tools can
also be considered an integral part of the development process. For instance, the language
server (Clangd) is a critical service providing navigation and refactoring support for your

IDE.

Understanding compiler internals might be crucial for anyone wanting to create and use
such tools. The book provides the necessary foundation to begin this journey, covering
basic LLVM architecture and offering a detailed description of Clang internals. It includes
examples from LLVM source code and custom tools that extend the basic functionality
provided by the compiler. Additionally, the book addresses compilation databases and
various performance optimizations that can enhance the build speed of your projects.
This knowledge should help C++ developers correctly apply the compiler to their work

activities.

What this book covers

Chapter 1, Environment Setup, describes the basic steps required to set up the environment

for future experiments with Clang, suitable for Unix-based systems such as Linux and



Preface XV

Darwin (macOS). In addition, readers will learn how to download, configure, and build
LLVM source code. We will also create a simple Clang Tool to verify the syntax of the

provided source code.

Chapter 2, Clang Architecture, examines the internal architecture of the Clang compiler.
Starting with the basic concept of a compiler, we will explore how it is implemented in
Clang. We will look at various parts of the compiler, including the driver, preprocessor
(lexer), and parser. We will also examine examples that show how the C++ standard is

implemented in Clang.

Chapter 3, Clang AST, talks about Clang Abstract Syntax Tree (AST), which is the basic
data structure produced by the parser. We will explore how the AST is organized in Clang
and how it can be traversed. We will also delve into AST Matchers — a powerful tool

provided by Clang for locating specific AST nodes.

Chapter 4, Basic Libraries and Tools, explores basic LLVM libraries and tools, including the
LLVM Abstract Data Type (ADT) library, used across all LLVM code. We will investigate
TableGen, a Domain-Specific Language (DSL) used to generate C++ code in various
parts of LLVM. Additionally, we will explore LLVM Integrated Tester (LIT) tool used for
creating powerful end-to-end tests. Using the knowledge gained, we will create a simple

Clang plugin to estimate source code complexity.

Chapter 5, Clang-Tidy Linter Framework, covers Clang-Tidy, a linter framework based on
Clang AST, and creates a simple Clang-Tidy check. We will also discuss how compilation
errors affect the AST and the results provided by different Clang Tools, such as Clang-Tidy.

Chapter 6, Advanced Code Analysis, goes further and considers another advanced data
structure used for code analysis: Control Flow Graphs (CFG). We will investigate typical

cases for its application and create a simple Clang-Tidy check that utilizes this data structure.

Chapter 7, Refactoring Tools, Clang provides advanced tools for code modification and
refactoring. We will explore different ways to create a custom refactoring tool, including
one based on the Clang-Tidy linter framework. We will also explore Clang-Format, an

extremely fast utility for automatic code formatting.



xvi Preface

Chapter 8, IDE Support and Clangd, presents Clangd - a Language Server used in various
IDEs, such as Visual Studio Code (VS Code), to provide intelligent support, including
navigation and code modification. Clangd exemplifies the utility of the powerful modular
architecture of LLVM. It utilizes various Clang tools, such as Clang-Tidy and Clang-Format,
to enhance the development experience in VS Code. Compiler performance is crucial for this
tool, and we will explore several techniques Clangd employs to improve its performance,

thereby offering the best experience to developers.

Appendix 1: Compilation Database, describes the Compilation Database—a method for
providing complex compilation commands to different Clang Tools. This functionality is

crucial for integrating Clang Tools such as Clangd and Clang-Tidy into real C/C++ projects.

Appendix 2: Build Speed Optimizations, covers several compiler performance optimizations
that can be used to enhance compiler performance. We will cover Clang precompiled
headers and Clang modules, which represent a serialized AST that can be loaded much

faster than building it from scratch.

To get the most out of this book

You will need to have an understanding of C++, especially C++17, which is used for LLVM
and throughout the examples in the book. The provided examples are assumed to be run
on a Unix-like operating system, with Linux and Darwin (Mac OS) being considered the
operating system requirements for the book. We will use Git to clone the LLVM source
tree and start working on it. Some tools also need to be installed, such as CMake and Ninja,

which will be actively used to build the examples and the LLVM source code.

If you are using the digital version of this book, we advise you to type the code
yourself or access the code from the book’s GitHub repository (a link is available
in the next section). Doing so will help you avoid any potential errors related to

the copying and pasting of code.



Preface xvii

Download the example code files
The code bundle for the book is also hosted on GitHub at https://github.com/PacktPu
blishing/Clang-Compiler-Frontend-Packt. In case there’s an update to the code, it will

be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at

https://github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, and user input. Here is an example: “The first two
parameters specify the declaration (clang: :Decl) and the statement for the declaration

(clang::Stmt)”

A block of code is set as follows:

int main() {

return 0;

Any command-line input or output is written as follows:
$ ninja clang
We use <. ..> as a placeholder for the folder where the LLVM source code was cloned.

Some code examples will be representing input of shells. You can recognize them by specific

prompt characters:

e (11ldb) for interactive LLDB shell
« $ for Bash shell (macOS and Linux)
« > for interactive shell provided by different Clang Tools, such as Clang-Query


https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt
https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt
https://github.com/PacktPublishing/

xviii Preface

Important note

Warnings or important notes appear like this.

Tip

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book

title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit https://www.packtpub.com/support/errata, selecting your

book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.

Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit https:

//partnerships.packt.com/contributors/.


mailto:customercare@packtpub.com
https://www.packtpub.com/support/errata
mailto:copyright@packt.com
https://partnerships.packt.com/contributors/
https://partnerships.packt.com/contributors/

Preface Xix

Share your thoughts

Once you’ve read Clang Compiler Frontend, we’d love to hear your thoughts! Please click

here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re

delivering excellent quality content.


https://packt.link/r/1837630984
https://packt.link/r/1837630984

XX Preface

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your

eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at

no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite

technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and

great free content in your inbox daily.
Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://download.packt.com/free-ebook/9781837630981
2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.


https://download.packt.com/free-ebook/9781837630981

Part 1

Clang Setup and
Architecture

You can find some info about LLVM internal architecture and how Clang fits into it. There
is also description how to install and build Clang and Clang-Tools, description for basic
LLVM libraries and tools used across LLVM project and essential for Clang development.

You can find description for some Clang features and their internal implementation.

This part has the following chapters:
o Chapter 1, Basic Libraries and Tools

« Chapter 2, Clang Architecture

Chapter 3, Clang AST

o Chapter 4, Basic Libraries and Tools






Environment Setup

In this chapter, we will discuss the basic steps of setting up the environment for future
experiments with Clang . The setup is appropriate for Unix-based systems such as Linux
and Mac OS (Darwin). In addition, you will get important information on how to download,
configure, and build the LLVM source code. We will continue with a short session that
explains how to build and use the LLVM debugger (LLDB ), which will be used as the
primary tool for code investigation throughout the book. Finally, we will finish with a
simple Clang tool that can check C/C++ files for compilation errors. We will use LLDB for
a simple debug session for the created tool and clang internal. We will cover the following

topics:
 Prerequisites
+ Getting to know LLVM
+ Source code compilation

» How to create a custom Clang tool



4 Chapter 1: Environment Setup

11 Technical requirements

Downloading and building LLVM code is very easy and does not require any paid tools.

You will require the following:
« Unix-based OS (Linux, Darwin)
« Command line git
+ Build tools: CMake and Ninja

We will use the debugger as the source investigation tool. LLVM has its own debugger,
LLDB. We will build it as our first tool from LLVM monorepo: https://github.com/11lv

m/1lvm-project.git.

Any build process consists of two steps. The first one is the project configuration and the
last one is the build itself. LLVM uses CMake as a project configuration tool. It also can use
a wide range of build tools, such as Unix Makefiles, and Ninja. It can also generate project
files for popular IDEs such as Visual Studio and XCode. We are going to use Ninja as the
build tool because it speeds up the build process, and most LLVM developers use it. You
can find additional information about the tools here: https://11vm.org/docs/GettingS

tarted.html.

The source code for this chapter is located in the chapterl folder of the book’s GitHub
repository: https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt

/tree/main/chapterl

11.1 CMake as project configuration tool

CMake is an open source, cross-platform build system generator. It has been used as the

primary build system for LLVM since version 3.3, which was released in 2013.

Before LLVM began using CMake, it used autoconf, a tool that generates a configure
script that can be used to build and install software on a wide range of Unix-like systems.
However, autoconf has several limitations, such as being difficult to use and maintain and

having poor support for cross-platform builds. CMake was chosen as an alternative to


https://github.com/llvm/llvm-project.git
https://github.com/llvm/llvm-project.git
https://llvm.org/docs/GettingStarted.html
https://llvm.org/docs/GettingStarted.html
https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt/tree/main/chapter1
https://github.com/PacktPublishing/Clang-Compiler-Frontend-Packt/tree/main/chapter1

Getting to know LLVM 5

autoconf because it addresses these limitations and is easier to use and maintain.

In addition to being used as the build system for LLVM, CMake is also used for many other
software projects, including Qt, OpenCV, and Google Test.

1.1.2 Ninja as build tool

Ninja is a small build system with a focus on speed. It is designed to be used in conjunction
with a build generator, such as CMake, which generates a build file that describes the build

rules for a project.

One of the main advantages of Ninja is its speed. It is able to execute builds much faster
than other build systems, such as Unix Makefiles, by only rebuilding the minimum set of
files necessary to complete the build. This is because it keeps track of the dependencies

between build targets and only rebuilds targets that are out of date.

Additionally, Ninja is simple and easy to use. It has a small and straightforward
command-line interface, and the build files it uses are simple text files that are easy to read

and understand.

Overall, Ninja is a good choice for build systems when speed is a concern, and when a

simple and easy-to-use tool is desired.

One of the most useful Ninja option is -j . This option allows you to specify the number
of threads to be run in parallel. You may want to specify the number depending on the

hardware you are using.

Our next goal is to download the LLVM code and investigate the project structure. We also
need to set up the necessary utilities for the build process and establish the environment
for our future experiments with LLVM code. This will ensure that we have the tools and

dependencies in place to proceed with our work efficiently.

1.2 Getting to know LLVM

Let’s begin by covering some foundational information about LLVM, including the project

history as well as its structure.



6 Chapter 1: Environment Setup

1.2.1 Short LLVM history

The Clang compiler is a part of the LLVM project. The project was started in 2000 by Chris
Lattner and Vikram Adve as their project at the University of Illinois at Urbana—-Champaign
[26].

LLVM was originally designed to be a next-generation code generation infrastructure that
could be used to build optimizing compilers for many programming languages. However,
it has since evolved into a full-featured platform that can be used to build a wide variety of

tools, including debuggers, profilers, and static analysis tools.

LLVM has been widely adopted in the software industry and is used by many companies
and organizations to build a variety of tools and applications. It is also used in academic

research and teaching and has inspired the development of similar projects in other fields.

The project received an additional boost when Apple hired Chris Lattner in 2005 and
formed a team to work on LLVM. LLVM became an integral part of the development tools
created by Apple (XCode).

Initially, GNU Compile Collection (GCC) was used as the C/C++ frontend for LLVM. But
that had some problems. One of them was related to GNU General Public License (GPL)
that prevented the frontend usage at some proprietary projects. Another disadvantage was
the limited support for Objective-C in GCC at the time, which was important for Apple.
The Clang project was started by Chris Lattner in 2006 to address the issues.

Clang was originally designed as a unified parser for the C family of languages, including C,
Objective-C, C++, and Objective-C++. This unification was intended to simplify
maintenance by using a single frontend implementation for multiple languages, rather than
maintaining multiple implementations for each language. The project became successful
very quickly. One of the primary reasons for the success of Clang and LLVM was their
modularity. Everything in LLVM is a library, including Clang . It opened the opportunity
to create a lot of amazing tools based on Clang and LLVM, such as clang-tidy and clangd,
which will be covered later in the book (Chapter 5, Clang-Tidy Linter Framework and
Chapter 8, IDE Support and Clangd).



Getting to know LLVM 7

LLVM and Clang have a very clear architecture and are written in C++. That makes it
possible to be investigated and used by any C++ developer. We can see the huge community

created around LLVM and the extremely fast growth of its usage.

1.2.2 OS support

We are planning to focus on OS for personal computers here, such as Linux, Darwin, and
Windows. On the other hand, Clang is not limited by personal computers but can also be

used to compile code for mobile platforms such as iOS and different embedded systems.

Linux

The GCC is the default set of dev tools on Linux, especially gcc (for C programs) and g++
(for C++ programs) being the default compilers. Clang can also be used to compile source
code on Linux. Moreover, it mimics to gcc and supports most of its options. LLVM support
might be limited for some GNU tools, however; for instance, GNU Emacs does not support
LLDB as a debugger. But despite this, Linux is the most suitable OS for LLVM development

and investigation, thus we will mainly use this OS (Fedora 39) for future examples.

Darwin (macOS)

Clang is considered the main build tool for Darwin. The entire build infrastructure is
based on LLVM, and Clang is the default C/C++ compiler. The developer tools, such as
the debugger (LLDB ), also come from LLVM. You can get the primary developer utilities
from XCode, which are based on LLVM. However, you may need to install additional
command-line tools, such as CMake and Ninja, either as separate packages or through

package systems such as MacPorts or Homebrew.



8 Chapter 1: Environment Setup

For example, you can get CMake using Homebrew as follows:
$ brew install cmake

or for MacPorts:

$ sudo port install cmake

Windows

On Windows, Clang can be used as a command-line compiler or as part of a larger
development environment such as Visual Studio. Clang on Windows includes support for
the Microsoft Visual C++ (MSVC) ABI, so you can use Clang to compile programs that
use the Microsoft C runtime library (CRT) and the C++ Standard Template Library
(STL). Clang also supports many of the same language features as GCC, so it can be used

as a drop-in replacement for GCC on Windows in many cases.

It’s worth mentioning clang-cl [9]. It is a command-line compiler driver for Clang that
is designed to be used as a drop-in replacement for the MSVC compiler, c1.exe . It was

introduced as part of the Clang compiler, and is created to be used with the LLVM toolchain.

Like c1.exe, clang-cl is designed to be used as part of the build process for Windows
programs, and it supports many of the same command-line options as the MSVC compiler.
It can be used to compile C, C++, and Objective-C code on Windows, and it can also be used
to link object files and libraries to create executable programs or dynamic link libraries

(DLLs).

The development process for Windows is different from that of Unix-like systems, which
require additional specifics that might make the book material quite complicated. To avoid
this complexity, our primary goal is to focus on Unix-based systems, such as Linux and

Darwin, and we will omit Windows-specific examples in this book.

1.2.3 LLVM/Clang project structure
The Clang source is a part of the LLVM monolithic repository (monorepo). LLVM

started to use the monorepo in 2019 as a part of its transition to Git [4]. The decision was



Getting to know LLVM 9

driven by several factors, such as better code reuse, improved efficiency, and collaboration.
Thus you can find all the LLVM projects in one place. As mentioned in the Preface, we
will be using LLVM version 18.x in this book. The following command will allow you to
download it:

$ git clone https://github.com/11lvm/11lvm-project.git -b release/18.x

$ cd 1llvm-project

Figure 1.1: Getting the LLVM code base

Important note

The release 18 is the latest version of LLVM, expected to be released in March 2024.
This book is based on the version from January 23, 2024, when the release branch

was created.

The most important parts of the llvm-project that will be used in the book are shown in

Figure 1.2.

llvm-project

i

11d

Ilvm

clang

i

1

clang-tools-extra ‘

Figure 1.2: LLVM project tree

There are:

« 11d : The LLVM linker tool. You may want to use it as a replacement for standard

linker tools, such as GNU 1d



10 Chapter 1: Environment Setup

« 11vm: Common libraries for LLVM projects
« clang : The clang driver and frontend

« clang-tools-extra : These are different clang tools that will be covered in the
second part of the book
Most projects have the structure shown in Figure 1.3.

(llvm,clang)

include

ib

test

unittest

U

Figure 1.3: Typical LLVM project structure

LLVM projects, such as clang or 11vm, typically contain two primary folders: include and
lib . The include folder contains the project interfaces (header files), while the 1ib folder
contains the implementation. Each LLVM project has a variety of different tests, which
can be divided into two primary groups: unit tests located in the unittests folder and
implemented using the Google Test framework, and end-to-end tests implemented using
the LLVM Integrated Tester (LIT ) framework. You can get more info about LLVM/Clang
testing in Section 4.5.2, LLVM test framework.

The most important projects for us are clang and clang-tools-extra. The clang folder

contains the frontend and driver.



Source code compilation 11

Important note

The compiler driver is used to run different stages of compilation (parsing, optimization,

link, and so on.). You can get more info about it at Section 2.3, Clang driver overview.

For instance, the lexer implementation is located in the clang/1ib/Lex folder. You can
also see the clang/test folder, which contains end-to-end tests, and the clang/unittest

folder, which contains unit tests for the frontend and the driver.

Another important folder is clang-tools-extra . It contains some tools based on different

Clang libraries. They are as follows:

+ clang-tools-extra/clangd : A language server that provides navigation info for

IDEs such as VSCode

« clang-tools-extra/clang-tidy : A powerful lint framework with several hundred

different checks
« clang-tools-extra/clang-format : A code formatting tool

After obtaining the source code and setting up build tools, we are ready to compile the

LLVM source code.

1.3 Source code compilation

We are compiling our source code in debug mode to make it suitable for future investigations
with a debugger. We are using LLDB as the debugger. We will start with an overview of
the build process and finish building the LLDB as a concrete example.

1.3.1 Configuration with CMake

Create a build folder where the compiler and related tools will be built:

$ mkdir build
$ cd build

The minimal configuration command looks like this:



12 Chapter 1: Environment Setup

$ cmake -DCMAKE_BUILD_TYPE=Debug ../1lvm

The command requires the build type to be specified (e.g. Debug in our case) as well
as the primary argument that points to a folder with the build configuration file. The
configuration file is stored as CMakeLists.txt and is located in the 11vm folder, which
explains the ../11lvm argument usage. The command generates Makefile located in the

build folder, thus you can use the simple make command to start the build process.

We will use more advanced configuration commands in the book. One of the commands

looks like this:

cmake -G Ninja -DCMAKE_BUILD_TYPE=Debug -DCMAKE_INSTALL_PREFIX=../install
< -DLLVM_TARGETS_TO_BUILD="X86"

- -DLLVM_ENABLE_PROJECTS="11db;clang;clang-tools-extra"

< -DLLVM_USE_SPLIT_DWARF=ON ../1lvm

Figure 1.4: Basic CMake configuration

The are several LLVM/cmake options specified:

« -G Ninja specifies Ninja as the build generator, otherwise it will use make (which

is slow).

+ -DCMAKE_BUILD_TYPE=Debug sets the build mode. The build with debug info will be

created. There is a primary build configuration for Clang internals investigations.
« -DCMAKE_INSTALL_PREFIX=../install specifies the installation folder.

« -DLLVM_TARGETS_TO_BUILD="X86" sets exact targets to be build. It will avoid building

unnecessary targets.

+ -DLLVM_ENABLE_PROJECTS="11db;clang;clang-tools-extra” specifies the LLVM

projects we want to build.

o -DLLVM_USE_SPLIT_DWARF=ON splits debug information into separate files. This

option saves disk space as well as memory consumption during the LLVM build.



