Jürgen Liepe

Schaltungen der Elektrotechnik und Elektronik – verstehen und lösen mit NI Multisim

Ein Übungs- und Arbeitsbuch

6., aktualisierte und erweiterte Auflage

HANSER

Schaltungen der Elektrotechnik und Elektronik

Ihr Plus - digitale Zusatzinhalte!

Auf unserem Download-Portal finden Sie zu diesem Titel kostenloses Zusatzmaterial. Geben Sie dazu einfach diesen Code ein:

plus.hanser-fachbuch.de

Bleiben Sie auf dem Laufenden!

Hanser Newsletter informieren Sie regelmäßig über neue Bücher und Termine aus den verschiedenen Bereichen der Technik. Profitieren Sie auch von Gewinnspielen und exklusiven Leseproben. Gleich anmelden unter

www.hanser-fachbuch.de/newsletter

Jürgen Liepe

Schaltungen der Elektrotechnik und Elektronik – verstehen und lösen mit NI Multisim

Ein Übungs- und Arbeitsbuch

6., aktualisierte und erweiterte Auflage

Autor:

Dipl.-Ing. Jürgen Liepe, Leipzig

Alle in diesem Buch enthaltenen Informationen wurden nach bestem Wissen zusammengestellt und mit Sorgfalt geprüft und getestet. Dennoch sind Fehler nicht ganz auszuschließen. Aus diesem Grund sind die im vorliegenden Buch enthaltenen Informationen mit keiner Verpflichtung oder Garantie irgendeiner Art verbunden. Autor(en, Herausgeber) und Verlag übernehmen infolgedessen keine Verantwortung und werden keine daraus folgende oder sonstige Haftung übernehmen, die auf irgendeine Weise aus der Benutzung dieser Informationen – oder Teilen davon – entsteht. Ebenso wenig übernehmen Autor(en, Herausgeber) und Verlag die Gewähr dafür, dass die beschriebenen Verfahren usw. frei von Schutzrechten Dritter sind. Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichenund Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Dieses Werk ist urheberrechtlich geschützt.

Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Buches, oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form (Fotokopie, Mikrofilm oder ein anderes Verfahren) – auch nicht für Zwecke der Unterrichtsgestaltung – reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

© 2020 Carl Hanser Verlag München Internet: www.hanser-fachbuch.de

Lektorat: Frank Katzenmayer Herstellung: Anne Kurth

Titelbild: © shutterstock.com/Trzmiel Covergestaltung: Max Kostopoulos

Coverkonzept: Marc Müller-Bremer, www.rebranding.de, München

Satz: Kösel Media GmbH, Krugzell

Druck und Bindung: Friedrich Pustet GmbH & Co. KG, Regensburg

Printed in Germany

Print-ISBN 978-3-446-46269-4 E-Book-ISBN 978-3-446-46277-9

Vorwort zur 6. Auflage

Meine Idee, Probleme der Elektrotechnik und Elektronik mit Hilfe einer ausgezeichneten Simulationssoftware und zielgerichteten Aufgaben verständlich zu machen, hat bei vielen Lesern Anklang gefunden. Für diese positive Resonanz möchte ich mich bedanken.

In der 6. Auflage wurden alle Schaltungsdateien an die neue NI MULTISIM EDUCATION EDITION 14.2 angepasst. Das Kapitel Operationsverstärker wurde um zehn Aufgaben erweitert.

Ich möchte mich beim Carl Hanser Verlag dafür bedanken, dass er eine Neuauflage des Buches ermöglichte. Frau Christina Kubiak und Herr Frank Katzenmayer haben mich von Seiten des Lektorats, Frau Anne Kurth von Seiten der Herstellung unterstützt. Ich danke ihnen.

Bei der Firma National Instruments möchte ich mich für die erneute Bereitstellung der aktuellen Programmversion bedanken.

Leider war es nicht möglich, dem Buch wieder eine preisgünstige Softwareversion beizulegen. Die für das Selbststudium mit diesem Buch notwendige Software Multisim 14.2 können Sie jedoch über die folgenden Optionen beziehen.

1. Hochschullizenz

Als Student oder Studentin einer Hochschule, die über eine Academic Site Licence (https://www.ni.com/de-de/shop/academic-site-license.html) verfügt, können Sie mit der "Student Install Option" Multisim Education über Ihre Hochschule beziehen, solange Sie bei dieser eingeschrieben sind. Die Student Install Option umfasst das gleiche Softwarepaket wie die Academic Site Licence (http://www.ni.com/white-paper/8115/en/). Der Bezug dieser Lizenz erfolgt direkt über Ihre Hochschule und nicht über National Instruments. Die Lizenz ist, abhängig vom Hochschulvertrag, bis zu einem Jahr gültig.

2. Bezug einer Evaluierungslizenz

Sie können über https://www.ni.com/de-de/shop/electronic-test-instrumentation/application-software-for-electronic-test-and-instrumentation-category/what-is-multisim/multisim-education.html die aktuelle Multisim Education-Version zur Evaluierung herunterladen. Nach der Installation können Sie die Software 7 Tage lang kostenfrei nutzen. Durch die Verknüpfung der Installation mit einem ni.com-Profil können Sie die Evaluierung um 45 Tage verlängern. Sie können auch die professionelle Version Multisim for Designers kostenfrei evaluieren.

Ich wünsche allen Lesern viel Freude und Erfolg.

Leipzig, im Juli 2020

Vorwort

Fast 40 Jahre habe ich in der Berufs-, Meister- und Techniker-Ausbildung Elektrotechnik und Elektronik unterrichtet und kenne die Schwierigkeiten, die Schüler und Studenten beim Erkennen der elektrotechnischen Gesetzmäßigkeiten oder beim Verstehen elektronischer Schaltungen zum Ausbildungsbeginn haben. Das Begreifen und Vorstellen von vermeintlich abstrakten Vorgängen fällt sehr schwer. Anfang der 1990er- Jahre lernte ich die Simulationssoftware ELECTRONICS WORKBENCH kennen, die heute nach der Übernahme durch National Instruments und vielen Verbesserungen und Erweiterungen MULTISIM heißt. Sie ermöglicht vollkommen neue Möglichkeiten des Kenntniserwerbs, denn hier ist der Lernende am Lernprozess nicht mehr passiv beteiligt, sondern setzt sich aktiv mit dem Lehrstoff auseinander. Er konzentriert sich voll auf die Unterrichtsinhalte, die sehr effektiv auf die jeweiligen Anforderungen angepasst werden können. Es ist für mich eine Freude, dass die Firma National Instruments für dieses Buch auf CD eine kostenlose Evaluationssoftware MULTISIM zur Verfügung stellt.

In dem vorliegenden Arbeitsbuch werden nach einer Einführung in das Programm MUL-TISIM 152 Aufgaben aus dem Bereich der Elektrotechnik und 194 Aufgaben aus der Elektronik vorgestellt, die mit dem Simulationsprogramm gelöst werden können. Die Aufgabenauswahl gewährleistet ein schrittweises Erarbeiten der Stoffgebiete. Eine parallele Nutzung entsprechender Lehrbücher (siehe Literaturverzeichnis) wird zur Ergänzung und Vertiefung empfohlen. Alle im Buch anführten Schaltungen liegen auf CD als Datei im Ordner "Schaltungen" vor. Die Dateibezeichnung entspricht dabei der Aufgabenbezeichnung. Die Lösung der meisten Aufgaben finden Sie auf meiner Homepage http://jliepe.de.

Auf Grund der Aufgabenstruktur kann das Buch für Schüler und Studenten von der Berufsausbildung bis zur Hochschulausbildung eingesetzt werden. Ein besonderer Vorteil für die Lehrenden ergibt sich bei der Begabtenförderung oder bei der Nachhilfe, denn sehr einfach können Aufgaben erweitert oder ergänzt werden. Das Buch ist auch hervorragend für das Selbststudium, zur Auffrischung oder Erweiterung von Kenntnissen geeignet.

Ich bedanke mich bei Herrn Ingo Földvári und Herrn Philipp Krauss von der Firma National Instruments für die Ermunterung zu diesem Buch und die gewährte technische Unterstützung. Frau Erika Hotho und Frau Franziska Kaufmann vom Fachbuchverlag Leipzig danke ich für die sehr gute Zusammenarbeit bei der Gestaltung dieses Buches. Bei meiner Familie und besonders meiner Frau möchte ich mich für die Geduld bedanken, die sie während der Erarbeitung aufbringen mussten.

Bei der Arbeit mit diesem Buch wünsche ich viel Freude.

Leipzig, Juli 2008 Jürgen Liepe

Alle im Buch anführten Schaltungen und die Lösungen zu den Aufgaben sind unter https://www.hanser-fachbuch.de/9783446462694 verfügbar.

Die Lösungen der meisten Aufgaben und weitere Informationen zum Buch finden Sie auch auf der Homepage des Autors http://jliepe.de.

Geleitwort

Einer der ältesten Menschheitsträume, Dinge vorausbestimmen zu können, bevor sie Realität werden, hat zumindest in einem technischen Umfeld unlängst realistische Züge angenommen. Die Rede ist hier mitnichten von Prophezeiungen oder gar Wahrsagerei – nein schlicht und einfach von Simulationen.

Was aber versteht man genau unter Simulation? Eine etwas nüchterne Definition dieses Begriffes findet sich in den VDI-Richtlinien (VDI 3633,1993): "Simulation ist die Nachbildung eines Systems mit seinen dynamischen Prozessen in einem experimentierfähigen Modell, um zu Erkenntnissen zu gelangen, die auf die Wirklichkeit übertragbar sind. Insbesondere werden die Prozesse über die Zeit entwickelt. Im weiteren Sinne wird unter Simulation das Vorbereiten, Durchführen und Auswerten gezielter Experimente mit einem Simulationsmodell verstanden." Die Simulation stellt damit ein wichtiges Hilfsmittel des Technikers bzw. Ingenieurs dar - vor allem im Bereich der technischen Wissensvermittlung - und fördert insgesamt das systemdynamische Denken. Der Lernende hat die Möglichkeit, sinnvolle Parameter als Bedingungen anzugeben, woraufhin veranschaulicht wird, wie sich das repräsentierte System unter entsprechenden Bedingungen verhalten würde. Simulationen sind also eine gute Möglichkeit, Theorie sichtbar zu machen und vor allem Ursache- und Wirkungszusammenhänge aufzuzeigen. Dies macht sie zu wertvollen und anschaulichen Instrumenten der Erkenntnis für vor allem abstrakte, nicht leicht zugängliche Denksysteme. Kurzum, sie erlauben ein neues Arbeiten mit Theorien in einem experimentellen Sinne.

Die Vorzüge des didaktischen Potenzials der Simulation sind zwar unumstritten, dennoch müssen einige entscheidende Fragen im Vorfeld geklärt werden, wie beispielsweise: Wann sind welche Simulationswerkzeuge sinnvoll einsetzbar? Wie viel Gewicht soll auf die fundierte Vermittlung von Grundlagen und "dem Rechnen mit Papier und Bleistift" gelegt werden, in welchen Bereichen bringt ein Simulationswerkzeug Vorteile und ab wann ist es nötig, einen Übergang in die Praxis zu schaffen?

Garanten für den Erfolg der Simulation in der Didaktik sind die interdisziplinäre Zusammenarbeit zwischen allen Beteiligten und die Verzahnung von Theorie, Empirie und Praxis: Lehrer, Ausbilder und Dozenten müssen diesen integralen Ansatz vorleben. Theorie, Simulation und Praxis müssen nahtlos ineinander übergehen. Firmen müssen sicherstellen, dass Schnittstellen zum Informationsaustausch zwischen ihren Werkzeugen bestehen. Lerninhalte müssen diese Ansätze aufgreifen und in didaktische Materialien abgebildet werden.

Oft fällt es den Lernenden – unabhängig vom Fachgebiet (Physik, Nachrichtentechnik, Energietechnik o. ä.) – schwer, die im praktischen Elektroniklabor ermittelten Werte richtig zu interpretieren. Dies liegt weniger an der Art der Vermittlung von Theorie, sondern vielmehr an deren unzureichender Vertiefung und aussagekräftigen Vergleichen mit der Praxis.

SPICE (Simulation Program with Integrated Circuits Emphasis) gilt seit vielen Jahren als Standard für die Modellierung und Simulation von Analog- und Digitalschaltungen. Jedoch bringt die ursprüngliche SPICE-Engine Syntaxkomplexitäten mit sich, die eine Handhabung für viele Anwender häufig umständlich gestalten. Gerade für den Lehrenden ist eine intensive Einarbeitung nahezu unmöglich, da der reguläre Schulbetrieb kaum Freiräume dazu bietet. Hier schafft National Instruments Abhilfe: NI Multisim (vormals Multisim von Electronics Workbench) stellt Anwendern ausgereifte Werkzeuge zur intuitiven Schaltplaneingabe sowie leistungsstarke Analysen und interaktive virtuelle Messgeräte zur Verfügung, die dem Anspruch von kurzer Einarbeitungszeit und qualitativ hochwertigen Lernzielen gerecht werden. Die in Multisim implementierten Messgeräte, z. B. Funktionsgenerator, Oszilloskop, Logik- oder Spektrumanalysator, lassen in Kombination mit interaktiven Bauteilen (z. B. Schalter und Taster, Potentiometer, veränderbare Kapazitäten und Induktivitäten sowie 7-Segmentanzeigen, LEDs, LCDs und weiteren Anzeigen) einen SPICE-basierten Schaltplan zu einer virtuell erlebbaren Schaltung werden.

Der Schwerpunkt der am Markt verfügbaren SPICE-Simulatoren liegt in der Regel in der Qualität von Simulationsergebnissen. So wird der Implementierung anspruchsvoller mathematischer Algorithmen zur nachträglichen Verarbeitung von Ergebnissen sowie der Flexibilität in der Darstellung von Daten kaum Bedeutung beigemessen. Auch hier spielt Multisim seine Stärken aus und bietet dem Anwender neben dem integrierten Post-Processor auch eine Vielzahl von Exportfunktionen. Professionelle Datenmanagement-Werkzeuge können diese Daten importieren und mittels mathematisch intensiven Analysen und designspezifischen Darstellungen sowie Berichten neue Erkenntnisse über das Verhalten der zu entwickelnden Baugruppe liefern.

Ein sicherlich naheliegender, dennoch bisher selten konsequent durchgeführter Schritt innerhalb der Elektronikausbildung ist es, die beiden Disziplinen - Simulation und Laborpraxis - miteinander zu integrieren. Werden bereits während der Erstellung der Lehrunterlagen die beiden traditionell getrennt betrachteten Gebiete als eine integrierte Einheit behandelt, so können die verschiedenen Einzelschritte besser aufeinander abgestimmt werden. Seit der Erweiterung der NI-Produktpalette durch Multisim im Februar 2005 wurden viele Weichen gestellt, um die Welten der Simulation und der Mess- und Prüftechnik miteinander in Einklang zu bringen. Konkret wurden die Entwicklungsumgebung Lab-VIEW und die Schaltungssimulationssoftware Multisim aufeinander abgestimmt. Dadurch gelingt ein echtes und nahezu nahtloses designbegleitendes Messen und Testen, was in der Industrie seinesgleichen sucht. In vielen Laboren wird LabVIEW für die PC-basierte Mess-, Steuerungs- und Regelungstechnik eingesetzt, um charakteristische Signale, die mithilfe der Simulation ermittelt wurden, auf einfache Art und Weise mit ihren Pendants realer Schaltungen zu vergleichen. Eventuelle Abweichungen können quantifiziert und mithilfe der Messtechnik auf ihre Ursache zurückgeführt werden. Die reale Ursache, z. B. die Auswirkung einer rauschenden Spannungsversorgung auf die zu entwickelnde Elektronik, kann dann wiederum in den standardisierten Datenformaten gespeichert und als Quelle für die Simulation genutzt werden. Nötige Schaltungserweiterungen lassen sich direkt mit den realen Stimuli auf ihre Wirkung überprüfen.

Der Aha-Effekt für den Lernenden tritt dann ein, wenn ihm plastisch vor Augen geführt wird, dass sich Schaltungen in der Theorie und Praxis unterschiedlich verhalten. Reale Einflüsse zu verstehen, vorherzusagen und entsprechende Maßnahmen dagegen einzulei-

ten, darum geht es in erster Linie bei der praktischen Arbeit eines Technikers und Ingenieurs. Diesem Buch gelingt der Brückenschlag zwischen Theorie und Praxis auf einem didaktisch hohen Niveau, ohne dass der Spaßfaktor dabei zu kurz kommt.

In diesem Sinne danke ich Herrn Liepe für sein unermüdliches Engagement bei der Erstellung dieses für die Theorie und Praxis der Schaltungssimulation wegweisenden Standardwerks.

Dipl.-Ing. Rahman Jamal Technical & Marketing Director Central Europe National Instruments Germany GmbH

Inhalt

1	Ein	führung in die Simulationssoftware MULTISIM	15
	1.1	Was ist und was kann MULTISIM?	15
	1.2	Installation	17
	1.3	Hilfe und Support	19
		1.3.1 Benutzeroberfläche	19
		1.3.2 Tastatur-Befehle	25
		1.3.3 Arbeit mit der Maus-Taste	26
		1.3.4 Erklärung ausgewählter Menü-Befehle	28
	1.4	Übersicht der Übungsbeispiele	82
2	Gle	ichstromkreis	83
	2.1	Grundstromkreis	83
	2.2	Reihenschaltung von Widerständen	89
	2.3	Parallelschaltung von Widerständen	94
	2.4	Gemischte Widerstandsschaltungen	96
	2.5	Brückenschaltungen	102
	2.6	Betriebszustände des Grundstromkreises	115
	2.7	Netzwerke	122
3	Sch	naltvorgänge am Kondensator	129
4	Sch	naltvorgänge an der Spule	135
5	We	chselstromkreis	137
	5.1	Grundlagen des Wechselstromes	137
	5.2	Widerstand, Kondensator und Spule an einer Wechselspannung	142
	5.3	Reihenschaltung von Widerstand, Kondensator und Spule	148
	5.4	Parallelschaltung von Widerstand, Kondensator und Spule	151
	5.5	Ausgewählte Wechselstromschaltungen	154
	5.5	5.5.1 Reihen- und Parallelresonanz	154
		5.5.2 Kompensation	160
		5.5.3 Strombegrenzung und komplexer Spannungsteiler	161
		5.5.4 Vierpole und passive Filter	164
		5.5.4.1 Vierpole	164
		0.0. 1.1 Y101 pote	104

		5.5.4.2 5.5.5 5.5.6	Passive Filter Phasendrehglieder Wechselstrombrücken	. 176
6	Dre	hstrom	systeme	181
	6.1 6.2	Drehstro	ing von Drehstrom und Verkettung von Wechselspannungen omleistung	. 185
	6.3	Kompens	sation in Drehstromnetzen	. 190
7	Ana	aloge Sc	haltungen der Elektronik	193
	7.1	Halbleite	erdioden	
		7.1.1	Kennwerte	
		7.1.2	Arbeitspunkteinstellung	
		7.1.3	Anwendungsschaltungen	
	7.2		1	
	7.3		oren	
		7.3.1	Bipolare Transistoren	
		7.3.1.1	Grundschaltungen und Arbeitspunkteinstellung	
		7.3.1.2 7.3.2	Verstärkerschaltungen mit bipolaren Transistoren Feldeffekttransistoren	
		7.3.2.1	Verstärker mit Sperrschicht-FET	
		7.3.2.1	Verstärker mit MOSFET	
		7.3.2.3	Zweistufige Verstärker mit FET und bipolaren Transistoren	
		7.3.2.4	Leistungsverstärker	
8	Оре	erations	verstärker (OPV)	260
	8.1	Grundec	haltungen des OPV	. 260
	0.1	8.1.1	Grundlagen und idealer OPV	
		8.1.2	Invertierender OPV	
		8.1.3	Dynamisches Verhalten eines OPV	
		8.1.4	Nichtinvertierender OPV	
		8.1.5	OPV als Differenzverstärker	
	8.2	Ausgewä	ihlte Anwendungsbeispiele mit OPV	
9	Osz	zillatorei	n	287
10	Dig	itale Scl	haltungen der Elektronik	293
	10.1	Schaltun	gen logischer Grundfunktionen	. 293
		10.1.1	Transistor als Schalter	
		10.1.2	TTL- und CMOS-Schaltkreise	
	10.2	Kombina	atorische Schaltungen	
			ielle Schaltungen	

	10.3.1	Kippschaltungen	331
	10.3.1.1	Astabile Kippschaltung (astabiler Multivibrator, Rechteck-	
		Generator)	331
	10.3.1.2	Monostabile Kippschaltung (Univibrator, Monoflop)	335
	10.3.1.3	Bistabile Kippstufe (Flip-Flop)	338
	10.3.1.4	Schwellwertschalter, Schmitt-Trigger	343
	10.3.2	Zähler und Frequenzteiler	348
	10.3.3	Register, Schieberegister	366
	10.3.4	Analog/Digital- und Digital/Analog-Umsetzer	380
	10.3.4.1	Analog/Digital-Umsetzer (ADU)	380
	10.3.4.2	Digital/Analog-Umsetzer (DAU)	386
11	Leistungsel	ektronik	393
	8		
Liter	atur		417
Inde	·		410

Einführung in die Simulations- software MULTISIM

■ 1.1 Was ist und was kann MULTISIM?

NI MULTISIM, ehemals ELECTRONICS WORKBENCH, ist ein sehr leistungsfähiges und innovatives Softwareprogramm, das die Schaltungserfassung, die Entwicklung von elektrischen und elektronischen Schaltungen, die Eingabe von Schaltungsdaten sowie die Simulation und Analyse der Schaltung effizient und auf einem hohen Niveau ermöglicht. Es basiert auf dem Standard-Simulationsprogramm SPICE, arbeitet jedoch mit einer rein grafischen Oberfläche. Kenntnisse der "SPICE-Sprache" sind nicht erforderlich. Die NI Circuit Design Suite umfasst NI MULTISIM und Ultiboard und ist eine vollständige Plattform für Entwurf, Simulation und Validierung von Schaltplänen sowie den Leiterplattenentwurf. Mithilfe einer umfassenden Bauteilebibliothek können Schaltungen zügig erstellt und das Schaltungsverhalten analysiert werden. Ultiboard ist eine Umgebung für den flexiblen Leiterplattenentwurf und das Routing. In MULTISIM erstellte Schaltungen können problemlos in Ultiboard übertragen werden. Des Weiteren können Entwürfe für die Herstellung exportiert werden.

Bild 1.1 Das Start-Fenster von MULTISIM

Die Software MULTISIM ist als Base, Full und Power Pro Edition erhältlich. Einen Vergleich dieser Edition finden Sie unter http://www.ni.com/multisim/buy/pro/d/ Für die Ausbildung und Lehre stellt NI die Circuit Design Suite als Education Edition bereit. Sie bietet eine vollständige Umgebung für den Schaltungs- und Elektronikunterricht mit speziellen Funktionen für Ausbildung und Lehre. Sie unterstützt Lehrende dabei, Schüler und Studenten für das Unterrichtsthema zu begeistern und die Schaltungstheorie mithilfe eines

interaktiven, praxisnahen Ansatzes bei der Untersuchung des Schaltungsverhaltens zu festigen. Eine abgespeckte Version der Education Edition stellt MULTISIM Student Edition dar.

Aus einer umfangreichen, logisch geordneten Bibliothek mit bis zu 17000 Bauelementen können reale, virtuelle, animierte oder interaktive Elemente ausgewählt werden, was durch eine komfortable Suchfunktion unterstützt wird. Bei Bedarf kann zusätzlich eine eigene Benutzerdatenbank generiert werden. In der aktuellen MULTISIM-Version wurde die Datenbank durch elektromechanische Modelle, AC/DC-Spannungsumformer und Schaltnetzteile für den Entwurf im Bereich der Leistungselektronik erweitert. SPICE- und XSPICE-Modelle werden ebenso unterstützt wie HF-Modelle bis zu einer Frequenz von 4 GHz. Nach der Auswahl erfolgen die Platzierung der Bauelemente und Messgeräte auf der Arbeitsoberfläche und die Festlegung der Bauelementeparameter. Die Verdrahtung der Bauelemente kann automatisch durch Anklicken des Quell- und des Zielanschlusses oder manuell mit einem gewünschten Leitungsverlauf erfolgen. Eine mögliche virtuelle Verdrahtung gestattet bei aufwendigen Schaltungen einen übersichtlichen Schaltungsaufbau. Mit Hilfe eines leistungsfähigen und flexiblen Symboleditors können komplexe Bauelemente generiert werden. So lassen sich beispielsweise Baugruppen zusammenfassen oder neue ICs erstellen. Für vier ausgewählte Grundschaltungen (555-Timer, Filter, OP-Verstärker und Transistorverstärker in Emitterschaltung) stehen Schaltungsassistenten zur Verfügung. Die Simulation der aufgebauten Schaltung erfolgt mit Hilfe von 20 virtuellen Messgeräten. Diese sind teilweise sowohl optisch als auch funktionell mit realen Geräten identisch. So werden beispielsweise Geräte der Firmen Tektronix und Agilent eingesetzt, deren Bedienung wie bei den Originalen vorgenommen werden muss. Mit diesem umfangreichen Gerätepark, der sich über die Kopierfunktion stückzahlmäßig beliebig erweitern lässt, ist eine optimale, gefahrlose und zerstörungssichere Schaltungsuntersuchung gewährleistet. MULTISIM stellt neben der benutzerdefinierten Untersuchung 20 verschiedene Analysefunktionen zur Verfügung, die eine umfassende, effiziente und bei realen Laboruntersuchungen kaum mögliche Funktionskontrolle erlauben. Die Simulationsergebnisse können in einem Diagrammfenster dargestellt und weiterverarbeitet werden. So ist eine Exportfunktion zum Tabellenkalkulationsprogramm Excel möglich. Ein besonderer Postprozessor erlaubt weitere Berechnungen mit den Simulationsergebnissen. Mithilfe der simulationsgesteuerten Messgeräte und versteckter Fehler können Sie sich zudem mit Fehlerbehebungsmethoden vertraut machen.

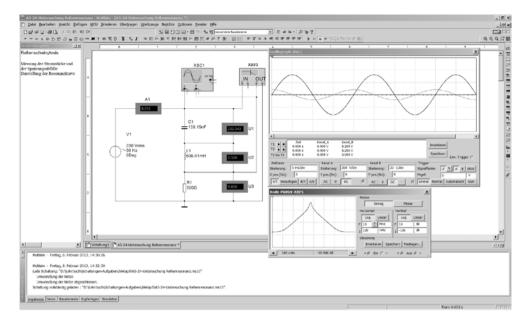


Bild 1.2 Schaltungsbeispiel

Die entwickelte und überprüfte Schaltung kann von MULTISIM an das Programm Ultiboard übergeben werden. Es erlaubt die Leiterplattenentflechtung, die Durchführung von CAD-Operationen, Bauelementeplatzierung und Layout-Funktionen. Außerdem ist die Zusammenarbeit mit dem Programm MULTISIM MCU-MODUL möglich, mit dem die Co-Simulation von Mikrocontrollern auf der Basis von Assembler und C-Code durchgeführt werden kann. Alle drei Programme sind Bestandteil der NI Circuit Design Suite.

■ 1.2 Installation

Systemanforderungen für die NI Circuit Design Suite

Als miminale Ausstattung benötigt Ihr System:

- einen Pentium 4 oder gleichwertigen Mikroprozessor (mindestens Pentium III)
- 512 MB Arbeitsspeicher (mindestens 256 MB)
- 2 GB freien Festplattenspeicher
- Open-GL®-fähige 3D-Grafikkarte (Videoadapter mit SVGA-Auflösung mit einer Auflösung von mindestens 800 × 600, vorzugsweise 1024 × 768 oder höher)

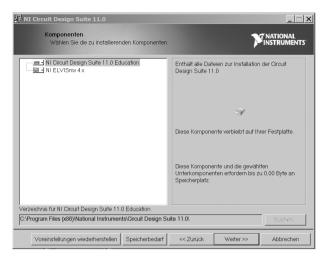


Bild 1.3 Installationsstart

Installieren Sie MULTISIM (Vollversion) wie folgt:

- 1. Notieren Sie sich die Seriennummer, die Sie mit MULTISIM erhalten haben.
- 2. Beenden Sie alle Programme.
- 3. Legen Sie die DVD von MULTISIM in das Laufwerk ein. Klicken Sie im Startfenster auf "Installation der NI Circuit Design Suite", um die Installation zu starten.
- 4. Folgen Sie zur Installation des Programms den Aufforderungen auf dem Bildschirm.
- 5. Bei der Anfrage, ob ELVISmx installiert werden soll, klicken Sie auf den Button be-ENDEN. Hinweise zu ELVISmx finden Sie unter http://zone.ni.com/devzone/cda/tut/p/ id/9123

Für MULTISIM wird außerdem ein Aktivierungscode benötigt, den Sie innerhalb einer Evaluierungszeit von 30 Tagen eingeben müssen. Nach dem Ablauf dieser Frist startet MULTISIM ohne Eingabe des Codes nicht mehr. Die Aktivierung erhalten Sie automatisch während der Installation oder auch jederzeit über die Website http://www.ni.com/activate. Dabei werden die Seriennummer und die Computer-ID, die Sie vom NI Licence Manager erhalten, benötigt.

Bei der Mehrbenutzerversion gibt es nur eine Seriennummer, die für alle Computer gilt. Es muss jedoch für jeden Computer, auf dem MULTISIM installiert ist, ein Aktivierungscode angefordert werden.

Die Schulversion von MULTISIM kann als Mehrbenutzerversion oder auch als Serverversion installiert werden. Bei der Serverversion wird MULTISIM lokal installiert und die Aktivierung erfolgt über den Volumen-Lizenz-Manager (VLM) von National Instruments.

1.3 Hilfe und Support

MULTISIM bietet eine umfangreiche Hilfe an. Sie können aus dem Programm heraus wie üblich die Hilfe-Funktion nutzen, die aber nur in der englischen Version bereitsteht.

Eine sehr umfangreiche Anleitung finden Sie unter dem Programm-Punkt erste schritte, der PDF-Produktbroschüren von den Programmen MULTISIM und Ultiboard enthält. Eine weitere Hilfe-Möglichkeit finden Sie im Internet. Die Website http://www.ni.com/multisim bzw. http://www.ni.com/academic/circuits bietet neben vielen Beispielprogrammen und Tutorien auch den Zugang zum technischen Support und zu Diskussionsforen.

Bild 1.4 Das Hilfe-Fenster von MULTISIM

1.3.1 Benutzeroberfläche

Wir starten MULTISIM über die Schaltfläche START, PROGRAMME, MULTISIM oder über einen angelegten Button im Desktop*. Das Programm kann in zwei verschiedenen Ausführungen geöffnet werden: in der ausführlichen oder in der vereinfachten Version (in der Studentenversion gibt es keine Versionsunterschiede). Die Umschaltung erfolgt über den Menüpunkt optionen, einfache version. Die vereinfachte Version enthält eine eingeschränkte Auswahl von Befehlen.

Die gewünschte Anzeige der Symbol-Leisten kann über ansicht, symbolleisten ausgewählt werden oder über das Klicken mit der rechten Maus-Taste an einer freien Stelle des Menüfensters. Eine weitere Möglichkeit ergibt sich über optionen, benutzeroberfläche anpassen. Nach einem Klick öffnet sich ein Kontextmenü (siehe Bild 1.6).

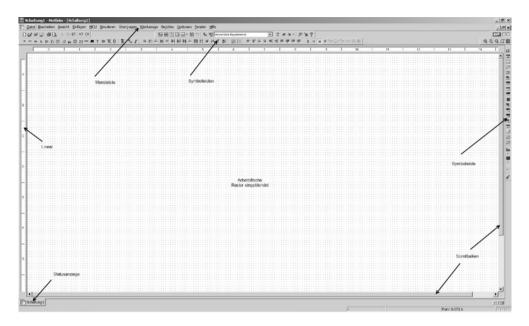


Bild 1.5 Benutzeroberfläche der ausführlichen Version

Bei der Befehlsauswahl werden für die wichtigsten Befehle Buttons (Schaltflächen) angezeigt, die wir mit der linken Maus-Taste in das Menüfenster ziehen können. Die Auswahl der Toolbars erfolgt, wie im Bild 1.7 zu sehen ist, im Register Symbolleisten durch Betätigung der entsprechenden Schalter. Es erleichtert die Arbeit, wenn vor dem Erstellen einer Schaltung die benötigten Toolbars geöffnet werden. Öffnet man zu viele, dann verliert man leicht die Übersicht.

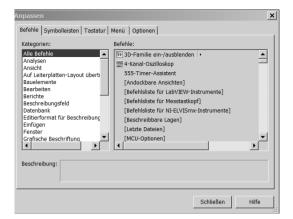


Bild 1.6 Anpassen der Befehle

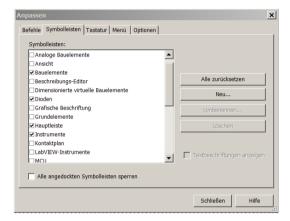


Bild 1.7 Auswahl der Symbolleisten

Im Register tastatur ist die Festlegung von Tastatur-Befehlen möglich. Das ist für oft wiederkehrende Eingaben nützlich. So benötigen wir bei jeder Schaltung mindestens einmal das Masse-Symbol. Sie sehen im Bild 1.8, wie dafür eine Tastenkombination zugewiesen wird. Eine Übersicht der standardmäßig vorhandenen Tastaturbefehle befindet sich im Abschnitt 1.3.2.

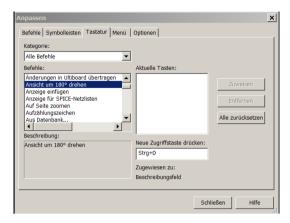


Bild 1.8 Zuweisung von Tastatur-Befehlen

Beachten Sie, dass die gewünschte Anpassung der Menü-Leiste für jede Version und jeden Arbeitsplatz separat durchgeführt werden kann. Eine mögliche Benutzeroberfläche der erweiterten Version sehen Sie im Bild 1.9.

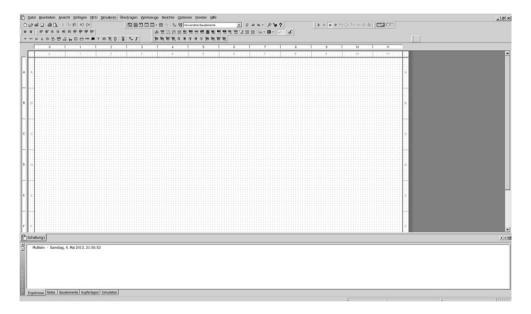


Bild 1.9 Eine eingestellte Benutzeroberfläche der erweiterten Version

Eine Übersicht der Menü-Befehle für die erweiterte Version ist in den Bildern 1.10 bis 1.12 zu finden.

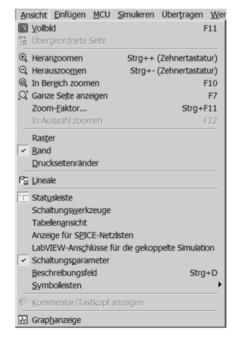


Bild 1.10 Die Menüs datei, bearbeiten, ansicht, einfügen, MCU

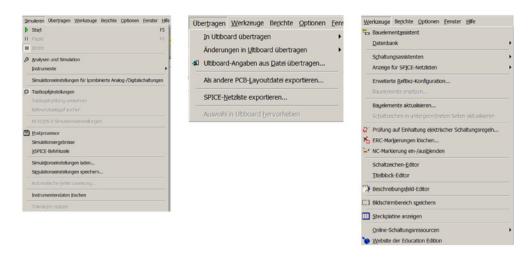


Bild 1.11 Die Menüs Platzieren, format, simulieren, transfer, extra

Bild 1.12 Die Menüs Berichte, Optionen, Fenster, Hilfe

Eine Reihe von Befehlen ist von verschiedenen Stellen aus aufrufbar. Beispielsweise kann der Befehl schrift über optionen, seiteneigenschaften..., schriftart, schrift oder über format, schriftart oder mit Klick der rechten Maus-Taste im Arbeitsfenster aufgerufen werden. Ob das immer sinnvoll ist, sei dahingestellt. Nicht in allen Fällen erscheint die Zuordnung der Befehle vernünftig. Wollen wir beispielsweise eine Schaltungsbeschreibung anzeigen, dann öffnen wir mit ansicht, beschreibungsfeld das Fenster schaltungsbeschreibung. Für die Texteingabe müssen wir dann über werkzeuge, beschreibungsfedtoren... den Editor öffnen. Zum Glück ist die Arbeit mit den eigentlichen Schaltungen wesentlich einfacher gelöst. Die Erklärung der einzelnen Menü-Befehle erfolgt unter Abschnitt 1.3.4 und bei Bedarf bei den jeweiligen Schaltungen.

Die Entscheidung, ob mit der vereinfachten oder der erweiterten Version gearbeitet wird, hängt neben dem persönlichen Geschmack von der Art der zu bearbeitenden Aufgabe ab. Wie die Übersicht der Menü-Befehle zeigt, stehen einige Programmmöglichkeiten nur in der erweiterten Version zur Verfügung, beispielsweise die sehr nützliche Diagrammansicht (ANSICHT, FENSTER FÜR DIAGRAMMERSTELLUNG), mit der die Auswertung von grafi-

schen Darstellungen (zum Beispiel von Oszillogrammen) möglich ist. Die Umschaltung von der einen in die andere Version ist auch während der Arbeit bei einem geöffneten Schaltungsfenster möglich.

1.3.2 Tastatur-Befehle

Die Arbeit mit einem Programm können wir durch die Nutzung von Tastatur-Befehlen effektiver gestalten. In der Tabelle 1.1 sind einige definierte Tastatur-Befehle zusammengestellt.

Tabelle 1.1 Tastatur-Befehle von MULTISIM

Befehl	Tastenkombination
DATEI NEU	Strg+N
DATEI ÖFFNEN	Strg+0
DATEI SPEICHERN	Strg+S
DRUCKEN	Strg+P
HIERARCHISCHEN BLOCK EINFÜGEN	Strg+H
SUCHEN	Strg+F
RÜCKGÄNGIG	Strg+Z
ALLES AUSWÄHLEN	Strg+A
ZOOM GRÖSSER	Strg++
ZOOM KLEINER	Strg+-
ZOOM BEREICH	F10
VOLLBILD	F11
BESCHREIBUNGSFELD	Strg+D
BAUELEMENT PLATZIEREN	Strg+W
KNOTENPUNKT PLATZIEREN	Strg+J
BUS	Strg+U
NEUE TEILSCHALTUNG	Strg+B
TEXT EINFÜGEN	Strg+Alt+A
SIMULATION STARTEN	F5
HB/TS-VERBINDUNG	Strg+I
BUS-STECKVERBINDUNG	Strg+Umsch+I
EIGENSCHAFTEN	Strg+M

Bei Bedarf können Sie sich, wie bereits im Abschnitt 1.3.1 erklärt wurde, weitere Tastatur-Befehle selbst erstellen.

1.3.3 Arbeit mit der Maus-Taste

Die aktivierten Befehle nach einem Doppelklick mit der linken oder einem Klick mit der rechten Maus-Taste sind überwiegend versionsabhängig. Für beide Versionen gilt: Führen wir innerhalb des Arbeitsbereiches den Mauszeiger in ein Bauteilsymbol und doppelklicken mit der linken Maus-Taste, öffnet sich das Eigenschaftsfenster des Bauteils mit den entsprechenden Dialogfeldern.

Nach einem Klick mit der rechten Maus-Taste an einer beliebigen Stelle in der Menü-Leiste öffnet sich ein Kontextmenü, das die aktivierten Toolbars (Werkzeugleisten) anzeigt. Über die angegebenen Schalter-Fenster lassen sich die gewünschten Toolbars ein- oder ausblenden.

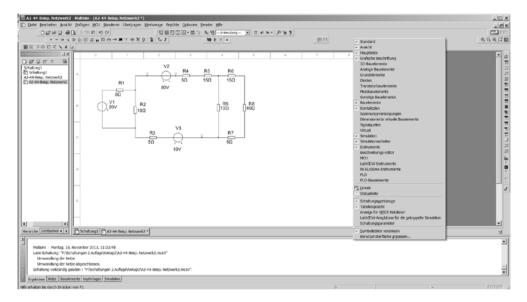


Bild 1.13 Kontextmenü TOOLBAR

Klicken wir mit der rechten Maus-Taste an eine freie Stelle im Arbeitsfenster, wird ein Kontextmenü angezeigt, das Platzierungs-Befehle aus dem Menü einfügen enthält.

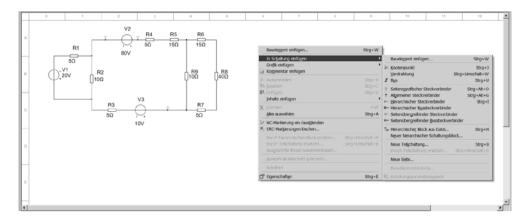


Bild 1.14 Kontextmenü PLATZIEREN

Ein nützliches Fenster öffnet sich, wenn wir auf ein Bauteil (Bauelement, Messinstrument etc.) mit der linken Maus-Taste doppelklicken. In diesem Fenster können wir Bauelementangaben festlegen.

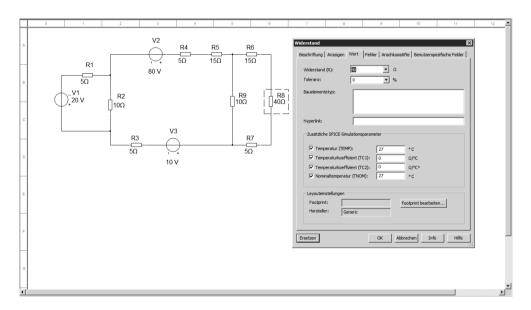


Bild 1.15 Kontextmenü BAUTEILE

1.3.4 Erklärung ausgewählter Menü-Befehle

Der überwiegende Teil der zum Aufbau und zur Analyse einer Schaltung erforderlichen Befehle wird in den Übungsbeispielen an konkreten Aufgaben vorgestellt. Im Abschnitt 1.4 finden Sie eine Zusammenstellung der Übungsbeispiele. Aus Gründen der Übersichtlichkeit sind in den Beispielen nicht alle Befehle und auch nicht alle Befehlskomponenten enthalten. Weitere nützliche und interessante Befehle lernen Sie hier kennen. (Auf eine Erläuterung von Befehlen, die aus gängigen Programmen bekannt sind, wird aber verzichtet.) Die mit * gekennzeichneten Befehle sind nicht in der Studentenversion enthalten.

DATEI, ZULETZT GEÖFFNETE SCHALTUNGEN: Listet die letzten neun verwendeten Dateien auf und ermöglicht einen schnellen Zugriff auf diese.

DATEI, PROJEKTE UND PACKEN VON PROJEKTEN*: Umfangreiche Schaltungsaufgaben können zu einem Projekt zusammengefasst werden. Das Projekt kann aus mehreren Schaltungen, Schaltungsberichten und -dokumenten sowie Leiterplattenvorlagen bestehen. Bild 1.16 zeigt ein Arbeitsfenster mit möglichen Projektdarstellungen. Ein umfangreicheres Projektbeispiel finden Sie im Programm unter SAMPLES, LARGE DESIGN, FERROMAGNET-ICMATERIALDETECTOR-PROJEKT.

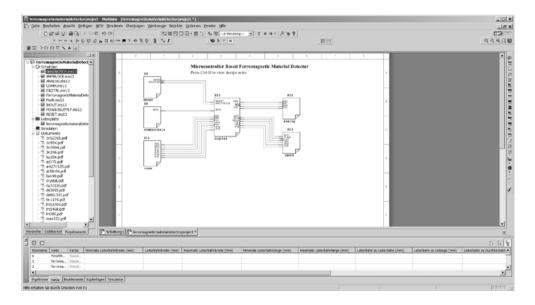


Bild 1.16 Projektdarstellung

DATEI, BEISPIEL ÖFFNEN...: MULTISIM stellt im Ordner SAMPLES verschiedene Schaltungsbeispiele als Muster bereit. Bild 1.17 zeigt den Ordnerinhalt.

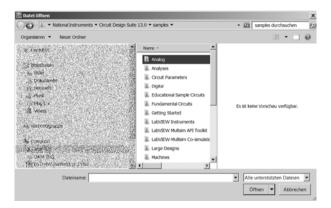
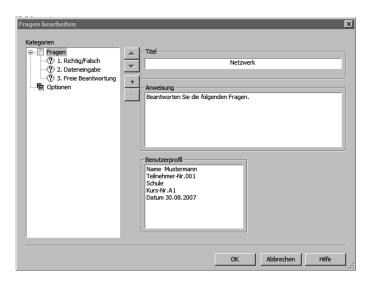


Bild 1.17 Ordner SAMPLES

BEARBEITEN, TITELBLOCKPOSITION: Wir können in einem Auswahlfenster den erstellten Titelblock an einer der vier Schaltungsecken platzieren.


BEARBEITEN, AUSRICHTUNG: Ermöglicht die Ausrichtung eines markierten Bauelementes oder Schaltungsteils.

BEARBEITEN, EIGENSCHAFTEN: Wenn wir ein Bauteil ausgewählt haben, öffnet sich das Kontextmenü zur Festlegung der Bauteileigenschaften. Ist kein Bauteil ausgewählt, öffnet sich das Kontextmenü zur Einstellung der Blatteigenschaften.

BEARBEITEN, FORMULARE/FRAGEN*: Rufen wir diesen Befehl auf, dann öffnet sich ein Formularfenster zur Eingabe von Fragen für eine Wissensüberprüfung. Das ermöglicht ein Feedback zur Arbeit mit MULTISIM und ist zur Überprüfung und Kontrolle sehr gut geeignet. Die erforderlichen Fragen erstellen wir in dem Dialog-Fenster, das sich nach dem Befehlsaufruf öffnet. Es kann zwischen vier Typen von Fragen ausgewählt werden:

- Ja-oder-Nein-Fragen
- Multiple-Choice-Fragen
- Fragen mit Dateneingabe
- Fragen mit freier Beantwortung

Mit dem Plus- bzw. Minusschalter können Fragen hinzugefügt oder gelöscht werden. Die Reihenfolge der Fragen lässt sich mit den Pfeilschaltern verschieben. Der Wissenstest steht danach im Fenster schaltungsbeschreibung zur Verfügung. Im Register optionen können wir festlegen, wie die Antworten übermittelt werden. Das Testformular kann ausgedruckt oder an eine festgelegte E-Mail-Adresse gesendet werden. Im Bild 1.19 sehen wir ein Beispiel.

Bild 1.18 Formular "FRAGEN BEARBEITEN"

chaltungsbeschreibung	
Netzwerk	2
Name :	
Datum:	
Beantworten Sie die folgenden Fragen. 1. Fließen die Teilströme innehalb des Netzwerkes alle in der gleichen Richtung? C Richtig @ Falsch 2. Berechnen Sie den Spannungsabfall über R5.	
3. Die Spannungsquellen sind Batterien. Welche Auswirkungen haben ihre unterschiedkich großen Spannungswerte?	
□ Verwenden Sie UTF-8 für Multibyte-Sprachen.	
Einreichen Drucken Alles löschen	

Bild 1.19 Fragen-Formular

ANSICHT, RASTER ANZEIGEN: Dieser Befehl blendet ein Raster ein. Die Rastereinblendung ist auch über einen Schalter in optionen, blatteigenschaften..., Register arbeitsbereich einschaltbar.

ANSICHT, TABELLEN-ANSICHT: Wird dieser Schalter aktiviert, sehen wir das im Bild 1.20 dargestellte Fenster. Es enthält die Register ergebnisse, netze, bauelemente, kupferlage und simulation. Wie Sie in der Abbildung erkennen, erhalten wir im Register bauelemente eine Zusammenstellung aller in der Schaltung eingesetzten Bauelemente und dazu auch die jeweiligen Zeichnungskoordinaten. Dadurch lässt sich bei größeren Schaltungen ein Bauelement leicht finden. Ein gewünschter Ersatz eines Bauelementes ist in diesem Fenster ebenfalls möglich. Im Register netze können wir die in der Schaltung festgelegten Netze anzeigen lassen. Das ist bei der Festlegung der Analyse-Optionen sinnvoll.

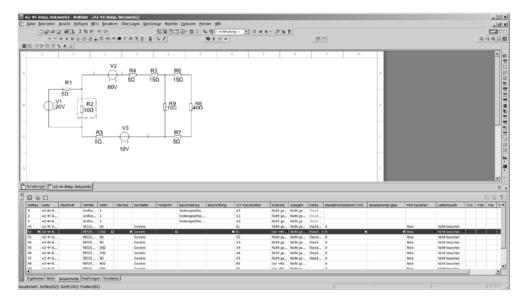


Bild 1.20 Fenster TABELLEN-ANSICHT

ANSICHT, GRAPHANZEIGE*: Dieses sehr nützliche Fenster ermöglicht die Darstellung und Bearbeitung von grafischen Messergebnissen. Ein Beispiel sehen Sie im Bild 1.21.

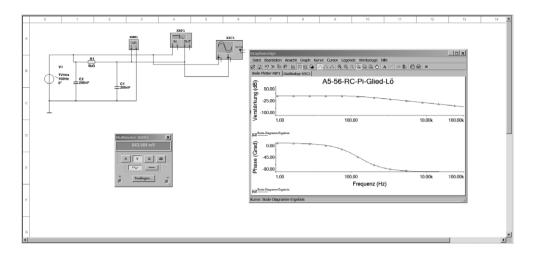


Bild 1.21 Graphanzeige

ANSICHT, SYMBOLLEISTE: Gehen wir zu diesem Befehl, öffnet sich die Werkzeugleisten-Toolbar, die im Bild 1.22 zu sehen ist. Dort können wir die erforderlichen Werkzeuge aufrufen, die danach unter der Menü-Leiste angeordnet werden. Der Aufruf der Werkzeug-Toolbar ist auch mit einem Klick der rechten Maus-Taste in eine freie Stelle der Menü-Leiste möglich. Über den linken Anfasser lassen sich die Werkzeugleisten bei gedrückter linker Maus-Taste im Menü-Fenster verschieben.

Ansicht, schaltungswerkzeuge: Dieser Befehl blendet ein Fenster, siehe Bild 1.23, ein oder aus, das besonders bei umfangreichen Schaltungen die Übersicht erleichtert. Das Fenster besitzt drei Register. Das Register hierarchie zeigt den hierarischen Aufbau einer Schaltung, die sich aus mehreren Teilschaltungen zusammensetzt. Im Register projektansicht sind alle darstellbaren Komponenten einer Schaltung oder eines Projektes wie Schaltpläne, Berichte etc. aufgelistet. Im Register sichtbarkeit können wir für die gesamte Schaltung die Sichtbarkeit von Bauelement-Attributen festlegen. Diesen Befehl können wir auch über optionen, schalungseinschränkungen realisieren.

Bild 1.22 Symbolleisten

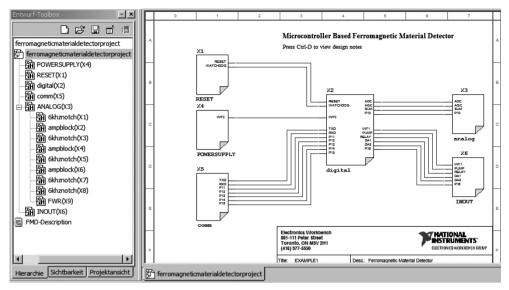
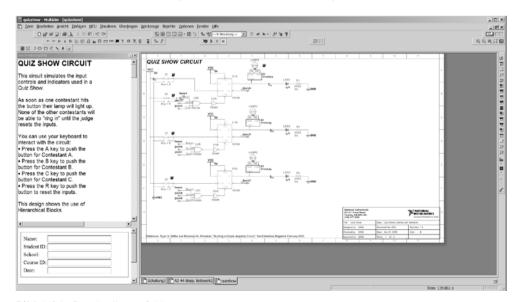
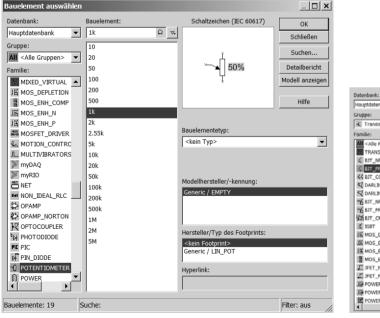
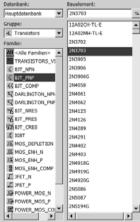


Bild 1.23 Entwurfs-Toolbox

ANSICHT, BESCHREIBUNGSFELD: Aktivieren wir diesen Befehl, öffnet sich das Fenster SCHALTUNGSBESCHREIBUNG, das im Bild 1.24 zu sehen ist. In dieses Fenster können wir mit Hilfe des BESCHREIBUNGSFELD-EDITORS, den wir über WERKZEUGE, BESCHREIBUNGSFELD-EDITOR aufrufen, gewünschten Text oder grafische Objekte eintragen. Auch das Frage-Formular fügen wir hier ein. Der Beschreibungseditor ist im Bild 1.25 dargestellt.




Bild 1.24 Beschreibungsfeld


Bild 1.25 Beschreibungsfeld-Editor

EINFÜGEN, BAUELEMENT...: Die Auswahl eines Bauelementes erfolgt mit diesem Befehl, der das im Bild 1.26 dargestellte Fenster öffnet.

Alternativ können wir die Werkzeugleisten oder die Tastenkombination STR+W nutzen.

Bild 1.27 Bauelement-gruppen wählen

Es ist sinnvoll, zunächst die Bauelementgruppe zu wählen. MULTISIM stellt neunzehn Bauelementgruppen bereit. Sie sind im Bild 1.27 zu sehen. Ist die Bezeichnung des Bauelementes bekannt, können wir auch über den Befehl Suchen gehen. Klicken wir die Schaltfläche detailbericht an, dann öffnet sich das im Bild 1.28 zu sehende berichtsfenster. Es enthält nähere Angaben zum Bauelement.

Vom entsprechenden Bauelement werden ausführliche Kennwerte, die Schaltsymbole in der ANSI- und DIN-Darstellung und die entsprechende SPICE-Modellierung angegeben. Zum SPICE-Model gelangen wir auch über die Schaltfläche MODEL.

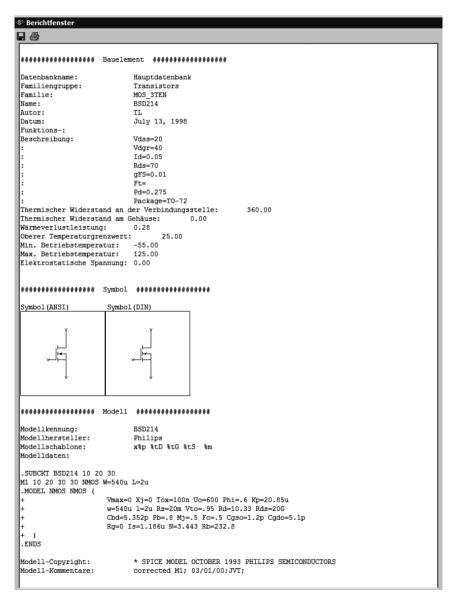
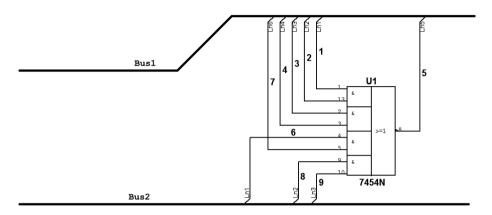



Bild 1.28 Bauelemente auswählen – Berichtsfenster

EINFÜGEN, KNOTENPUNKT: Einen Knotenpunkt können wir durch einen Doppelklick der linken Maus-Taste am Anfang oder Ende eines zu zeichnenden Leiterzuges setzen. Wollen wir in einen bestehenden Leiterzug einen Knotenpunkt einfügen, dann nutzen wir diesen Befehl. Alternativ gibt es die Tastenkombination <Strg>+<J>.

EINFÜGEN, BUS: Aktivieren wir diesen Befehl, erfolgt die Umschaltung vom Leitungs- in den Bus-Modus. Ziehen wir jetzt bei gedrückter linker Maus-Taste im Schaltungsfenster eine Linie, entsteht ein Bus.

Bild 1.29 Bus

EINFÜGEN, STECKVERBINDER: Hier können wir verschiedene Steckverbinder platzieren. HB/SC-Stecker dienen zur Verbindung von hierarchischen Blöcken (HB) oder Substromkreisen (SC). Dies gilt einmal für Leitungen und zum anderen für Busse. Des Weiteren gibt es Steckverbinder für Schaltungen, die sich über mehrere Seiten erstrecken.

EINFÜGEN, HIERARCHISCHER SCHALTUNGSBLOCK AUS DATEI...*: Mit diesem Befehl öffnen wir eine abgespeicherte Schaltung als einen hierarchischen Block.

Hierarchische Blöcke (HB) und Substromkreise werden verwendet, um funktionell verwandte Teile einer Schaltung in überschaubaren Bestandteilen zu organisieren. Die hierarchische Funktionalität von MULTISIM erlaubt es, den Zusammenhang von miteinander verbundenen Stromkreisen darzustellen, die wiederholte Nutzung einer Schaltung zu ermöglichen und die Zusammenarbeit von mehreren Schaltungsentwicklern zu gewährleisten. Wir können diese Blöcke bzw. Substromkreise auch als Schaltungsmodul bezeichnen. Zum Beispiel können wir eine Bibliothek von oft benötigten Schaltungsmodulen erstellen, die bei Bedarf in die entsprechenden Schaltungen eingebunden werden. Effektivität und Übersichtlichkeit werden dadurch gesteigert. Hierarchische Blöcke und Substromkreise sind vergleichbar. Substromkreise werden aber mit der ursprünglichen Schaltung in einer gemeinsamen Datei gespeichert. Hierarchische Blöcke bilden eigenständige Schaltungsdateien, die separat editiert und gespeichert werden.

Wir wollen uns die Wirkung des Befehls hierarchischer schaltungsblock aus datei... im folgenden Beispiel ansehen. Es existiert die Schaltung A2-12-SPGTEILER MIT ZWEI QUELLEN*. Wir rufen nun diese Datei mit hierarchischer schaltungsblock aus datei... aus dem Datei-Verzeichnis auf. Das Ergebnis sehen wir im Bild 1.30.

Statt der Spannungsteiler-Schaltung ist ein Schaltungsblock dargestellt. Wir müssen diesen hierarchischen Block noch bearbeiten. Nach einem Doppelklick der linken Maus-Taste in den Block öffnet sich das Fenster hierarchischer block/teilschaltung von Bild 1.31.

A2-12-SpgTeiler mit zwei Quellen

Bild 1.30 HB aus Datei

Bild 1.31 Hierarchischer Block/Teilschaltung

Wir klicken auf die Schaltfläche. Jetzt öffnet MULTISIM eine neue Seite, in der die ursprüngliche Schaltung dargestellt ist. Siehe dazu Bild 1.32.

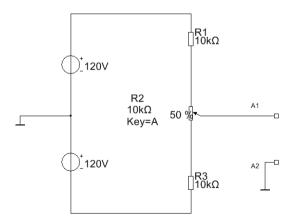


Bild 1.32 Innenschaltung des hierarchischen Blockes

An die Ausgänge A1 und A2 schließen wir jetzt die HB/SC-Steckverbinder an. Sie verbinden die Schaltung mit den beiden Ausgängen des Schaltungsblockes, den wir jetzt beliebig nutzen können. Im Bild 1.33 wurde als Beispiel an den Ausgang ein Widerstand und ein Spannungsmesser angeschlossen. Interessant ist, dass wir über die Taste A das Potentiometer R2 verändern können, obwohl es in der Schaltung gar nicht mehr sichtbar ist. Beachten Sie auch die angezeigte Schaltungshierarchie in der Entwurfstoolbox.

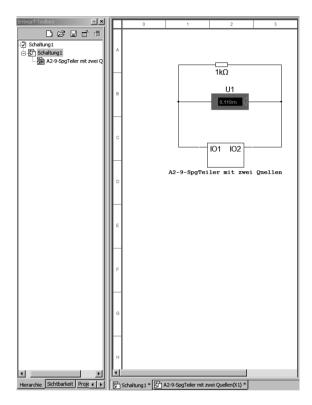


Bild 1.33 Schaltung mit hierarchischem Block

EINFÜGEN, DURCH HIERARCHISCHEN BLOCK ERSETZEN*: Mit dem Befehl DURCH HIERARCHISCHEN BLOCK ERSETZEN können wir in einer Schaltung einen gewünschten Schaltungsteil oder die gesamte Schaltung markieren und als einen HB festlegen. Wir wollen beispielsweise in der Schaltung A5-24 untersuchen, wie sich die Schaltung bei Änderung des Widerstandes verhält. Den Schaltungsteil mit Kondensator und Spule definieren wir dazu als HB. Die Entwicklung sehen wir in den Bildern 1.34 bis 1.37.

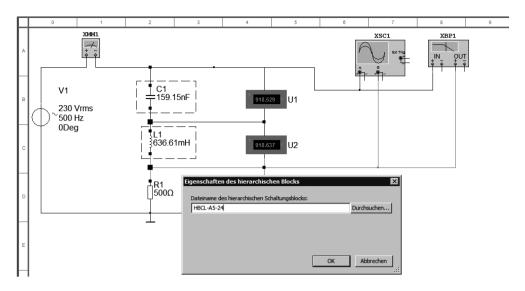
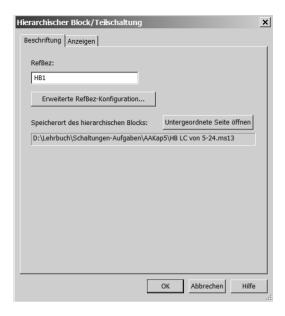



Bild 1.34 Durch hierarchischen Block ersetzen 1

Der ausgewählte Schaltungsteil bildet ein eigenständiges Modul.

Bild 1.35 Durch hierarchischen Block ersetzen 2

Bild 1.36 Durch hierarchischen Block ersetzen 3

Ein Doppelklick mit der linken Maustaste öffnet das im Bild 1.36 dargestellte Fenster.

Das Modul wird in die Schaltung eingesetzt, siehe Bild 1.37. Es kann aber auch in anderen Schaltungen genutzt werden.

Durch die Anwendung von Modulen können wir effektiver arbeiten. Ein weiterer Vorteil liegt darin, dass wir größere Schaltungen übersichtlicher gestalten können.

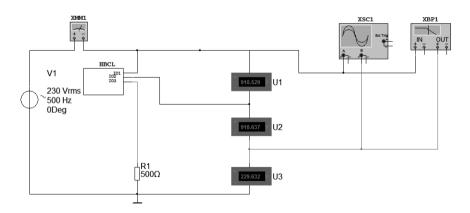


Bild 1.37 Durch hierarchischen Block ersetzen 4

Wir rufen einen gespeicherten Block aus der aktuellen Schaltung mit dem Befehl hier-Archischer block auf. Beide Schaltungen sind dann miteinander verknüpft, wobei der hierarchische Block untergeordnet ist. Im Bild 1.38 sehen wir unter dem gemeinsamen Dateinamen MEHRTEILIGESCHALTUNG2 die zwei gleichwertigen Schaltungen MEHRTEILIGE-SCHALTUNG2#HOCHOHMIG und MEHRTEILIGESCHALTUNG2#NIEDEROHMIG. An diese beiden Spannungsteiler werden wahlweise zwei hierarchische Blöcke angeschlossen: BELASTUNGA und BELASTUNGB. Sie werden unter diesen Namen gespeichert. Bei Bedarf können diese Blöcke auch in eine andere Schaltung eingebunden werden. Die Verknüpfung zwischen den Schaltungen erfolgt erst nach dem Aufruf. Beachten Sie den in der Entwurfs-Toolbox dargestellten Aufbau der Hierarchie. Die einzelnen Schaltungen innerhalb der Hierarchie können wir entweder durch Doppelklick in den entsprechenden Button in der Entwurfs-Toolbox oder durch Anklicken in der Statuszeile aufrufen.

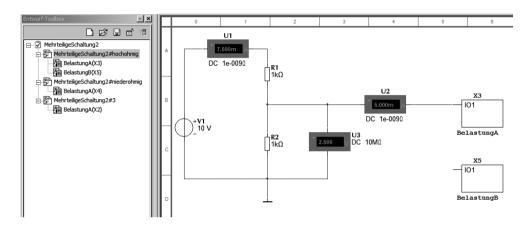


Bild 1.38 Hierarchischer Block

Die Verbindung bei hierarchischen Blöcken und Substromkreisen erfolgt, wie bereits dargestellt, mit HB/SC-Steckern. Diese finden wir unter EINFÜGEN, STECKVERBINDER.

EINFÜGEN, NEUER HIERARCHISCHER SCHALTUNGSBLOCK*: Mit diesem Befehl können wir einen hierarchischen Block erstellen, d.h. ein neues Schaltungsblatt für die Entwicklung eines neuen Schaltungsmoduls aufrufen. Wenn wir diesen Befehl aktivieren, öffnet sich das im Bild 1.39 gezeigte Kontextmenü. Wir geben einen Namen für den Schaltungsblock und die Anzahl der Eingangs- und Ausgangsstifte, d.h. der Eingangs- und Ausgangsanschlüsse, ein. Nach der Bestätigung erscheint das Symbol des Schaltungsmoduls mit dem festgelegten Namen und den Eingangs- und Ausgangsstiften.

igenschaften des Hierarchischen Blocks					
Dateiname des Hierarchis	chen Blocks:				
			Durchsuchen		
Anzahl Eingangs-Stifte:	0				
Anzahl Ausgangs-Stifte:	0				
		OK	Abbrechen		

Bild 1.39 Eigenschaften des hierarchischen Blocks