

Build Your Own Programming
Language
Second Edition

A programmer’s guide to designing compilers, interpreters, and DSLs
for modern computing problems

Clinton L. Jeffery

BIRMINGHAM—MUMBAI

Build Your Own Programming Language
Second Edition

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Denim Pinto

Acquisition Editor: Peer Reviews: Gaurav Gavas

Project Editor: Parvathy Nair

Content Development Editor: Elliot Dallow

Copy Editor: Safis Editing

Technical Editor: Aneri Patel

Proofreader: Safis Editing

Indexer: Hemangini Bari

Presentation Designer: Ajay Patule

Developer Relations Marketing Executive: Vipanshu Pareshar

First published: December 2021

Second edition: January 2024

Production reference: 3150524

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-80461-802-8

www.packt.com

www.packt.com

Foreword

In the dynamic world of computer science, the creation of a programming language stands as a

testament to ingenuity and a deep understanding of computational principles. Build Your Own

Programming Language is not just a guide; it is an invitation to delve into the complexity and

beauty of programming language creation.

At the helm of this voyage is Clinton L. Jeffery, a distinguished professor and Chair of the Depart-

ment of Computer Science and Engineering at the New Mexico Institute of Mining and Technology.

His academic journey, marked by degrees from the University of Washington and the University

of Arizona, has been a path of relentless exploration in the realms of programming languages,

program monitoring, and visualization, among others. His work culminates in the creation of the

Unicon programming language, a testament to his expertise and vision.

This book is structured to guide the reader through the nuanced process of developing a pro-

gramming language. Beginning with motivations and types of language implementations, Jeffery

sets the stage for understanding the fundamental “why” behind language design. He intricately

discusses organizing a bytecode language and differentiates between programming languages

and libraries, laying a solid foundation for both novices and experienced programmers.

The detailed chapters delve into the heart of language design, parsing, and the construction

of syntax trees, with practical examples and case studies like the development of Unicon and

the Jzero language. Jeffery’s approach is meticulous, ensuring that readers grasp the essentials

of technical requirements, lexical categories, context-free grammar, and symbol tables. This

comprehensive coverage ensures that readers are not just following instructions but are truly

understanding the principles at play.

What makes this book exceptional is its blend of theoretical knowledge and practical application.

Jeffery does not shy away from the complexities of designing graphics facilities or tackling syntax

trees and symbol tables. Instead, he embraces these challenges, guiding the reader with clarity

and insight. The inclusion of questions at the end of each chapter prompts critical thinking and

reflection, reinforcing the overall learning experience.

As you progress through Build Your Own Programming Language, you will find yourself not just

acquiring knowledge, but also developing a new perspective on programming languages. They

are not merely tools for tasks but are expressive mediums that reflect human creativity and prob-

lem-solving skills.

Clinton L. Jeffery, with his extensive experience and pioneering work in Unicon, provides a com-

prehensive and enlightening guide for anyone interested in the art and science of programming

language development. Whether you are a student, a professional programmer, or an enthusiast

of computer science, this book is a beacon, illuminating the path to understanding and creating

your own programming language.

Welcome to a journey of discovery, creativity, and technical mastery in the world of programming

languages!

Imran Ahmad, PhD

Senior Data Scientist, Canadian Federal Government

Contributors

About the author
Clinton L. Jeffery is Professor and Chair of the Department of Computer Science and Engi-

neering at the New Mexico Institute of Mining and Technology. He received his B.S. from the

University of Washington, and M.S. and Ph.D. degrees from the University of Arizona, all in com-

puter science. He has conducted research and written many books and papers on programming

languages, program monitoring, debugging, graphics, virtual environments, and visualization.

With colleagues, he invented the Unicon programming language, hosted at unicon.org.

Steve Wampler, Sana Algaraibeh, and Phillip Thomas provided valuable feedback and suggestions for

improving this book.

unicon.org

About the reviewers
Steve Wampler was awarded a Ph.D. in Computer Science by the University of Arizona. He has

worked as an Associate Professor of Computer Science as well as a software designer for several

major telescope projects, including the Gemini 8m telescopes project and the Daniel K Inouye

solar telescope. He has been a software reviewer for a number of other major telescope systems

and a technical reviewer for several other programming books.

Sana Algaraibeh was awarded her Ph.D. in Computer Science from the University of Idaho. She

joined the faculty at the New Mexico Institute of Mining and Technology as a Computer Science

instructor in 2022. Prior to that, she worked in academia for 14+ years as a lecturer, trainer, team

leader, instructional designer, and Computer Science department chair at universities in Jordan

and Saudi Arabia. She teaches Internet and Web Programming, Object-Oriented Programming,

Python for Data Science, Algorithms and Data Structures, and Introduction to Programming. Her

area of scholarship is computer science education and compiler error messages. She is interested

in developing computational solutions integrated with modern pedagogy.

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://discord.com/invite/zGVbWaxqbw

https://discord.com/invite/zGVbWaxqbw

Table of Contents

Preface � xv

Section I: Programming Language Frontends � 1

Chapter 1: Why Build Another Programming Language? � 3

Motivations for writing your own programming language �� 4

Types of programming language implementations ��� 4

Organizing a bytecode language implementation �� 6

Languages used in the examples �� 8

The difference between programming languages and libraries �� 9

Applicability to other software engineering tasks �� 10

Establishing the requirements for your language �� 10

Case study – requirements that inspired the Unicon language �� 13

Unicon requirement #1 – preserve what people love about Icon • 13

Unicon requirement #2 – support large-scale programs working on big data • 14

Unicon requirement #3 – high-level input/output for modern applications • 14

Unicon requirement #4 – provide universally implementable system interfaces • 15

Summary �� 15

Questions ��� 16

Table of Contentsii

Chapter 2: Programming Language Design � 17

Determining the kinds of words and punctuation to provide in your language ����������������� 18

Specifying the control flow ��� 21

Deciding on what kinds of data to support �� 23

Atomic types • 23

Composite types • 24

Domain-specific types • 25

Overall program structure ��� 26

Completing the Jzero language definition �� 27

Case study – designing graphics facilities in Unicon �� 28

Language support for 2D graphics • 28

Adding support for 3D graphics • 30

Summary ��� 30

Questions �� 31

Chapter 3: Scanning Source Code � 33

Technical requirements ��� 33

Lexemes, lexical categories, and tokens ��� 34

Regular expressions ��� 35

Regular expression rules • 36

Regular expression examples • 37

Using UFlex and JFlex �� 38

Header section • 39

Regular expressions section • 40

Writing a simple source code scanner • 40

Running your scanner • 43

Tokens and lexical attributes • 45

Expanding our example to construct tokens • 45

Table of Contents iii

Writing a scanner for Jzero ��� 49

The Jzero flex specification • 49

Unicon Jzero code • 52

Java Jzero code • 55

Running the Jzero scanner • 59

Regular expressions are not always enough ��� 61

Summary ��� 64

Questions ��� 65

Chapter 4: Parsing � 67

Technical requirements ��� 67

Syntax analysis �� 69

Context-free grammars �� 69

Writing context-free grammar rules • 70

Writing rules for programming constructs • 72

Using iyacc and BYACC/J �� 74

Declaring symbols in the header section • 75

Advanced yacc declarations • 75

Putting together the yacc context-free grammar section • 75

Understanding yacc parsers • 76

Fixing conflicts in yacc parsers • 79

Syntax error recovery • 80

Putting together a toy example • 80

Writing a parser for Jzero ��� 85

The Jzero lex specification • 85

The Jzero yacc specification • 86

Unicon Jzero code • 91

Java Jzero parser code • 93

Running the Jzero parser • 94

Improving syntax error messages • 96

Adding detail to Unicon syntax error messages • 96

Table of Contentsiv

Adding detail to Java syntax error messages • 97

Using Merr to generate better syntax error messages • 98

Summary ��� 99

Questions ��� 99

Chapter 5: Syntax Trees � 101

Technical requirements ��� 102

Using GNU Make �� 102

Learning about trees �� 106

Defining a syntax tree type • 106

Parse trees versus syntax trees • 108

Creating leaves from terminal symbols �� 111

Wrapping tokens in leaves • 111

Working with YACC’s value stack • 112

Wrapping leaves for the parser’s value stack • 113

Determining which leaves you need • 115

Building internal nodes from production rules ��� 115

Accessing tree nodes on the value stack • 115

Using the tree node factory method • 118

Forming syntax trees for the Jzero language �� 120

Debugging and testing your syntax tree ��� 128

Avoiding common syntax tree bugs • 128

Printing your tree in a text format • 129

Printing your tree using dot • 132

Summary ��� 138

Questions ��� 138

Table of Contents v

Section II: Syntax Tree Traversals � 141

Chapter 6: Symbol Tables � 143

Technical requirements ��� 144

Establishing the groundwork for symbol tables �� 144

Declarations and scopes • 144

Assigning and dereferencing variables • 146

Choosing the right tree traversal for the job • 146

Creating and populating symbol tables for each scope ��� 147

Adding semantic attributes to syntax trees • 148

Defining classes for symbol tables and symbol table entries • 151

Creating symbol tables • 152

Populating symbol tables • 155

Synthesizing the isConst attribute • 157

Checking for undeclared variables ��� 158

Identifying the bodies of methods • 159

Spotting uses of variables within method bodies • 160

Finding redeclared variables ��� 161

Inserting symbols into the symbol table • 162

Reporting semantic errors • 163

Handling package and class scopes in Unicon �� 163

Mangling names • 164

Inserting self for member variable references • 165

Inserting self as the first parameter in method calls • 166

Testing and debugging symbol tables �� 166

Summary �� 169

Questions �� 169

Table of Contentsvi

Chapter 7: Checking Base Types � 171

Technical requirements �� 172

Type representation in the compiler ��� 172

Defining a base class for representing types • 172

Subclassing the base class for complex types • 173

Assigning type information to declared variables ��� 176

Synthesizing types from reserved words • 178

Inheriting types into a list of variables • 179

Determining the type at each syntax tree node ��� 181

Determining the type at the leaves • 181

Calculating and checking the types at internal nodes • 183

Runtime type checks and type inference in Unicon �� 189

Summary ��� 190

Questions �� 191

Chapter 8: Checking Types on Arrays, Method Calls,
and Structure Accesses � 193

Technical requirements ��� 194

Checking operations on array types ��� 194

Handling array variable declarations • 194

Checking types during array creation • 195

Checking types during array accesses • 197

Checking method calls ��� 199

Calculating the parameters and return type information • 199

Checking the types at each method call site • 202

Checking the type at return statements • 205

Checking structured type accesses ��� 207

Handling instance variable declarations • 208

Checking types at instance creation • 209

Checking types of instance accesses • 212

Table of Contents vii

Summary �� 215

Questions �� 216

Chapter 9: Intermediate Code Generation � 217

Technical requirements �� 217

What is intermediate code? �� 218

Why generate intermediate code? • 218

Learning about the memory regions in the generated program • 219

Introducing data types for intermediate code • 220

Adding the intermediate code attributes to the tree • 223

Generating labels and temporary variables • 224

An intermediate code instruction set ��� 227

Instructions • 227

Declarations • 228

Annotating syntax trees with labels for control flow ��� 229

Generating code for expressions ��� 231

Generating code for control flow ��� 235

Generating label targets for condition expressions • 235

Generating code for loops • 239

Generating intermediate code for method calls • 240

Reviewing the generated intermediate code • 242

Summary ��� 243

Questions ��� 244

Chapter 10: Syntax Coloring in an IDE � 245

Writing your own IDE versus supporting an existing one �� 246

Downloading the software used in this chapter ��� 246

Adding support for your language to Visual Studio Code ��� 248

Configuring Visual Studio Code to do Syntax Highlighting for Jzero • 249

Table of Contentsviii

Visual Studio Code extensions using the JSON format • 251

JSON atomic types • 251

JSON collections • 251

File organization for Visual Studio Code extensions • 252

The extensions file • 252

The extension manifest • 253

Writing IDE tokenization rules using TextMate grammars • 255

Integrating a compiler into a programmer’s editor �� 258

Analyzing source code from within the IDE • 260

Sending compiler output to the IDE • 260

Avoiding reparsing the entire file on every change ��� 262

Using lexical information to colorize tokens �� 265

Extending the EditableTextList component to support color • 266

Coloring individual tokens as they are drawn • 266

Highlighting errors using parse results �� 267

Summary ��� 269

Questions ��� 270

Section III: Code Generation and Runtime Systems � 273

Chapter 11: Preprocessors and Transpilers � 275

Understanding preprocessors �� 276

A preprocessing example • 277

Identity preprocessors and pretty printers • 278

The preprocessor within the Unicon preprocessor • 279

Code generation in the Unicon preprocessor ��� 283

Transforming objects into classes • 284

Generating source code from the syntax tree • 285

Closure-based inheritance in Unicon • 291

The difference between preprocessors and transpilers �� 293

Table of Contents ix

Transpiling Jzero code to Unicon ��� 294

Semantic attributes for transpiling to Unicon • 294

A code generation model for Jzero • 295

The Jzero to Unicon transpiler code generation method • 297

Transpiling the base cases: names and literals • 298

Handling the dot operator • 299

Mapping Java expressions to Unicon • 302

Transpiler code for method calls • 304

Assignments • 306

Transpiler code for control structures • 306

Transpiling Jzero declarations • 309

Transpiling Jzero block statements • 313

Transpiling a Jzero class into a Unicon package that contains a class • 315

Summary �� 319

Questions �� 319

Chapter 12: Bytecode Interpreters � 321

Technical requirements �� 321

Understanding what bytecode is ��� 322

Comparing bytecode with intermediate code �� 323

Building a bytecode instruction set for Jzero �� 326

Defining the Jzero bytecode file format • 327

Understanding the basics of stack machine operation • 330

Implementing a bytecode interpreter �� 330

Loading bytecode into memory • 331

Initializing the interpreter state • 333

Fetching instructions and advancing the instruction pointer • 335

Instruction decoding • 336

Executing instructions • 337

Starting up the Jzero interpreter • 340

Table of Contentsx

Writing a runtime system for Jzero ��� 341

Running a Jzero program ��� 342

Examining iconx, the Unicon bytecode interpreter �� 343

Understanding goal-directed bytecode • 344

Leaving type information in at runtime • 344

Fetching, decoding, and executing instructions • 345

Crafting the rest of the runtime system • 345

Summary ��� 346

Questions ��� 346

Chapter 13: Generating Bytecode � 349

Technical requirements ��� 350

Converting intermediate code to Jzero bytecode �� 350

Adding a class for bytecode instructions • 351

Mapping intermediate code addresses to bytecode addresses • 352

Implementing the bytecode generator method • 353

Generating bytecode for simple expressions • 355

Generating code for pointer manipulation • 356

Generating bytecode for branches and conditional branches • 357

Generating code for method calls and returns • 358

Handling labels and other pseudo-instructions in intermediate code • 361

Comparing bytecode assembler with binary formats �� 362

Printing bytecode in assembler format • 362

Printing bytecode in binary format • 364

Linking, loading, and including the runtime system �� 365

Unicon example – bytecode generation in icont ��� 366

Summary ��� 368

Questions ��� 368

Chapter 14: Native Code Generation � 371

Technical requirements �� 371

Table of Contents xi

Deciding whether to generate native code ��� 372

Introducing the x64 instruction set ��� 372

Adding a class for x64 instructions • 373

Mapping memory regions to x64 register-based address modes • 374

Using registers ��� 375

Starting from a null strategy • 376

Assigning registers to speed up the local region • 377

Converting intermediate code to x64 code ��� 379

Mapping intermediate code addresses to x64 locations • 380

Implementing the x64 code generator method • 384

Generating x64 code for simple expressions • 385

Generating code for pointer manipulation • 386

Generating native code for branches and conditional branches • 387

Generating code for method calls and returns • 388

Handling labels and pseudo-instructions • 390

Generating x64 output ��� 393

Writing the x64 code in assembly language format • 393

Going from native assembler to an object file • 394

Linking, loading, and including the runtime system • 395

Summary ��� 397

Questions ��� 397

Chapter 15: Implementing Operators and Built-In Functions � 399

Implementing operators ��� 400

Comparing adding operators to adding new hardware • 401

Implementing string concatenation in intermediate code • 402

Adding String concatenation to the bytecode interpreter • 404

Adding String concatenation to the native runtime system • 407

Writing built-in functions �� 408

Adding built-in functions to the bytecode interpreter • 408

Writing built-in functions for use with the native code implementation • 409

Table of Contentsxii

Integrating built-ins with control structures ��� 410

Developing operators and functions for Unicon ��� 411

Writing operators in Unicon • 412

Developing Unicon’s built-in functions • 414

Summary ��� 416

Questions ��� 416

Chapter 16: Domain Control Structures � 417

Knowing when a new control structure is needed ��� 418

Scanning strings in Icon and Unicon �� 420

Scanning environments and their primitive operations • 421

Eliminating excessive parameters via a control structure • 423

Rendering regions in Unicon �� 424

Rendering 3D graphics from a display list • 424

Specifying rendering regions using built-in functions • 425

Varying levels of detail using nested rendering regions • 426

Creating a rendering region control structure • 427

Adding a reserved word for rendering regions • 428

Adding a grammar rule • 429

Checking wsection for semantic errors • 429

Generating code for a wsection control structure • 431

Summary ��� 433

Questions ��� 433

Chapter 17: Garbage Collection � 435

Grasping the importance of garbage collection �� 436

Counting references to objects ��� 438

Adding reference counting to Jzero • 438

Reducing the number of heap allocations for strings • 439

Modifying the generated code for the assignment operator • 442

Table of Contents xiii

Modifying the generated code for method call and return • 442

The drawbacks and limitations of reference counting • 442

Marking live data and sweeping the rest �� 444

Organizing heap memory regions • 445

Traversing the basis to mark live data • 447

Marking the block region • 449

Reclaiming live memory and placing it into contiguous chunks • 452

Summary ��� 455

Questions ��� 456

Chapter 18: Final Thoughts � 457

Reflecting on what was learned from writing this book �� 457

Deciding where to go from here ��� 458

Studying programming language design • 458

Learning about implementing interpreters and bytecode machines • 460

Acquiring expertise in code optimization • 461

Monitoring and debugging program executions • 461

Designing and implementing IDEs and GUI builders • 462

Exploring references for further reading �� 463

Studying programming language design • 463

Learning about implementing interpreters and bytecode machines • 463

Acquiring expertise in native code and code optimization • 464

Monitoring and debugging program executions • 465

Designing and implementing IDEs and GUI builders • 465

Summary ��� 466

Section IV: Appendix � 469

Appendix: Unicon Essentials � 471

Syntactic shorthand • 471

Running Unicon �� 471

Table of Contentsxiv

Using Unicon’s declarations and data types ��� 473

Declaring program components • 473

Using atomic data types • 475

Numeric • 476

Textual • 476

Aggregating multiple values using structure types • 477

Classes • 477

Lists • 478

Tables • 478

Sets • 478

Files • 479

Other types • 479

Evaluating expressions �� 479

Forming expressions using operators • 479

Invoking procedures, functions, and methods • 483

Iterating and selecting what and how to execute • 484

Generators • 485

Debugging and environmental issues �� 486

Learning the basics of the UDB debugger • 487

Environment variables • 487

Preprocessor • 488

Preprocessor commands • 488

Built-in macro definitions • 488

Function mini-reference �� 489

Selected keywords ��� 496

Answers � 499

Other Books You May Enjoy � 511

Index � 515

Preface

This second edition was begun primarily at the suggestion of a first edition reader, who called me

one day and explained that they were using the book for a programming language project. The

project was not generating code for a bytecode interpreter or a native instruction set as covered

in the first edition. Instead, they were creating a transpiler from a classic legacy programming

language to a modern mainstream language. There are many such projects, because there is a lot

of old code out there that is still heavily used. The Unicon translator itself started as a preproces-

sor and then was extended until it became in some sense, a transpiler. So, when Packt asked for

a second edition, it was natural to propose a new chapter on that topic; this edition has a new

Chapter 11 and all chapters (starting from what was Chapter 11 in the previous edition) have seen

their number incremented by one. A second major facet of this second edition was requested by

Packt and not my idea at all. They requested that the IDE syntax coloring chapter be extended to

deal with the topic of adding syntax coloring to mainstream IDEs that I did not write and do not

use, instead of its previous content on syntax coloring in the Unicon IDEs. Although this topic is

outside my comfort zone, it is a valuable topic that is somewhat under-documented at present

and easily deserves inclusion, so here it is. You, as the reader, can decide whether I have managed

to do it any justice as an introduction to that topic.

After 60+ years of high-level language development, programming is still too difficult. The demand

for software of ever-increasing size and complexity has exploded due to hardware advances, while

programming languages have improved far more slowly. Creating new languages for specific

purposes is one antidote for this software crisis.

This book is about building new programming languages. The topic of programming language

design is introduced, although the primary emphasis is on programming language implementa-

tion. Within this heavily studied subject, the novel aspect of this book is its fusing of traditional

compiler-compiler tools (Flex and Byacc) with two higher-level implementation languages. A

very high-level language (Unicon) plows through a compiler’s data structures and algorithms

like butter, while a mainstream modern language (Java) shows how to implement the same code

in a more typical production environment.

Prefacexvi

One thing I didn’t really understand after my college compiler class was that the compiler is only

one part of a programming language implementation. Higher-level languages, including most

newer languages, may have a runtime system that dwarfs their compiler. For this reason, the

second half of this book spends quality time on a variety of aspects of language runtime systems,

ranging from bytecode interpreters to garbage collection.

Who this book is for
This book is for software developers interested in the idea of inventing their own language or

developing a domain-specific language. Computer science students taking compiler construction

courses will also find this book highly useful as a practical guide to language implementation to

supplement more theoretical textbooks. Intermediate-level knowledge and experience of working

with a high-level language such as Java or C++ are required in order to get the most out of this book.

What this book covers
Chapter 1, Why Build Another Programming Language?, discusses when to build a programming

language, and when to instead design a function library or a class library. Many readers of this

book will already know that they want to build their own programming language. Some should

design a library instead.

Chapter 2, Programming Language Design, covers how to precisely define a programming language,

which is important to know before trying to build a programming language. This includes the

design of the lexical and syntax features of the language, as well as its semantics. Good language

designs usually use as much familiar syntax as possible.

Chapter 3, Scanning Source Code, presents lexical analysis, including regular expression notation

and the tools Ulex and JFlex. By the end, you will be opening source code files, reading them char-

acter by character, and reporting their contents as a stream of tokens consisting of the individual

words, operators, and punctuation in the source file.

Chapter 4, Parsing, presents syntax analysis, including context-free grammars and the tools iyacc

and byacc/j. You will learn how to debug problems in grammars that prevent parsing, and report

syntax errors when they occur.

Chapter 5, Syntax Trees, covers syntax trees. The main by-product of the parsing process is the

construction of a tree data structure that represents the source code’s logical structure. The con-

struction of tree nodes takes place in the semantic actions that execute on each grammar rule.

Preface xvii

Chapter 6, Symbol Tables, shows you how to construct symbol tables, insert symbols into them,

and use symbol tables to identify two kinds of semantic errors: undeclared and illegally redeclared

variables. In order to understand variable references in executable code, each variable’s scope

and lifetime must be tracked. This is accomplished by means of table data structures that are

auxiliary to the syntax tree.

Chapter 7, Checking Base Types, covers type checking, which is a major task required in most pro-

gramming languages. Type checking can be performed at compile time or at runtime. This chapter

covers the common case of static compile-time type checking for base types, also referred to as

atomic or scalar types.

Chapter 8, Checking Types on Arrays, Method Calls, and Structure Accesses, shows you how to perform

type checks for the arrays, parameters, and return types of method calls in the Jzero subset of

Java. The more difficult parts of type checking are when multiple or composite types are involved.

This is the case when functions with multiple parameter types must be checked, or when arrays,

hash tables, class instances, or other composite types must be checked.

Chapter 9, Intermediate Code Generation, shows you how to generate intermediate code by looking

at examples for the Jzero language. Before generating code for execution, most compilers turn

the syntax tree into a list of machine-independent intermediate code instructions. Key aspects

of control flow, such as the generation of labels and goto instructions, are handled at this point.

Chapter 10, Syntax Coloring in an IDE, addresses the challenge of incorporating information from

syntax analysis into an IDE in order to provide syntax coloring and visual feedback about syntax

errors. A programming language requires more than just a compiler or interpreter – it requires

an ecosystem of tools for developers. This ecosystem can include debuggers, online help, or an

integrated development environment.

Chapter 11, Preprocessors and Transpilers, gives an overview of generating output intended to be

compiled or interpreted by another high-level language. Preprocessors are usually line-oriented

and translate lines into very similar output, while transpilers usually translate one high-level

language to a different high-level language with a full parse and significant semantic changes.

Chapter 12, Bytecode Interpreters, covers designing the instruction set and the interpreter that ex-

ecutes bytecode. A new domain-specific language may include high-level domain programming

features that are not supported directly by mainstream CPUs. The most practical way to generate

code for many languages is to generate bytecode for an abstract machine whose instruction set

directly supports the domain, and then execute programs by interpreting that instruction set.

Prefacexviii

Chapter 13, Generating Bytecode, continues with code generation, taking the intermediate code

from Chapter 9, Intermediate Code Generation, and generating bytecode from it. Translation from

intermediate code to bytecode is a matter of walking through a giant linked list, translating each

intermediate code instruction into one or more bytecode instructions. Typically, this is a loop

to traverse the linked list, with a different chunk of code for each intermediate code instruction.

Chapter 14, Native Code Generation, provides an overview of generating native code for x86_64.

Some programming languages require native code to achieve their performance requirements.

Native code generation is like bytecode generation, but more complex, involving register alloca-

tion and memory addressing modes.

Chapter 15, Implementing Operators and Built-In Functions, describes how to support very high-level

and domain-specific language features by adding operators and functions that are built into the

language. Very high-level and domain-specific language features are often best represented by

operators and functions that are built into the language, rather than library functions. Adding

built-ins may simplify your language, improve its performance, or enable side effects in your

language semantics that would otherwise be difficult or impossible. The examples in this chap-

ter are drawn from Unicon, as it is much higher level than Java and implements more complex

semantics in its built-ins.

Chapter 16, Domain Control Structures, covers when you need a new control structure, and provides

example control structures that process text using string scanning, and render graphics regions.

The generic code in previous chapters covered basic conditional and looping control structures,

but domain-specific languages often have unique or customized semantics for which they in-

troduce novel control structures. Adding new control structures is substantially more difficult

than adding a new function or operator, but it is what makes domain-specific languages worth

developing instead of just writing class libraries.

Chapter 17, Garbage Collection, presents a couple of methods with which you can implement gar-

bage collection in your language. Memory management is one of the most important aspects of

modern programming languages, and all the cool programming languages feature automatic

memory management via garbage collection. This chapter provides a couple of options as to

how you might implement garbage collection in your language, including reference counting,

and mark-and-sweep garbage collection.

Chapter 18, Final Thoughts, reflects on the main topics presented in the book and gives you some

food for thought. It considers what was learned from writing this book and gives you many sug-

gestions for further reading.

Preface xix

Appendix, Unicon Essentials, describes enough of the Unicon programming language to understand

those examples in this book that are in Unicon. Most examples are given side by side in Unicon

and Java, but the Unicon versions are usually shorter and easier to read.

Answers, gives you some proposed answers to the revision questions placed at the end of each

chapter.

To get the most out of this book
In order to understand this book, you should be an intermediate-or-better programmer in Java

or a similar language; a C programmer who knows an object-oriented language will be fine.

Instructions for installing and using the tools are spread out a bit to reduce the startup effort, ap-

pearing in Chapter 3, Scanning Source Code, to Chapter 5, Syntax Trees. If you are technically gifted,

you may be able to get all these tools to run on macOS, but it was not used or tested during the

writing of this book.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Build-Your-Own-Programming-Language-Second-Edition. We also have other code bundles

from our rich catalog of books and videos available at https://github.com/PacktPublishing/.

Check them out!

Code in Action
The Code in Action videos for this book can be viewed at https://bit.ly/3njc15D.

NOTE

If you are using the digital version of this book, we advise you to type the code yourself

or, better yet, access the code from the book’s GitHub repository (a link is available

in the next section). Doing so will help you avoid any potential errors related to the

copying and pasting of code.

https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition
https://github.com/PacktPublishing/Build-Your-Own-Programming-Language-Second-Edition
https://github.com/PacktPublishing/
https://bit.ly/3njc15D

Prefacexx

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/gbp/9781804618028.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and X (more commonly known as Twitter)

handles. For example: “The JSRC macro gives the names of all the Java files to be compiled.”

A block of code is set as follows:

public class address {

 public String region;

 public int offset;

 address(String s, int x) { region = s; offset = x; }

}

Any command-line input or output is written as follows:

j0 hello.java java ch9.j0 hello.java

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “A makefile is like a

lex or yacc specification, except instead of recognizing patterns of strings, a makefile specifies

a graph of build dependencies between files”.

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://packt.link/gbp/9781804618028

Preface xxi

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

Share your thoughts
Once you’ve read Build Your Own Programming Language, Second Edition, we’d love to hear your

thoughts! Please click here to go straight to the Amazon review page for this book and

share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1804618020

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804618028

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804618028

Section I
Programming Language

Frontends
In this section, you will create a basic language design and implement the frontend of a compiler

for it, including a lexical analyzer and a parser that builds a syntax tree from an input source file.

This section comprises the following chapters:

•	 Chapter 1, Why Build Another Programming Language?

•	 Chapter 2, Programming Language Design

•	 Chapter 3, Scanning Source Code

•	 Chapter 4, Parsing

•	 Chapter 5, Syntax Trees

1
Why Build Another
Programming Language?
This book will show you how to build your own programming language, but first, you should

ask yourself, why would I want to do this? For a few of you, the answer will be simple: because

it is so much fun. However, for the rest of us, it is a lot of work to build a programming language,

and we need to be sure about it before we make that kind of effort. Do you have the patience and

persistence that it takes?

This chapter points out a few good reasons to build your own programming language, as well as

some circumstances in which you don’t need to build your contemplated language. After all, de-

signing a class library for your application domain is often simpler and just as effective. However,

libraries have their limitations, and sometimes, only a new language will do.

After this chapter, the rest of this book will take for granted that, having considered things care-

fully, you have decided to build a language. But first, we’re going to consider our initial options

by covering the following main topics in this chapter:

•	 Motivations for writing your own programming language

•	 Types of programming language implementations

•	 Organizing a bytecode language implementation

•	 Languages used in the examples

•	 The difference between programming languages and libraries

•	 Applicability to other software engineering tasks

Why Build Another Programming Language?4

•	 Establishing the requirements for your language

•	 Case study – requirements that inspired the Unicon language

Let’s start by looking at motivations.

Motivations for writing your own programming
language
Sure, some programming language inventors are rock stars of computer science, such as Dennis

Ritchie or Guido van Rossum! Becoming a rock star in computer science was easier back in the

previous century. In 1993, I heard the following report from an attendee of the second ACM History

of Programming Languages Conference: “The consensus was that the field of programming languages

is dead. All the important languages have been invented already.” This was proven wildly wrong a

year or two later when Java hit the scene, and perhaps a dozen times since then when important

languages such as Go emerged. After a mere six decades, it would be unwise to claim our field is

mature and that there’s nothing new to invent that might make you famous.

In any case, celebrity is a bad reason to build a programming language. The chances of acquiring

fame or fortune from your programming language invention are slim. Curiosity and a desire

to know how things work are valid reasons, so long as you’ve got the time and inclination, but

perhaps the best reason to build your own programming language is necessity.

Some folks need to build a new language, or a new implementation of an existing programming

language, to target a new processor or compete with a rival company. If that’s not you, then

perhaps you’ve looked at the best languages (and compilers or interpreters) available for some

domain that you are developing programs for, and they are missing some key features for what

you are doing, and those missing features are causing you pain. This is the stuff Master’s theses

and PhD dissertations are made of. Every once in a blue moon, someone comes up with a whole

new style of computing for which a new programming paradigm requires a new language.

While we are discussing your motivations for building a language, let’s also talk about the differ-

ent kinds of languages, how they are organized, and the examples this book will use to guide you.

Types of programming language implementations
Whatever your reasons, before you build a programming language, you should pick the best tools

and technologies you can find to do the job. In our case, this book will pick them for you. First,

there is a question of the implementation language, which is to say, the language that you are

building your language in.

Chapter 1 5

Programming language academics like to brag about writing their language in that language

itself, but this is usually only a half-truth (or someone was being very impractical and showing

off at the same time). There is also the question of just what kind of programming language

implementation to build:

•	 A pure interpreter that executes the source code itself

•	 A native compiler and a runtime system, such as in C

•	 A transpiler that translates your language into some other high-level language

•	 A bytecode compiler with an accompanying bytecode machine, such as in Java

The first option is fun, but the resulting language is usually too slow to satisfy real-world project

requirements. The second option is often optimal, but may be too labor-intensive; a good native

compiler may take years of effort.

The third option is by far the easiest and probably the most fun, and I have used it before with

good success. Don’t discount a transpiler implementation as a kind of cheating, but do be aware

that it has its problems. The first version of C++, AT&T’s cfront tool, was a transpiler, but that gave

way to compilers, and not just because cfront was buggy. Strangely, generating high-level code

seems to make your language even more dependent on the underlying language than the other

options, and languages are moving targets. Good languages have died because their underlying

dependencies disappeared or broke irreparably on them. It can be the death of a thousand cuts.

For the most part, this book focuses on the fourth option; over the course of several chapters, we

will build a bytecode compiler with an accompanying bytecode machine because that is a sweet

spot that gives a lot of flexibility, while still offering decent performance. A chapter on transpilers

and preprocessors is provided for those of you who may prefer to implement your language by

generating code for another high-level language. A chapter on native code compilation is also

included, for those of you who require the fastest possible execution.

The notion of a bytecode machine is very old; it was made famous by UCSD’s Pascal implemen-

tation and the classic SmallTalk-80 implementation, among others. It became ubiquitous to the

point of entering lay English with the promulgation of Java’s JVM. Bytecode machines are abstract

processors interpreted by software; they are often called virtual machines (as in Java Virtual

Machine), although I will not use that terminology because it is also used to refer to software

tools that implement real hardware instruction sets, such as IBM’s classic platforms, or more

modern tools such as Virtual Box.

Why Build Another Programming Language?6

A bytecode machine is typically quite a bit higher level than a piece of hardware, so a bytecode

implementation affords much flexibility. Let’s have a quick look at what it will take to get there…

Organizing a bytecode language implementation
To a large extent, the organization of this book follows the classic organization of a bytecode

compiler and its corresponding virtual machine. These components are defined here, followed

by a diagram to summarize them:

•	 A lexical analyzer reads in source code characters and figures out how they are grouped

into a sequence of words or tokens.

•	 A syntax analyzer reads in a sequence of tokens and determines whether that sequence

is legal, according to the grammar of the language. If the tokens are in a legal order, it

produces a syntax tree.

•	 A semantic analyzer checks to ensure that all the names being used are legal for the

operations in which they are being used. It checks their types to determine exactly what

operations are being performed. All this checking makes the syntax tree heavy, laden with

extra information about where variables are declared and what their types are.

•	 An intermediate code generator figures out memory locations for all the variables and

all the places where a program may abruptly change execution flow, such as loops and

function calls. It adds them to the syntax tree and then walks this even fatter tree, before

building a list of machine-independent intermediate code instructions.

•	 A final code generator turns the list of intermediate code instructions into the actual

bytecode, in a file format that will be efficient to load and execute.

In addition to the steps of this bytecode virtual machine compiler, a bytecode interpreter is

written to load and execute programs. It is a giant loop with a switch statement in it. For very

high-level programming languages, the compiler might be no big deal, and all the magic may be

in the bytecode interpreter. The whole organization can be summarized by the following diagram:

Chapter 1 7

Figure 1.1: Phases and dataflow in a simple programming language

It will take a lot of code to illustrate how to build a bytecode machine implementation of a pro-

gramming language. How that code is presented is important and will tell you what you need to

know going in, as well as what you may learn from going through this book.

Why Build Another Programming Language?8

Languages used in the examples
This book provides code examples in two languages using a parallel translations model. The first

language is Java because that language is ubiquitous. Hopefully, you know Java (or C++, or C#)

and will be able to read the examples with intermediate proficiency. The second example language

is the author’s own language, Unicon. While reading this book, you can judge for yourself which

language is better suited to building programming languages. As many examples as possible are

provided in both languages, and the examples in the two languages are written as similarly as

possible. Sometimes, this will be to the advantage of Java, which is a bit lower level than Unicon.

There are sometimes fancier or shorter ways to write things in Unicon, but our Unicon examples

will stick as close to Java as possible. The differences between Java and Unicon will be obvious,

but they are somewhat lessened in importance by the compiler construction tools we will use.

This book uses modern descendants of the venerable Lex and YACC tools to generate our scanner

and parser. Lex and YACC are declarative programming languages that solve some of our hard

problems at a higher level than Java or Unicon. It would have been nice if a modern descendant

of Lex and YACC (such as ANTLR) supported both Java and Unicon, but such is not the case. One

of the very cool parts of this book is this: by choosing tools for Java and Unicon that are very

compatible with the original Lex and YACC and extending them a bit, we have managed to use

the same lexical and syntax specifications of our compiler in both Java and Unicon!

While Java and Unicon are our implementation languages, we need to talk about one more lan-

guage: the example language we are building. It is a stand-in for whatever language you decide

to build. Somewhat arbitrarily, this book introduces a language called Jzero for this purpose.

Niklaus Wirth invented a toy language called PL/0 (programming language zero; the name is

a riff on the language name PL/1) that was used in compiler construction courses. Jzero is a tiny

subset of Java that serves a similar purpose. I looked pretty hard (that is, I googled Jzero and then

Jzero compiler) to see whether someone had already posted a Jzero definition we could use and

did not spot one by that name, so we will just make it up as we go along.

The Java examples in this book will be tested using Java 21; maybe other recent versions of Java

will work. You can get OpenJDK from http://openjdk.org, or if you are on Linux, your operating

system probably has an OpenJDK package that you can install. Additional programming language

construction tools (Jflex and byacc/j) that are required for the Java examples will be introduced

in subsequent chapters as they are used. The Java implementations we will support might be

more constrained by which versions will run these language construction tools than anything else.

http://openjdk.org

Chapter 1 9

The Unicon examples in this book work with Unicon version 13.3, which can be obtained from

http://unicon.org. To install Unicon on Windows, you must download a .msi file and run the

installer. To install on Linux, you should follow the instructions found on the unicon.org site.

Having gone through the basic organization of a programming language and the implementation

that this book will use, perhaps we should take another look at when a programming language

is called for, and when building one can be avoided by developing a library instead.

The difference between programming languages and
libraries
Unless you are in it for the “fun” or the intellectual experience, building a programming language

is a lot of work that might not be necessary. If your motives are strictly utilitarian, you don’t have

to make a programming language when a library will do the job. Libraries are by far the most

common way to extend an existing programming language to perform a new task. A library is a

set of functions or classes that can be used together to write applications for some hardware or

software technology. Many languages, including C and Java, are designed almost completely to

revolve around a rich set of libraries. The language itself is very simple and general, while much of

what a developer must learn to develop applications consists of how to use the various libraries.

The following is what libraries can do:

•	 Introduce new data types (classes) and provide public functions (an API) to manipulate

them

•	 Provide a layer of abstraction on top of a set of hardware or operating system calls

The following is what libraries cannot do:

•	 Introduce new control structures and syntax in support of new application domains

•	 Embed/support new semantics within the existing language runtime system

Libraries do some things badly, so you might end up preferring to make a new language:

•	 Libraries often get larger and more complex than necessary.

•	 Libraries can have even steeper learning curves and poorer documentation than languages.

•	 Every so often, libraries have conflicts with other libraries.

•	 Applications that use libraries can become broken if the library changes incompatibly in

a later version.

http://unicon.org
unicon.org

Why Build Another Programming Language?10

There is a natural evolutionary path from a library to a language. A reasonable approach to building

a new language to support an application domain is to start by making or buying the best library

available for that application domain. If the result does not meet your requirements in terms of

supporting the domain and simplifying the task of writing programs for that domain, then you

have a strong argument for a new language.

This book is about building your own language, not just building your own library. It turns out

that learning about tools and techniques to implement programming languages is useful in

many other contexts.

Applicability to other software engineering tasks
The tools and technologies you learn about from building your own programming language can

be applied to a range of other software engineering tasks. For example, you can sort almost any

file or network input processing task into three categories:

•	 Reading XML data with an XML library

•	 Reading JSON data with a JSON library

•	 Reading anything else by writing code to parse it in its native format

The technologies in this book are useful in a wide array of software engineering tasks, which is

where the third of these categories is encountered. Frequently, structured data must be read in

a custom file format.

For some of you, the experience of building your own programming language might be the sin-

gle largest program you have written thus far. If you persist and finish it, it will teach you lots of

practical software engineering skills, besides whatever you learn about compilers, interpreters,

and the such. This will include working with large dynamic data structures, software testing, and

debugging complex problems, among other skills.

That’s enough of the inspirational motivation. Let’s talk about what you should do first: figure

out your requirements.

Establishing the requirements for your language
After you are sure you need a new programming language for what you are doing, take a few min-

utes to establish the requirements. This is open-ended. It is you defining what success for your

project will look like. Wise language inventors do not create a whole new syntax from scratch.

Instead, they define it in terms of a set of modifications to make to a popular existing language.

Chapter 1 11

Many great programming languages (Lisp, Forth, Smalltalk, and many others) had their suc-

cess significantly limited by the degree to which their syntax was unnecessarily different from

mainstream languages. Still, your language requirements include what it will look like, and that

includes syntax.

More importantly, you must define a set of control structures or semantics where your program-

ming language needs to go beyond existing language(s). This will sometimes include special

support for an application domain that is not well served by existing languages and their libraries.

Such domain-specific languages (DSLs) are common enough that whole books are focused on

that topic. Our goal for this book will be to focus on the nuts and bolts of building the compiler

and runtime system for such a language, independent of whatever domain you may be working in.

In a normal software engineering process, requirements analysis would start with brainstorming

lists of functional and non-functional requirements. Functional requirements for a programming

language involve the specifics of how the end user developer will interact with it. You might not

anticipate all the command-line options for your language up front, but you probably know

whether interactivity is required, or whether a separate compile step is OK. The discussion of

interpreters and compilers in the previous section, and this book’s presentation of a compiler,

might seem to make that choice for you, but Python is an example of a language that provides a

fully interactive interface, even though the source code you type into Python gets compiled into

bytecode and executed by a bytecode machine, rather than being interpreted directly.

Non-functional requirements are properties that your programming language must achieve that

are not directly tied to the end user developer’s interactions. They include things such as what

operating system(s) your language must run on, how fast execution must be, or how little space

the programs written in your language must run within.

The non-functional requirement regarding how fast execution must be usually determines the

answer as to whether you can target a software (bytecode) machine or need to target native code.

Native code is not just faster; it is also considerably more difficult to generate, and it might make

your language considerably less flexible in terms of runtime system features. You might choose

to target bytecode first, and then work on a native code generator afterward.

The first language I learned to program on was a BASIC interpreter in which the programs had to

run within 4 KB of RAM. BASIC at the time had a low memory footprint requirement. But even in

modern times, it is not uncommon to find yourself on a platform where Java won’t run by default!

For example, on virtual machines with configured memory limits for user processes, you may

have to learn some awkward command-line options to compile or run even simple Java programs.

Why Build Another Programming Language?12

In addition to identifying functional and non-functional requirements, many requirements anal-

ysis approaches also define a set of use cases and ask the developer to write descriptions for them.

Inventing a programming language is different from your average software engineering project,

but before you are finished, you may want to go there and perform such a use case analysis. A use

case is a task that someone performs using a software application. When the software application

is a programming language, if you are not careful, the use cases may be too general to be useful,

such as write my application and run my program. While those two might not be very useful, you

might want to think about whether your programming language implementation must support

program development, debugging, separate compilation and linking, integration with external

languages and libraries, and so forth. Most of those topics are beyond the scope of this book, but

we will consider some of them.

Since this book presents the implementation of a language called Jzero, here are some requirements

for Jzero. Some of these requirements may appear arbitrary. You could certainly add your own

requirements and produce your own Java dialect, but this list describes what we are aiming for

in this book. If it is not clear to you where one of the following requirements came from, it either

came from our source inspiration language (plzero) or previous experience teaching compiler

construction:

•	 Jzero should be a strict subset of Java. All legal Jzero programs should be legal Java pro-

grams. This requirement allows us to check the behavior of our test programs when we

are debugging our language implementation.

•	 Jzero should provide enough features to allow interesting computations. This includes if

statements, while loops, and multiple functions, along with parameters.

•	 Jzero should support a few data types, including Booleans, integers, arrays, and the String

type. However, it only needs to support a subset of their functionality, (as you’ll see later).

These types are enough to allow input and output of interesting values into a computation.

•	 Jzero should emit decent error messages, showing the filename and line number, includ-

ing messages for attempts to use Java features not in Jzero. We will need reasonable error

messages to debug the implementation.

•	 Jzero should run fast enough to be practical. This requirement is vague, but it implies that

we won’t be doing a pure interpreter. Pure interpreters that execute source code directly

without any internal code generation step are a very retro thing, evocative of the 1960s and

1970s. They tend to execute unacceptably slowly by modern standards. On the other hand,

you might very well decide that your language should provide the highly interactive look

and feel of a pure interpreter, like Python does. Anyhow, that is not in Jzero’s requirements.

Chapter 1 13

•	 Jzero should be as simple as possible so that I can explain it. Sadly, this rules out writing

a full description of a native code generator or even an implementation that targets JVM

bytecode; we will provide our own simple bytecode machine.

Perhaps more requirements will emerge as we go along, but this is a start. Since we are constrained

for time and space, perhaps this requirements list is more important for what it does not say,

rather than for what it does say. By way of comparison, here are some of the requirements that

led to the creation of the Unicon programming language.

Case study – requirements that inspired the Unicon
language
This book will use the Unicon programming language, located at http://unicon.org, for a run-

ning case study. We can start with reasonable questions such as, why build Unicon, and what

are its requirements? To answer the first question, we will work backward from the second one.

Unicon exists because of an earlier programming language called Icon, from the University of Ari-

zona (http://www.cs.arizona.edu/icon/). Icon has particularly good string and list processing

facilities and is used to write many scripts and utilities, as well as both programming language

and natural language processing projects. Icon’s fantastic built-in data types, including structure

types such as lists and (hash) tables, have influenced several languages, including Python and

Unicon. Icon’s signature research contribution is its integration of goal-directed evaluation, in-

cluding backtracking and automatic resumption of generators, into a familiar mainstream syntax.

This leads us to Unicon’s first requirement.

Unicon requirement #1 – preserve what people love about
Icon
One of the things that people love about Icon is its expression semantics, including its generators

and goal-directed evaluation. A generator is an expression that is capable of computing more than

one result; several popular languages feature generators. Goal-directed evaluation is a semantic

to execute code in which expressions either succeed or fail, and when they fail, generators within

the expression can be resumed to try alternative results that might make the whole expression

succeed. This is a big topic beyond the scope of this section, but if you want to learn more, you

can check out The Icon Programming Language, Third Edition, by Ralph and Madge Griswold, at

www.cs.arizona.edu/icon.

http://unicon.org
http://www.cs.arizona.edu/icon/
www.cs.arizona.edu/icon

Why Build Another Programming Language?14

Icon also provides a rich set of built-in functions and data types so that many or most programs

can be understood directly from the source code. Unicon’s preservation goal is 100% compatibility

with Icon. In the end, we achieved more like 99% compatibility.

It is a bit of a leap from preserving the best bits to the immortality goal of ensuring old source code

will run forever, but for Unicon, we include that as part of requirement #1. We have placed a much

firmer requirement on backward compatibility than most modern languages. While C is very

backward compatible, C++, Java, Python, and Perl are examples of languages that have wandered

away, in some cases far away, from being compatible with the programs written in them back in

their glory days. In the case of Unicon, perhaps 99% of Icon programs run unmodified as Unicon

programs. Unicon requirement #2 was to support programming in large-scale projects.

Unicon requirement #2 – support large-scale programs
working on big data
Icon was designed for maximum programmer productivity on small-sized projects; a typical Icon

program is less than 1,000 lines of code, but Icon is very high level, and you can do a lot of com-

puting in a few hundred lines of code! Still, computers keep getting more capable, and modern

programmers are often required to write much larger programs than Icon was designed to handle.

For this reason of scalability, Unicon adds classes and packages to Icon, much like C++ adds them

to C. Unicon also improved the bytecode object file format and made numerous scalability im-

provements to the compiler and runtime system. It also refines Icon’s existing implementation

to be more scalable in many specific items, such as adopting a much more sophisticated hash

function. Unicon requirement #3 is to support ubiquitous input/output capabilities at the same

high level as the built-in types.

Unicon requirement #3 – high-level input/output for
modern applications
Icon was designed for classic UNIX pipe-and-filter text processing of local files. Over time, more

and more people wanted to use it to write programs that required more sophisticated forms of

input/output, such as networking or graphics.

Arguably, despite billionfold improvements in CPU speed and memory size, the biggest differ-

ence between programming in 1970 and programming in the 2020s is that we expect modern

applications to use a myriad of sophisticated forms of I/O: graphics, networking, databases, and

so forth. Libraries can provide access to such I/O, but language-level support can make it easier

and more intuitive.

Chapter 1 15

Support for I/O is a moving target. At first, with Unicon, I/O consisted of networking facilities and

GDBM and ODBC database facilities to accompany Icon’s 2D graphics. Then, it grew to include

various popular internet protocols and 3D graphics. The definition of what I/O capabilities are

ubiquitous continues to evolve, varying by platform, but touch input and gestures or shader

programming capabilities are examples of things that have become ubiquitous today, and maybe

they should be added to the Unicon language as part of this requirement. The challenge posed

by this requirement is increased by Unicon requirement #4.

Unicon requirement #4 – provide universally implementable
system interfaces
Icon is very portable. I have run it on everything, from Amigas to Crays to IBM mainframes with

EBCDIC character sets. Although the platforms have changed almost unbelievably over the years,

Unicon still retains Icon’s goal of maximum source code portability: code that gets written in

Unicon should continue to run unmodified on all computing platforms that matter.

For a very long time, portability meant running on PCs, Macs, and UNIX workstations. But again,

the set of computing platforms that matter is a moving target. These days, to meet this require-

ment, Unicon should be ported to support Android and iOS, if you count them as computing

platforms. Whether they count might depend on whether they are open enough and used for

general computing tasks, but they are certainly capable of being used as such.

All those juicy I/O facilities that were implemented for requirement #3 must be designed in such

a way that they can be multi-platform portable across all major platforms.

Having given you some of Unicon’s primary requirements, here is an answer to the question, why

build Unicon at all? One answer is that after studying many languages, I concluded that Icon’s

generators and goal-directed evaluation (requirement #1) were features that I wanted when

writing programs from now on. However, after allowing me to add 2D graphics to their language,

Icon’s inventors were no longer willing to consider further additions to meet requirements #2 and

#3. Another answer is that there was a public demand for new capabilities, including volunteer

partners and some financial support. Thus, Unicon was born.

Summary
In this chapter, you learned the difference between inventing a programming language and in-

venting a library API to support whatever kinds of computing you want to do. Several different

forms of programming language implementations were considered. This first chapter allowed

you to think about functional and non-functional requirements for your own language.

Why Build Another Programming Language?16

These requirements might be different for your language than the example requirements discussed

for the Java subset Jzero and the Unicon programming language, which were both introduced.

Requirements are important because they allow you to set goals and define what success will

look like. In the case of a programming language implementation, the requirements include

what things will look and feel like for the programmers that use your language, as well as what

hardware and software platforms it must run on. The look and feel of a programming language

include answering both external questions regarding how the language implementation and the

programs written in the language are invoked, as well as internal issues such as verbosity: how

much the programmer must write to accomplish a given compute task.

You may be keen to get straight to the coding part. Although the classic build-and-fix mentality of

novice programmers might work on scripts and short programs, for a piece of software as large as

a programming language, we need a bit more planning first. After this chapter’s coverage of the

requirements, Chapter 2, Programming Language Design, will prepare you to construct a detailed

plan for the implementation, which will occupy our attention for the remainder of this book!

Questions
1.	 What are the pros and cons of writing a language transpiler that generates C code, instead

of a traditional compiler that generates assembler or native machine code?

2.	 What are the major components or phases in a traditional compiler?

3.	 From your experience, what are some pain points where programming is more difficult

than it should be? What new programming language feature(s) address these pain points?

4.	 Write a set of functional requirements for a new programming language.

Join our community on Discord
Join our community’s Discord space for discussions with the authors and other readers:

https://discord.com/invite/zGVbWaxqbw

https://discord.com/invite/zGVbWaxqbw

2
Programming Language Design

Before trying to build a programming language, you need to define it. This includes the design

of the features of the language that are visible on its surface, including basic rules to form words

and punctuation. This also includes higher-level rules, called syntax, that govern the number

and order of words and punctuation in larger chunks of programs, such as expressions, state-

ments, functions, classes, packages, and programs. Language design also includes the underlying

meaning, also known as semantics.

Programming language design often begins with you writing example code to illustrate each of

the important features of your language, as well as show the variations that are possible for each

construct. Writing examples with a critical eye lets you find and fix many possible inconsistencies

in your initial ideas. From these examples, you can then capture the general rules that each lan-

guage construct follows. Write down sentences that describe your rules as you understand them

from your examples. Note that there are two kinds of rules. Lexical rules govern what characters

must be treated together, such as words, or multi-character operators, such as ++. Syntax rules,

on the other hand, are rules to combine multiple words or punctuation to form a larger meaning;

in natural language, they are often phrases, sentences, or paragraphs, while in a programming

language, they might be expressions, statements, functions, or programs.

Once you have come up with examples of everything that you want your language to do, and

have written down the lexical and syntax rules, it is time to write a language design document

(or language specification) to which you can refer while implementing your language. You can

change things later, but it helps to have a plan to work from.

Programming Language Design18

In this chapter, we’re going to cover the following main topics:

•	 Determining the kinds of words and punctuation to provide in your language

•	 Specifying the control flow

•	 Deciding on what kinds of data to support

•	 An overall program structure

•	 Completing the Jzero language definition

•	 Case study – designing graphics facilities in Unicon

Let’s start by identifying the basic elements that are allowed in the source code in your language.

Determining the kinds of words and punctuation to
provide in your language
Programming languages have several different categories of words and punctuation. In natural

language, words are categorized into parts of speech – nouns, verbs, adjectives, and so on. The

categories that correspond to the parts of speech that you will have to invent for a programming

language can be constructed by doing the following:

•	 Defining a set of reserved words or keywords

•	 Specifying characters in identifiers that name variables, functions, and constants

•	 Creating a format for literal constant values for built-in data types

•	 Defining single and multi-letter operators and punctuation marks

You should write down precise descriptions of each of these categories as part of your language

design document. In some cases, you might just make lists of particular words or punctuation

to use, but in other cases, you will need patterns or some other way to convey what is and is not

allowed in a category.

Chapter 2 19

For reserved words, a list will do for now. For names of things, a precise description must include

details such as what non-letter symbols are allowed in such names. For example, in Java, names

must begin with a letter and can then include letters and digits; underscores are allowed and

treated as letters. In other languages, hyphens are allowed within names, so the three symbols

a, -, and b make up a valid name, not a subtraction of b from a. When a precise description fails,

a complete set of examples will suffice.

Constant values, also called literals, are a surprising and major source of complexity in lexical

analyzers. Attempting to precisely describe real numbers in Java comes out something like this:

Java has two different kinds of real numbers – floats and doubles – but they look the same until

you get to the end, where there is an optional f (or F) or d (or D) to distinguish floats from doubles.

Before that, real numbers must have either a decimal point (.), an exponent (e or E) part, or both.

If there is a decimal point, there must be at least one digit on one side of the decimal or the other.

If there is an exponent part, it must have an e (or E), followed by an optional minus sign and

one or more digits. To make matters worse, Java has a weird hexadecimal real constant format,

consisting of 0x or 0X followed by digits in hex format, with an optional mantissa consisting of

a period followed by hexadecimal digits, and a mandatory power part consisting of a p (or P),

followed by digits in the decimal format that multiplies the number by 2, raised to that power. If

you want to write constants like 0x3.0fp8, then this IEEE-based format is for you.

Describing operators and punctuation marks is usually almost as easy as listing the reserved

words. One major difference between operators and punctuation marks is that operators usually

have precedence rules that you will need to determine. For example, in numeric processing, the
multiplication operator has almost always higher precedence than the addition operator, so

x + y * z will multiply y * z before it adds x to the product of y and z. In most languages, there

are at least three to five levels of precedence, and many popular mainstream languages have from

13 to 20 levels of precedence that must be considered carefully.

Programming Language Design20

The following diagram shows the operator precedence table for Java, from the lowest to highest

precedence. We will need it for Jzero:

Figure 2.1: Java operator precedence

Chapter 2 21

The preceding diagram shows that Java has a lot of operators, organized into 10 levels of prece-

dence, although I might be simplifying this a bit. In your language, you might get away with fewer,

but you will have to address the issue of operator precedence if you want to build a real language.

A similar issue is operator associativity. In many languages, most operators associate from left

to right, but a few unusual ones associate from right to left. For example, the x + y + z expres-

sion is equivalent to (x + y) + z, but the x = y = 0 expression is equivalent to x = (y = 0).

The principle of least surprise applies to operator precedence and associativity, as well as to

what operators you put in your language in the first place. If you define arithmetic operators

and give them unusual precedence or associativity, people will reject your language out of hand.

If you happen to be introducing new, possibly domain-specific data types, you have way more

freedom to define operator precedence and associativity for any new operators you introduce in

your language for those types.

Once you have determined what the individual words and punctuation in your language should

be, you can work your way up to larger constructs. This is the transition from lexical analysis to

syntax, and syntax is important because it is the level at which bits of code become large enough

to specify some computation to be performed. We will look at this in more detail in later chapters,

but at the design stage, you should at least think about how programmers will specify the control

flow, declare data, and build entire programs. First, you must plan for the control flow.

Specifying the control flow
The control flow is how a program’s execution proceeds from place to place within the source

code. Most control flow constructs should be familiar to programmers who have been trained in

mainstream programming languages. The innovations in your language design can then focus on

the features that are novel or domain-specific, and that motivated you to create a new language

in the first place. Make these novel things as simple and readable as possible. Envision how those

new features ought to fit into the rest of the programming language.

Every language must have conditionals and loops, and almost all of them use if and while to

start them. You could invent your own special syntax for an if expression, but unless you’ve got a

good reason to, you would be shooting yourself in the foot. Here are some control flow constructs

from Java that would certainly be in Jzero:

if (e) s;

if (e) s1 else s2;

while (e) s;

for (…) s;

Programming Language Design22

Here are some other less common Java control flow constructs that are not in Jzero. If they were

to appear in a program, what should a Jzero compiler do with them?

switch (e) { … }

do s while (e);

Since these constructs are not in Jzero, if they appear in the input source code, then by default,

our compiler will print a cryptic syntax error message that doesn’t explain things very well. In

the next two chapters, we will make our compiler for Jzero print a nice error message about the

Java features that it does not support.

Besides conditionals and loops, languages tend to have a syntax to call subroutines and return

afterward. All these ubiquitous forms of control flow are abstractions of the underlying machine’s

capability to change the location where instructions are executing – the GOTO. If you invent a

better notation for changing the location where instructions are executing, it will be a big deal.

The biggest controversy when designing many or most control flow constructs seems to be whether

they are statements, or whether you should make them expressions that produce a result that

can be used in a surrounding expression. I have used languages where the result of if expressions

are useful – C/C++/Java even have an operator for that: the i?t:e conditional operator. I have not

found a language that did something very meaningful by making a while loop an expression; the

best the languages did was to have the while expressions produce a result, telling us whether the

loop exited due to the test condition or an internal break.

If you are inventing a new language from scratch, one of the big questions for you is whether you

should come up with some new control structure(s) to support your intended application domain.

For example, suppose you want your language to provide special support for investing in the

stock market. If you manage to come up with a better control structure for specifying conditions,

constraints, or iterative operations within this domain, you might provide a competitive edge

to those who are coding in your language for this domain. The program will have to run on an

underlying von Neuman instruction set, so you will have to figure out how to map any such new

control structure to instructions such as Boolean logic tests and GOTO instructions.

Whatever control flow constructs you decide to support, you will also need to design a set of

data types and declarations that reflect the information that the programs in your language will

manipulate.

Chapter 2 23

Deciding on what kinds of data to support
There are at least three categories of data types to consider in your language design. We will

describe each of these in this section. The first one is atomic, scalar primitive types, often called

first-class data types. The second is composite or container types, which hold and organize collec-

tions of values. The third (which may be variants of the first or second categories) is application

domain-specific types. You should formulate a plan for each of these categories.

Atomic types
Atomic types are generally built-in and immutable. As the word immutable suggests, you can-

not modify existing atomic values, only combine them to compute new values. Pretty much all

languages have such built-in atomic types for numbers and a few additional types. A Boolean

type, null type, and maybe a string type are common atomics, but some languages have others.

You decide just how complicated to get with atomics: how many different machine representa-

tions of integers and real numbers do programs written in your language need? Some higher-level

languages such as BASIC might provide a single type for all numbers, while lower-level languages

such as C or C++ might provide 5 or 10 (or more) representations for different sizes and kinds of

integers, and another few for real numbers. The more you add, the more flexibility and control

you give to programmers who use your language, but the more difficult your implementation

task will be later. In addition, the increased complexity reduces readability and makes programs

harder to understand.

Similarly, it is impossible to design a single string data type that is ideal for all applications that

use strings a lot. But how many string types do you want to support? One extreme is having no

string type at all, only a short integer type to hold characters. Such languages consider strings to

be composite types. Maybe strings are supported only by a library rather than in the language.

Strings may be arrays or objects, but even such languages usually have some special lexical rules

that allow string constant values to be given as double-quoted sequences of characters of some

kind. Another extreme is that, given the importance of strings in many application domains, your

language might want to support multiple string types for various character representations (ASCII,

UTF8, and so on) with auxiliary types (character sets) and special types and control structures

that support the analysis and construction of strings. Many popular languages treat strings as

a special atomic type.

Programming Language Design24

If you are especially clever, you may decide to support only a few built-in types for numbers and

strings but make those types as flexible as possible. Once you go beyond integers, real numbers,

and strings, the only types that are universal are container types, which allow you to assemble

data structures.

Some of the things you must think about regarding atomic types include the following:

•	 How many values do they have?

•	 How are all those values encoded as literal constants in the source code?

•	 What kinds of operators or built-in functions use this type as operands or parameters?

The first question will tell you how many bytes the type will require in memory. The second and

third questions tie back to determining the rules for words and punctuation in the language. The

third question may also give insight into how much effort, in terms of the code generator or run-

time system, will be required to implement support for the type in your language. Atomic types

can be more work or less work to implement, but they are seldom as complicated as composite

types, which we will discuss next.

Composite types
Composite types are types that help you allocate and access multiple values in a coordinated

fashion. Languages vary enormously regarding the extent of their syntax support for composite

types. Some only support arrays and structs (Java programmers: you can think of these as classes

without methods) and require programmers to build all their own data structures on top of these.

Many provide all higher-level composite types via libraries. However, some higher-level languages

provide numerous sophisticated data structures as built-ins with syntax support.

The most ubiquitous composite type is an array type, where multiple values are accessed using

a numerically contiguous range of integer indices. You will probably have something like an

array in your language. Your main design considerations should be how the indices are given,

and how changes in the size of the composite value are handled. Most popular languages use

indices that start at zero. Zero-based array indexes simplify index calculations and are easier

for a language inventor to implement, but they are less intuitive for new programmers. Some

languages use 1-based indices or allow a programmer to specify a range of indices, starting at an

arbitrary integer other than 0.

Regarding changes in size, some languages allow no changes in size at all in their array types, or

they make the programmer jump through hoops to build new arrays of different sizes based on

existing arrays.

Chapter 2 25

Other languages are engineered to make adding values to an array a cheap and easy operation.

No one design is perfect for all applications, so you just pick one and live with the consequences:

do you choose to support multiple array-like data types for different purposes, or instead choose

to design a very clever type that accommodates a range of common uses well?

Besides arrays, you should think about what other composite types you need. Almost all lan-

guages support a record, struct, or class type to group values of several different types together

and access them by names, called fields. The more elaborate you get with this, the more complex

your language implementation will be. If you need proper object orientation in your language, be

prepared to pay for it in time spent writing your compiler and runtime code. Features like classes

and inheritance do not come for free. Language designers are advised to keep things simple, but

as a programmer, I would not want to use a programming language that did not give me this

capability in some form.

You might be able to think of several other composite types that are essential for your language,

which is great, especially if they will be used a lot in the programs that you care about. I will talk

about one more composite type that is of great practical value: the (hash) table data type, also

commonly called a dictionary type. A table type is something halfway in between an array and

a record type. You index values using names, and these names are not fixed; new names can be

computed while the program runs. Any modern language that omits this type is just leaving

many of its prospective users out. For this reason, your language may want to include a table type.

Composite types are general-purpose “glue” that’s used to assemble complex data structures, but

you should also consider whether some special-purpose types, either atomic or composite, belong

in your language to support applications that are difficult to write in general-purpose languages.

Domain-specific types
In addition to whatever general-purpose atomic and composite types you decide to include, you

should think about whether your programming language is aimed at a domain-specific niche; if so,

what data types can your language include to support that domain? There is a smooth continuum

between domain-specific languages that provide domain-specific types and control structures

and general-purpose languages such as C++ and Java, which provide libraries for everything.

Class libraries are powerful, but for some applications and domains, the library approach may

be more complex and bug-prone than a language expressly designed to support the domain. For

example, Java and C++ have string classes, but they do not support complex text-processing

applications better than languages that have special-purpose types and control structures for

string processing. Besides data types, your language design will need an idea of how programs

are assembled and organized.

Programming Language Design26

Overall program structure
When looking at the overall program structure, we need to look at how entire programs are orga-

nized and put together, as well as the important question of how much nesting is in your language.

It almost seems like an afterthought, but how and where will the source code in programs begin

executing? In languages based on C, execution starts from a main() function, while in scripting

languages, the source code is executed as it is read in, so there is no need for a main() function

to start the ball rolling.

Program structure also raises the basic question of whether a whole program must be translated

and run together, or if different packages, classes, or functions can be separately compiled and

then linked and/or loaded together for a program to run. A language inventor can dodge a lot

of implementation complexity by either building things into the language (if it is built in, there

is no need to figure out linking), requiring the whole program’s source code to be presented at

runtime, or by generating code for some well-known standard execution format where someone

else’s linker and loader will do all the hard work.

Perhaps the biggest design question relating to the overall program structure is which constructs

may be nested, and what limits on nesting are present, if any. This is perhaps best illustrated by

an example. Once upon a time, two obscure languages were invented around 1970 that struggled

for dominance: C and Pascal.

The C language was almost flat – a program was a set of functions linked together, and only

relatively small (fine-grained) things could be nested: expressions, statements, and, reluctantly,

struct definitions.

In contrast, the Pascal language was fabulously more nested and recursive. Almost everything

could be nested. Notably, functions could be embedded within functions, arbitrarily deep. Al-

though C and Pascal were roughly equivalent in power, and Pascal had a bit of a head start and

was by far the most popular in university courses, C eventually won. Why? There are many con-

tributing factors that might explain why C won out over Pascal. One factor might be that nesting

functions adds complexity without adding much value.

Because C won, many modern mainstream languages (I am thinking especially of C++ and Java

here) started almost flat. But over time, they have added more and more nesting. Why is this?

Perhaps it is natural for programming languages to add features over time until they are very

complex. Niklaus Wirth saw this coming and advocated for a return to smallness and simplicity

in software, but his pleas largely fell on deaf ears, and his languages support lots of nesting too.

Chapter 2 27

What is the practical upshot for you, as a budding language designer? Don’t over-engineer your

language. Keep it as simple as possible. Don’t nest things unless they need to be nested. And be

prepared to pay (as a language implementor) every time you ignore this advice!

Now, it’s time to draw a few programming language design examples from Jzero and Unicon.

In the case of Jzero, since it is a subset of Java, the design is either a big nothingburger (we use

Java’s design) or it is subtractive: what do we take away from Java to make Jzero, and what will

that look and feel like? Despite early efforts to keep it small, Java is a large language. If, as part

of our design, we make a list of everything that is in Java that is not in Jzero, it will be a long list.

Due to the constraints of page space and programming time, Jzero must be a tiny subset of Java.

However, ideally, any legal Java program that is input to Jzero would not fail embarrassingly –

it would either compile and run correctly, or it would print a useful explanatory message that

conveys what Java feature(s) are being used that Jzero does not support. So that you can easily

understand the rest of this book, as well as to help keep your expectations to a manageable size,

the next section will cover additional details regarding what is in Jzero and what is not.

Completing the Jzero language definition
In the previous chapter, we listed the requirements for the language that will be implemented in

this book, and the previous section elaborated on some of its design considerations. For reference

purposes, this section will describe additional details regarding the Jzero language. If you find

any discrepancies between this section and our Jzero compiler, then they are bugs. Programming

language designers use more precise formal tools to define various aspects of a language; nota-

tions to describe lexical and syntax rules will be presented in the next two chapters. This section

will describe the language in layman’s terms.

A Jzero program consists of a single class in a single file. This class may consist of multiple meth-

ods and variables, but all of them are static. A Jzero program starts by executing a static method

called main(), which is required. The kinds of statements that are allowed in Jzero are assignment

statements, if statements, while statements, and the invocation of void methods. The kinds of

expressions that are allowed in a Jzero program include arithmetic, relational, and Boolean logic

operators, as well as the invocation of non-void methods.

The Jzero language supports the bool, char, int, and long atomic types. The int and long types

are equivalent to 64-bit integer data types.

