<packb

G

Django in Production

Expert tips, strategies, and essential frameworks
for writing scalable and maintainable code in Django

ARGHYA SAHA

Django in Production

Expert tips, strategies, and essential frameworks for writing
scalable and maintainable code in Django

Arghya Saha

Django in Production

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Rohit Rajkumar

Publishing Product Manager: Jane Dsouza
Book Project Manager: Aishwarya Mohan
Senior Editor: Rashi Dubey

Technical Editor: K Bimala Singha

Copy Editor: Safis Editing

Indexer: Hemangini Bari

Production Designer: Alishon Mendonca

DevRel Marketing Coordinators: Nivedita Pandey and Anamika Singh
First published: April 2024
Production reference: 1070324

Published by Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK
ISBN 978-1-80461-048-0

www . packtpub.com

http://www.packtpub.com

To my “Maa,” Anima Saha, and to the memory of my “Baba,” for their constant support in helping me
reach where I am today. To my partner, Parul, for being a constant inspiration and motivation.

- Arghya Saha

Contributors

About the author

Arghya (argo) Saha, is a software developer with 8+ years of experience and has been working with
Django since 2015. Apart from Django, he is proficient in JavaScript, React]S, Node.js, Postgres,
AWS, and several other technologies. He has worked with multiple start-ups, such as Postman and
HealthifyMe, among others, to build applications at scale. He currently works at Abnormal Security as
a senior Site Reliability Engineer to explore his passion in the infrastructure domain.

In his spare time, he writes tech blogs. He is also an adventurous person who has done multiple
Himalayan treks and is an endurance athlete with multiple marathons and triathlons under his belt.

This book is dedicated to my Maa and memories of my Baba. I would like to thank my partner, Parul,
and all my friends who supported me throughout this journey. I am grateful to Ganesh, Rahul, and
everyone who helped me with my book.

About the reviewers

Abdul-Rahman Mustafa Saber Abdul-Aziz is an Egyptian Python backend developer, senior Al
instructor, capstone projects lead, and IBM consultant. He graduated from Assiut University in Upper
Egypt. He believes that to be great, you must take great responsibility.

I want to thank my family, my friends, and my future wife, who I haven’t met yet. I love you so much.
I want to thank my father once again; everything I am now is thanks to him. This is the second time
that my name has appeared on the Contributors’ list of a book. I want to thank Dr. Rania Hafez, Dr.
Huda Goda, Dr. Abdul-Rahman Eliwa, and Mr. Ehab, who always pushed me toward progress, and
my close friends, Muhammad Adly, Ahmed Fouad, and many others. Thank you all for everything you
gave me; you are my family.

Ruben Atinho, a software engineer specializing in backend engineering, explores the vast realms of
technology. Proficient in Python, Django, and PostgreSQL, and experienced with Golang, he combines
technical expertise with a passion for reading open source code. Beyond the code base, Ruben finds
fulfillment in the harmonies of music, insightful articles, captivating books, and the imaginative
narratives of anime.

Md Enamul Hasan is a seasoned full stack Python developer with over a decade of professional
experience in software and web application development. Based in New York, United States, Enamul is
renowned for his expertise in Python, Django, React, and AWS. He has successfully led the development
of various software products, including ERP, e-commerce, and data-driven applications.

In addition to his technical proficiency, Enamul has excelled in leadership roles, contributing significantly
to project success. He actively shares his knowledge, participating in forums and conferences and
showcasing a passion for problem-solving in the ever-evolving software development landscape.

Enamul extends gratitude to the author for the opportunity to review Django in Production. His
extensive experience in Python Django development adds depth to the review, highlighting the book’s
value in bridging theory and practice in the dynamic tech industry.

Table of Contents

Preface XV
Part 1 - Using Django and DRF to Build Modern
Web Application
Setting Up Django with DRF 3
Technical requirements 4 Creating RESTful API endpoints
Why Django? 4 with DRF 16
What is available with Django? 5 Best practices for defining RESTful APIs 17
What is the MVT framework? 6 Best practices to create a REST API with DRF 18
Creating a “Hello World” web app Working with views using DRF 24
with Django and DRF 7 Functional views 25
Creating our Django hello_world project 8 Class-based views 25
Creating our first app in Django 1" Introducing API development tools 27
Linking app views using urls.py 13 Summary 28
Integrating DRF 14
Exploring Django ORM, Models, and Migrations 29
Technical requirements 30 Using models and Django ORM 35
Setting up PostgreSQL Adding Django models 35
with a Django project 31 Basic ORM concepts 36
Creating a PostgreSQL server 31 How to get raw queries from ORM 39
Normalization using Django ORM 40

Configuring Django with PostgreSQL 33

viii

Table of Contents

Exploring on_delete options 44 Keep the default primary key 55
Using model inheritance 44 Use transactions 55
. . Avoid ic foreign k 56
Understanding the crux of Django VoIC geficric forelgn keys
. . Use finite state machines (FSMs) 56
migrations 46
o o Break the model into packages 57
Demystifying migration management
commands 46 Learning about performance
Performing database migrations like a pro 48 optimization 58
Exploring best practices for working De;nyStilfying performance using explain
with models and ORM 5] Andanalyze o8
Using index 59
Use base models 51 . . .
Using Django ORM like a pro 60
Use timezone.now() for any Datab , f " 64
DateTime.related data 52 atabase connection configuration
How to avoid circular dependency in models 52 Exploring Django Async ORM 66
Define __str__ for all models 53 Summary 67
Use custom model methods 54
Serializing Data with DRF 69
Technical requirements 70 Remove default validators from the DRF
Understanding the basics of DRF Serializer class 8
Serializers 70 Mastering DRF Serializers 86
Using Model Serializers 71 Using source 86
Creating a new model object 72 Embracing SerializerMethodField 86
Updating existing model Objects 73 Using validators 86
Retrieving data from the Model object instance 74 Using to_internal_value 86
Exploring the Meta class 75 Using to_representation 87
. R . Use a context argument to pass information 87
Implementing Serializer relations 78 . & P
)) o Customizing fields 88
Workn.lg with nested Serializers 79 Passing a custom QuerySet to PrimaryKeyField 88
Explorfng sou'rce.:) 80 Building DynamicFieldsSerializer 89
Exploring SerializerMethodField 81 Avoiding the N+1 query problem 389
Validating data with serializers 82 Usin g Serializers with DRE views 89
Custo.mlzmg field-level valldatlo‘n 82 Working with generic views 9
Defining a custom field-level validator 8 Filtering with SearchFilter and OrderingFilter 91
Performing object-level validation 83
Defining custom object-level validators g4 ~ Summary 92
The order of the evaluation of validators 84

Table of Contents

4

Exploring Django Admin and Management Commands 93
Technical requirements 94 Renamingadmin URLs 100
Exploring Django Admin 94 Using two-factor authentication (2FA) for
. o admin users 100
Creating a superuser in Django 94
. . L Using Custom Admin Paginator 101
Understanding the Django Admin interface 94
Disabling ForeignKey drop-down options 101
Customizing Django Admin 97 Using list_select_related 102
Adding custom fields 97 Overriding get_queryset for performance 102
Using filter_horizontal 97 Adding django-json-widget 102
Using get_queryset 98 Using custom actions 104
Using third-party packages and themes 99 Using permissions for Django Admin 104
Using Django Admin logs 99

Optimizing Django Admin
for production 100

5

Creating custom management
commands 105

Summary 107

Mastering Django Authentication and Authorization 109
Technical requirements 110 Using DRF token-based
Learning the basics of Django authentication 120
authentication 110 Integrating token-based authentication
Customizing the User model 111 ntoDRE 120
. . . . Adding DRF token-based authentication to a

Using a OneToOneField relationship Di .

jango pro]ect 121

with the User model 114
Using Django permissions and groups 114
Using permissions and groups in Django

Admin 115
Creating custom permissions 117

Using Django permissions and groups for an
API 118

Caveats of using permissions 119

Understanding the limitations of token-based
authentication of DRF 123

Learning about third-party token-

based authentication packages 124
Integrating social login into Django

and DRF 125
Summary 126

Table of Contents

Part 2 - Using the Advanced Concepts of Django

Caching, Logging, and Throttling 129
Technical requirements 129 Best practices for throttling in production 139
Caching with Django 130 Logging with Django 139
Using django-cacheops 132 Setting up logging 140
Best practices for caching in production 135 Best practices for logging in production 145
Throttling with Django 136 Summary 145
Using Pagination, Django Signals, and Custom Middleware 147
Technical requirements 147 Creating custom signals 152
Paginating responses in Django and Working with signals in production 154
DRF 148 Working with Django middleware 155
Understanding pagination 148 Creating custom middleware 156
Using pagination in DRF 149 Summary 157
Demystifying Django signals 151

Using Celery with Django 159
Technical requirements 159 Best practices for using Celery 166
Asynchronous programming in Using celery beat with Django 167
Django 160 Summary 169
Using Celery with Django 160

Integrating Celery and Django 161

Interfaces of Celery 164

Table of Contents

9

Writing Tests in Django

Technical requirements 171
Introducing the different types of

tests in software development 172
Unit testing 173
Integration testing 173
E2E testing 173

Setting up tests for Django and DRF 174

Structuring and naming our test cases 174
Setting up a database for tests 176
Writing basic tests in DRF 177
Writing tests for advanced use cases 179
Using Django runners 188

10

Exploring Conventions in Django

171
Learning best practices to write tests 189
Using unit tests more often 189
Avoiding time bomb test failures 190
Avoiding brittle tests 191
Using a reverse function for URL path in tests 191
Using authentication tests 192
Using test tags to group tests 192
Using Postman to create an integration test
suite 193
Creating different types of tests 193
Avoiding tests 194

Exploring Test-Driven Development 195

Technical requirements 198
Code structuring for Django projects 198
Creating files as per functionalities 198
Avoiding circular dependencies 200
Creating a “common” app 200

Working with a settings file for production 201

Working with exceptions and errors 202

Using feature flags 204

Summary 195

197
Configuring Django for production 205
Setting up CORS 206
Exploring WSGI 207
Summary 208

xi

Xii

Table of Contents

Part 3 - Dockerizing and Setting Up a Cl Pipeline

for Django Application
11

Dockerizing Django Applications 211
Technical requirements 212 Creating a Dockerfile for

Learning the basics of Docker 212 2 Django project 220
Installing Docker 215 Composing services using docker-

Testing Docker on your local system 216 compose.yaml 223
Important commands for Docker 217 Creating a .env file 225

Working with the requirements.txt
file 218

12

Accessing environment variables in Django 226

Starting a Django application using Docker 227

Summary 228

Working with Git and Cl Pipelines Using Django 229
Technical requirements 229 Working with GitHub Actions for the CI
Using Git efficiently 230 Pipeline 240
Branching strategy for Git 231 Se.tting up a'CI pipeline for Django using

GitHub Actions 240
Follow'ing good practices while using git Recommended GitHub Actions resources 246
commit 232
Tools with Git 233 Setting up code review guidelines 247
Integrating Git hooks into a Django project 234 Context and description 248
Using lefthook 234 Short code changes to review 248
Using git merge versus git rebase 236 Review when the code is ready 248
Performing code release 238 Good code reviewer 249
Performing hot-fixing on code 238

Summary 250

Working with GitHub and GitHub
Actions 239

Table of Contents

Part 4 - Deploying and Monitoring Django
Applications in Production

13

Deploying Django in AWS 253
Technical requirements 254 Integrating AWS Elastic Beanstalk to
Learning the basics of AWS 254 deploy Django 264
Creating an account in AWS 255 Integrating Beanstalk with a basic Django app 264
Identity and Access Management 259 Deploying a Django application using GitHub

EC2 261 Actions in Elastic Beanstalk 279
Elastic Load Balancer (ELB) 261 Following the best practices for the

Elastic Beanstalk 261 AWS infrastructure 282
RDS for Postgres 262 Best practices for RDS 282
ElastiCache for Redis 262 Best practices for ElastiCache 283
Security groups and network components 263 Best practices for Elastic Beanstalk 283
AWS Secrets Manager 263 Best practices for IAM and security 284
Route 53 263

The AWS Billing console 263 ~Summary 284
CloudWatch 263

14

Monitoring Django Application 285
Technical requirements 285 Integrating APM tools 293
Integrating error monitoring tools 286 Integrating New Relic into the Django project 294
Integrating Rollbar into a Django project 286 Exploring the New Relic dashboard 296
Integrating Rollbar with Slack 288 Creating New Relic alert conditions 299
Best practices while working with error Monitoring AWS EC2 instances with New Relic 301
monitoring tools 289 Sending logs from Django to New Relic 301
Integrating uptime monitoring 290 Working with metrics and events using NRQL 304
Adding a health check endpoint 290 Integrating messaging tools

Using BetterStack for uptime monitoring 291 using Slack 305

Xiv Table of Contents

Handling production incidents better 306 Summary 309
Blameless RCA for incidents 307
Index 311

Other Books You May Enjoy 324

Preface

Hey there! As the name suggests, Django in Production is a book to help developers put their
application code into production. In today’s world, coding has become a profession that people get
into after joining a 3-6 month boot camp. With the start-up boom, most of these developers are able
to land a job after their boot camp course, since they are able to write code and hack any product
together. However, a couple of months into the job, they want to learn about the best practices and
understand all the aspects that senior developers in the industry know and perform, but most start-
ups don’'t have many senior developers due to budget and talent scarcity. This book is going to give
them a too long; didn’t read (TLDR) version of software development best practices, which they need
to know to get to the next level.

Who this book is for

This book is for any software developer who understands the basic concepts of Django but now needs
some help putting their code to production using the right tools, or someone who does not have enough
guidance to know how to do the work the right way. We are assuming you have a basic understanding
of how to write code in Django and now want to improve your skills.

What this book covers

Chapter 1, Setting Up Django with DRF, covers the basic project setup of Django and Django Rest
Framework (DRF). It will also help you to understand the fundamentals of APIs and how to design
a REST APL.

Chapter 2, Exploring Django ORM, Models, and Migrations, covers how to integrate Django with a
database. Django ORM and migrations are powerful features; we learn about the core concepts and
how to use them efficiently in this chapter.

Chapter 3, Serializing Data with DRF, explores the concept of serialization and how developers can
use DREF serializers to write better application code.

Chapter 4, Exploring Django Admin and Management Commands, covers the core concepts of Django
admin. This chapter covers all the best practices on how to use Django admin and create custom
Django management commands.

Chapter 5, Mastering Django Authentication and Authorization, covers the key concepts of authentication
and authorization. Django provides authentication and authorization out of the box, and we will
explain in detail how developers can use the built-in features of Django and DRF for authentication.

XVi

Preface

Chapter 6, Caching, Logging, and Throttling, covers all the concepts of caching and how to integrate
Redis with Django for caching. Logging is a crucial component of any web application in production
and, in this chapter, we will learn how to integrate logging into a Django application.

Chapter 7, Using Pagination, Django Signals, and Custom Middleware, covers all the advanced concepts
of Django. Developers can use Django signals to write decoupled code. Django also gives the flexibility
to create custom middleware that can help developers to improve features.

Chapter 8, Using Celery with Django, shows how to process asynchronous tasks for web applications.
In this chapter, developers will get an understanding of how to integrate Celery into a Django project.

Chapter 9, Writing Tests in Django, covers the core concepts of writing test cases for Django. In
this chapter, you will learn the best practices to follow while writing test cases and understand the
importance of writing test cases for a project.

Chapter 10, Exploring Conventions in Django, shows all the best practices and conventions that are used
while working with Django. This chapter covers a lot of concepts that are opinionated, and you are
expected to read this chapter as an outline and pick/learn about concepts by using your own judgment.

Chapter 11, Dockerizing Django Applications, covers how to integrate Docker with a Django application.

Chapter 12, Working with Git and CI Pipelines Using Django, covers the concepts of version control
and how to efficiently use Git in a Django project. In this chapter, you will learn how to integrate
GitHub Actions to create a CI pipeline.

Chapter 13, Deploying Django in AWS, covers how to deploy Django applications in production using different
AWS services. In this chapter, you will learn how to deploy and scale the Django application in production.

Chapter 14, Monitoring Django Applications, covers how to monitor Django applications in production.
There are different types of monitoring needed in production, such as error monitoring, application
performance monitoring, uptime monitoring, and so on. In this chapter, you will learn how to integrate
different tools available on the market to monitor Django applications.

To get the most out of this book

You will need to have a basic understanding of Django and should be comfortable in writing basic Django
application code. In this book, we will learn about many of the core concepts of Django and you need to be
able to follow those code examples. We will introduce a lot of third-party tools/platforms that may be paid/
free, and you are expected to create an account on these platforms and integrate them into the Django project.

Preface

Software/hardware covered in the book Operating system requirements

Python 3.10 and above Windows, macOS, or Linux

Django 4.x, Django 5.0 and above

Python packages such as celery, django-fsm, factory-boy,
freezetime,django-json-widget, rest framework
Docker

Amazon Web Services (AWS), ElephantSQL, Neon (https://
neon. tech), Redis

Tools such as Rollbar, NewRelic, Better Uptime.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Django-in-Production. If there’s an update to the code, it will be
updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at ht tps: //
github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Since
we have specified the DemoViewVersion class, this view would only allow the v1, v2, and v3
versions in the URL path; any other version in the path would get a 404 response”

A block of code is set as follows:

urlpatterns = [

path('apiview-class/', views.DemoAPIView.as view())

xvii

https://neon.tech
https://neon.tech
https://github.com/PacktPublishing/Django-in-Production
https://github.com/PacktPublishing/Django-in-Production
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

xviii

Preface

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

urlpatterns = [
path('hello-world/', views.hello world),
path('demo-version/', views.demo version),
path('custom-version/', views.DemoView.as view()),
path('another-custom-version/', views.AnotherView.as view())

]

Any command-line input or output is written as follows:

celery --app=config beat --loglevel=INFO

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in
menus or dialog boxes appear in bold. Here is an example: “Click on the Create New Instance button”

Tips or important notes

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub . com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www . packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors . packtpub. com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com

Xix

Share Your Thoughts

Once you've read Django in Production, wed love to hear your thoughts! Please visit https://
packt.link/r/1804610488 for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering

excellent quality content.

https://packt.link/r/1804610488
https://packt.link/r/1804610488

XX

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don't worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804610480

2. Submit your proof of purchase

3. That’s it! We'll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804610480

Part 1 -
Using Django and DRF to
Build Modern Web Application

In the first part of the book, we will get an overview of how to use Django and Django Rest Framework
(DREF) to create a modern web application. We can expect to learn all the concepts related to Django
ORM and DREF serializers, which are crucial to building any modern web application. Django Admin
and Authentication are one of the most widely appreciated features of Django. We will learn all the
best practices that a developer should know about before using Django and DRF in production.

This part has the following chapters:
o Chapter 1, Setting Up Django with DRF
o Chapter 2, Exploring Django ORM, Models, and Migrations
o Chapter 3, Serializing Data with DRF
o Chapter 4, Exploring Django Admin and Management Commands

o Chapter 5, Mastering Django Authentication and Authorization

1
Setting Up Django with DRF

In 2003, the Django project was started by developers Adrian Holovaty and Simon Willison from World
Online, a newspaper web operation company, and was open sourced and first released in the summer
of 2005. When Django was first built, the world was still using dial-up modem internet connections,
mobile devices were still not popular, smartphones didn’t see the daylight, and people would access
web pages through their desktops and laptops. Django was the perfect framework that had all the
features needed to build a web application for that age.

Over the last two decades, technology has evolved drastically:

o We have moved from dial-up internet connections to 4G/5G internet connections

e 55% of the world’s internet traffic came from mobile devices in 2022 (https://radar.
cloudflare.com/)

In this book, we shall see how to build a modern web application using Django and deep dive into
the core concepts that a developer should know to create a scalable web application for startups.
A developer building a product for a startup is expected to be more than just a regular developer writing
code in Django; they are expected to develop their code, write tests for the business logic, deploy their
applications to the web, and finally keep monitoring the service they have deployed. Here, we will
learn how easy it is to develop web applications with Django and the best practices that developers in
the industry follow, especially in startups, to make their development cycle easier and faster.

In this first chapter, we shall learn the basics of Django and how to set up a Django project and structure
the project folders. Since we shall mostly work with RESTful APIs throughout this book, we will learn
about the conventions of the REST API and the crux of setting up a Django project with Django Rest
Framework (DRF) for creating RESTful APIs. We shall also focus on versioning APIs and how we
can implement versioning using DRE DRF gives us the flexibility to create both functional and class-
based views; we shall learn about them in this chapter, along with their pros and cons.

https://radar.cloudflare.com/
https://radar.cloudflare.com/

4 Setting Up Django with DRF

We will cover the following topics:
o Why Django?
o Creating a “Hello World” web app using Django and DRF
o Creating RESTful endpoints with DRF
o Working with views using DRF

+ Introducing API development tools

Technical requirements

In this chapter, we shall do the basic project setup and also write our first Hello World app. Though
this book is for developers who already know how to write a basic web application, anyone with decent
programming skills can pick up this book and learn how to create a scalable Django web application.
The following are the skill sets that you should possess to follow this chapter:

o Good Python programming knowledge and familiarity with packages and writing loops,
conditional statements, functions, and classes in Python.

o A basic understanding of how web applications work and have written some form of API or
web app before.

« Even though we shall try to cover most of the concepts from scratch, having basic knowledge of
Django would be great. The Django Girls tutorial is a good resource to learn the basics: https://
tutorial.djangogirls.org/en/.

You can find the code for this chapter in this booK’s GitHub repository: https://github.com/
PacktPublishing/Django-in-Production/tree/main/Chapter0l.

(A
Important note

If you have any doubts about any of the topics mentioned in this or other chapters, feel free
to create GitHub issues that specify all the relevant information (https://github.com/
PacktPublishing/Django-in-Production/issues) or join our Django in
Production Discord channel and ask us. Here is the invite link for the Discord server, where
you can reach me directly: https://discord.gg/FCrGUEmDyP.

- J

Why Django?

Django is a web framework based around Python, one of the most popular and easy-to-learn coding
languages out there. Since Python is the go-to language for data science and artificial intelligence/
machine learning, developers can easily learn Django without having to learn an additional language
for building web applications.

https://tutorial.djangogirls.org/en/
https://tutorial.djangogirls.org/en/
https://github.com/PacktPublishing/Django-in-Production/tree/main/Chapter01
https://github.com/PacktPublishing/Django-in-Production/tree/main/Chapter01
https://github.com/PacktPublishing/Django-in-Production/issues
https://github.com/PacktPublishing/Django-in-Production/issues
https://discord.gg/FCrGUfmDyP

Why Django?

Django’s tagline, “Django — The web framework for perfectionists with deadlines, proves its commitment
to faster and more efficient development, further emphasized by its batteries-included principle that
all the basic and widely used functionalities come out of the box with the framework rather than us
having to install additional packages. This gives Django an additional advantage over other frameworks,
such as Flask.

What is available with Django?

Django has evolved in the last decade and is currently in version 5.x, which has some promising new
features, such as asynchronous support. However, the core modules of Django are still the same,
with the same principles. When a new developer wants to learn Django, an organization wants to
pick Django for their new project, or a startup with limited resources is looking to pick the perfect
framework for their tech stack, they want to know why they should learn about Django. To answer
this question, we shall learn more about the features of Django.

Let’s look at the salient features of Django that the framework provides out of the box:

« Inany organization, speed of execution is very important for the success of a product. Django
was designed to help developers take applications from the concept phase to the product phase
at blazing speed.

o Django takes care of user authentication, content administration, site maps, RSS feeds, and
many more fundamental web tasks that developers look for in any framework.

« Security is a serious concern for any organization and Django helps developers avoid common
security pitfalls.

o Websites such as Mozilla, Instagram, Disqus, and Pinterest all are built using Django, which
makes Django a battle-tested framework that scales.

o Django’s versatile framework can be used for different purposes, from content management
systems to social networks to scientific computing platforms.

But the question of Django still being relevant is very subjective. Ultimately, it depends upon the use
case. We know Django is a good web development framework, however, because more than 55% of the
world’s internet traffic comes from mobile devices using Android or IOS apps, you may be wondering
whether Django is relevant for building features for mobile users? Django as a standalone framework
might not be sufficient for today’s modern web development where more and more organizations
are moving towards API first development, but when integrated with frameworks like Django Rest
Framework (DRF), Tastypie, etc, Django becomes the go-to framework for developers.

For start-ups with limited time and resources, it becomes even more crucial to choose a framework
where they don’t have to build every feature from the ground up, but rather leverage the framework
to do most of the heavy lifting.

Let’s quickly look a little more at the framework principle that Django uses: the MVT framework.

Setting Up Django with DRF

What is the MVT framework?

Most of us have heard of MVC frameworks (Model-View-Controller), which represent a paradigm of
modern web frameworks where we have the following:

o Model represents the data and business logic layer
o View represents how the data is presented to the user in the Ul/design layout

« Controller updates the model and/or view based on the user’s input

Django considers the standard names debatable, hence why it has its own interpretation of MVC.
Here, we have the following:

o View represents which data is shown to the end user and not how the data is represented
o Template represents how the data is represented to the end user
o Model represents the data layer
That’s why Django follows the MVT framework (Model-View-Template). But now, the question is,

what is the controller in Django? The framework itself is the controller since it handles the whole
routing logic using its built-in features.

Important note

You don’t need to deep dive into MV'T concepts since this concept becomes muscle memory
as you write more code in Django.

MVT is a concept where we use templates, but in today’s world, most of the products are built for
multiple domains such as mobile, IoT, and SaaS$ platforms. To build products for all these domains, the
developer ecosystem has also evolved; now, organizations are moving toward an API-first development
approach (https://blog.postman.com/what-is-an-api-£first-company/). This
means that APIs are “first-class citizens”; every feature in the product is built with an API-first model,
which helps in creating a better client (mobile apps, frontend applications, and so on) and server
integration. It involves establishing a contract between the client and the server so that each team can
work in parallel without much dependency. Once both teams finish their work, the integration and
development cycle of a product becomes much faster with a better developer experience.

The growing use case of mobile device means it is important to build platform-agnostic backend APIs
that can be consumed by any client, Android app, iOS app, browser frameworks, and so on. Is Django,
as an individual MVT framework, able to serve all these needs? No. The amount of additional effort
required to use the out-of-the-box features of Django for creating APIs is similar to reinventing the
wheel. That’s why most organizations use Django’s REST framework, along with Django, to create APIs.

https://blog.postman.com/what-is-an-api-first-company/

Creating a “Hello World” web app with Django and DRF

(7
Important note

In this book, instead of focusing on templates and standalone web applications built with
Django, we shall focus on creating APIs using Django with DRE. For information on getting
started with just Django, one of my favorite resources is the Django Girls tutorial: https://
tutorial.djangogirls.org/en/.

. J

Now that we have seen what the MVT framework is and how Django is an MVT framework, let’s
create a basic Hello World web application using Django and set up our project structure and
development environment.

Creating a “Hello World” web app with Django and DRF

As mentioned previously, Django is a Python-based web framework, so we need to write the code
using the Python programming language. If you are already using Linux or macOS-based systems,
then Python comes preinstalled. However, for Windows systems, you have to install it by following
the instructions on the official Python website: https://www.python.org/downloads/.

We shall also use virtualenv as our preferred tool to manage different environments for multiple
projects, allowing us to create isolated Python environments.

Important note

We are not going to deep dive into virtualenv since we expect you to know how and why
we use virtualenv for different projects. You can find details about virtualenv on its
official website: https://virtualenv.pypa.io/en/latest/index.html.

First, let’s create a virtual environment with the latest Python version (preferably >3.12.0). The following
commands will work for Linux/Unix/macOS; for Windows, please check the next section:

pip install virtualenv
virtualenv -p python3 v_env
source /path to v_env/v_env/bin/activate

Now, we will break down what the code means:

o pip install virtualenvinstalls virtualenv on the system. pip is the built-in package
manager that comes with Python and is already preinstalled on Mac and most Linux environments.

e virtualenv -p python3 v_env createsa new virtual environment with the name v_env
(this is just the name we have given to our virtual environment; you can give another relevant
name). The -p pythona3 flag is used to tell us which interpreter should be used to create the
virtual environment.

e source /path to v_env/v_env/bin/activate executesthe activate script,
which loads the virtual Python interpreter as our default Python interpreter in the shell.

https://tutorial.djangogirls.org/en/
https://tutorial.djangogirls.org/en/
https://www.python.org/downloads/
https://virtualenv.pypa.io/en/latest/index.html

Setting Up Django with DRF

Now that the Python virtual environment has been set up, we shall focus on managing the package
dependency. To install the latest release of Django, run the following command:

pip install Django==5.0.2

For Windows systems, download Python 3.12 or higher from https://www.python.org/
downloads/windows/ and install it by following the wizard. Remember to click the Add python.
exe to PATH checkbox in the installation step.

To verify your Python installation, use the following command in the terminal:

C:\Users\argo\> python --version
Python 3.12.0

Once Python has been installed successfully, you can use the following command to set up a virtual
environment and install Django:

py -m pip install --user virtualenv

py -m venv venv

.\<path to venv created>\venv\Scripts\activate
// to install Django

pip install Django==5.0.2

The explanation for the Windows-specific commands is the same as what we explained for
Linux/MacOS systems.

(N
Important note
We are not using poetry, PDM, pipenv, or any other dependency and package management
tools to avoid overcomplicating the initial setup.

Furthermore, we prefer to use a Docker environment to create more isolation and provide a
better developer experience. We shall learn more about Docker in Chapter 10.
- J

With the previous command, our local Python and Django development environments are ready.
Now, it’s time to create our basic Django project.

Creating our Django hello_world project

We all love the django-admin command and all the boilerplate code it gives us when we create a
new project or application. However, when working on a larger project, the default project structure is
not so helpful. This is because when we work with Django in production, we have many other moving
parts that need to be incorporated into the project. Project structure and other utilities that are used
with a project are always opinionated; what might work for you in your current project might not
work in the next project you create a year down the line.

https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/

Creating a “Hello World” web app with Django and DRF

(7
Important note
There are plenty of resources available on the internet that will suggest different project structures.
One of my favorites is django-cookiecutter. It gives you a lot of tools integrated into
the project and gives you a structure that you can follow, but it can be daunting for any new
beginner to start since it integrates a lot of third-party tools that you might not use, along with
a few configurations that you might not understand. But instead of worrying about that, you
can just follow along with this book!

(. J

We shall create our own minimalistic project structure and have other tools integrated with our project
in incremental steps. First, let’s create our hello world project with Django:

mkdir hello world && cd hello world
mkdir backend && cd backend
django-admin startproject config

Here, we have created our project folder, hello world, and then created a subfolder called backend
inside of it. We are using the backend folder to keep all the Django-related code; we shall create
more folders at the same level as the backend subfolder as we learn more about the CI/CD features
and incorporate more tools into the project. Finally, we used the Django management command to
create our project.

Important note

Note the . (dot), which we have appended to the startproject command; this tells the Django
management command to create the project in the current folder rather than create a separate folder
config with the project. By default, if you don't add ., then Django will create an additional folder
called conf ig in which the following project structure will be created. For better understanding,
you can test the command with and without . to get a clear idea of how it impacts the structure.

After executing these commands, we should be able to see the project structure shown here:

tree hello_world/

hello_world/
L— backend
config
__init__.py
asgi.py
settings.py
urls.py
wsgi.py
manage.py

3 directories, 6 files

Figure 1.1: Expected project structure after executing the commands

9

10 Setting Up Django with DRF

Now that our project structure is ready, let’s run python manage.py runserver to verify our
Django project. We should see the following output in our shell:

python manage.py runserver

Watching for file changes with StatReloader

Performing system checks...

System check identified no issues (0 silenced).

You have 18 unapplied migration(s). Your project may not work properly until you
apply the migrations for app(s): admin, auth, contenttypes, sessions.

Run 'python manage.py migrate' to apply them.

November 04, 2023 - 18:00:26

Django version 4.2, using settings 'config.settings'

Starting development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

Figure 1.2: The python manage.py runserver command’s output in the shell

Please ignore the unapplied migrations warning stating You have 18 unapplied migrations(s) displayed
in red in the console; we shall discuss this in detail in the next chapter when we learn more about the
database, models, and migrations.

Now, go to your browser and open http://localhost : 8000 orhttp://127.0.0.1:8000
(if the former fails to load). We shall see the following screen as shown in Figure 1.3, which verifies

that our server is running successfully:

Please note

You can use http://localhost:8000orhttp://127.0.0.1:8000 to open the
Django project in your browser. If you face any error for http://localhost:8000,
then please try using http://127.0.0.1:8000 for all the URLs mentioned in this book.

cljango View release notes for Django 4.2

A

The install worked successfully! Congratulations!

You are seeing this page because DEBUG=True is in your
settings file and you have not configured any URLs.

(@ Django Documentation ¢y Tutorial: A Polling App 22 Django Community
= Topics, references, & how-to's Get started with Django Connect, get help, or contribute

Figure 1.3: Our Django server running successfully with port 8000

Creating a “Hello World” web app with Django and DRF

Now, let’s create our firsthello world view. To do this, follow these steps:

1. Openthe config/urls.py file.
2. Addanewview functioninhello world.

3. Linkthe hello world view function to the hello-world path.

Our config/urls.py file should look like the following code snippet:

from django.contrib import admin
from django.http import HttpResponse
from django.urls import path

def hello world(request) :
return HttpResponse ('hello world!')

urlpatterns = [
path('admin/', admin.site.urls),
path('hello-world/', hello world)
1

4. Openhttp://127.0.0.1:8000/hello-world/ to get the result shown in Figure 1.4:

¢ C ® 127.0.0.1: ello-world/ @ + O @) incoanito

hello world

Figure 1.4: http://127.0.0.1:8000/hello-world/ browser response

So far, we have seen how to create the project folder structure and create our first view in Django. The
example we have used is one of the smallest Django project examples that doesn’t involve an app. So,
let’s see how we can create apps in Django that can help us manage our project better.

Creating our first app in Django

A Django app can be considered a small package performing one individual functionality in a large
project. Django provides management commands to create a new app in a project; these are built-in
commands that are used to perform repetitive and complex tasks. The Django community loves
management commands since they take away a lot of manual effort and encapsulate a lot of complicated
tasks, such as migrations and more. We shall learn more about Django management commands in
the following chapters, where we will create a custom management command. However, whenever
you see a command followed by manage . py, that is a Django management command.

1

12 Setting Up Django with DRF

So, let’s create a new demo_app using the Django management command interface:

python manage.py startapp demo app

Running this command will create the folder structure shown here:

tree hello_world/

hello_world/
L— backend
config
__init__
asgi.py
settings.
urls.py
wsgi.py
demo_app
__init__.py
admin.py
apps.py
migrations
L— _ {init__.py
models. py
tests.py
views.py
manage.py

5 directories, 13 files

Figure 1.5: Project structure with demo_app added

We can see that a demo__app folder has been created that contains the boilerplate code generated
by Django for a new app.

P
Important note

One important step we must do whenever we create a new app is to tell Django about the
new app. Unfortunately, this doesn’t happen automatically when you create a new app using
the Django management command. It is a manual process where you need to add the details
of the new app in the INSTALLED APPS list in the settings.py file. Django uses this
to identify all the dependency apps added to the project and check for any database-related
changes or even register for signals and receivers.

.

Though adding a new app to the INSTALLED APPS list is not required for us currently, since we
are not using models for Django to automatically identify any database-related changes, it is still good
practice to do so. Our INSTALLED_ APPS list should look like this:

INSTALLED APPS = [

'django.contrib.staticfiles',
'demo_app',

Creating a “Hello World” web app with Django and DRF

Remember to put a comma (,) after every entry of a new app; this is one of the most common mistakes
developers make and it causes Django to append two app names into one and generate a syntax error
before finally correcting it.

Important note

In Django, third-party app integrations are also done via INSTALLED APPS, so we shall see
best practices around how to maintain INSTALLED APPS in the following sections.

Now that we have created a new Django app with the boilerplate code, we can link the app view
withurls.py.

Linking app views using urls.py

In this section, we shall link views . py, which was created by the Django management command.
views.py is used to add business logic to the application endpoints. Just like we added the hello
world functional view in the previous section, we can add different functional or class-based views
in the views . py file.

Let’s create a simple hello world functional view in our demo_app/views.py file:

from django.http import HttpResponse

def hello world(request, *args, **kwargs):
return HttpResponse ('hello world!')

As our project grows and the number of apps increases, our main urls. py file will become more
and more cluttered, with hundreds of URL patterns in a single file. So, it is favorable to break down
the main config/urls.py file into smaller urls. py files for each app, which improves the
maintainability of the project.

Now, we will create a new file called backend/demo_app/urls.py where we shall add all the
routes related to demo_app. Subsequently, when we add more apps to the project, we shall create
individual urls. py files for each app.

Important note

The urls. py filename can be anything, but we are keeping this as-is to be consistent with
the Django convention.

Add the following code inside the backend/demo_app/urls.py file:

from django.urls import path
from demo app import views

13

14

Setting Up Django with DRF

urlpatterns = [
path('hello-world/', views.hello world)
1

Here, we are defining the URL pattern for the hello-wor1d path, which links to the basic functional
view we created earlier.

(1
Opinionated note

We are using absolute import to import our demo_app views. This is a convention we shall
follow throughout this book and we also recommend it for other projects. The advantage of
using absolute import over relative import is that it is straightforward and clear to read. With
just a glance, someone can easily tell what resource has been imported. Also, PEP-8 explicitly
recommends using absolute imports.

- J

Now, let’s connect the demo_app/urls.py file to the main project config/urls.py file:

from django.contrib import admin
from django.urls import include
from django.urls import path

urlpatterns = [
path('admin/', admin.site.urls),
path('demo-app/', include('demo app.urls'))
]

Next, open http://127.0.0.1:8000/demo-app/hello-world/ in your browser to make
sure our demo -app view is linked with Django. You should be able to see hello world displayed
on the screen, just as we saw earlier in Figure 1.4.

So far, we have worked with plain vanilla Django, but now, we'll see how we can integrate DRF into
our project.
Integrating DRF

In the API-first world of development, where developers create APIs day in, day out for every feature
they build, DRF is a powerful and flexible toolkit for building APIs using Django.

Important note

If you are not familiar with the basics of DRF, we will be going through the basics in this book.
However, you can find more information here: https: //www.django-rest-framework.
org/tutorial/quickstart/.

https://www.django-rest-framework.org/tutorial/quickstart/
https://www.django-rest-framework.org/tutorial/quickstart/

