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Preface

Hey there! As the name suggests, Django in Production is a book to help developers put their 
application code into production. In today’s world, coding has become a profession that people get 
into after joining a 3–6 month boot camp. With the start-up boom, most of these developers are able 
to land a job after their boot camp course, since they are able to write code and hack any product 
together. However, a couple of months into the job, they want to learn about the best practices and 
understand all the aspects that senior developers in the industry know and perform, but most start-
ups don’t have many senior developers due to budget and talent scarcity. This book is going to give 
them a too long; didn’t read (TLDR) version of software development best practices, which they need 
to know to get to the next level.

Who this book is for
This book is for any software developer who understands the basic concepts of Django but now needs 
some help putting their code to production using the right tools, or someone who does not have enough 
guidance to know how to do the work the right way. We are assuming you have a basic understanding 
of how to write code in Django and now want to improve your skills.

What this book covers
Chapter 1, Setting Up Django with DRF, covers the basic project setup of Django and Django Rest 
Framework (DRF). It will also help you to understand the fundamentals of APIs and how to design 
a REST API.

Chapter 2, Exploring Django ORM, Models, and Migrations, covers how to integrate Django with a 
database. Django ORM and migrations are powerful features; we learn about the core concepts and 
how to use them efficiently in this chapter.

Chapter 3, Serializing Data with DRF, explores the concept of serialization and how developers can 
use DRF serializers to write better application code.

Chapter 4, Exploring Django Admin and Management Commands, covers the core concepts of Django 
admin. This chapter covers all the best practices on how to use Django admin and create custom 
Django management commands.

Chapter 5, Mastering Django Authentication and Authorization, covers the key concepts of authentication 
and authorization. Django provides authentication and authorization out of the box, and we will 
explain in detail how developers can use the built-in features of Django and DRF for authentication.
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Chapter 6, Caching, Logging, and Throttling, covers all the concepts of caching and how to integrate 
Redis with Django for caching. Logging is a crucial component of any web application in production 
and, in this chapter, we will learn how to integrate logging into a Django application.

Chapter 7, Using Pagination, Django Signals, and Custom Middleware, covers all the advanced concepts 
of Django. Developers can use Django signals to write decoupled code. Django also gives the flexibility 
to create custom middleware that can help developers to improve features.

Chapter 8, Using Celery with Django, shows how to process asynchronous tasks for web applications. 
In this chapter, developers will get an understanding of how to integrate Celery into a Django project.

Chapter 9, Writing Tests in Django, covers the core concepts of writing test cases for Django. In 
this chapter, you will learn the best practices to follow while writing test cases and understand the 
importance of writing test cases for a project.

Chapter 10, Exploring Conventions in Django, shows all the best practices and conventions that are used 
while working with Django. This chapter covers a lot of concepts that are opinionated, and you are 
expected to read this chapter as an outline and pick/learn about concepts by using your own judgment.

Chapter 11, Dockerizing Django Applications, covers how to integrate Docker with a Django application.

Chapter 12, Working with Git and CI Pipelines Using Django, covers the concepts of version control 
and how to efficiently use Git in a Django project. In this chapter, you will learn how to integrate 
GitHub Actions to create a CI pipeline.

Chapter 13, Deploying Django in AWS, covers how to deploy Django applications in production using different 
AWS services. In this chapter, you will learn how to deploy and scale the Django application in production.

Chapter 14, Monitoring Django Applications, covers how to monitor Django applications in production. 
There are different types of monitoring needed in production, such as error monitoring, application 
performance monitoring, uptime monitoring, and so on. In this chapter, you will learn how to integrate 
different tools available on the market to monitor Django applications.

To get the most out of this book
You will need to have a basic understanding of Django and should be comfortable in writing basic Django 
application code. In this book, we will learn about many of the core concepts of Django and you need to be 
able to follow those code examples. We will introduce a lot of third-party tools/platforms that may be paid/
free, and you are expected to create an account on these platforms and integrate them into the Django project.
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Software/hardware covered in the book Operating system requirements
Python 3.10 and above Windows, macOS, or Linux
Django 4.x, Django 5.0 and above
Python packages such as celery, django-fsm, factory-boy, 
freezetime, django-json-widget, rest_framework
Docker
Amazon Web Services (AWS), ElephantSQL, Neon (https://
neon.tech), Redis
Tools such as Rollbar, NewRelic, Better Uptime.

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Django-in-Production. If there’s an update to the code, it will be 
updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Since 
we have specified the DemoViewVersion class, this view would only allow the v1, v2, and v3 
versions in the URL path; any other version in the path would get a 404 response.”

A block of code is set as follows:

urlpatterns = [ 
    ... 
    path('apiview-class/', views.DemoAPIView.as_view()) 
]

https://neon.tech
https://neon.tech
https://github.com/PacktPublishing/Django-in-Production
https://github.com/PacktPublishing/Django-in-Production
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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When we wish to draw your attention to a particular part of a code block, the relevant lines or items 
are set in bold:

urlpatterns = [ 
    path('hello-world/', views.hello_world), 
    path('demo-version/', views.demo_version), 
    path('custom-version/', views.DemoView.as_view()), 
    path('another-custom-version/', views.AnotherView.as_view()) 
]

Any command-line input or output is written as follows:

celery –-app=config beat -–loglevel=INFO

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in 
menus or dialog boxes appear in bold. Here is an example: “Click on the Create New Instance button.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
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Share Your Thoughts
Once you’ve read Django in Production, we’d love to hear your thoughts! Please visit https://
packt.link/r/1804610488 for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

https://packt.link/r/1804610488
https://packt.link/r/1804610488
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In the first part of the book, we will get an overview of how to use Django and Django Rest Framework 
(DRF) to create a modern web application. We can expect to learn all the concepts related to Django 
ORM and DRF serializers, which are crucial to building any modern web application. Django Admin 
and Authentication are one of the most widely appreciated features of Django. We will learn all the 
best practices that a developer should know about before using Django and DRF in production.

This part has the following chapters:

•	 Chapter 1, Setting Up Django with DRF

•	 Chapter 2, Exploring Django ORM, Models, and Migrations

•	 Chapter 3, Serializing Data with DRF

•	 Chapter 4, Exploring Django Admin and Management Commands

•	 Chapter 5, Mastering Django Authentication and Authorization

Part 1 –  
Using Django and DRF to  

Build Modern Web Application





1
Setting Up Django with DRF

In 2003, the Django project was started by developers Adrian Holovaty and Simon Willison from World 
Online, a newspaper web operation company, and was open sourced and first released in the summer 
of 2005. When Django was first built, the world was still using dial-up modem internet connections, 
mobile devices were still not popular, smartphones didn’t see the daylight, and people would access 
web pages through their desktops and laptops. Django was the perfect framework that had all the 
features needed to build a web application for that age.

Over the last two decades, technology has evolved drastically:

•	 We have moved from dial-up internet connections to 4G/5G internet connections

•	 55% of the world’s internet traffic came from mobile devices in 2022 (https://radar.
cloudflare.com/)

In this book, we shall see how to build a modern web application using Django and deep dive into 
the core concepts that a developer should know to create a scalable web application for startups.  
A developer building a product for a startup is expected to be more than just a regular developer writing 
code in Django; they are expected to develop their code, write tests for the business logic, deploy their 
applications to the web, and finally keep monitoring the service they have deployed. Here, we will 
learn how easy it is to develop web applications with Django and the best practices that developers in 
the industry follow, especially in startups, to make their development cycle easier and faster.

In this first chapter, we shall learn the basics of Django and how to set up a Django project and structure 
the project folders. Since we shall mostly work with RESTful APIs throughout this book, we will learn 
about the conventions of the REST API and the crux of setting up a Django project with Django Rest 
Framework (DRF) for creating RESTful APIs. We shall also focus on versioning APIs and how we 
can implement versioning using DRF. DRF gives us the flexibility to create both functional and class-
based views; we shall learn about them in this chapter, along with their pros and cons.

https://radar.cloudflare.com/
https://radar.cloudflare.com/
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We will cover the following topics:

•	 Why Django?

•	 Creating a “Hello World” web app using Django and DRF

•	 Creating RESTful endpoints with DRF

•	 Working with views using DRF

•	 Introducing API development tools

Technical requirements
In this chapter, we shall do the basic project setup and also write our first Hello World app. Though 
this book is for developers who already know how to write a basic web application, anyone with decent 
programming skills can pick up this book and learn how to create a scalable Django web application. 
The following are the skill sets that you should possess to follow this chapter:

•	 Good Python programming knowledge and familiarity with packages and writing loops, 
conditional statements, functions, and classes in Python.

•	 A basic understanding of how web applications work and have written some form of API or 
web app before.

•	 Even though we shall try to cover most of the concepts from scratch, having basic knowledge of 
Django would be great. The Django Girls tutorial is a good resource to learn the basics: https://
tutorial.djangogirls.org/en/.

You can find the code for this chapter in this book’s GitHub repository: https://github.com/
PacktPublishing/Django-in-Production/tree/main/Chapter01.

Important note
If you have any doubts about any of the topics mentioned in this or other chapters, feel free 
to create GitHub issues that specify all the relevant information (https://github.com/
PacktPublishing/Django-in-Production/issues) or join our Django in 
Production Discord channel and ask us. Here is the invite link for the Discord server, where 
you can reach me directly: https://discord.gg/FCrGUfmDyP.

Why Django?
Django is a web framework based around Python, one of the most popular and easy-to-learn coding 
languages out there. Since Python is the go-to language for data science and artificial intelligence/
machine learning, developers can easily learn Django without having to learn an additional language 
for building web applications.

https://tutorial.djangogirls.org/en/
https://tutorial.djangogirls.org/en/
https://github.com/PacktPublishing/Django-in-Production/tree/main/Chapter01
https://github.com/PacktPublishing/Django-in-Production/tree/main/Chapter01
https://github.com/PacktPublishing/Django-in-Production/issues
https://github.com/PacktPublishing/Django-in-Production/issues
https://discord.gg/FCrGUfmDyP
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Django’s tagline, “Django – The web framework for perfectionists with deadlines,” proves its commitment 
to faster and more efficient development, further emphasized by its batteries-included principle that 
all the basic and widely used functionalities come out of the box with the framework rather than us 
having to install additional packages. This gives Django an additional advantage over other frameworks, 
such as Flask.

What is available with Django?

Django has evolved in the last decade and is currently in version 5.x, which has some promising new 
features, such as asynchronous support. However, the core modules of Django are still the same, 
with the same principles. When a new developer wants to learn Django, an organization wants to 
pick Django for their new project, or a startup with limited resources is looking to pick the perfect 
framework for their tech stack, they want to know why they should learn about Django. To answer 
this question, we shall learn more about the features of Django.

Let’s look at the salient features of Django that the framework provides out of the box:

•	 In any organization, speed of execution is very important for the success of a product. Django 
was designed to help developers take applications from the concept phase to the product phase 
at blazing speed.

•	 Django takes care of user authentication, content administration, site maps, RSS feeds, and 
many more fundamental web tasks that developers look for in any framework.

•	 Security is a serious concern for any organization and Django helps developers avoid common 
security pitfalls.

•	 Websites such as Mozilla, Instagram, Disqus, and Pinterest all are built using Django, which 
makes Django a battle-tested framework that scales.

•	 Django’s versatile framework can be used for different purposes, from content management 
systems to social networks to scientific computing platforms.

But the question of Django still being relevant is very subjective. Ultimately, it depends upon the use 
case. We know Django is a good web development framework, however, because more than 55% of the 
world’s internet traffic comes from mobile devices using Android or IOS apps, you may be wondering 
whether Django is relevant for building features for mobile users? Django as a standalone framework 
might not be sufficient for today’s modern web development where more and more organizations 
are moving towards API first development, but when integrated with frameworks like Django Rest 
Framework (DRF), Tastypie, etc, Django becomes the go-to framework for developers.

For start-ups with limited time and resources, it becomes even more crucial to choose a framework 
where they don’t have to build every feature from the ground up, but rather leverage the framework 
to do most of the heavy lifting.

Let’s quickly look a little more at the framework principle that Django uses: the MVT framework.
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What is the MVT framework?

Most of us have heard of MVC frameworks (Model-View-Controller), which represent a paradigm of 
modern web frameworks where we have the following:

•	 Model represents the data and business logic layer

•	 View represents how the data is presented to the user in the UI/design layout

•	 Controller updates the model and/or view based on the user’s input

Django considers the standard names debatable, hence why it has its own interpretation of MVC. 
Here, we have the following:

•	 View represents which data is shown to the end user and not how the data is represented

•	 Template represents how the data is represented to the end user

•	 Model represents the data layer

That’s why Django follows the MVT framework (Model-View-Template). But now, the question is, 
what is the controller in Django? The framework itself is the controller since it handles the whole 
routing logic using its built-in features.

Important note
You don’t need to deep dive into MVT concepts since this concept becomes muscle memory 
as you write more code in Django.

MVT is a concept where we use templates, but in today’s world, most of the products are built for 
multiple domains such as mobile, IoT, and SaaS platforms. To build products for all these domains, the 
developer ecosystem has also evolved; now, organizations are moving toward an API-first development 
approach (https://blog.postman.com/what-is-an-api-first-company/). This 
means that APIs are “first-class citizens”; every feature in the product is built with an API-first model, 
which helps in creating a better client (mobile apps, frontend applications, and so on) and server 
integration. It involves establishing a contract between the client and the server so that each team can 
work in parallel without much dependency. Once both teams finish their work, the integration and 
development cycle of a product becomes much faster with a better developer experience.

The growing use case of mobile device means it is important to build platform-agnostic backend APIs 
that can be consumed by any client, Android app, iOS app, browser frameworks, and so on. Is Django, 
as an individual MVT framework, able to serve all these needs? No. The amount of additional effort 
required to use the out-of-the-box features of Django for creating APIs is similar to reinventing the 
wheel. That’s why most organizations use Django’s REST framework, along with Django, to create APIs.

https://blog.postman.com/what-is-an-api-first-company/
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Important note
In this book, instead of focusing on templates and standalone web applications built with 
Django, we shall focus on creating APIs using Django with DRF. For information on getting 
started with just Django, one of my favorite resources is the Django Girls tutorial: https://
tutorial.djangogirls.org/en/.

Now that we have seen what the MVT framework is and how Django is an MVT framework, let’s 
create a basic Hello World web application using Django and set up our project structure and 
development environment.

Creating a “Hello World” web app with Django and DRF
As mentioned previously, Django is a Python-based web framework, so we need to write the code 
using the Python programming language. If you are already using Linux or macOS-based systems, 
then Python comes preinstalled. However, for Windows systems, you have to install it by following 
the instructions on the official Python website: https://www.python.org/downloads/.

We shall also use virtualenv as our preferred tool to manage different environments for multiple 
projects, allowing us to create isolated Python environments.

Important note
We are not going to deep dive into virtualenv since we expect you to know how and why 
we use virtualenv for different projects. You can find details about virtualenv on its 
official website: https://virtualenv.pypa.io/en/latest/index.html.

First, let’s create a virtual environment with the latest Python version (preferably >3.12.0). The following 
commands will work for Linux/Unix/macOS; for Windows, please check the next section:

pip install virtualenv
virtualenv -p python3 v_env
source /path to v_env/v_env/bin/activate

Now, we will break down what the code means:

•	 pip install virtualenv installs virtualenv on the system. pip is the built-in package 
manager that comes with Python and is already preinstalled on Mac and most Linux environments.

•	 virtualenv -p python3 v_env creates a new virtual environment with the name v_env 
(this is just the name we have given to our virtual environment; you can give another relevant 
name). The -p python3 flag is used to tell us which interpreter should be used to create the 
virtual environment.

•	 source /path to v_env/v_env/bin/activate executes the activate script, 
which loads the virtual Python interpreter as our default Python interpreter in the shell.

https://tutorial.djangogirls.org/en/
https://tutorial.djangogirls.org/en/
https://www.python.org/downloads/
https://virtualenv.pypa.io/en/latest/index.html
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Now that the Python virtual environment has been set up, we shall focus on managing the package 
dependency. To install the latest release of Django, run the following command:

pip install Django==5.0.2

For Windows systems, download Python 3.12 or higher from https://www.python.org/
downloads/windows/ and install it by following the wizard. Remember to click the Add python.
exe to PATH checkbox in the installation step.

To verify your Python installation, use the following command in the terminal:

C:\Users\argo\> python --version
Python 3.12.0

Once Python has been installed successfully, you can use the following command to set up a virtual 
environment and install Django:

py -m pip install --user virtualenv
py -m venv venv
.\<path to venv created>\venv\Scripts\activate
// to install Django
pip install Django==5.0.2

The explanation for the Windows-specific commands is the same as what we explained for 
Linux/MacOS systems.

Important note
We are not using poetry, PDM, pipenv, or any other dependency and package management 
tools to avoid overcomplicating the initial setup.

Furthermore, we prefer to use a Docker environment to create more isolation and provide a 
better developer experience. We shall learn more about Docker in Chapter 10.

With the previous command, our local Python and Django development environments are ready. 
Now, it’s time to create our basic Django project.

Creating our Django hello_world project

We all love the django-admin command and all the boilerplate code it gives us when we create a 
new project or application. However, when working on a larger project, the default project structure is 
not so helpful. This is because when we work with Django in production, we have many other moving 
parts that need to be incorporated into the project. Project structure and other utilities that are used 
with a project are always opinionated; what might work for you in your current project might not 
work in the next project you create a year down the line.

https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
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Important note
There are plenty of resources available on the internet that will suggest different project structures. 
One of my favorites is django-cookiecutter. It gives you a lot of tools integrated into 
the project and gives you a structure that you can follow, but it can be daunting for any new 
beginner to start since it integrates a lot of third-party tools that you might not use, along with 
a few configurations that you might not understand. But instead of worrying about that, you 
can just follow along with this book!

We shall create our own minimalistic project structure and have other tools integrated with our project 
in incremental steps. First, let’s create our hello_world project with Django:

mkdir hello_world && cd hello_world
mkdir backend && cd backend
django-admin startproject config .

Here, we have created our project folder, hello_world, and then created a subfolder called backend 
inside of it. We are using the backend folder to keep all the Django-related code; we shall create 
more folders at the same level as the backend subfolder as we learn more about the CI/CD features 
and incorporate more tools into the project. Finally, we used the Django management command to 
create our project.

Important note
Note the . (dot), which we have appended to the startproject command; this tells the Django 
management command to create the project in the current folder rather than create a separate folder 
config with the project. By default, if you don’t add ., then Django will create an additional folder 
called config in which the following project structure will be created. For better understanding, 
you can test the command with and without . to get a clear idea of how it impacts the structure.

After executing these commands, we should be able to see the project structure shown here:

Figure 1.1: Expected project structure after executing the commands
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Now that our project structure is ready, let’s run python manage.py runserver to verify our 
Django project. We should see the following output in our shell:

Figure 1.2: The python manage.py runserver command’s output in the shell

Please ignore the unapplied migrations warning stating You have 18 unapplied migrations(s) displayed 
in red in the console; we shall discuss this in detail in the next chapter when we learn more about the 
database, models, and migrations.

Now, go to your browser and open http://localhost:8000 or http://127.0.0.1:8000 
(if the former fails to load). We shall see the following screen as shown in Figure 1.3, which verifies 

 that our server is running successfully:

Please note
You can use http://localhost:8000 or http://127.0.0.1:8000 to open the 
Django project in your browser. If you face any error for http://localhost:8000, 
then please try using http://127.0.0.1:8000 for all the URLs mentioned in this book.

Figure 1.3: Our Django server running successfully with port 8000
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Now, let’s create our first hello_world view. To do this, follow these steps:

1.	 Open the config/urls.py file.

2.	 Add a new view function in hello_world.

3.	 Link the hello_world view function to the hello-world path.

Our config/urls.py file should look like the following code snippet:
from django.contrib import admin
from django.http import HttpResponse
from django.urls import path

def hello_world(request):
    return HttpResponse('hello world')

urlpatterns = [
    path('admin/', admin.site.urls),
    path('hello-world/', hello_world)
]

4.	 Open http://127.0.0.1:8000/hello-world/ to get the result shown in Figure 1.4:

Figure 1.4: http://127.0.0.1:8000/hello-world/ browser response

So far, we have seen how to create the project folder structure and create our first view in Django. The 
example we have used is one of the smallest Django project examples that doesn’t involve an app. So, 
let’s see how we can create apps in Django that can help us manage our project better.

Creating our first app in Django

A Django app can be considered a small package performing one individual functionality in a large 
project. Django provides management commands to create a new app in a project; these are built-in 
commands that are used to perform repetitive and complex tasks. The Django community loves 
management commands since they take away a lot of manual effort and encapsulate a lot of complicated 
tasks, such as migrations and more. We shall learn more about Django management commands in 
the following chapters, where we will create a custom management command. However, whenever 
you see a command followed by manage.py, that is a Django management command.
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So, let’s create a new demo_app using the Django management command interface:

python manage.py startapp demo_app

Running this command will create the folder structure shown here:

Figure 1.5: Project structure with demo_app added

We can see that a demo_app folder has been created that contains the boilerplate code generated 
by Django for a new app.

Important note
One important step we must do whenever we create a new app is to tell Django about the 
new app. Unfortunately, this doesn’t happen automatically when you create a new app using 
the Django management command. It is a manual process where you need to add the details 
of the new app in the INSTALLED_APPS list in the settings.py file. Django uses this 
to identify all the dependency apps added to the project and check for any database-related 
changes or even register for signals and receivers.

Though adding a new app to the INSTALLED_APPS list is not required for us currently, since we 
are not using models for Django to automatically identify any database-related changes, it is still good 
practice to do so. Our INSTALLED_APPS list should look like this:

INSTALLED_APPS = [
    ...
    'django.contrib.staticfiles',
    'demo_app',
]
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Remember to put a comma (,) after every entry of a new app; this is one of the most common mistakes 
developers make and it causes Django to append two app names into one and generate a syntax error 
before finally correcting it.

Important note
In Django, third-party app integrations are also done via INSTALLED_APPS, so we shall see 
best practices around how to maintain INSTALLED_APPS in the following sections.

Now that we have created a new Django app with the boilerplate code, we can link the app view 
with urls.py.

Linking app views using urls.py

In this section, we shall link views.py, which was created by the Django management command. 
views.py is used to add business logic to the application endpoints. Just like we added the hello_
world functional view in the previous section, we can add different functional or class-based views 
in the views.py file.

Let’s create a simple hello_world functional view in our demo_app/views.py file:

from django.http import HttpResponse

def hello_world(request, *args, **kwargs):
    return HttpResponse('hello world')

As our project grows and the number of apps increases, our main urls.py file will become more 
and more cluttered, with hundreds of URL patterns in a single file. So, it is favorable to break down 
the main config/urls.py file into smaller urls.py files for each app, which improves the 
maintainability of the project.

Now, we will create a new file called backend/demo_app/urls.py where we shall add all the 
routes related to demo_app. Subsequently, when we add more apps to the project, we shall create 
individual urls.py files for each app.

Important note
The urls.py filename can be anything, but we are keeping this as-is to be consistent with 
the Django convention.

Add the following code inside the backend/demo_app/urls.py file:

from django.urls import path
from demo_app import views
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urlpatterns = [
    path('hello-world/', views.hello_world)
]

Here, we are defining the URL pattern for the hello-world path, which links to the basic functional 
view we created earlier.

Opinionated note
We are using absolute import to import our demo_app views. This is a convention we shall 
follow throughout this book and we also recommend it for other projects. The advantage of 
using absolute import over relative import is that it is straightforward and clear to read. With 
just a glance, someone can easily tell what resource has been imported. Also, PEP-8 explicitly 
recommends using absolute imports.

Now, let’s connect the demo_app/urls.py file to the main project config/urls.py file:

from django.contrib import admin
from django.urls import include
from django.urls import path

urlpatterns = [
    path('admin/', admin.site.urls),
    path('demo-app/', include('demo_app.urls'))
]

Next, open http://127.0.0.1:8000/demo-app/hello-world/ in your browser to make 
sure our demo-app view is linked with Django. You should be able to see hello world displayed 
on the screen, just as we saw earlier in Figure 1.4.

So far, we have worked with plain vanilla Django, but now, we’ll see how we can integrate DRF into 
our project.

Integrating DRF

In the API-first world of development, where developers create APIs day in, day out for every feature 
they build, DRF is a powerful and flexible toolkit for building APIs using Django.

Important note
If you are not familiar with the basics of DRF, we will be going through the basics in this book. 
However, you can find more information here: https://www.django-rest-framework.
org/tutorial/quickstart/.

https://www.django-rest-framework.org/tutorial/quickstart/
https://www.django-rest-framework.org/tutorial/quickstart/

