


LLM Prompt Engineering For Developers
The Art and Science of Unlocking LLMs' True Potential

Aymen El Amri

www.faun.dev



LLM Prompt Engineering For Developers
The Art and Science of Unlocking LLMs' True Potential

Copyright © 2024, Aymen El Amri.

Published by FAUN.

The illegal distribution of this work may result in civil and criminal
penalties. This work is protected under French law through the Code de la
Propriété Intellectuelle. No part of this publication may be reproduced,
distributed, or transmitted in any form or by any means, including
photocopying, recording, or other electronic or mechanical methods,
without the prior written permission of the author, except in the case of
brief quotations embodied in critical reviews and certain other
noncommercial uses permitted by copyright law. The reproduction,
modification, representation, distribution, or transmission of any part or all
of this work, without the author's prior written consent, is illegal and
prosecuted under Articles L.335-2 and following of the Code de la Propriété
Intellectuelle.

The author reserves the right to be identified as the author of this work and
retains all moral rights, including the right to respect for the work's integrity
and the right to oppose any distortion, mutilation, or other modification of
the work that would be prejudicial to the author's honor or reputation.

For permission requests, write to the author at the provided email address:
aymen@faun.dev

This book is provided 'as is' without any guarantees or warranty. In
association with the product, the author makes no warranties of any kind,
either express or implied, including but not limited to warranties of
merchantability, fitness for a particular purpose, of title, or of non-
infringement of third party rights. Use of the book by a user is at the user’s
risk.

Trademarks All trademarks and registered trademarks appearing in this



work are the property of their respective owners. FAUN is not associated
with any product or vendor mentioned in this book.

For general information on our other products and services or to obtain
technical support, please contact us at sales@faun.dev

FAUN is a registered trademark of eralabs SASU, a French company.



Table of Contents

Preface
What Are You Going to Learn?
To Whom is This Guide For?
Join the Community
About the Author
The Companion Toolkit
Your Feedback Matters

From NLP to Large Language Models
What is Natural Language Processing?
Language Models
Statistical Models (N-Grams)
Knowledge-Based Models
Contextual Language Models
Neural Network-Based Models

Feedforward Neural Networks
Recurrent Neural Networks (RNNs)
Long Short-Term Memory (LSTM)
Gated Recurrent Units (Grus)

Transformer Models
Bidirectional Encoder Representations from Transformers (BERT)
Generative pre-trained transformer (GPT)

What’s Next?

Introduction to Prompt Engineering

OpenAI GPT and Prompting: An Introduction
Generative Pre-trained Transformers (GPT) Models
What Is GPT and How Is It Different from ChatGPT?
The GPT models series: a closer look

GPT-3.5
GPT-4
Other Models

API Usage vs. Web Interface
Tokens



Costs, Tokens, and Initial Prompts: How to Calculate the Cost of
Using a Model
Prompting: How Does It Work?
Probability and Sampling: At the Heart of GPT
Understanding the API Parameters

Temperature
Top-p
Top-k
Sequence Length (max_tokens)
Presence Penalty (presence_penalty)
Frequency Penalty (frequency_penalty)
Number of Responses (n)
Best of (best_of)

OpenAI Official Examples
Using the API without Coding
Completion (Deprecated)
Chat
Insert (Deprecated)
Edit (Deprecated)

Setting Up the Environment
Choosing the Model
Choosing the Programming Language
Installing the Prerequisites
Installing the OpenAI Python library
Getting an OpenAI API key
A Hello World Example
Interactive Prompting
Interactive Prompting with Multiline Prompt

Few-Shot Learning and Chain of Thought
What Is Few-Shot Learning?
Zero-Shot vs Few-Shot Learning
Approaches to Few-Shot Learning

Prior Knowledge about Similarity
Prior Knowledge about Learning
Prior Knowledge of Data

Examples of Few-Shot Learning
Limitations of Few-Shot Learning



Chain of Thought (CoT)

Zero-Shot CoT Prompting

Auto Chain of Thought Prompting (AutoCoT)

Self-Consistency

Transfer Learning
What Is Transfer Learning?
Inductive Transfer
Transductive Transfer
Inductive vs. Transductive Transfer
Transfer Learning, Fine-Tuning, and Prompt Engineering
Fine-Tuning with a Prompt Dataset: A Practical Example
Why Is Prompt Engineering Vital for Transfer Learning and Fine-
Tuning?

Perplexity as a Metric for Prompt Optimization
Avoid Surprising the Model
How to Calculate Perplexity?
A Practical Example with Betterprompt
Hack the Prompt

ReAct: Reason + Act
What Is It?
React Using Lanchain

General Knowledge Prompting
What Is General Knowledge Prompting?
Example of General Knowledge Prompting

Introduction to Azure Prompt Flow
What Is Azure Prompt Flow?
Prompt Engineering Agility
Considerations before Using Azure Prompt Flow
Creating Your First Prompt Flow
Deploying the Flow for Real-Time Inference



LangChain: The Prompt Engineer’s Guide
What is LangChain?
Installation
Getting Started
Prompt Templates and Formatting
Partial Prompting
Composing Prompts Using Pipeline Prompts
Chat Prompt Templates
The Core Building Block of LangChain: LLMchain
Custom Prompt Templates
Few-Shot Prompt Templates
Better Few-Shot Learning with Example Selectors

NGram Overlap Example Selector
Max Marginal Relevance Example Selector
Length-Based Example Selector
The Custom Example Selector
Few-Shot Learning with Chat Models

Using Prompts from a File
Validating Prompt Templates

A Practical Guide to Testing and Scoring Prompts
How and What to Evaluate in a Prompt
Testing and Scoring Prompts with promptfoo
promptFoo: Using Variables
promptfoo: Testing with Assertions
Integration of promptfoo with LangChain
Reusing Assertions with Templates in promptfoo (Dry)
Streamlining the Test with promptfoo Scenarios

General Guidelines and Best Practices
Introduction
Start with an Action Verb
Provide a Clear Context
Use Role-Playing
Use References
Use Double Quotes
Use Single Quotes When Needed



Use Text Separators
Be Specific
Give Examples
Indicate the Desired Response Length
Guide the Model
Don’t Hesitate to Refine
Consider Looking at Your Problem from a Different Angle
Consider Opening Another Chat (ChatGPT)
Use the Right Words and Phrases
Experiment and Iterate
Stay Mindful of LLMs Limitations

How and Where Prompt Engineering Is Used
Creative Writing
Content Generation, SEO, Marketing, and Advertising
Customer Service
Data Analysis, Reporting, and Visualization
Virtual Assistants and Smart Devices
Game Development
Healthcare and Medical
Story Generation and Role-Playing
Business intelligence and analytics
Image Generation

Anatomy of a Prompt
Role or Persona
Instructions
Input Data
Context
Rules
Output
Examples

Types of Prompts
Direct Instructions
Open-Ended Prompts
Socratic Prompts



System Prompts
Other Types of Prompts
Interactive Prompts

Prompt Databases, Tools, and Resources
Prompt Engine
Prompt Generator for ChatGPT
PromptAppGPT
Promptify
PromptBench
promptfoo
Promptperfect: A Prompt Optimization Tool
Aiprm for ChatGPT: Prompt Management and Database
FlowGPT: A Visual Interface for ChatGPT and Prompt Database
Wnr.ai: A No-Code Tool to Create Animated AI Avatars

Afterword
What’s Next?
Your Feedback Matters



1 - Preface
Many of you have likely experimented with ChatGPT or other Large
Language Models (LLMs) and initially been swept up in the excitement.
The initial “wow” effect was undeniable. However, after a few interactions,
the shine began to wear off. You might have noticed its quirks and
inconsistencies, realizing that, in its raw form, it doesn’t seamlessly fit into
our daily tasks.

text-davinci-003 fail

Have you ever asked a language model to write a blog post on a specific
topic, only to receive a response that was off-mark or lacked depth? Or
perhaps you asked it to summarize a long and complex article, and instead
of a concise summary, you got a jumbled mix of sentences lacking the main
points. Such experiences can be frustrating, especially when you know the
potential that lies within these models.

You may have searched for “perfect” prompts in an online prompt database
- a new phenomenon that has emerged in the wake of ChatGPT’s and other
LLMs’ popularity - hoping for a quick solution. However, you soon realize
that what works for one person may not work for another.

Each prompt is unique and tailored to specific needs and contexts. It is a
mistake to assume that the one-size-fits-all approach will always work. In
all cases, be assured: This guide goes beyond just providing prompts and is
not a collection of prompts. Instead, it explains the “how” behind crafting



effective prompts. With this knowledge and skill, you can create prompts
that align with your objectives and lead to better interactions with LLMs.

In reality, if you were sometimes disappointed, it’s not entirely the LLM’s
fault. The key lies in how we communicate with it. Just as we need to frame
our questions correctly when seeking answers from a search engine, we
need to craft our prompts effectively for ChatGPT or any other LLM for
that matter. It’s just that search engines do not need as much guidance as
LLMs do. This art of guiding LLMs and optimizing our interactions with
them is more than just a technique; it’s a paradigm shift, a new
experimental science that we call “Prompt Engineering”.

Indeed, it underscores the importance of clear, structured communication
with AI. As developers, we’re not merely coding; we’re teaching, guiding,
and refining the AI’s understanding. This guide, “LLM Prompt Engineering
For Developers”, serves as your comprehensive guide to mastering this
emerging discipline. Dive in and discover how to unlock the true potential
of ChatGPT and similar models, transforming them into invaluable tools in
your development arsenal.

The art of communicating with LLMs heavily relies on prompt engineering.
Consider it as finding the perfect key for a lock. While humans can interpret
vague or incomplete information, LLMs require precise instructions to
deliver optimal results. The goal isn’t to converse in human terms, but to
effectively translate our needs into a language the model comprehends.

Often, individuals approach LLMs as if they’re interacting with another
human, projecting their own thought processes and expecting similar
interpretations. However, this anthropomorphic perspective can be
misleading. Instead of expecting the LLM to think like us, we must strive to
understand its “logic” so that it can better serve our needs. This mutual
understanding forms the essence of prompt engineering. By refining our
prompts, we guide the LLM to produce the most relevant and insightful
responses.

Prompt engineering is not an isolated discipline; it stands at the intersection
of several fields, each contributing unique insights. From Artificial
Intelligence algorithms to data-driven strategies in Data Science and



predictive models in Machine Learning, prompt engineering draws from a
rich tapestry of knowledge. This multidisciplinary nature might seem
daunting initially, suggesting a steep learning curve that requires expertise
in various domains.

To excel in this field, possessing robust skills in Artificial Intelligence, Data
Science, and Machine Learning is essential. Proficiency in these areas is
invaluable for understanding the workings of generative AIs and writing
prompts with greater precision and accuracy.

However, this guide, “LLM Prompt Engineering For Developers,” aims to
demystify the complexity of prompt engineering. Its goal is to distill the
essence of prompt engineering into its most accessible form. While a
foundational understanding of these disciplines certainly aids in mastering
prompt engineering, it’s not a strict prerequisite to start practicing and
seeing tangible results.

“LLM Prompt Engineering For Developers” is designed to be a bridge,
allowing anyone with a basic grasp of programming to dive into the world
of prompt engineering and prompt engineering agility. Through clear
explanations, practical examples, and step-by-step hands-on labs, we’ll
simplify the journey, ensuring that you not only understand the core
concepts but also feel empowered to take your first steps in this exciting
field.

1.1 - What Are You Going to Learn?
In “LLM Prompt Engineering For Developers,” we take a comprehensive
journey into the world of LLMs and the art of crafting effective prompts for
them.

The guide starts by laying the foundation, exploring the evolution of
Natural Language Processing (NLP) from its early days to the sophisticated
LLMs we interact with today. You will dive deep into the complexities of
models such as GPT models, understanding their architecture, capabilities,
and nuances.



As we progress, this guide emphasizes the importance of effective prompt
engineering and its best practices. While LLMs like ChatGPT (GPT-3.5) are
powerful, their full potential is only realized when they are communicated
with effectively. This is where prompt engineering comes into play. It’s not
simply about asking the model a question; it’s about phrasing, context, and
understanding the model’s logic.

Through chapters dedicated to Azure Prompt Flow, LangChain, and other
tools, you’ll gain hands-on experience in crafting, testing, scoring, and
optimizing prompts. We’ll also explore advanced concepts like Few-shot
Learning, Chain of Thought, Perplexity, and techniques like ReAct and
General Knowledge Prompting, equipping you with a comprehensive
understanding of the domain.

This guide is designed to be hands-on, offering practical insights and
exercises. In fact, as you progress, you’ll familiarize yourself with several
tools:

OpenAI Python library: You will dive into the core of OpenAI’s
LLMs and learn how to interact and fine-tune models to achieve
precise outputs tailored to specific needs.
Promptfoo: You will master the art of crafting effective prompts.
Throughout the guide, we’ll use Promptfoo to test and score prompts,
ensuring they’re optimized for desired outcomes.
LangChain: You’ll explore the LangChain framework, which elevates
LLM-powered applications. You’ll dive into understanding how a
prompt engineer can leverage the power of this tool to test and build
effective prompts.
Betterprompt: Before deploying, it’s essential to test. With
Betterprompt, you’ll ensure the LLM prompts are ready for real-world
scenarios, refining them as needed.
Azure Prompt Flow: You will experience the visual interface of
Azure’s tool, streamlining LLM-based AI development. You’ll design
executable flows, integrating LLMs, prompts, and Python tools,
ensuring a holistic understanding of the art of prompting.
And more!



With these tools in your toolkit, you will be well-prepared to craft powerful
and effective prompts. The hands-on exercises will help solidify your
understanding. Throughout the process, you’ll be actively engaged and by
the end, not only will you appreciate the power of prompt engineering, but
you’ll also possess the skills to implement it effectively.

1.2 - To Whom is This Guide For?
This guide is designed for those passionate about LLMs and the emerging
field of prompt engineering. Regardless of your AI expertise or familiarity
with programming, this guide provides a clear route to mastering the
nuances of creating effective prompts for LLMs. So if you are a beginner,
don’t worry. We’ll start from the basics and build up from there. For those
eager to unlock the vast capabilities of language models in practical
scenarios, consider this guide your essential starting point.

1.3 - Join the Community
This guide was published by FAUN, a community of developers, architects,
and software engineers who are passionate about learning and sharing their
knowledge. If you’re interested in joining the community, you can start by
subscribing to our newsletter at faun.dev/join. Every week, we share the
most important and relevant articles, tutorials, and videos on the latest
technologies and trends, including AI, ML, and NLP. You can also follow us
on Twitter at @joinFAUN and LinkedIn to stay up-to-date with the latest
news and announcements.

1.4 - About the Author
Aymen El Amri is a software engineer, author, and entrepreneur. He is the
founder of the FAUN Developer Community. He is also the author of
multiple books on software engineering. You can find him on Twitter and
LinkedIn.

https://faun.dev/join
https://twitter.com/joinFAUN
https://www.linkedin.com/company/22322295
https://twitter.com/eon01
https://www.linkedin.com/in/elamriaymen/


1.5 - The Companion Toolkit
For an enhanced learning experience, we have created a companion toolkit
that includes all the code snippets and prompts used in this guide. You can
download it using the following URL: https://from.faun.to/r/llmcd or by
scanning the QR code below.

https://from.faun.to/r/llmcd


QR Code



1.6 - Your Feedback Matters
Countless hours have been poured into crafting this guide, aiming to
provide you with the best knowledge and tools to master prompt
engineering. I would love to hear your thoughts and suggestions. Your
feedback will help me improve this guide and create better content in the
future. Your insights could also light the way for others! If you feel I’ve
achieved my goal and this guide has been valuable to you, I’d be deeply
honored if you shared your experience with a thoughtful review on the
marketplace where you purchased this book, on social media or directly
with me via email (aymen@faun.dev).

Your feedback will help me quantify the impact of this work and help others
discover this book and benefit from the knowledge within.



2 - From NLP to Large
Language Models
2.1 - What is Natural Language Processing?
Natural language refers to the language that humans use to communicate
with each other. It encompasses spoken and written language, as well as
sign language. Natural language is distinct from formal language, which is
used in mathematics and computer programming.

Generative AI systems, specifically ChatGPT, are capable of understanding
and producing both natural and formal languages. In both cases, interactive
AI assistants like ChatGPT use natural language to communicate with
humans. Their output could be a natural language response or a mix of
natural and formal languages.

To process, understand, and generate natural language, a whole field of AI
has emerged: Natural Language Processing (NLP). NLP, by definition, is
the field of artificial intelligence that focuses on the understanding and
generation of human language by computers. It is employed in a wide range
of applications, including voice assistants, machine translation, chatbots,
and more. In other words, when we talk about NLP, we refer to the ability
of computers to understand and generate natural language.

NLP has experienced rapid growth in recent years, largely due to
advancements in language models such as GPT and BERT. These models
are some of the most powerful NLP models to date. But what is a language
model?

2.2 - Language Models
Models are intelligent computer programs that can perform a specific task.
For example, a model can be trained to recognize images of cats and dogs,



to write social media posts or blog posts, to provide medical assistance or
legal advice, and so on.

These models are the result of a training process that uses large datasets to
teach the model how to perform a specific task. The larger the dataset, the
more accurate the model will be. This is why models trained on large
datasets are often more accurate than models trained on smaller datasets.

Using the dataset used for training, models acquire the capability to make
predictions on new data. For example, a model trained on a dataset of
images of cats and dogs can predict whether a new image contains a cat or a
dog.

Language models are a subset of models capable of generating,
understanding, or manipulating text or speech in natural language. These
models are essential in the field of NLP and are used in various applications
such as machine translation, speech recognition, text generation, chatbots,
and more.

Here are some types of language models:

Statistical models (n-grams)
Neural network-based models

Feedforward neural networks
Recurrent neural networks (RNNs)
Long short-term memory (LSTM)
Gated recurrent units (GRUs)

Knowledge-based models
Contextual language models
Transformer models

Bidirectional encoder representations from transformers (BERT)
Generative pre-trained transformer (GPT)

2.3 - Statistical Models (N-Grams)
Statistical models, like n-gram models, serve as foundational language
models commonly used for text classification and language modeling. They



can also be adapted for text generation, although more advanced models are
typically better suited for complex text-to-text tasks. Within statistical
models, word sequence probabilities are derived from training data,
enabling the model to estimate the likelihood of the next word in a
sequence.

N-gram models specifically consider the preceding n-1 words when
estimating the probability of the next word. For instance, a bigram model
takes into account only the preceding single word, while a trigram model
examines the two preceding words. This characteristic endows n-gram
models with quick training and utilization capabilities, but they exhibit
limitations in capturing long-range dependencies.

ℹ️ In a trigram model, each current word is paired with the two preceding
words, forming sequences of three words. For instance, in the sentence “A
man of knowledge restrains his words,” the observed trigrams would
include “A man of,” “man of knowledge,” “of knowledge restrains,”
“knowledge restrains his,” and “restrains his words.” These sequential 3-
word patterns are then employed by the model to estimate the probabilities
of subsequent words.

Rather than clustering words, n-gram models leverage local word order and
context derived from the training data. By focusing on these short-term
sequences, n-gram models can make predictions about forthcoming words
without modeling global semantics. Although they are efficient and
straightforward, their local context makes them less suitable for generating
lengthy texts.

Statistical models, particularly n-grams, are quite different from the more
recent neural language models. The concept of “prompt engineering” as it’s
understood today is more closely associated with the latter. However, there
are ways in which the design of input or the preprocessing of data for n-
gram models can be thought of as a precursor to prompt engineering.



2.4 - Knowledge-Based Models
These models combine NLP techniques with a structured knowledge base,
enabling them to perform tasks that require a deeper understanding and
reasoning. They are more useful in specific domains such as medicine or
law.

2.5 - Contextual Language Models
These models can understand the meaning of words based on their context.
ELMo (Embeddings from Language MOdels) is an example of a contextual
language model. ELMo is primarily used to obtain word representations
that take context into account. These representations can then be used in
various NLP tasks such as text classification, named entity recognition, and
more.

2.6 - Neural Network-Based Models
Neural network-based models are models that learn and process information
in a way inspired by the human brain. They are designed to recognize
patterns and make predictions based on large amounts of data. These
models consist of interconnected artificial neurons that work together to
solve tasks such as image recognition, natural language processing, voice
recognition, and more!

Neural network-based models are used in various applications, including
self-driving cars, virtual assistants, and recommendation systems. They
enable computers to learn from examples and improve their performance
over time.

2.6.1 - Feedforward Neural Networks

Feedforward neural networks are the simplest type of neural network. They
consist of an input layer, one or more hidden layers, and an output layer.
The input layer receives the input data, which is then passed through the
hidden layers to the output layer.

https://en.wikipedia.org/wiki/ELMo


Multilayer Neural Network

Each layer consists of a set of neurons that perform a specific task. The
neurons in the input layer receive the input data and pass it to the neurons in
the hidden layers. The neurons in the hidden layers perform calculations on
the input data and pass the results to the neurons in the output layer. The
neurons in the output layer perform calculations on the results and produce
the final output.

This type of neural network can be used for tasks such as image
recognition, speech recognition, and other simple classification tasks.
However, it is not suitable for more complex tasks.

2.6.2 - Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) were created to overcome the
limitations of traditional feedforward neural networks in handling
sequential data. Unlike feedforward networks, which process inputs
independently, RNNs have the ability to retain information from previous
steps in the sequence. This is what makes them well-suited for handling
sequential data like text and speech.

They are used in various applications such as translation, sentiment
analysis, and text-to-speech processing.

ℹ️ Sequential data is data that is ordered in a particular way, and each
element in the sequence has a specific meaning. For example, a sentence is



a sequence of words, and each word has a specific meaning.

2.6.3 - Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a special type of neural network that
excels at understanding and remembering information in sequences of data.
It was created to solve a problem that regular neural networks have with
remembering things over long periods.

Regular neural networks can sometimes forget important information when
dealing with sequences. But LSTM is designed to remember important
details and pass them along through many steps in the sequence.

This makes LSTM useful for tasks where understanding the order and
context of the data is important, such as language translation, speech
recognition, and predicting the next word in a sentence.

ℹ️ LSTM is like a smart memory that helps the neural network remember
things in the right order and context.

They can be used in text generation tasks. While you can provide an LSTM
with an initial sequence (akin to a “prompt”) to generate or classify
subsequent sequences, the nuanced manipulation of this initial sequence to
guide the LSTM’s output is not typically referred to as “prompt
engineering.”

2.6.4 - Gated Recurrent Units (Grus)

Gated Recurrent Units (GRUs) are a type of neural network architecture
designed to process sequences of data, much like Long Short-Term Memory
(LSTM) networks. One of the primary motivations behind the development
of GRUs was to address some of the complexities and computational
demands of LSTMs, while still effectively capturing long-term
dependencies in sequential data. As a result, GRUs have a more streamlined
structure than LSTMs, which often allows them to train faster and require
fewer computational resources. A key feature of GRUs is the use of “gates.”



ℹ️ Think of gates as checkpoints that regulate the flow of information
within the network. They determine what data should be retained, updated,
or discarded as the sequence is processed. This mechanism ensures that the
network focuses on relevant details and can recall important information
from earlier in the sequence.

GRUs have proven valuable in a variety of tasks that require understanding
sequences, such as language processing, speech recognition, and more.
Their ability to recognize patterns and relationships in sequential data
makes them a popular choice for many applications in the realm of deep
learning.

Text generation is one such application, but the manipulation of the initial
sequence to guide the GRU’s output is not typically referred to as “prompt
engineering.”

2.7 - Transformer Models
Imagine you’re reading a book, word by word. You understand each word,
but you don’t understand the meaning of the whole sentence. You need to
read the whole sentence to understand it. Similarly, you need to read the
whole paragraph to understand the meaning of the whole paragraph. And
you need to read the whole book to understand the meaning of the whole
book. Naturally, this is how humans read and understand a book. The basic
idea here is that you need to read the whole text to understand it, and it all
starts with understanding each word and how it relates to the other words
around it.

The transformer operates in a similar way. Instead of reading word by word,
it can examine multiple words at once and understand their relationships.
This is known as “attention”.

A few years ago, some researchers at Google devised a new method for
reading text. They named it the “transformer”, and it was described in a
paper titled ‘Attention Is All You Need’ by Ashish Vaswani and others from
the Google Brain team.

https://arxiv.org/pdf/1706.03762.pdf

