Thomas Schröder

Rheologie der Kunststoffe

Theorie und Praxis

HANSER

Bleiben Sie auf dem Laufenden!

Hanser Newsletter informieren Sie regelmäßig über neue Bücher und Termine aus den verschiedenen Bereichen der Technik. Profitieren Sie auch von Gewinnspielen und exklusiven Leseproben. Gleich anmelden unter

www.hanser-fachbuch.de/newsletter

Die Internet-Plattform für Entscheider!

Exklusiv: Das Online-Archiv der Zeitschrift Kunststoffe! **Richtungsweisend:** Fach- und Brancheninformationen stets top-aktuell!

Informativ: News, wichtige Termine, Bookshop, neue Produkte und der Stellenmarkt der Kunststoffindustrie

Thomas Schröder

Rheologie der Kunststoffe

Theorie und Praxis

2., aktualisierte und erweiterte Auflage

Der Autor:

Prof. Dr.-Ing. Thomas Schröder, Institut für Kunststofftechnik Darmstadt ikd, Hochschule für Angewandte Wissenschaften Darmstadt h da

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutzgesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Alle in diesem Buch enthaltenen Verfahren bzw. Daten wurden nach bestem Wissen dargestellt. Dennoch sind Fehler nicht ganz auszuschließen. Aus diesem Grund sind die in diesem Buch enthaltenen Darstellungen und Daten mit keiner Verpflichtung oder Garantie irgendeiner Art verbunden. Autoren und Verlag übernehmen infolgedessen keine Verantwortung und werden keine daraus folgende oder sonstige Haftung übernehmen, die auf irgendeine Art aus der Benutzung dieser Darstellungen oder Daten oder Teilen davon entsteht.

Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Buches oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Einwilligung des Verlages in irgendeiner Form (Fotokopie, Mikrofilm oder einem anderen Verfahren), auch nicht für Zwecke der Unterrichtsgestaltung – mit Ausnahme der in den §§ 53, 54 URG genannten Sonderfälle –, reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

© 2020 Carl Hanser Verlag München

www.hanser-fachbuch.de Lektorat: Ulrike Wittmann

Herstellung: Arthur Lenner, Der Buchmacher, Windach

Coverconcept: Marc Müller-Bremer, www.rebranding.de, München

Coverrealisierung: Max Kostopoulos

Coverbild: Mold & Hotrunner Technology AG

Satz: Kösel Media GmbH, Krugzell

Druck und Bindung: CPI books GmbH, Leck

Printed in Germany

ISBN: 978-3-446-46151-2 E-Book-ISBN: 978-3-446-46550-3

Inhalt

Vor	wort 2	zur 2. Auf	lage	XIII
	Vorv	vort zur 1.	Auflage	XIV
Der	Auto	r		XVII
Wic	htige	Formeln	der Rheologie	XIX
	Die (Gleichunge	en von <i>Hagen-Poiseuille</i>	XIX
	Gleio	chungen fü	ir die repräsentative Schergeschwindigkeit	XX
	Gleio	chungen fü	ir die Viskositätsberechnung	XX
	Gleio	chungen fü	ir den Temperaturverschiebungsfaktor $a_{ extsf{T}}$	XXI
1	Einle	eitung .		1
	1.1	Wozu be	enötigt man die Rheologie in der Kunststofftechnik?	3
	1.2	_	erunterstützte Simulationsprogramme zur Auslegung itzgießwerkzeugen	7
2	Rhe	ologische	Phänomene	11
	2.1	Struktuı	rviskosität	13
		2.1.1	Strukturviskoses Fließverhalten von Kunststoffen \dots	14
	2.2	Dilatanz	<i>.</i>	16
	2.3	Thixotro	pie und Rheopexie	18
	2.4	Grenzfli	eßspannung	20
	2.5	Normals	spannungen	23
		2.5.1	Herkunft, Definition und Charakterisierung	23
		2.5.2	Viskoelastische und Normalspannungseffekte	24
		2.5.2.1	Weissenberg-Effekt	24
		2.5.2.2	Strangschwellen (engl.: die swelling effect)	26

3	Rhe	ologisch	e Grundkörper	2		
	3.1	Der idea	al elastische Festkörper	3		
	3.2	Der idea	al viskose Körper (<i>Newtonsches</i> Fluid)	3		
	3.3		koelastische Körper	3		
	0.0	3.3.1	Allgemeiner viskoelastischer Stoff	3		
4			rsuch und die Herleitung des <i>newtonschen</i>			
			setzes (Stoffgesetz)	3		
	4.1	Der Sch	erversuch	3		
	4.2	Wichtig	e rheologische Stoffgesetze	43		
5	Strö	mungsa	rten	4		
6	Rhe	ometrie ·	- Viskosimetrie und Stoffdatenermittlung	5		
	6.1	Anwendungsbereich der Viskosimeter- und Rheometertypen 5				
	6.2	Voraussetzung für die Ermittlung der Stoffdaten				
	6.3					
		6.3.1	Die Ermittlung der Viskosität bei Fallviskosimetern über das Gesetz von <i>Stokes</i>	6		
		6.3.2	Kugelfallviskosimeter	6.		
		6.3.3	Kugel im geneigten Fallrohr	6		
	6.4					
	6.5	5.5 Rotations- und Oszillationsrheometer				
		6.5.1	Platte-Platte-Rheometer	6		
		6.5.2	Kegel-Platte-Rheometer	6		
		6.5.2.1	Normalspannungen und viskoelastisches Verhalten	7		
		6.5.2.2	Messung der Normalspannungen von Fluiden			
			mittels Rotationsrheometrie	7		
		6.5.2.3	Messung der viskoelastischen Eigenschaften			
			von Fluiden mittels Oszillationsrheometrie			
		(- 0 4	(Schwingungsrheometrie)	7		
		6.5.2.4	Die <i>Cox-Merz</i> -Relation und ähnliche Beziehungen	8		
		6.5.2.5	Relaxationstest mittels Rotationsrheometer	8		
		6.5.2.6	Die Large Amplitude Oscillation Theorie (LAOS)	8		
	6.6	Koaxial	e Zylindersysteme	9		
	6.7	_	rheometer	10		
		6.7.1	Niederdruck-Kapillarrheometer	10		
		6.7.1.1	Bestimmung des Melt-Flow-Index (MFI) und der			
			Melt-Volume-Rate (MVR)	10		

		6.7.1.2	Ermittlung der scheinbaren Schergeschwindigkeit und der scheinbaren Viskosität mittels Niederdruck-Kapillarrheometer	103
		6.7.1.3	Zusammenhang zwischen dem MVR/MFI-Wert	
			und der Molmasse	104
		6.7.2	Hochdruckkapillar-Rheometer	106
		6.7.2.1	Ermittlung der Massestrom-Druck-Funktion	108
		6.7.2.2 6.7.2.3	Berechnung des Volumenstroms	108
		6724	und der scheinbaren Wandschergeschwindigkeit	109
		6.7.2.4	Ermittlung der wahren Wandschubspannung	111
		6.7.2.5 6.7.2.6	Ermittlung der wahren Wandschergeschwindigkeit Bestimmung der Einlauf- und Auslaufdruckverluste, der Normalspannungen und der Dehnviskosität	115
		6.7.2.7	mittels Inline-Druckrheometer Ermittlung der druckabhängigen Viskosität mittels	121
			Inline-Rheometerdüse	125
	6.8	Dehnrhe	ologie	129
		6.8.1	Herkunft und Definition der Dehnviskosität	129
		6.8.2	Messung von Dehnviskositäten	131
		6.8.2.1	Messungen mit einachsiger Dehnung	131
		6.8.2.2	Ermittlung der Dehnviskosität mit dem	
			Rheotensversuch	132
		6.8.3	Ermittlung der Dehnviskosität mit dem Ansatz	
			von F. N. Cogswell	135
	6.9	Theorie	und Praxis der Lösungsviskosimetrie	138
		6.9.1	Beispielmessung der Lösungsviskosität anhand von Polyethylenterephthalat (PET), (Intrinsic Viscosity,	
		(0.4.4	Grenzviskositätszahl, Staudinger-Index)	146
		6.9.1.1	Informationen von Schott Instruments zur Messung	151
		6.9.1.2	der Lösungsviskosität	154 154
7	Viek	neimetri	e – Einflüsse auf die rheologischen Stoffdaten	157
,				
	7.1		der Dissipation	157
	7.2		der Temperatur auf die Fließkurve	160
		7.2.1	Der Temperaturverschiebungsfaktor	162
		7.2.2	Temperaturinvariante Auftragung der Fließkurven	
			(Masterkurven)	163
		7.2.2.1	Beispiel einer Viskositätsermittlung für eine gewählte Schergeschwindigkeit und eine weitere Temperatur	166

		7.2.2.2	Aufgabe: Gesucht ist die Viskosität für eine gegebene Schergeschwindigkeit anhand einer Masterkurve	167
		7.2.2.3	Aufgabe: Übung zur Temperaturverschiebung mittels Nullviskosität	169
		7.2.3	Mathematische Beschreibung des Temperaturverschiebungsfaktors	169
		7.2.3.1	Arrhenius-Funktion	170
		7.2.3.2	Gleichungen von <i>Williams, Landel und Ferry</i> (<i>WLF</i> -Ansatz)	171
	7.3	Thermo	rheologische Größen	175
		7.3.1	Änderungen des morphologischen Aufbaus durch Wärme	176
		7.3.2	Füllstoffe	177
		7.3.3	Der Druckeinfluss	182
		7.3.4	Einfluss der mittleren Molmasse	185
		7.3.5	Molmassenverteilung	191
		7.3.6	Einfluss der Molmasse und der Molmassenverteilung auf den Speicher- und Verlustmodul bei der	
			Oszillation	193
	7.4	Einfluss	von Restfeuchte auf die Scherviskosität	199
	7.5		: Beschreiben des Fließverhaltens mit einer kurve"	200
		,,		
8			e – Mathematische Beschreibung	
	der	Fließkur	ve	203
	8.1	Der Pote 8.1.1	enzansatz von <i>Ostwald</i> und <i>de Waele (Power-Law-Model) Aufgabe:</i> grafische Ermittlung der Konstanten	204
			des Potenzansatzes	206
	8.2	Der <i>Car</i> 8.2.1	reau-AnsatzBerücksichtigung der Temperaturabhängigkeit	208
			im Carreau-Ansatz	211
	8.3	Der <i>Cros</i>	ss- <i>WLF</i> -Ansatz	212
	8.4	Polynon	nansätze	214
		8.4.1	Polynomansatz nach <i>Münstedt</i>	214
		8.4.2	Biquadratischer Polynomansatz	215
		8.4.3	Polynomansätze für komplexes Fließverhalten	215
	8.5		: Ermittlung des Konsistenzfaktors und des ätsexponenten	216
	8.6		: Vergleich der Materialgesetze	_10
	0.0		r vergieich der Materialgesetze	217

9	Bere	chnung v	on Fließvorgängen	219
	9.1		ung der Volumenstrom- und Druckfunktion onsche Fluide Annahmen zur Vereinfachung der Gleichungen Strömungskanal mit Rechteckquerschnitt Strömungskanal mit Kreisquerschnitt	220 220 220 225
		9.1.4	Kanal mit Kreisringquerschnitt	228
	9.2		ung der Volumenstrom- und Druckfunktion turviskose Fluide	229
		9.2.2	Potenzansatz	229
			Carreau-Ansatz	231
	9.3	Normiert	ter Geschwindigkeits- und Schergeschwindigkeitsverlauf	232
	9.4		Auswirkung des Strömungskanals auf den	
		Schmelze	evolumenstrom	235
10	Die I	Methode	der repräsentativen Schergeschwindigkeit	237
11	Bere	chnung v	von Fließvorgängen beim Spritzgießen	241
	11.1	Modellvo	orstellung	241
	11.2		ine Vorgehensweise zur Druckverlustberechnung	247
		11.2.1	Aufgabe: Beispielrechnungen	247
		11.2.1.1	Druckverlust Plattengeometrie	247
		11.2.1.2 11.2.2	Druckverlust Scheibengeometrie Einfluss der Materialeigenschaften auf den	248
		11.2.3	Verarbeitungsprozess	249
		11.2.4	daraus resultierende reale Zuhaltekraft	250
		11.2.4	Abkühleffekte (nichtisotherme Strömung)	251
		11.2.5	Berechnung der optimalen Füllzeit (Einspritzgeschwindigkeit) beim Spritzgießen mittels <i>Brinkmann-</i> Zahl	253
		11.2.5.1	Aufgabe: Optimale Füllzeit	255
12	Bere	chnen vo	on Fließvorgängen in Heißkanalsystemen	
	und	Extrusion	nswerkzeugen	257
	12.1	Grundlag	gen zum Druckverlauf über die Länge bei	
			engesetzten Kanalsystemen	257
		12.1.1	Druckverlauf in parallel angeordneten Rohren	258

		12.1.2 12.1.3 12.1.4	Druckverlauf in seriell angeordneten Rohren Konische Strömungskanäle Druckverlauf für einen beliebig zusammen-	259 260
			gesetzten Kanal	261
	12.2		ische Auslegung von Heißkanalsystemen beim eßen	262
	100			202
	12.3		n: Mathematisch rheologische Balancierung von alsystemen	271
		12.3.1	Zweifachwerkzeug mit unterschiedlichem	2/1
		12.0.1	Schmelzeverteilersystem	271
		12.3.2	Achtfachwerkzeug mit unterschiedlichem	
			Schmelzeverteilersystem	272
		12.3.3	Sechsfachwerkzeug mit unterschiedlichem	
			Schmelzeverteilersystem	273
		12.3.4	Zweifach-Familienwerkzeug	274
	12.4	Rheologi	ische Auslegung von Extrusionswerkzeugen	276
		12.4.1	Mathematische Voraussetzungen zur Balancierung	279
		12.4.2	Analytische Balancierung Fischschwanzverteiler	281
		12.4.3	Analytische Balancierung Kleiderbügelverteiler	283
		12.4.4	Numerische Balancierung	287
		12.4.5	Aufgabe: Analytische Balancierung eines	
		10.1	Fischschwanzverteilers	289
		12.4.6	Aufgabe: Analytische Balancierung eines	200
		12 4 7	Kleiderbügelverteilers	289
		12.4.7	Aufgabe: Numerische Balancierung einer Breitschlitzdüse mit Kleiderbügelverteiler mit Segmenten	290
		12.4.8	Aufgabe: Berechnung der Austragsleistung eines	290
		12.4.0	Extruders	291
		12.4.9	Aufgabe: Auslegung einer Schlitzdüse	292
		1=1117	1.m) Sacot 1.moro Samo Sommes and	-/-
13	Sche	r- und D	ehndruckverluste an Querschnittsübergängen	295
	13.1	Aufgabe:	: Dehn- und Scherdruckverluste	298
14		_	sche Werkzeugauslegung beim Spritzgießen	
	mit d		ildmethode	301
	14.1	Grundla	gen für ein grafisches Verfahren	301
	14.2	Modelly	orstellung des Formfüllvorgangs	301
	14.3	Rheologi	ische Grundlagen	302
	14.4	Beispiel	für die Füllbildmethode	305
	14.5	Aufgabe:	: Nachweis der Unabhängigkeit der Füllbildmethode	
		von der	Strukturviskosität	307

15	Schr	Schneckenströmungen			
	15.1	Einleitu	ng und Modelle	309	
		15.1.1	Aufschmelzmodell nach <i>Maddock</i>	310	
		15.1.2	Das Zwei-Platten-Modell der Schleppströmung	310	
	15.2	, 0	e: Berechnung des Geschwindigkeitsverlaufs einer kenströmung	312	
16			im Strömen von Kunststoffschmelzen		
	und	_	en	315	
	16.1	_	obleme in Mehrschichtströmungen	315	
		16.1.1	Umlagerung der Schmelzen	315	
		16.1.2	Phänomenologie der Umlagerung	315	
		16.1.3	Modelle zur Entstehung der Umlagerung	316	
	16.2	Ausbild	ung der Schichtdicken beim Sandwichspritzgießen	326	
	16.3	Normals	spannungseffekte, Druckverluste u. Strömungs-		
		instabili	itäten	335	
		16.3.1	Aufgabe: Gesamtdruckabfall in einer Extrusionsdüse	339	
		16.3.2	Effekte bei der Extrusion durch das Überschreiten		
			der kritischen Grenzschubspannung	341	
		16.3.3	Effekte beim Spritzgießen durch das Überschreiten	0.40	
		1 () 1	der kritischen Grenzschubspannung	342	
		16.3.4	Wandgleiten (Stick-Slip-Effekt)	344	
17	Mate	erialpara	ımeter	347	
	17.1	Potenza	nsatz	347	
	17.2	Carreau	-Ansatz	351	
	17.3		LF-Ansatz	356	
	17.0	01033 111	LI THISULE	000	
18	Lösu	ingen .		359	
	Abso	hnitt 7.2.	.2.2, <i>Aufgabe:</i> Gesucht ist die Viskosität für eine		
	ge	gebene So	chergeschwindigkeit anhand einer Masterkurve	359	
			.2.3, <i>Aufgabe:</i> Übung zur Temperaturverschiebung		
			viskosität	359	
	Beis	nielrechn:	ung, Abschnitt 7.2.3.2 Gleichungen von <i>Williams</i> ,		
	-	-	Ferry (WLF-Ansatz)	361	
			.1, <i>Aufgabe:</i> grafische Ermittlung der Konstanten		
			nsatzes	361	
				362	
	AUSC	,م.د. م.س	, <i>Aufgabe zu:</i> Der Carreau-Ansatz	302	

des Viskositätsexponenten	362
Abschnitt 8.6, <i>Aufgabe</i> : Vergleich der Materialgesetze (Potenzansatz und <i>Carreau</i> -Ansatz)	363
Abschnitt 9.4, <i>Aufgabe</i> : Auswirkung des Strömungskanals auf den Schmelzevolumenstrom	364
Abschnitt 11.2.1, <i>Aufgabe</i> : Beispielrechnungen	364
Abschnitt 11.2.1.2, <i>Aufgabe</i> : Druckverlust Scheibengeometrie	364
Abschnitt 11.2.2: Einfluss der Materialeigenschaften auf den Verarbeitungsprozess	365
Abschnitt 11.2.3, <i>Aufgabe:</i> Druckverluste beim Spritzgießen und die daraus resultierende reale Zuhaltekraft	366
Abschnitt 11.2.3.1, <i>Aufgabe</i> : Optimale Füllzeit	366
Abschnitt 11.2.4, <i>Aufgabe:</i> Berücksichtigung der Dissipations- und Abkühleffekte (nichtisotherme Strömung)	366
Abschnitt 12.3.1: Zweifachwerkzeug mit unterschiedlichem Schmelzeverteilersystem	367
Abschnitt 12.3.2: Achtfachwerkzeug mit unterschiedlichem Schmelzeverteilersystem	368
Abschnitt 12.3.3: Sechsfachwerkzeug mit unterschiedlichem Schmelzeverteilersystem	368
Abschnitt 12.3.4: Zweifach-Familienwerkzeug	368
Abschnitt 12.4.5, <i>Aufgabe</i> : Analytische Balancierung eines Fischschwanzverteilers	369
Abschnitt 12.4.6, <i>Aufgabe</i> : Analytische Balancierung eines Kleiderbügelverteilers	369
Abschnitt 12.4.7, <i>Aufgabe:</i> Numerische Balancierung einer Breitschlitzdüse	370
Abschnitt 12.4.8, <i>Aufgabe</i> : Berechnung der Austragsleistung eines Extruders	370
Abschnitt 12.4.9, <i>Aufgabe:</i> Auslegung einer Schlitzdüse	371
Abschnitt 13.1, <i>Aufgabe</i> : Dehn- und Scherdruckverluste	371
Abschnitt 14.5, <i>Aufgabe:</i> Einfluss der Strukturviskosität auf die Füllbildmethode	371
Abschnitt 16.3.1, Aufgabe: Gesamtdruckabfall in einer Extrusionsdüse	372
Index	373

Vorwort zur 2. Auflage

Die Freude darüber, dass das von mir verfasste Buch über die Rheologie der Kunststoffe eine große Nachfrage hat und bereits nach zwei Jahren nahezu vergriffen ist, ist groß. Insofern stand schnell die Herausgabe einer zweiten Auflage an. Auch die vielzähligen positiven Rückmeldungen und konstruktiven Anregungen der Leser machen eine weitere Auflage notwendig.

Das Kapitel *Viskosimetrie und Rheometrie* wurde um die sogenannte Large-Amplitude-Oszillation Theorie (LAOS) erweitert. Dabei wird das nicht linear viskoelastische Verhalten unter oszillierender Scherung mit großer Amplitude untersucht und beschrieben.

Das Kapitel *Rheologische Auslegung* von Heißkanalsystemen beim Spritzgießen wurde um Druckverluste, die an Umlenkungen im Heißkanal entstehen ergänzt.

Mehrschichtströmungen gewinnen im Bereich der Kunststoffverarbeitung zunehmend an Bedeutung. Aus diesem Grund wurde dieses Kapitel mit *Berechnungsgleichungen und Simulationsergebnissen*, die den Einfluss unterschiedlicher Parameter auf das Strömungsverhalten beschreiben, erweitert.

Die zweite Auflage liegt nun komplett in Farbe vor, da auch das ein Wunsch der Leser der ersten Auflage war. Viele Grafiken und Bilder sind damit besser verständlich und machen das Lesen und Verstehen einfacher.

Des Weiteren wurden einige Bilder mit QR-Codes ergänzt. Diese QR-Codes sind mit Animationen verlinkt, die automatisch ablaufen sobald der QR-Code eingelesen wird. Damit soll das Verständnis von vielen rheologischen Phänomenen und anderen Darstellungen, wie z.B. Simulationen vereinfacht werden.

Ich möchte mich nochmals für die zahlreichen positiven Rückmeldungen und die konstruktiven Anregungen, die zu einer völlig überarbeitenden zweiten Auflage geführt haben, bedanken. Das gilt auch für viele nette Kollegen, die mich dabei unterstützt haben.

Des Weiteren möchte ich mich bei allen Mitwirkenden bedanken, die zu einer verbesserten zweiten Auflage beigetragen haben.

Darmstadt im Juni 2020 Prof. Dr. Thomas Schröder

Hinweis: Die Lösungen zu den Aufgaben befinden sich in Kapitel 18.

■ Vorwort zur 1. Auflage

Bereits als Student hat mich die Rheologie begeistert. Mit großem Vergnügen habe ich damals die hochinteressanten Vorlesungen von Prof. Schümmer an der RWTH Aachen verfolgt. Im Rahmen meines Studiums habe ich am Institut für Kunststofftechnik IKV, als wissenschaftliche Hilfskraft, das spezielle rheologische Verhalten von Thermoplasten und Duromeren an Querschnittsübergängen als Berechnungsroutine in das Simulationsprogramm Cadmould® implementiert. Auch im Berufsleben begegnete ich der Rheologie immer wieder. So befasste ich mich zum Beispiel sehr intensiv mit der rheologischen Auslegung von 96-fach Heißkanalsystemen für die Herstellung von Vorformligen.

Aus diesem Grund habe ich auch bei meinem Ruf an die Hochschule Darmstadt viel Wert darauf gelegt das Fach Rheologie der Kunststoffe zu lehren. Seit 2001 habe ich nun das Vergnügen die Rheologie in Darmstadt aber auch an vielen anderen Hochschulen und Universitäten zu lehren. Dabei ist es für mich sehr wichtig die Rheologie der Kunststoffe und das spezielle Fließverhalten der Kunststoffe möglichst anschaulich zu vermitteln. Neben den theoretischen Inhalten, die im Rahmen der Vorlesungen im Bachelor- und auch im Masterstudiengang Kunststofftechnik abgehandelt werden, lege ich ebenfalls viel Wert auf die praxisnahe Ausbildung. Das von mir geleitete Labor der Rheologie ist aus diesem Grund mit allen Rheometern ausgestattet, die für die Beschreibung des visko-elastischen Fließverhaltens von Kunststoffen notwendig sind. Neben der Scherrheologie wird dort auch die Dehnrheologie durch Versuche vermittelt.

Dementsprechend ist auch das vorliegende Buch "Rheologie der Kunststoffe – Theorie und Praxis" strukturiert. Neben den allgemeinen Grundlagen gibt es zu jedem Kapitel Aufgaben und Praxisübungen, die sehr anwendungsnah definiert

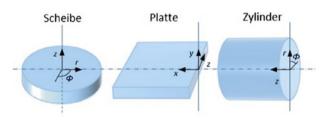
sind. Der Leser hat somit die Möglichkeit die Grundlagen zu studieren und gleichzeitig auch die gewonnenen Kenntnisse anzuwenden. Da es sich um eine Erstausgabe handelt, sind sicherlich noch Optimierungspotenziale gegeben. Gerne nehme ich Rückmeldung, die zu einer stetigen Verbesserung des Buches führen und somit den Studierenden und anderen Lesern zu Gute kommen an.

Ich bedanke mich bei den Absolventen und Studierenden des Fachbereichs Maschinenbau und Kunststofftechnik, die bereits zu einer kontinuierlichen Weiterentwicklung der Inhalte beigetragen haben. Des Weiteren bedanke ich mich beim Hanser Verlag für die Möglichkeit dieses Buch in Hardcover und mit E-Book Inside preislich so anzubieten, dass Studierende davon Gebrauch machen können.

Ich wünsche den Studierenden und anderen Lesern viel Freude beim Erkunden der Rheologie der Kunststoffe. Evtl. werden einige Leser gleichermaßen begeistert von der Thematik sein, wie ich es früher war und auch heute noch bin.

Darmstadt im Juni 2018 Prof. Dr. Thomas Schröder

Der Autor


Prof. Dr. Thomas Schröder lehrt an der Hochschule Darmstadt h_da die Fächer Spritzgießen, Werkzeugtechnik, Simulationstechnologie und Rheologie. Nach dem Studium des Maschinenbaus mit der Fachrichtung Kunststofftechnik an der RWTH Aachen promovierte er bei Prof. Dr. Dr. h. c. Walter Michaeli mit dem Themengebiet Gasinjektionstechnik. Nach mehreren Jahren bei einem namhaften Kunststoffverarbeiter wechselte er zur Fa. Krupp Corpoplast nach Hamburg, wo er für die Systeme zur Herstellung von Vorformlingen verantwortlich war. Im Anschluss an diese Tä-

tigkeit leitete er die Anwendungstechnik SPA bei dem Spritzgießmaschinenhersteller Fa. Netstal in der Schweiz. Im Jahr 2001 erhielt Prof. Schröder den Ruf an die Hochschule Darmstadt. Er ist Mitglied des Instituts für Kunststofftechnik Darmstadt ikd und Vorsitzender der Gesellschaft zur Förderung technischen Nachwuchses GFTN e.V., welches ein Institut an der Hochschule Darmstadt ist. Prof. Schröder forscht sehr intensiv im Rahmen von geförderten Drittmittelprojekten in den Bereichen Rheologie und Spritzgießen. Des Weiteren ist Prof. Schröder Mitglied des Promotionszentrums für Nachhaltigkeitswissenschaften und verfügt damit über das Promotionsrecht an der Hochschule für Angewandte Wissenschaften Darmstadt h_da.

Wichtige Formeln der Rheologie

■ Die Gleichungen von *Hagen-Poiseuille*

	Scheibe	Platte	Zylinder
Fließrichtung	r	x	z
Scherrichtung	z	У	r
Dehn-, bzw. indifferente Richtung	φ	z	φ

Bild 1 Geometrie für die Gleichungen von Hagen-Poiseuille

Scheibe	$\frac{\Delta p}{r} = \frac{12\overline{v}_r \eta}{H^2}$
Platte	$\frac{\Delta p}{x} = \frac{12\overline{v}_x \eta}{H^2}$
Zylinder	$\frac{\Delta p}{z} = \frac{32\overline{v}_z\eta}{D^2}$

Mit der Kontinuitätsgleichung $\dot{V} = \overline{V} \cdot A$ folgt:

Scheibe	$\frac{\Delta p}{r} = \frac{6\dot{V}\eta}{\pi RH^3}$
Platte	$\frac{\Delta p}{x} = \frac{12\dot{V}\eta}{BH^3}$
Zylinder	$\frac{\Delta p}{z} = \frac{128\dot{V}\eta}{\pi D^4}$

■ Gleichungen für die repräsentative Schergeschwindigkeit

Scheibe	$\overline{\dot{\gamma}} = e_{Rechteck} rac{6 \cdot \overline{v}_r}{H} = e_{Rechteck} rac{3 \cdot \dot{V}}{\pi \cdot r \cdot H^2}$	
Platte	$\overline{\dot{\gamma}} = e_{Rechteck} \frac{6 \cdot \overline{V}_{X}}{H} = e_{Rechteck} \frac{6 \cdot \dot{V}}{B \cdot H^{2}}$	
Zylinder	$\overline{\dot{\gamma}} = e_{\mathit{Kreis}} rac{8 \cdot \overline{v}_z}{D} = e_{\mathit{Kreis}} rac{32 \cdot \dot{V}}{\pi \cdot D^3}$	
Mit $e_{Rechteck} = 0,772$ und $e_{Kreis} = 0,815$		

Die Gleichung für das temperaturabhängige spezifische Volumen

$$v(\vartheta) = v(\vartheta_0) \cdot \left[1 + \alpha \cdot (\vartheta - \vartheta_0)\right]$$

■ Gleichungen für die Viskositätsberechnung

Potenzansatz nach Ostwald und de-Waele

$$\eta = K \cdot a_T^{n} \cdot \dot{\gamma}^{n-1}$$

oder

$$\eta = a_{\scriptscriptstyle T}^{\frac{1}{m}} \cdot \phi^{-\frac{1}{m}} \cdot \dot{\gamma}^{\frac{1-m}{m}}$$

Carreau-Ansatz

$$\eta = \frac{a_T \cdot P_1}{\left(1 + a_T \cdot \dot{\gamma} \cdot P_2\right)^{P_3}}$$

Cross-Ansatz

$$\eta(\dot{\gamma}) = \frac{\eta_0}{1 + \left(\frac{\eta_0 \dot{\gamma}}{\tau}\right)^{1-n}}$$

mit

$$\eta_0(T,p) = D_1 \cdot e^{\left[\frac{-A_1(T-D_2-D_3p)}{A_2+T-D_2}\right]}$$

■ Gleichungen für den Temperaturverschiebungsfaktor $a_{\rm T}$

Arrhenius-Ansatz

$$a_{\scriptscriptstyle T} = e^{\left[rac{E_0}{R}\left(rac{1}{T} - rac{1}{T_0}
ight)
ight]}$$

William-Landel-Ferry-Ansatz (WLF-Ansatz)

$$lg(a_T) = \frac{8,86(T_{Bezug} - T_S)}{101,6 \text{ K} + (T_{Bezug} - T_S)} - \frac{8,86(T - T_S)}{101,6 \text{ K} + (T - T_S)}$$

Einleitung

Die Rheologie ist ein sehr altes Fachgebiet und wurde bereits um 1930 u.a. von *E.C. Bingham* und *M. Reiner* in Easton (USA) als eigenständige Disziplin gegründet. Wesentliche Einzelbeiträge veröffentlichten schon sehr viel früher z.B. 1676 *R. Hooke*, 1687 *J. Newton*, 1745 *L. Euler*, 1820 *C.L.M.H. Navier*, 1845 *G. Stokes*, 1847 *J.L.M. Poiseuille*, 1867 *B. Maxwell* und 1908 *L. Prandtl* [1]. Ansätze aus diesen Beiträgen werden in diesem Buch auch hergeleitet, wie z.B. das *newtonsche* Reibungsgesetz oder das Gesetz von *Hagen-Poiseuille*. [1]

Bild 1.1 Sir Isaac Newton (links) (* 4. Januar 1643, †31. März 1727), Robert Hooke (rechts) (* 28. Juli 1635, †4. März 1703) [Quelle: Wikipedia]

Das Wort Rheologie leitet sich aus dem griechischen Wort rheos = fließen ab. Die Rheologie ist somit die Wissenschaft von der Deformation und dem Fließen der Stoffe. Unter Fließen kann man hierbei die andauernde Deformation eines Materials unter Einwirkung äußerer Kräfte verstehen. Die Aufgabe der Rheologie besteht darin, zu beschreiben, zu messen und zu erklären, wie ein Feststoff oder auch eine Flüssigkeit auf eine bestimmte Deformation reagiert. [1]

Bild 1.2 Die Rheologie beschreibt das Deformations- und Fließverhalten der Stoffe [2]

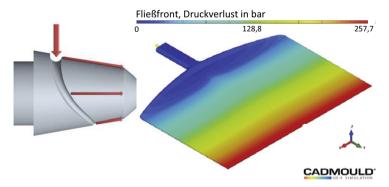
Was versteht man unter Rheologie?

Unter Rheologie versteht man die Wissenschaft von der Deformation und dem Fließen der Stoffe.

Zentrale Aufgabe der Rheologie ist somit das Messen, Beschreiben und Erklären des Stoffverhaltens eines Materials unter Einwirkung von äußeren Kräften und Verformungen.

Jeder begegnet früher oder später speziellen rheologischen Phänomenen. Ob es morgens die Zahnpasta und die Marmelade ist oder am Abend der Ketchup. All diese Stoffe haben ihr spezielles Fließverhalten, auf das im Folgenden noch näher eingegangen werden soll.

https://bit.ly/311MEsw


Bild 1.3 Alltagsbeispiele aus der Rheologie

■ 1.1 Wozu benötigt man die Rheologie in der Kunststofftechnik?

Die Rheologie der Kunststoffe ermöglicht u.a. eine Beschreibung der Strömungsvorgänge von Kunststoffschmelzen. Die Ansätze und Randbedingungen, wie die Gleichung von *Hagen-Poiseuille* oder die *Navier-Stokes*-Haftbedingung, werden in den folgenden Kapiteln erklärt, hergeleitet und anschließend zur Berechnung von Strömungsvorgängen genutzt.

Mit Hilfe der heutigen computerunterstützten Simulationsprogramme, wie Cadmould®, Moldflow®, Moldex®, Sigmasoft® oder Fluent®, lassen sich diese Strömungsvorgänge mit den entsprechenden Randbedingungen (Materialparameter, Verarbeitungsbedingungen etc.) berechnen und grafisch darstellen. Diese Programme basieren auf den Grundlagen der Rheologie. Dazu zählen die rheologischen Stoffdaten aus der Rheometrie und die meist empirisch ermittelten mathematischen Ansätze, wie Stoffgesetze und Temperaturgleichungen der Rheologie.

Denkt man an die Extrusion, so dient die Rheologie zur Beschreibung der komplexen Strömungsvorgänge im Extruder und damit zur Auslegung von Schneckengeometrien. Des Weiteren können die Strömungs- und Mischvorgänge in Scher- und Mischteilen beschrieben werden. Die Balancierung der Schmelze in den Verteilersystemen, wie z.B. in Breitschlitzdüsen oder Pinolenverteilersystemen durch Kleiderbügel- oder Fischschwanzverteiler, ist ebenfalls ein wichtiges Teilgebiet der Rheologie. Ziel der Balancierung ist es, den Schmelzestrom so zu verteilen, dass dieser am Austritt an allen Stellen die gleiche Geschwindigkeit hat. Dies wird erreicht, indem man die Verteilersysteme so balanciert, dass der Druckverlust auf allen Fließwegen gleich groß ist. Auf diese Balancierungsmethoden wird später noch detailliert eingegangen.

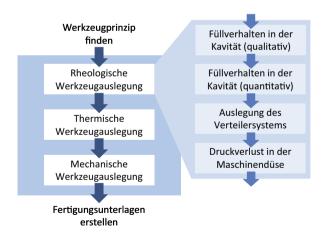

https://bit.ly/3if0Nth

Bild 1.4 Rheologische Balancierung eines Pinolen- und eines Breitschlitzwerkzeugs mittels Kleiderbügel

Neben der Extrusion zählt das Spritzgießen zu den Kunststoffverarbeitungsprozessen, die die größte Anwendung finden. Bei der Auslegung von Schubschnecken, Kolbenspeichern, Scher- und Mischteilen werden auch hier die Grundlagen der Rheologie genutzt. Ziel ist es, die Strömungsvorgänge des Kunststoffs im kompletten Spritzgießsystem, d. h. vom Granulat bis zum Fertigteil beschreiben zu können. Eine Aussage über Druckverluste, Verweilzeiten, Temperaturen, Schubspannungen, Schergeschwindigkeiten, Orientierungen etc. wird möglich.

Das Thema Strukturanalyse gewinnt gerade unter dem Gesichtspunkt Leichtbau zunehmend an Bedeutung. So lassen sich mit Simulationsprogrammen, wie sie vorher aufgeführt wurden, die strömungsbedingten Orientierungen z.B. von Glasfasern im Formteil vorhersagen und über eine Schnittstelle mittels Mapping an ein Programm zur Festigkeitsberechnung übertragen. Damit besteht die Möglichkeit, bei der Bauteilauslegung die Anisotropie des Werkstoffs zu berücksichtigen und infolgedessen eine Bauteiloptimierung vorzunehmen, die wesentlich realitätsnäher und damit effektiver ist.

Im Vordergrund steht jedoch beim Spritzgießen die Auslegung der Spritzgieß-werkzeuge inklusive Angusssystem zur Herstellung von Kunststoffformteilen. Der Konstruktionsprozess lässt sich in drei Phasen unterteilen. Im Anschluss an die Werkzeugfindungsphase folgt die Werkzeugdimensionierung. Diese beinhaltet neben der mechanischen und thermischen auch die rheologische Auslegung. D. h. an dieser Stelle sind vorwiegend rheologische Kenntnisse, also Kenntnisse über das Fließverhalten der Kunststoffschmelzen, notwendig. [7]

Bild 1.5 Die Phasen der Werkzeugkonstruktion und die Schritte der rheologischen Werkzeugauslegung [3]

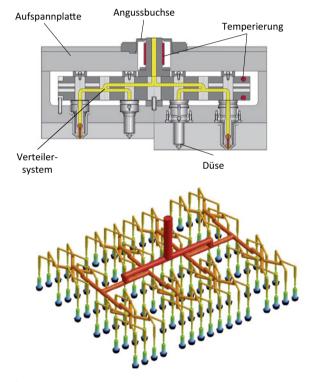
Die rheologische Werkzeugauslegung bietet sich als erster Auslegungsschritt der zweiten Werkzeugauslegungsphase an, da hier kaum Restriktionen aus den Ergebnissen der anderen Auslegungsschritte zu erwarten sind. Sie dient zunächst dazu, die Lage von Bindenähten und Lufteinschlüssen in Abhängigkeit von Art und Lage der Anschnitte und Wanddicke festzuhalten. Da für eine solche Analyse das Materialverhalten eine untergeordnete Rolle spielt und da hier weder Drücke noch Geschwindigkeiten der Schmelze gefragt sind, ist dieser Auslegungsschritt im Bild als qualitativ bezeichnet. Hier kann zum Beispiel die Füllbildmethode Anwendung finden. Auf diese Methode wird später noch detailliert eingegangen.

Nachdem durch diese Analyse die Fließwege der Schmelze im Formnest bestimmt sind, kann eine quantitative Analyse durchgeführt werden. Hierzu ist die Kenntnis des Materialverhaltens, d.h. der Viskositätsfunktion und thermischen Stoffwerte, Voraussetzung. In diesem Schritt der Auslegung wird der Druckbedarf zur Formnestfüllung berechnet. Dieser ist außer vom Materialverhalten von den Prozessparametern abhängig. Somit werden hier auch die optimalen Einspritzgeschwindigkeiten, Masse- und Wandtemperaturen ermittelt. Ferner können die Grenzwerte (Druck, Temperatur, Schergeschwindigkeit, Schubspannung etc.) der Prozessparameter festgelegt werden, deren Überschreiten zu Materialschädigung durch zu hohe Schergeschwindigkeiten oder durch zu hohe Friktionserwärmung führt.

Aus den ersten beiden rheologischen Auslegungsschritten resultieren die Positionen von Anschnitten und die erforderlichen Schmelzeströme, sowie die erforderliche Massetemperatur. Dies sind entscheidende Randbedingungen für das im dritten Schritt auszulegende Verteilersystem. Durch die Position von Anschnitten sind die Grobabmessungen und mögliche Verteilervarianten festgelegt. In den meisten Fällen muss der Konstrukteur durch die gleiche Simulationsrechnung wie unter Schritt zwei die Durchmesser der Verteilerkanäle dimensionieren. Ergebnisse sind auch hier zusätzliche Druckverluste im Verteilersystem sowie Temperatur- und Scherbeanspruchung des Materials.

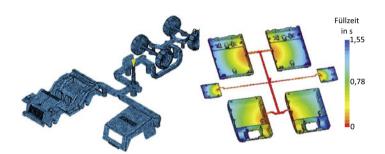
Nach dieser Dimensionierung liegt der zur Werkzeugfüllung benötigte Druck fest. Dieser muss von der Maschine bereitgestellt werden. Zusätzlich muss noch der in der Maschinendüse selbst entstehende Druckverlust berücksichtigt werden. Je nach Höhe des Druckverlustes muss überprüft werden, ob der Maschinendruck (Einspritzdruck) ausreicht.

Entscheidend ist bei der Berechnung von Druckverlusten in der Maschinendüse und im Schmelzeverteilersystem auch die Berücksichtigung der sogenannten Einlauf- oder Dehndruckverluste. Diese entstehen immer dann, wenn eine Änderung des Strömungskanalquerschnitts (Querschnittssprung) vorliegt. So verändert sich z.B. der Durchmesser einer Maschinendüse immer vom Schneckendurchmesser auf einen Durchmesser, der kleiner ist als der der Angussbuchse. Somit ergeben sich schon hier zusätzliche Druckverluste, die zu den Scherdruckverlusten hinzuaddiert werden müssen. Auch auf dieses Thema wird später noch detailliert eingegangen.


Computerunterstützte Simulationsprogramme vernachlässigen diese Druckverluste in der Regel, weil die rheologischen Stoffdaten nicht oder nur mangelhaft vorhanden sind. Dies kann gerade bei der Auslegung von Heißkanalsystemen zu fehlerhaften Rechnungen führen. So liegen die berechneten Druckverluste je nach Komplexität des Verteilersystems oftmals weit unter den realen Druckverlusten.

Der rheologischen Auslegung schließt sich die thermische Auslegung an. Hierbei sind bereits einige Restriktionen aus der rheologischen Berechnung zu beachten. So ist die Massetemperatur vorgegeben und auch die Temperatur an der Formnestwand liegt in engen Grenzen fest.

Auch bei Werkzeugen mit mehreren Formnestern oder Großwerkzeugen mit Mehrfachanspritzung werden die Gesetze der Rheologie genutzt, um das Strömungs-, respektive das Füllverhalten vorherzusagen.


Bild 1.6 Vielfach-Spritzgießwerkzeug mit Heißkanalverteilersystem [4] [8]

Insbesondere bei Vielfach- und Familienwerkzeugen ist eine rheologische Balancierung zwingend notwendig. Ziel der Balancierung ist es, die Füllung aller Formnester zum gleichen Zeitpunkt abzuschließen.

Dazu stehen bei Vielfachwerkzeugen zwei Möglichkeiten der rheologischen Balancierung zur Verfügung:

- die natürliche rheologische Balancierung
- die mathematische rheologische Balancierung

Familienwerkzeuge (siehe Bild 1.7), bei denen die Kavitäten nicht identisch sind, werden immer mathematisch rheologisch balanciert, während bei Vielfachwerkzeugen mit identischen Kavitäten die natürliche rheologische und auch die mathematisch rheologische Balancierung genutzt werden kann. In der Regel wird wegen der Betriebspunktunabhängigkeit und der einfacheren Auslegung die natürliche rheologische Balancierung bei diesen Systemen bevorzugt. Auch auf dieses Thema wird später noch detaillierter eingegangen.

https://bit.ly/3gwG2Jo

Bild 1.7 Beispiele für Familienwerkzeuge [6]

1.2 Computerunterstützte Simulationsprogramme zur Auslegung von Spritzgießwerkzeugen

Da ein empirisches Ermitteln der optimalen Werkzeugauslegung z.B. mittels Versuchswerkzeugen recht zeit- und auch kostenintensiv ist, werden in der Werkzeugfindungsphase zunehmend computerunterstützte Simulationsprogramme genutzt. Diese CAD-Programme sind so z.B. in der Lage, die Strömungsvorgänge im Werkzeug recht exakt vorherzusagen. Um dies zu ermöglichen, ist jedoch eine Reihe an mathematischen Ansätzen, die das Strömungsverhalten der Kunststoffschmelze beschreiben, notwendig. Des Weiteren werden zur Berechnung der Strömungsvorgänge Daten über die charakteristischen Fließeigenschaften der Kunststoffschmelze benötigt. An dieser Stelle kommt die Rheometrie ins Spiel. Mit Hilfe von unterschiedlichen Messeinrichtungen werden die typischen Fließeigenschaften der Kunststoffschmelzen gemessen und aufgezeichnet.

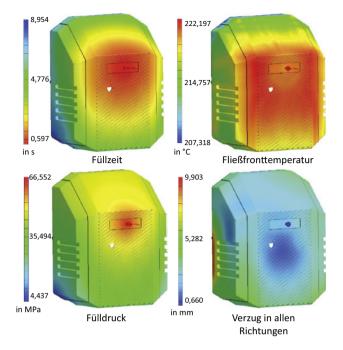
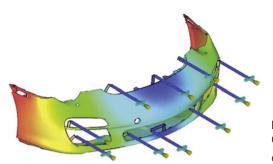
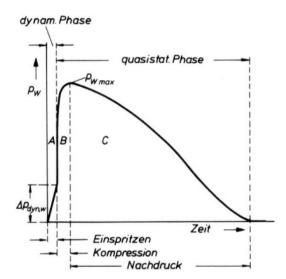



Bild 1.8 Ergebnisse einer computerunterstützten Simulationsrechnung

Basierend auf diesen rheologischen Grundlagen können die computerunterstützten Simulationsprogramme das Füllverhalten (Isovelen), das Temperaturfeld (Isothermen), den Fülldruck (Isobaren), Orientierungen, Schwindung und Verzug und andere strömungsabhängige Größen berechnen und grafisch darstellen.

Bei komplexeren Werkzeuggeometrien (Stoßfänger, Armaturentafel etc.) erfolgt in der Regel in einer frühen Phase eine computerunterstützte rheologische Auslegung des Werkzeuges. So definiert und variiert man die Position und die Anzahl der Anspritzpunkte. Des Weiteren ermöglichen die CAD-Programme eine Vorhersage der Bindenähte und des Verzugs. Durch eine Variation der Anspritzpunkte kann das komplexe Formteil im Vorfeld optimiert werden. Damit lassen sich die Kosten und die Zeit für die Entwicklung, die Werkzeugfertigung und die sich anschließende Bemusterung reduzieren. So lassen sich heute auch Sonderverfahren, wie das Kaskadenspritzgießen oder Dynamic Feed®, simulieren.

Das folgende Bild 1.9 zeigt ein typisches Beispiel einer Simulation eines Stoßfängerwerkzeugs (engl.: Bumper). In diesem Fall wurde das druckgeregelte Kaskadenspritzgießen (Dynamic Feed®) simuliert.



https://bit.ly/2Pnqfk2

Bild 1.9Computerunterstützte Simulation eines Stoßfängers

Des Weiteren wird die Qualität der Spritzgussformteile ganz entscheidend durch den Formteilbildungsprozess im Spritzgießwerkzeug definiert. Dazu zählen die Strömungsvorgänge der Schmelze im Werkzeug, in der Einspritz- und der Nachdruckphase.

https://bit.ly/31kUmye

Bild 1.10 Werkzeuginnendruckverlauf mit den Prozessphasen

Tabelle 1.1 Formteilqualität in Abhängigkeit von den Prozessphasen [5]

			-
	Einspritzphase	Kompressionsphase	Nachdruckphase
Einflussgrößen	 Einspritzgeschwindigkeit Formmasse-, Werkzeugtemperatur Kunststoffviskosität 	 Umschaltvorgang auf Nachdruck Einstellung der Druck- begrenzung 	 Nachdruckhöhe und -dauer Werkzeugwand-temperatur Deformation des Werkzeuges Stabilität der Schließeinheit Schließkraft

			3 (
	Einspritzphase	Kompressionsphase	Nachdruckphase
Beeinflussung von Stoffparametern	ViskositätMolekularabbauKristallinitätOrientierung in der Oberflächenschicht	KristallinitätAnisotropien	KristallinitätOrientierung im FormteilinnerenSchwindung
Beeinflussung von Formteil- eigenschaften	 Oberflächenqualität 	AusformungsgradGratbildungSchwimmhautausbildungGewicht	 Gewicht Maßhaltigkeit Lunker Einfallstellen Relaxation Entformungsverhalten

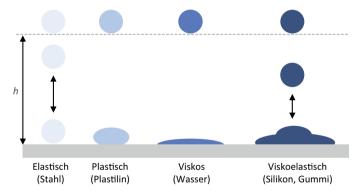
Tabelle 1.1 Formteilqualität in Abhängigkeit von den Prozessphasen [5] (Fortsetzung)

Alle wesentlichen Qualitätsmerkmale, wie das Gewicht, die Maßhaltigkeit, die Oberflächenqualität etc., werden in erster Linie in diesen drei Formteilbildungsphasen geprägt. Insofern ist eine Kenntnis über den Druckverlauf in den Prozessphasen von großer Bedeutung.

Auch an dieser Stelle sind computerunterstützte Simulationsprogramme sehr hilfreich. Mit diesen Programmen lassen sich Aussagen über den Formteilbildungsprozess (Druck, Fließfrontgeschwindigkeit, Scherung, Schubspannung, Temperatur etc.) tätigen. Da der Formteilbildungsprozess, wie die obige Darstellung zeigt, in einem direkten Zusammenhang mit der Formteilqualität steht, sind im Vorfeld Aussagen über evtl. Schwachstellen oder Formteilfehler möglich. Dazu ist jedoch generell ein hohes Fachwissen notwendig, da die Zusammenhänge in der Regel recht komplex sind.

Literatur zu Kapitel 1

- Pahl, M.; Gleißle, W. und Laun, H.-M.: Praktische Rheologie der Kunststoffe und Elastomere. Düsseldorf, VDI-Verlag GmbH, 1995
- [2] Mezger, T.G.: Das Rheologie Handbuch. Hannover, Vincentz Network, 2016
- [3] Lichius, U. und Schmidt, L.: Rechnergestütztes Konstruieren von Spritzgießwerkzeugen: systematisches Entwickeln von Betriebsmitteln, Aufbau und Funktion von Spritzgießwerkzeugen. Würzburg, Vogel Verlag, 1986
- [4] N. N.: Ewikon Heißkanaltechnik, Technische Unterlage, 1992
- [5] Johannaber, F. und Michaeli, W.: Handbuch Spritzgießen. München, Carl Hanser Verlag, 2004
- [6] N. N.: CADMOULD 3D-F Benutzerhandbuch
- [7] Hopmann, Chr.; Menges, G.; Michaeli, W.; Mohren, P.: Spritzgießwerkzeuge Auslegung, Bau, Anwendung, München, Carl Hanser Verlag, 2018
- [8] N. N.: MHT Mold & Hotrunner Technology AG, http://www.mht-ag.de


2

Rheologische Phänomene

In der Rheologie unterscheidet man zwischen drei rheologischen Grundeigenschaften:

- Viskosität
- Plastizität
- Elastizität

Dabei weisen reale Materialien alle rheologischen Grundeigenschaften auf. Diese sind unterschiedlich ausgeprägt und hängen von der Beanspruchungshöhe, der Beanspruchungsdauer, der Temperatur etc. ab. [1]

https://bit.ly/3ibNN7T

Bild 2.1 Beispiele für rheologische Eigenschaften [1]

Die Grundeigenschaften der Elastizität, der Plastizität und des viskosen Stoffverhaltens lassen sich anschaulich mit Kugeln demonstrieren, die diese Eigenschaften besitzen. Dazu wählt man eine Stahlkugel, eine Plastilinkugel und einen Wassertropfen aus und lässt diese aus nicht zu großer Höhe h auf eine saubere Stahlplatte fallen. Die Stahlkugel springt hoch, kommt irgendwann zur Ruhe und bleibt unverformt liegen. In diesem Beanspruchungsbereich entspricht die Stahlkugel einem rein elastischen Festkörper. Die Plastilinkugel verformt sich beim Aufprall plastisch und behält diese Verformung im Ruhezustand bei. Die Plastilinkugel zeigt

ein plastisch-elastisches Feststoffverhalten. Der Wassertropfen fließt nach dem Auftreffen so lange auseinander, bis die Grenzflächenspannung erreicht ist und bildet einen Film aus. Wasser ist damit eine viskose Flüssigkeit. Nimmt man nun eine Kugel aus Silikonkautschuk und lässt diese wie die anderen Kugeln auf die Platte fallen, so hüpft die Kugel mehrfach wie ein elastischer Körper. Schlussendlich bleibt sie liegen und zerfließt nach längerer Zeit auf der Unterlage. Dieser Silikonkautschuk ist eine viskoelastische Flüssigkeit [1].

Kunststoffschmelzen besitzen viskoelastisches Fließverhalten.

Generell muss man zwischen nieder- und hochviskosen Medien unterscheiden. Während Luft eine sehr niedrige Viskosität aufweist und nahezu reibungsfrei strömt, hat z.B. Kunststoff im Verarbeitungsbereich eine sehr hohe Viskosität. Der Fließwiderstand ist beim Kunststoff entsprechend groß. Bemerkbar macht sich dies bei der Verarbeitung. Bedingt durch die hohe Viskosität (Zähigkeit) wird ein großer Druck benötigt, um den Kunststoff z.B. in ein Werkzeug einzuspritzen.

Stoff

Als Maß für die Zähigkeit dient die Viskosität. Ihre Einheit ist Pa·s.

Viskosität n in Pa·s

Die folgende Tabelle 2.1 zeigt Viskositätswerte einiger Stoffe bei Umgebungsbedingungen.

 Tabelle 2.1
 Viskositätswerte ausgewählter Stoffe [1]

	Luit	10	gasioning
,	Wasser	10 ⁻³	dünnflüssig
	Glycerin	1	flüssig
	Polymerschmelze*	10 ¹ bis 10 ⁶	zähflüssig
	Glas	1021	feststoffartig

Konsistenz

Damit hat die Kunststoffschmelze unter Verarbeitungsbedingungen eine wesentlich höhere Viskosität als zum Beispiel Wasser.

^{*} bei Verarbeitungstemperatur

2.1 Strukturviskosität

Die Viskosität η ist bei *newtonschen* Medien eine reine Stoffgröße und nur von dem Druck sowie der Temperatur abhängig. Bei strukturviskosen Medien wird η noch von der Deformationsgeschwindigkeit $\dot{\gamma}$ und der Zeit t beeinflusst.

Das nachfolgende Beispiel soll exemplarisch den Unterschied zwischen einem *newtonschen* und einem strukturviskosen Medium verdeutlichen.

Dazu nutzt man zwei Glasröhrchen mit sich anschließender Kapillare gleicher Geometrie. Das linke Röhrchen wird mit einer Newton-Flüssigkeit, das andere mit einer strukturviskosen Polymerlösung gleich hoch gefüllt.

Mit einem Kugelfallviskosimeter (siehe Kapitel 7) werden zunächst die Nullviskositäten η_0 der beiden Medien gemessen. Der Versuch zeigt, dass die Kugel in beiden Röhrchen gleich schnell sinkt, was zunächst auf eine identische Nullviskosität η_0 ($\eta_{0N} = \eta_{0S}$) hindeutet.

Lässt man nun die beiden Medien durch die Kapillaren austreten, so fließt zunächst das strukturviskose Medium schneller. Nach einer bestimmten Zeit bewegen sich beide Menisken mit gleicher Geschwindigkeit.

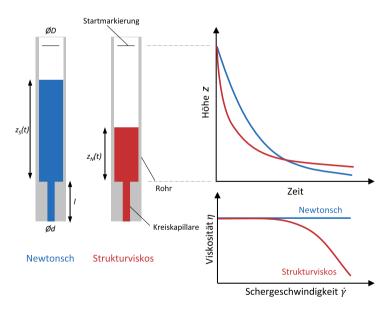


Bild 2.2 Fließphänomene in einer Newton-Flüssigkeit und einer Polymerlösung [7] [8]

Dieses Verhalten kann wie folgt erklärt werden: Am Anfang des Versuchs ist die Flüssigkeitssäule groß. Das Gewicht der Säule erzeugt in den Kapillaren einen hohen Druck, aus dem zunächst eine hohe Strömungsgeschwindigkeit und damit eine große Schergeschwindigkeit $\dot{\gamma}$ resultiert. Bei dem strukturviskosen Medium nimmt die Viskosität η mit ansteigender Schergeschwindigkeit $\dot{\gamma}$ (Strömungsgeschwindigkeit) ab. Infolgedessen strömt diese Flüssigkeit zunächst schneller als die *newtonsche* Flüssigkeit und das Röhrchen entleert sich entsprechend schneller. Durch den abnehmenden Druck strömt die Flüssigkeit bei abnehmender Füllhöhe langsamer durch die Kapillare. Die Strukturviskosität der Flüssigkeit hat zur Folge, dass mit abnehmender Schergeschwindigkeit $\dot{\gamma}$ die Viskosität η wieder ansteigt, bis die sogenannte Nullviskosität η_0 erreicht wird. Eine weitere Senkung der Schergeschwindigkeit führt zu keiner weiteren Erhöhung von η . Ab einer bestimmten Füllhöhe ist die Geschwindigkeit (Schergeschwindigkeit $\dot{\gamma}$) so klein, dass η_0 erreicht wird. Das Absinken der Menisken ist nicht mehr abhängig von der Schergeschwindigkeit $\dot{\gamma}$ [1].

2.1.1 Strukturviskoses Fließverhalten von Kunststoffen

Bei Kunststoffen handelt es sich um sogenannte Makromoleküle (Polymere), die die Form einer Kette haben. Diese fadenförmigen Makromoleküle sind submikroskopisch klein und haben im ungeordneten Ruhezustand einen hydrodynamischen Durchmesser von 5 bis 50 Nanometer. Die Länge der Ketten wird durch die Anzahl der Monomereinheiten, die in der Kette enthalten sind, bestimmt. Bei Polyethylen können dies bis zu 10⁴ Einheiten sein. Die wichtigste Größe, die die Kettenlänge wiedergibt, ist die Molmasse [5]. Je länger die Kette ist, desto größer ist die Molmasse. Nimmt man nun zum Beispiel ein Polyethylen mit einer Molmasse von 100 000 g/Mol, so haben die fadenförmigen Molekülketten im gestreckten Zustand eine Länge von ca. 1000 Nanometer und einen Durchmesser von ca. 0,5 Nanometer. Damit ergibt sich ein Längen-Durchmesser-Verhältnis von 2000. Vergleicht man das mit einer Spagetti von einem Durchmesser von einem Millimeter, so wäre diese Spagetti im Vergleich zwei Meter lang.

Im Ruhezustand suchen die Makromoleküle den Zustand der größten möglichen Entropie und liegen somit ungeordnet, d.h. knäuelförmig vor. Die Molekülketten sind ineinander verschlauft. Es wird zunächst viel Energie benötigt, um dieses Polymerknäuel zu bewegen, d.h. zum Fließen zu bringen.

Durch den Strömungsvorgang (Wandhaftung, maximale Strömungsgeschwindigkeit in der Fließkanalmitte und laminare Schichtenströmung) bewegen sich die einzelnen Flüssigkeitsschichten relativ zueinander. Bedingt durch diesen Vorgang werden zwischen den Schichten infolge der inneren Reibung, die als Dissipation bezeichnet wird, Schubspannungen übertragen.

Diese Schubspannungen wirken auf die einzelnen Polymerketten der Kunststoffschmelze und bewirken eine Ausrichtung der ungeordneten Ketten in Strömungsrichtung. Je stärker die Molekülketten gestreckt, das heißt ausgerichtet werden,

desto weniger Energie ist notwendig, um sie aneinander vorbei gleiten zu lassen. Aus diesem Grund nimmt die Viskosität mit ansteigender Schergeschwindigkeit ab. Der Verlauf der Schubspannung ist infolgedessen nicht linear, sondern degressiv. Dieses Verhalten einer Flüssigkeit wird als Strukturviskosität bezeichnet. Steigt die Schergeschwindigkeit noch weiter an, so nimmt ab einem bestimmten Punkt die Viskosität nicht mehr ab, sondern läuft gegen ein horizontales Plateau. Dieser Plateauwert wird als Unendlich-Viskosität η_∞ bezeichnet.

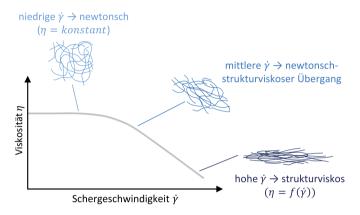


Bild 2.3 Strukturviskoses Verhalten von Kunststoffschmelzen

Merke:

Kunststoffschmelzen verhalten sich strukturviskos. Es gilt: $\eta = f(\dot{\gamma})$ und $\tau = f(\dot{\gamma})$ (Der Verlauf von τ ist nicht linear, sondern degressiv)

Das strukturviskose Fließverhalten ist eine Funktion des Polymertyps. In Abhängigkeit vom Aufbau des Kunststoffs ändert sich die Viskosität des Kunststoffs als Funktion der Schergeschwindigkeit unterschiedlich. Dies wird im nachfolgenden Bild dargestellt. So gibt es Kunststoffe, wie ein Polycarbonat (PC), welche über einen großen Schergeschwindigkeitsbereich nahezu newtonsches Fließverhalten aufweisen. Später werden wir sehen, dass z.B. für ein PC die Größe m (Fließexponent), welche das strukturviskose Fließverhalten beschreibt, nahezu bei m=1 liegt. Für m=1 liegt newtonsches Fließverhalten vor.

Im Gegensatz dazu zeigt das ABS im nachfolgenden Bild 2.4 ein ausgeprägt strukturviskoses Fließverhalten.

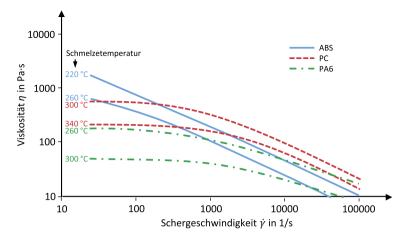
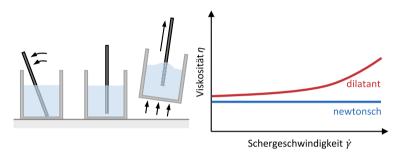


Bild 2.4 Strukturviskoses Fließverhalten für unterschiedliche Kunststofftypen

Wenn die molekulare Orientierung sehr groß wird, nimmt die zum Strömen notwendige Energie wieder zu. Das bedeutet, dass die Viskosität bei sehr großen Schergeschwindigkeiten wieder ansteigt. Diese Schergeschwindigkeiten sind jedoch so groß, dass sie in der Praxis keine Bedeutung haben.

Das Polymermolekül wird somit durch den Strömungsvorgang aus seiner energetisch günstigsten Lage herausgebracht. Es ist jedoch bestrebt, in diesen ungeordneten Zustand zurückzugelangen, da dies der Zustand größtmöglicher Entropie ist. Aus diesem Grund bilden sich Rückstellkräfte, die den Schubkräften entgegenwirken und mit diesen im Gleichgewicht stehen. Diese Rückstellkräfte sind umso größer,


- je stärker die Molekülorientierung/-ausrichtung ist und
- je höher die Temperatur ist. Eine hohe Temperatur bedeutet eine hohe Aktivierungsenergie und damit hohe Rückstellkräfte.

Bei strukturviskosen Flüssigkeiten kann ein weiteres Phänomen beobachtet werden. Unter Scherbelastung versucht die Flüssigkeit senkrecht zur Beanspruchungs-, das heißt Scherrichtung, auszuweichen (siehe *Weissenberg*-Effekt). Dadurch entstehen zusätzliche Spannungen, die sogenannten Normalspannungen.

■ 2.2 Dilatanz

Die Dilatanz wurde 1885 von *Osborne Reynolds* entdeckt. Während bei Medien mit strukturviskosem Verhalten die Viskosität mit zunehmender Beanspruchung (Scherung) abnimmt, steigt die Viskosität bei dilatanten Medien mit ansteigender

Scherung an. Als Beispiel kann eine Stärke/H₂O-Aufschlämmung in einem Laborbecher dienen. Ein darin stehender Stab mit entsprechendem Gewicht fällt bei leichter Schräglage durch sein Eigengewicht um. Zieht man den Stab schnell hoch, so verfestigt sich die Aufschlämmung so stark, dass es möglich ist, den Becher anzuheben. Einen ähnlichen Versuch haben Studenten einer Universität gemacht. Diese Studenten haben ein großes Becken mit einer dilatanten Flüssigkeit gefüllt. Bedingt durch das dilatante Verhalten der Flüssigkeit sind die Studenten in der Lage, von einer Seite zur anderen Seite über die Flüssigkeit zu laufen ohne einzusinken. Schlussendlich bleibt ein Student in der Mitte des Beckens stehen. Da er stillsteht und sich nicht bewegt, sinkt die Viskosität des Mediums und er sinkt ein.

https://bit.ly/3fqgs7q

Bild 2.5 Rührversuch einer dilatanten Flüssigkeit (H₂O-Aufschlämmung) [1]

Man nennt die Erscheinung der Viskositätserhöhung bei Vergrößerung der Schergeschwindigkeit Dilatanz. Sie tritt vorwiegend bei hochkonzentrierten Suspensionen auf. [1]

Sowohl bei der Strukturviskosität wie auch bei der Dilatanz ist die Viskosität eine Funktion der Schergeschwindigkeit.

$$\eta = f(\dot{\gamma})$$

Beispiel für Dilatanz

Befindet sich ein dilatantes Medium zwischen zwei Scheiben, so kann dieses zur Kraftübertragung genutzt werden. Dreht sich die eine Scheibe, während die andere Scheibe steht, so wird das Medium geschert. Infolgedessen steigt die Viskosität des Mediums zwischen den Scheiben an und die Kraftübertragung auf die zweite Scheibe nimmt zu. Die Funktion ähnelt einer Kupplung.

Der US-Hersteller Dow Corning hat aus einem Silikon-Polymer einen hüpfenden Kitt mit dilatantem Verhalten entwickelt. Dieser Kitt lässt sich ganz normal kneten. Bei schlagartiger mechanischer Belastung verhält sich die Masse völlig anders. Wirft man den Kitt als Kugel auf den Boden, so springt diese wie ein Gummiball