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Preface

Many software engineers are new to Unix-like systems, even though these systems are everywhere
in the software engineering world. Whether developers know it or not, they’re expected to work
with Unix-like systems running in their work environment (macOS), their software development
process (Docker containers), their build and automation tooling (CI and GitHub), their production

environments (Linux servers and containers), and more.

Being skilled with the Linux command line can help software developers go beyond what’s ex-

pected of them, allowing them to:

e  Save time by knowing when to use built-in Unix tools, instead of writing thousand-line
scripts or helper programs

e  Help debug complex production outages, often involving Linux servers and their interface

to the application
e  Mentor junior engineers

e Have a more complete understanding of how the software they write fits into the larger

ecosystem and tech stack

We hope that the theory, examples, and projects included in this book can take your Linux de-
velopment skills to the next level.

Who this book is for

This book is for software developers who are new to Linux and the command line, or who are out
of practice and want to quickly dust off their skills. If you still feel a bit insecure about your abil-
ities when you're staring at a Linux command-line prompt on a production server at 2:00 in the
morning, this book is for you. If you want to quickly fill a Linux skills gap to advance your career,
this book is for you. If you're just curious, and you want to see what kind of efficiency gains you
can make in your day-to-day development setup and routines by adding some command-line

magic, this book will serve you as well.
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What this book is not

One of the ways we have tried to fulfill our vision for this kind of uniquely useful book is by being
extremely careful about what’s included. We’ve tried to cut out everything thatisn’t essential to
your life as a developer, or to a basic understanding of Linux and its core abstractions. In other

words, the reason this book is useful is because of all the things we left out.

This bookis not a full Linux course. It’s not for people working as Linux system engineers or kernel
developers. Because of this, it’s not 750+ pages long, and you should be able to work through it

in a few days, perhaps during a quiet sprint at work.

What this book covers

Chapter 1, How the Command Line Works, explains how a command-line interface works, what
a shell is, and then immediately gives you some basic Linux skills. You’ll get a bit of theory and
then begin moving around on the command line, finding and working with files and learning
where to look for help when you get stuck. This chapter caters to new developers by teaching
the most important command-line skills. If you read nothing else, you’ll still be better off than

when you started.

Chapter 2, Working with Processes, will take you on a guided tour of Linux processes. You'll then
dive into useful, practical command-line skills for working with processes. We’ll add detail to
a few aspects that are a common source of process-related problems that you’ll encounter as a
software developer, like permissions, and give you some heuristics for troubleshooting them.

You'll also get a quick tour of some advanced topics that will come up again later in the book.

Chapter 3, Service Management with systemd, builds on the knowledge about processes learned in
the previous chapter by introducing an additional layer of abstraction, the systemd service. You’ll
learn about what an init system does for an operating system, and why you should care. Then,

we cover all the practical commands you’ll need for working with services on a Linux system.

Chapter 4, Using Shell History, is a short chapter covering some tricks that you can learn to improve
your speed and efficiency on the command line. These tricks revolve around using shortcuts and

leveraging shell history to avoid repeated keystrokes.

Chapter 5, Introducing Files, introduces files as the essential abstraction through which to under-
stand Linux. You'll be introduced to the Filesystem Hierarchy Standard (FHS), which is like a
map thatyou can use to orient yourself on any Unix system. Then it’s time for practical commands
for working with files and directories in Linux, including some special filetypes you probably
haven’t heard of. You’ll also get a taste of searching for files and file content, which is one of the

most powerful bits of knowledge to have at your fingertips as a developer.
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Chapter 6, Editing Files on the Command Line, introduces two text editors —nano and vim. You will
learn the basics of using these text editors for command-line editing while also becoming aware

of common editing mistakes and how to avoid them.

Chapter 7, Users and Groups, will introduce you to how the concepts of users and groups form the
basis for the Unix security model, controlling access for resources like files and processes. We’ll

then teach you the practical commands you’ll need to create and modify users and groups.

Chapter 8, Ownership and Permissions, builds on the previous chapter’s explanation of users and
groups to show you how access control works for resources in Linux. This chapter teaches you
about ownership and permissions by walking you through file information from a long listing.
From there, we’ll look at the common file and directory permissions that you’ll encounter on
production Linux systems, before engaging with the Linux commands for modifying file own-

ership and permissions.

Chapter 9, Managing Installed Software, shows you how to install software on various Linux distri-
butions (and even macOS). First, we introduce package managers, which are the preferred way of
getting software onto a machine: you’ll learn the important theory and practical commands for the
package management operations you'll need as a software developer. Then we’ll introduce a few
other methods, like downloading install scripts and the time-honored, artisanal Unix tradition

of compiling your own software locally, from source (it’s not as scary as it sounds!).

Chapter 10, Configuring Software, piggybacks off the previous chapter’s focus on installing soft-
ware by helping you with configuring software on a Linux system. You will learn about the places
that most software will look for configuration (“the configuration hierarchy”). Not only will
this knowledge come in handy during late-night troubleshooting sessions, but it can actually
help you to write better software. We’ll cover command-line arguments, environment variables,
configuration files, and how all of this works on non-standard Linux environments like Docker
containers. There’s even a little bonus project: you’ll see how to take a custom program and turn

itinto its own systemd service.

Chapter 11, Pipes and Redirection, will give you an introduction to what s possibly the “killer feature”
of Unix: the ability to connect existing programs into a custom solution using pipes. We’ll move
through the prerequisite theory and practical skills you need to understand: file descriptors and
input/output redirection. Then you’ll jump into creating complex commands using pipes. You'll be
introduced to some essential CLI tools and practical pipe patterns, which you'll still find yourself

using long after you finish this book.
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Chapter 12, Automating Tasks with Shell Scripts, serves as a Bash scripting crash course, teaching you
how to go from typing individual commands in an interactive shell to writing scripts. We assume
you’re already a software developer, so this will be a quick introduction that shows you the core
language features and doesn’t spend a lot of time re-explaining the basics of programming. You'll

learn about Bash syntax, best practices for script writing, and some important pitfalls to avoid.

Chapter 13, Secure Remote Access with SSH, explores the Secure Shell Protocol and the related com-
mand-line tools available to you. You’ll learn the basics of public-key cryptography (PKI), which
is always useful for a developer to know, before diving into creating SSH keys and securely logging
into remote systems over the network. You’ll build on this knowledge and get some experience
copying files over the network, using SSH to create ad-hoc proxies or VPNs, and see examples of

various other tasks that involve moving data over an encrypted SSH tunnel.

Chapter 14, Version Control with Git, shows you how to use a tool you probably already know well
—git —from the command line, instead of through your IDE or a graphical client. We quickly go
through the basic theory behind git and then jump into the commands you’ll need to use in a
command-line environment. We’ll cover two powerful features that it pays to understand — bi-
secting and rebasing — and then give you our take on best practices and useful shell aliases. Finally,
the Poor man’s GitHub section presents a small but legitimately useful project that you can do to

practice and integrate the Linux skills you’ve learned up to this point.

Chapter 15, Containerizing Applications with Docker, gives you the basic theory and practical skills
that will make it easy to work with Docker as a developer. We’ll explore the problems that Docker
solves, explain the most important Docker concepts, and take you through the core workflow
and commands you’ll use. You’ll also see how to build your own images by containerizing a
real application. And because we’re approaching this from a software development and Linux
perspective, you'll also develop a good intuition for how containerization works under the hood,

and how it’s different from virtual machines.

Chapter 16, Monitoring Application Logs, gives an overview of logging on Unix and Linux. We’ll
show you how (and where) logs are collected on most modern Linux systems using systemd, and
how more traditional approaches work (you’ll come across both in the real world). You’ll build
practical command-line skills finding and viewing logs and learn a bit about how logging is being

done in larger infrastructures.
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Chapter 17, Load Balancing and HTTP, covers the basics of HTTP for developers, with a special
focus on the complexities that you'll come across when working with HTTP services in larger
infrastructures. We’ll correct some common misunderstandings about HTTP statuses, HTTP
headers, and HTTP versions and how applications should handle them. We’ll also introduce
how load balancers and proxies work in the real world, and how they make the experience of
troubleshooting a live application quite different from troubleshooting a development version
on your laptop. Many of the Linux skills that you will have learned up to this point will come in
handy here, and we’ll introduce a new tool — curl — to help you troubleshoot a wide variety of

HTTP-related issues.

To get the most out of this book

If you can get yourself to a Linux shell prompt — by installing Ubuntu in a virtual machine or

running it as a Docker container, for example — you can follow along with everything in this book.

You can get away with even less — on Windows, there’s WSL, and macOS is a bona-fide Unix
operating system, so almost all of the practical commands you learn in this book (except those
called out as Linux-only) will work out of the box. That said, for the best experience, follow along

on a Linux operating system.

The skills required to get the most out of this book are only the basic computer skills that you
already have as a software developer — editing text, working with files and folders, having some
notion of what “operating systems” are, installing software, and using a development environ-

ment. Everything beyond that, we’ll teach you.

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book.
You can download it here: https://packt.link/gbp/9781804616925.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “The -f

I’

flag stands for ‘follow,” and the -u flag stands for ‘unit.


https://packt.link/gbp/9781804616925
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A block of command line is set as follows:

/home/steve/Desktop# 1s

anotherfile documents somefile.txt stuff

/home/steve/Desktop# cd documents/

/home/steve/Desktop/documents# 1s

contract.txt

Bold: Indicates a new term, an important word, or words that you see on the screen For instance,
words in menus or dialog boxes appear in the text like this. For example: “When a file is set to be
executable, Unix will do its best to execute it, either succeeding in the case of ELF (Executable

and Linkable Format, probably the most widely used executable format today) or failing.”

\/;l’{ Warnings or important notes appear like this.

\ ! 7/
',@\' Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub. com, and mention the book’s title in the subject of
your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book we would be grateful if you would report this
to us. Please visit, http://www.packtpub.com/submit-errata, selecting your book, clicking on

the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would
be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.comwith alink to the material.


http://www.packtpub.com/submit-errata

Preface XXix

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit http://authors.packtpub.
com.

Share your thoughts

Once you've read The Software Developer’s Guide to Linux, we’d love to hear your thoughts! Please

click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.


http://authors.packtpub.com
http://authors.packtpub.com
https://www.packtpub.com/

