EXPERT INSIGHT

The Software
Developer's Guide
to Linux

A practical, no-nonsense guide to using the Linux command
line and vtilities as a software developer

David Cohen
Christian Sturm

<packh

The Software Developer's
Guide to Linux

A practical, no-nonsense guide to using the Linux command line and
utilities as a software developer

David Cohen

Christian Sturm

BIRMINGHAM—MUMBAI

The Software Developer’s Guide to Linux
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, exceptin the case of brief

quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Aaron Tanna
Acquisition Editor — Peer Reviews: Gaurav Gavas
Project Editor: Parvathy Nair

Content Development Editor: Matthew Davies
Copy Editor: Safis Editing

Technical Editor: Karan Sonawane

Proofreader: Safis Editing

Indexer: Tejal Soni

Presentation Designer: Ganesh Bhadwalkar

Developer Relations Marketing Executive: Meghal Patel

First published: January 2024

Production reference: 1230124

Published by Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.
ISBN 978-1-80461-692-5

www . packt.com

http://www.packt.com

Contributors

About the authors

David Cohen has, for the past 15 years, worked as a Linux system administrator, software
engineer, infrastructure engineer, platform engineer, site reliability engineer, security engineer,
web developer, and a few other things besides. In his free time, he runs the tutorialinux YouTube
channel where he’s taught hundreds of thousands of people the basics of Linux, programming,
and DevOps. David has been at Hashicorp since 2019—first as an SRE, then as a reference architect,

and now as a software engineer.

Thank you, Aleyna, for your unwavering support over the past few years as I've been developing and writing
this book. Without you, this would just be another of my promising-but-unfinished projects languishing in
some forgotten “Archive” directory. Thanks to Christian, who has stuck with me for over a decade as a friend
and a partner on practically every wild tech project idea I've come up with since we met. Finally, a big “thank
you” is also due to my friends and colleagues at Hashicorp and everywhere else I've been over the past 15 years,

who have made me a better engineer and encouraged projects like this.

Christian Sturm is a consultant on software and systems architecture, having worked in var-
ious technical positions for well over a decade. He has worked as an application developer for
the frontend and backend at companies large and small, such as zoomsquare and Plutonium
Labs. On top of that, he is also an active contributor to various open source projects and has a
deep understanding of fields including operating systems, networking protocols, security, and

database management systems.

About the reviewers

Mario Splivalo works as a consultant dealing with databases extended into modern cloud-
based architectures. He also helps companies design their infrastructure using IaaC tools such as
Terraform and AWS Cloudformation. For five years, Mario worked with Canonical as an OpenStack

engineer.

Mario’s fascination with computers started back when Commodore 64 dominated the user space.
He took his first steps using BASIC on his dad’s C64, quickly shifting to Assembler. He gradually
moved to PCs, finding a great love for programming, systems design, and database administra-
tion. He switched to Linux (Knoppix, then Ubuntu, and never looked back) in the early 2000s,

continuing as a database administrator, programmer, and system administrator.

Nathan Chancellor is an independent contractor working on the Linux kernel, based in Ar-
izona, US. As a developer, his focus is on improving the compatibility between the Linux kernel
and the LLVM toolchain. He has used Linux since 2016 and it has been his primary development

operating system since 2018. His distributions of choice are Arch Linux and Fedora.

Learn more on Discord

To join the Discord community for this book — where you can share feedback, ask questions to

the author, and learn about new releases — follow the QR code below:

https://packt.link/SecNet

https://packt.link/SecNet

Table of Contents

Preface xxiii
Chapter 1: How the Command Line Works 1
In the beginning...Was the REPLccciiiiiinnvneeeiciisssnneeteccssssnseeteccssssssssssscssssssssssessssssssssees 1
Command-line syntax (read)ccoccerveesersreiseisensecssecssesssessesssesssesssesssesssesssesssesssesssasssasss 3
Command line vs. Shellcouiiiinniiiiiiniiiiiniiicsinneicnsnneeecsnniecsssnneecsseeeesssseesssssesesssssesss 4

How does the shell know what to run? (evaluate) ¢ 5
A quick definition of POSIX ¢ 6

Basic command-line skills eeesseeeennsseeernnsresernnssessennnssessnasssessnnsssesennnssesennne

Unix filesystem basics o 7

Absolute vs. relative file paths e 8
Absolute vs. relative pathname review o 10
Opening a terminal e 10

Looking around — command-line navigation e 10
pwd - print working directory e 10
Is - list o 11

Moving around e 12
cd — change directory e 12
find — find files o 13

Reading files ¢ 13
less — page through a file e 14

Making changes o 14

viii Table of Contents

touch — create an empty file, or update modification time for an existing one o 14
mkdir — create a directory e 14

rmdir — remove empty directories e 15

rm — remove files and directories o 15

mv — move or rename files and directories o 16

(€215 51 078 o 1<) o RO cessreeessnnneeenns 17
Shell AULOCOMPIELION ..uueeeerriersirrneeriieiissssneeteiesisssssstescssssssssseesesssssssssssssssssssssssssesssssssssssees 18
CONCIUSION curnerercrnnersssaneesssaneesssnsessssanesssssssessssssessssssssssssasene cesereesesanneenes 20
Chapter 2: Working with Processes 21
Process basics cesertesssntesssareessanesssanessssarasssssasesssnane veee 22

What s a Linux process made of? ¢ 23
Process ID (PID) ¢ 24
Effective User ID (EUID) and Effective Group ID (EGID) e 25

Environment variables e 25

Working directory e 25
Practical commands for working with LINUX PrOCESSES ...cc.cceerureerurecssnecssnecssaecssancsssnesaeces 26
Advanced process concepts and tools cesessssttetesssssnnntsttesssssansastesssssnnnsstesssssens .. 28
Signals e 28

Practical uses of signals e 29
Trapping e 29
The kill command ¢ 29
Isof — show file handles that a process has open o 31

Inheritance e 33

Review — example troubleShooting SESSION ...cccceeeervcueeeiiiiciiireneetieiisiineetteecssssneseeesesssnnes 33

Conclusion cessreessssntesessnneessssnnesssnanene cesereesesnteeessantesessntessssanessssrtesessnassssaneses 35

Chapter 3: Service Management with systemd 37

The basics cesereeessantesssnanessssartessnnaresssnane cesereeessntessnnesesnnntesssnaresersaneses 38
init e 39

Processes and SEIVICES .eeeeeeeeneeecernnsscceransnecces ceeeeeesnseennsetansetansesansetansesansesansesnnsssnnsesnnne 39

Table of Contents

ix

systemctl commands cereneetteeesssnnaattesessans
Checking the status of a service ¢ 40
Starting a service e 41
Stopping a service o 41
Restarting a service o 41
Reloading a service o 42
Enable and disable o 42

A note on Docker ceeneseeeeennne ceeeeernseesnnnecane

........... 40

CONCIUSION «.ueeerreeeennnenieeeeeeeeeereennssseeeeeeerssssssssssseesssnsansssssssasses

Chapter 4: Using Shell History

43
43

45

Shell hiStOry ...eeeeeeeeeccsscnneeeeecccssnneneeenes ceresennneneneees

Shell configuration files ¢ 46
History files o 46

Searching through shell history e 47
Exceptions e 47

Executing previous commands with !cceeeereeernncen.

Re-running a command with the same arguments o 48
Prepending a command to something in your history e 48

Jumping to the beginning or end of the currentline .

CONCIUSION .eeereeeeeennecereeenccereseeeccennns ceeeereseernneenns

Chapter 5: Introducing Files

.. 45

..48

49
49

51

Files on Linux: the absolute basicscccceeeeeeeeneccreenenecens

Plaintext files o 52
What s a binary file? ¢ 52
Line endings e 53

The filesystem tree ... ceeeenestteeesssaas st esessanaasesesens

Basic filesystem operationsc..ceceeeeereccsrenneeeeenens

Ise 54
pwd e 55

X Table of Contents

cde55

touch ¢ 56

less o 57

tail o 57

mv e 57
Moving e 57

Renaming ¢ 58

cpe 58

mkdir e 58

rme58
Editing files ... cesereeessntesssatteesnateesnatnsssssatessanatesssnane cesreesnnteessnnnessnnnenes 59
File types weceeeeeeevunnneerrcccnnees ceressneetieesssaraatteses s sannaaeseses SO, 60

Symbolic links e 61
Hard links e 62
The file command e 62

Advanced file operations ... cereneetttresssannastsesas ceresesettteessssnaasttesessasans 63

Searching file content with grep « 63
Finding files with find e 64
Copying files between local and remote hosts with rsync 65

Combining find, grep, and rsync e 66

Advanced filesystem knowledge for the real world ... ceseeeeessnteessnteeesstteesnstnessnsaessanns 67

FUSE: Even more fun with Unix filesystems ¢ 68

CONCIUSION eveererernnrercssaneessssneencnane cesereesesnneesssantesessntesessatesssareasessnasssssnaeses 69
Chapter 6: Editing Files on the Command Line 71
Nano .. ceeeeetenettaniettntttttetntnttnrseesanessanssanes ceeeeereteettntennetttrtetntessanasennensanens 72

Installing nano ¢ 72
Nano cheat sheet ¢ 72
File handling ¢ 73

Editing e 73

Search and replace 73

Table of Contents xi

Vi(m) .. eesetessssttesssastesssaatsess st teesastsessraetsesaatsesseaastesantsessentstessanssessertsaos 73

Vi/vim commands e 74

Modes o 74
Command mode e 74
Normal mode o 75
Tips for learning vi(m) e 76
Use vimtutor e 76
Think in terms of mnemonics o 76
Avoid using arrow keys e 76
Avoid using the mouse o 77
Don’t use gvim o 77
Avoid starting with extensive configuration or plugins e 77

Vim bindings in other software ¢ 79

Editing a file you don’t have permissions forccovceeiieciiiivneeiiiiisisiseeeiiicssssseneeeiccsnnnes 79
Setting your preferred editorcceeeeeeueeeeereccnnnes . S 79
Conclusioneeeeneee ceseeeeessaneeesssnreessansesessaneesssnsasesanaene ... 80
Chapter 7: Users and Groups 81
WHRALIS @ USEI? ceeeuueeirneirneinsueinsuncessnecssaecssencsssecsssncsssaesssassssassssancssansssssesssassssesssassssasssanssss 81
Root versus everybody €lsec.ccceeesserecsserrcssineeccssanenes e 82
SUAOD ceeereerieririrnnentiincssissanneteiessssssnnessresssssssesssssssssensassssssss ceseteresssssnnnnssresssnens .. 82
What is a group?ccceeeeeeeerreccsccnnnees cereresettieeessaras et e s e s saanasesasns ceeeeereeesssnnaas 84
Mini project: user and group management ceeeeneetteeisssrasetesessssaanaeesessannns 84

Creating a user e 85

Create a group » 86

Modifying a Linux user o 86
Adding a Linux user to a group e 87
Removing a user from a group e 87
Removing a Linux user e 87
Remove a Linux group e 87

Advanced: what is a user, really?ccccecvvericrssnirccssnnricssneicsssseecssneecssssseesssssesessanes .. 88

User metadata / attributes o 88

xii

Table of Contents

A note on scriptability cerenenentnenens

Conclusion eeeseseeeerassecersrsrsesensrssssnnes

Chapter 8: Ownership and Permissions

Deciphering along listingccceeeveeerrceseunnnees

File attriDULES ..cceeeeeeeeenncereeneceeenenccceesnscccensnseccenans

File type ¢ 94
Permissions e 95
Number of hardlinks e 95
User ownership ¢ 95
Group ownership e 95
File size ¢ 96
Modification time e 96

Filename e 96

(02575 415 27 4V o S

PEIrMISSIONS ceeveeeeennneeceenesccccenssscceesssscces

Numeric/octal e 98

Common permissions ¢ 99

Changing ownership (chown) and permissions (chmod)

Chown e 99
Change owner e 99
Change owner and group « 100
Recursively change owner and group ¢ 100
Chmod ¢ 100
Using a reference ¢ 101

Conclusion ¢ 101

Chapter 9: Managing Installed Software

Working with software packages . cereeneneneneeees

Update your local cache of repository state 105

Search for a package ¢ 105

Table of Contents

xiii

Install a package ¢ 106

Upgrade all packages that have available updates ¢ 106

Remove a package (and any dependencies, provided other packages don’t need them) 106

Query installed packages ¢ 107

Caution required — curl | bashccoeuueee. teeessestteeesisssnnsttttesssssanststsesssssannastsesssssnnasttes 107
Compiling third-party software from SOUICEcccvverecrsnricssnricsssnneicssnneecssnnescsssescsnnne 108
Example: compiling and installing htop 110
Install prerequisites ¢ 110
Download, verify, and unarchive the source code e 110
Configure and compile htop e 111
CONCIUSION ceuurerricsnneecssnnicssnrecssssneecsssseessssssessssssesssssssessssssessssssssssssnns 112
Chapter 10: Configuring Software 115
Configuration hierarchyeececccceeicisseeicssneiinssneiccssnencsssneecssseessssssescssssesssssssesssssssssssaeses 116
Command-line argUMENLSccceevvveeererceiisrrneeeiicssssssnneetiessssssssestssssssssssssssssssssssssees .. 118
Environment variables ceserteessntesssaresesantesssatesesantesssantessrsatesesantessrsanesersaressnaaess 119
CONfIGUIation fIlES ..icccveeiicivveriesssnricsssnnissssstissssssissssssnssnsssss 121
System-level configuration in /etc/ ¢ 121
User-level configuration in ~/.config e 121
systemd units N 122
Create your own service e 122
Quick note: configuration in DOCKETcccveiiciivneiisssneiesssniicsssseicsssseisssssesessssssssssssessssssens 124
CONCIUSION uuvrrrirssneriissnneicsssticsssseissssssescssssissssssessssssessssssessssssssssssssssssassessassessssssessssansses 125
Chapter 11: Pipes and Redirection 127
File dESCIIPLOTS ievvuerrcrsnrresssnercsssnnescssneiesssserssssssesssssssnssssssessssssssssssssesssssssnssssssssssssssssssns 128
What do these file descriptors reference? o 129
Input and output redirection (or, playing with file descriptors for fun and profit) 129

Input redirection: < e 129
Output redirection: > ¢ 130

Use >> to append output without overwriting e 131

Xiv Table of Contents

Error redirection with 2> e 132

Connecting commands together with pipes (]) ccceervveeresscerrsssannees cessereessnnsnesans 133

Multi-pipe commands e 133

Reading (and building) complex multi-pipe commands o 134

The CLI to0ls you need to KNOWccecvveeeccssneeicssneecnssnneccsssnencsssnsescsssesssssssescssassses .. 134

cute134

sorte 135

uniq e 136

Counting e 136

wc e 137

head « 138

tail ¢ 138

tee ¢ 138

awk ¢ 139

sed ¢ 139

Practical pipe patterns ceesesssesesssnnns ceetesssssnnnnnnnssssensrststttttttttttttttttttateneaaaane 140

“Top X”, with count e 140
curl | bash ¢ 140
Security considerations for curl [sudo [bash e 141
Filtering and searching with grep o 142
grep and tail for log monitoring e 143
find and xargs for bulk file operations e 143
sort, uniq, and reverse numerical sort for data analysis e 144
awk and sort for reformatting data and field-based processing ¢ 145
sed and tee for editing and backup e 145
ps, grep, awk, xargs, and kill for process management o 146
tar and gzip for backup and compression e 146

Advanced: inspecting file descriptors cerereetteieiissaaat et tessssanatatessssannsaetessanans .. 147

Conclusion eeeereessassssteeeeetetnannnsnseseeetesarannnnssseseeteserannsnsssnsnssneeeesarannnnnnsnnnnns 149

Table of Contents

XV

Chapter 12: Automating Tasks with Shell Scripts

151

Why you need Bash scripting basicsccceeereecesenneeeenne.

. 152

BASICS ceeeeeeeernnneccennnncceennncccsennnnes ceeeeernseerasscensecennsenas

.. 152

Variables e 152
Setting ¢ 152
Getting e 153

Bash versus other shells ceereseecennenoaes

153

Shebangs and executable text files, aka scripts

...... 154

Common Bash settings (options/arguments) e 154
[usr/bin/env e 155

Special characters and escaping » 156

Command substitution e 157

TESTING ceevrereeeeeeesssssrnreriecsssssnsereescsssssssseesessssssnssssassess

.. 157

Testing operators e 157
[[file and string testing || » 158
Useful operators for string testing e 158
Useful operators for file testing o 158
((arithmetic testing)) ¢ 159
Conditionals: if/then/elSecccceeeeeerreeresrennreesscnsessscnnsens
ifelse ¢ 160

160

.. 160

C-style loops ¢ 160
for...in « 161

While e 161

Variable exporting e 162

FUNCUIONS .eeveenneeennceneeccenecceasecesnccees

Prefer local variables o 163

xvi Table of Contents

Input and oULtPUL TEAITECTION ..ceveueeneeerircssssrneiirecsssssnseeiesessssssssssssesssssssssssesssssnns .. 164
<:inputredirection e 164
> and >>: output redirection e 164

Use 2>&1 to redirect STDERR and STDOUT e 164

Variable interpolation syntax — ${} ...cccceervrervriiiiinsinnsneinnseiennecnnenissnessnsssssssssnesns .. 165
Limitations of shell SCriptscccevveveeeiercciicreeeencccsccnnnees cerenestteeesssnnaatsesessens ... 165
CONCIUSION tevurrrercssuneeccssnreecsssneecsssaneesssssessssssnessssssesssssssessssssesssssssesssssssssssassssssanese .. 166
CItatiONS ..cecereeercssaneessssneessssnnescsane cesereeessntesesareessarttssssatesessartessartessssrtessrsanasessanes 166
Chapter 13: Secure Remote Access with SSH 167
Public key cryptography primercccceeeeeeeeeecccsscnneeeeenens cerereetteeessaraaeeesesssnnanaees 168

Message encryption e 168
Message signing e 169
SSH KEYS teeerrnrricssnnticssneiisssnneecsssnnessssssiessssesssssnsesssssssssssssssssssssesssssssssssssssssssssssssssssses .169

Exceptions to these rules ¢ 170
Logging in and authenticating » 171

Practical project: Set up a key-based 1ogin to a remote SEIVercccooveueeeeeeccssennnnees . 171

Step 1: Open your terminal on the SSH client (not the server) o 171
Step 2: Generate the key pair e 172

Step 3: Copy the public key to your server o 172

Step 4: Test it out! ¢ 172

Converting SSH2 keys to the OpenSSH formatc.cceeecicceersissercssssnrscssssnissssssssesssssses 173

What we are trying to achieve ¢ 173
How to convert the SSH2-formatted key to OpenSSH e 174

The other direction: Converting SSH2 keys to the OpenSSH format ¢ 174

SSH-QGENT euuiennieenieenctennceeneeencteectancesesccsesscsasccsssscssscsascsssecees cereecennecnanenns . 175
Common SSH errors and the -v (VErboSe) argumentccceeeeeressessssessssesssassossssssssssssassssnsss 176
FIle trANSTET tieerrrnnneriiiinsicnnneriincsssesnnerticssssssnnessiessssssssssssesssssssssssssssssssssssssssessssssssssssssssssens 177
SFTP ¢ 178
SCP « 178

Clever examples ¢ 179

Table of Contents xvii
Without SFTP or SCP ¢ 180
Directory upload and .tar.gz compression e 180
Tunnelsceeeeneeennne ceseetesssntesesattsesartesssatesessattesesatesessattesessrsersarasssssrtesssnane .. 181
Local forwarding e 181
Proxying e 181
The configuration fileeicccneieicisneecnsnnteicsnneecsssetecnssneecssntecsssneecssseessssssesssssssecssssssssns 182
CONCIUSION cecurrreecssunreecssnneccsssneecsssnneessssseessssssesssssasene . 183
Chapter 14: Version Control with Git 185
Some background 0N Git e..ccccceueeeeeiiciiiirneeeiecisssssnneeiessssseneeeieessssssssestesssssssssseesesssssssasees 186
What is a distributed version control SYStem?cceeeeeevveeeereccsssssneeeesccssssnneeeesscsssssnanees 186
GIL DASICS weeenneernriisueinsurinsueinsuneessnecsnecsuecssuncsssnesssaesssaessssscssssesssncsssassssessssssssassssasesssnssssnee 187
First-time setup e 187
Initialize a new Git repository e 187
Make and see changes o 187
Stage and commit changes ¢ 187
Optional: add a remote Git repository ¢ 188
Pushing and pulling « 188
Cloning a repository « 188
Terms you might come across cereeneetieeessanas et e s e annaseseses 189
Repository ¢ 189
Bare repository e 189
Branch e 189

Main/master branch ¢ 190
HEAD « 190
Tag « 190
Shallow e 190
Merging ¢ 190
Merge commit e 191
Merge conflict ¢ 191
Stash e 191

xviii Table of Contents

Pull request e 191

Cherry-picking e 192

Bisecting ¢ 192

Rebasing « 193
Best practices for COMMIt MESSAZES w.eevurerrreessreessseessaressnenssesssseessseessssessssessssessssens 196

Good commit messages ¢ 196
GUIS aeeeenienniienniitnncetenccteniceencctencctenccsssscsasccssscsssscsasscsassssssscsassssasssssassssansssanes 197
Useful Shell aliases ...ccevueeereecssueissueissuecssunccsnecssnessuneesseccssencssancssanssssnssssasssassssasssses . 197
POOT MAN’S GILHUD ..ccuuiinniiiniicinnicntiinneinneecnnecsnecesseessssecsssecssseesssssssssesssssessasessasessasenas 198

Considerations ¢ 198

1. Connect to your server « 198

2. Install Git e 198

3. Initialize a repository ¢ 199

4. Clone the repository e 199

5. Edit the project and push your changes 200
CONCIUSION tecuuereiessnnrecsssnrecsssnneecsssneecssssnessssssesssssssesssssseesssssssssssssessssssssssssssssssssssssssssssssnss 200
Chapter 15: Containerizing Applications with Docker 203
How containers Work as packages .cc.ccccecceseeecsssnecsssserecssneicssssneesssssescssssesssssesessssesssssnes 204
Prerequisite: DOCKer INStall c...cccuuuueeiiiiiiiiiiineeiieiiiiieneetiiicneneetiescssssnesssssesssssesesesessssnes 205
DOCKET CTaSh COUTSE ceeuuurrerssnrercssanencssaneessssnressssareessssssesssssseessssssessssssessssssssssssasesssssesssanes 205
Creating images With a DOCKEITIlEueieirvuerinissneicissneicsssenissssnessssssansssssesssssnssses 208
Container COMMANS ...ccevueeerreecsrecssnecssneessanesssnesssnesssseessseessssessssessssessssessssssssasessasessassssns 210

docker run e 210

docker image list o 211

docker ps » 211

docker exec o 212

docker stop e 212
Docker project: Python/Flask application CONtAINETcceevueresersseessaercseesssnessssesssasesaees 212

1. Set up the application e 213

2. Create the Docker image o 215

Table of Contents xix
3. Start a container from your image o 215
Containers vs. Virtual Machinesccoeeeeensseeeecisnnencssneecsssnnesssssnesssssseesssssressssassessssassssssanes 216
A quick note on Docker image rePOSILOTIES ...eeeereeerrrrneerreecssssnneeeeressssssnssesscsssssnsseesecssssens 217
Painfully learned container leSSONSccccveercrssnerisssnricsssnercsssnnricssseresssssessssssesessanes 217
Image size » 218
C standard library « 218
Production is not your laptop: outside dependencies o 218
Container theory: namespacing . cereeseetttiiiisaaattesee s baat et e e st bbbt et e e e s s b saaas e s e s s sennaneees 219
How do we do Ops With CONLAINErS?ccuvveiiciisniiissseiessssniicsssstiesssssiisssseresssssnssssssesssssses 220
CONCLIUSION euuvrrrerssnerecssneicssneresssseeesssssnsessssessssssesssssstesssssessssssesssssssassssssesssssesssssssssssonaes 220
Chapter 16: Monitoring Application Logs 223
INtroduction to loG@ING ...cccvveererrieirirssnriissniicsssneiisssntiesssseiesssssesesssenesssssessssssesessassassssans 224
Logging on Linux can get... weird ¢ 224
Sending log messages ¢ 225
The systemd journal . S 225
Example journalct] COmMmAandseeeeeeeeciiscneeeieecciisnsneeeiccissssneeeeeccssssnnsseeescssssssssessesssns 226
Following active logs for a unit e 226
Filtering by time ¢ 226
Filtering for a specific log level » 227
Inspecting logs from a previous boot ¢ 227
Kernel messages ¢ 227
Logging in DOCKET CONTAINETS .cccverecrsnrrcsssnrecsssnnescsssseessssssesssssssssssnsessssssesssssssessses .. 228
SYSIOG DASICS weererurriiisnriicssnniicsssnnicsssnniicssnnesssnneesssssessssssessssssesssssssessssssesssssssssssnes 228
Facilities ¢ 229
Severity levels ¢ 230
Configuration and implementations ¢ 230
TIPS fOr 10GGING weeeerunririrrniiirsrniiiisstiiissntiisssntiecssntiessssseessssseeesssssessssssesssssssessssssssssnsssssns 230

Keywords when using structured logging « 230
Severity e 231

XX Table of Contents
Centralized I0GINg .cccceeeecrrneiiiisriiiisnntiissneiinssnniicssneecsssnnesssssnesssssseessssssessssssesssssssssssssese 231
Conclusion cesereesssnressssnneesssanesssnanene 233
Chapter 17: Load Balancing and HTTP 235
Basic terminology RS 236
Gateway ¢ 236
Upstream e 237
Common misunderstandings aboUt HTTPueeeecrvuerecssnrccssneicsssseessssssescsssssesssssescssases 237

HTTP statuses e 237

Don'’t just check for 200 OK e 237

404 Not Found e 238

502 Bad Gateway o 238

503 Service Unavailable ¢ 239

504 Gateway Timeout e 239

Introduction to curl: checking HTTP response status e 239
HTTP headers ¢ 240

Case-insensitive headers e 240

Custom headers o 240

Viewing HTTP headers with curl e 241
HTTP versions e 241

HTTP/0.9 ¢ 241

HTTP/1.0 and HTTP/1.1 e 242

HTTP/2 ¢ 242

HTTP/3 and QUIC « 243
Load balancing e 244

Sticky sessions, cookies, and deterministic hashing e 245

Round-robin load balancing e 246

Other mechanisms ¢ 246

High availability e 246

Troubleshooting redirects with curl e 247

Using curl as an API testing tool e 248

Table of Contents

xxi

Accepting and displaying bad TLS certificates with curl e 249
CORS ¢ 249

Conclusion

Other Books You May Enjoy

.. 251

255

Index

259

Preface

Many software engineers are new to Unix-like systems, even though these systems are everywhere
in the software engineering world. Whether developers know it or not, they’re expected to work
with Unix-like systems running in their work environment (macOS), their software development
process (Docker containers), their build and automation tooling (CI and GitHub), their production

environments (Linux servers and containers), and more.

Being skilled with the Linux command line can help software developers go beyond what’s ex-

pected of them, allowing them to:

e Save time by knowing when to use built-in Unix tools, instead of writing thousand-line
scripts or helper programs

e Help debug complex production outages, often involving Linux servers and their interface

to the application
e Mentor junior engineers

e Have a more complete understanding of how the software they write fits into the larger

ecosystem and tech stack

We hope that the theory, examples, and projects included in this book can take your Linux de-
velopment skills to the next level.

Who this book is for

This book is for software developers who are new to Linux and the command line, or who are out
of practice and want to quickly dust off their skills. If you still feel a bit insecure about your abil-
ities when you're staring at a Linux command-line prompt on a production server at 2:00 in the
morning, this book is for you. If you want to quickly fill a Linux skills gap to advance your career,
this book is for you. If you're just curious, and you want to see what kind of efficiency gains you
can make in your day-to-day development setup and routines by adding some command-line

magic, this book will serve you as well.

XXiv Preface

What this book is not

One of the ways we have tried to fulfill our vision for this kind of uniquely useful book is by being
extremely careful about what’s included. We’ve tried to cut out everything thatisn’t essential to
your life as a developer, or to a basic understanding of Linux and its core abstractions. In other

words, the reason this book is useful is because of all the things we left out.

This bookis not a full Linux course. It’s not for people working as Linux system engineers or kernel
developers. Because of this, it’s not 750+ pages long, and you should be able to work through it

in a few days, perhaps during a quiet sprint at work.

What this book covers

Chapter 1, How the Command Line Works, explains how a command-line interface works, what
a shell is, and then immediately gives you some basic Linux skills. You’ll get a bit of theory and
then begin moving around on the command line, finding and working with files and learning
where to look for help when you get stuck. This chapter caters to new developers by teaching
the most important command-line skills. If you read nothing else, you’ll still be better off than

when you started.

Chapter 2, Working with Processes, will take you on a guided tour of Linux processes. You'll then
dive into useful, practical command-line skills for working with processes. We’ll add detail to
a few aspects that are a common source of process-related problems that you’ll encounter as a
software developer, like permissions, and give you some heuristics for troubleshooting them.

You'll also get a quick tour of some advanced topics that will come up again later in the book.

Chapter 3, Service Management with systemd, builds on the knowledge about processes learned in
the previous chapter by introducing an additional layer of abstraction, the systemd service. You’ll
learn about what an init system does for an operating system, and why you should care. Then,

we cover all the practical commands you’ll need for working with services on a Linux system.

Chapter 4, Using Shell History, is a short chapter covering some tricks that you can learn to improve
your speed and efficiency on the command line. These tricks revolve around using shortcuts and

leveraging shell history to avoid repeated keystrokes.

Chapter 5, Introducing Files, introduces files as the essential abstraction through which to under-
stand Linux. You'll be introduced to the Filesystem Hierarchy Standard (FHS), which is like a
map thatyou can use to orient yourself on any Unix system. Then it’s time for practical commands
for working with files and directories in Linux, including some special filetypes you probably
haven’t heard of. You’ll also get a taste of searching for files and file content, which is one of the

most powerful bits of knowledge to have at your fingertips as a developer.

Preface XXV

Chapter 6, Editing Files on the Command Line, introduces two text editors —nano and vim. You will
learn the basics of using these text editors for command-line editing while also becoming aware

of common editing mistakes and how to avoid them.

Chapter 7, Users and Groups, will introduce you to how the concepts of users and groups form the
basis for the Unix security model, controlling access for resources like files and processes. We’ll

then teach you the practical commands you’ll need to create and modify users and groups.

Chapter 8, Ownership and Permissions, builds on the previous chapter’s explanation of users and
groups to show you how access control works for resources in Linux. This chapter teaches you
about ownership and permissions by walking you through file information from a long listing.
From there, we’ll look at the common file and directory permissions that you’ll encounter on
production Linux systems, before engaging with the Linux commands for modifying file own-

ership and permissions.

Chapter 9, Managing Installed Software, shows you how to install software on various Linux distri-
butions (and even macOS). First, we introduce package managers, which are the preferred way of
getting software onto a machine: you’ll learn the important theory and practical commands for the
package management operations you'll need as a software developer. Then we’ll introduce a few
other methods, like downloading install scripts and the time-honored, artisanal Unix tradition

of compiling your own software locally, from source (it’s not as scary as it sounds!).

Chapter 10, Configuring Software, piggybacks off the previous chapter’s focus on installing soft-
ware by helping you with configuring software on a Linux system. You will learn about the places
that most software will look for configuration (“the configuration hierarchy”). Not only will
this knowledge come in handy during late-night troubleshooting sessions, but it can actually
help you to write better software. We’ll cover command-line arguments, environment variables,
configuration files, and how all of this works on non-standard Linux environments like Docker
containers. There’s even a little bonus project: you’ll see how to take a custom program and turn

itinto its own systemd service.

Chapter 11, Pipes and Redirection, will give you an introduction to what s possibly the “killer feature”
of Unix: the ability to connect existing programs into a custom solution using pipes. We’ll move
through the prerequisite theory and practical skills you need to understand: file descriptors and
input/output redirection. Then you’ll jump into creating complex commands using pipes. You'll be
introduced to some essential CLI tools and practical pipe patterns, which you'll still find yourself

using long after you finish this book.

xxvi Preface

Chapter 12, Automating Tasks with Shell Scripts, serves as a Bash scripting crash course, teaching you
how to go from typing individual commands in an interactive shell to writing scripts. We assume
you’re already a software developer, so this will be a quick introduction that shows you the core
language features and doesn’t spend a lot of time re-explaining the basics of programming. You'll

learn about Bash syntax, best practices for script writing, and some important pitfalls to avoid.

Chapter 13, Secure Remote Access with SSH, explores the Secure Shell Protocol and the related com-
mand-line tools available to you. You’ll learn the basics of public-key cryptography (PKI), which
is always useful for a developer to know, before diving into creating SSH keys and securely logging
into remote systems over the network. You’ll build on this knowledge and get some experience
copying files over the network, using SSH to create ad-hoc proxies or VPNs, and see examples of

various other tasks that involve moving data over an encrypted SSH tunnel.

Chapter 14, Version Control with Git, shows you how to use a tool you probably already know well
—git —from the command line, instead of through your IDE or a graphical client. We quickly go
through the basic theory behind git and then jump into the commands you’ll need to use in a
command-line environment. We’ll cover two powerful features that it pays to understand — bi-
secting and rebasing — and then give you our take on best practices and useful shell aliases. Finally,
the Poor man’s GitHub section presents a small but legitimately useful project that you can do to

practice and integrate the Linux skills you’ve learned up to this point.

Chapter 15, Containerizing Applications with Docker, gives you the basic theory and practical skills
that will make it easy to work with Docker as a developer. We’ll explore the problems that Docker
solves, explain the most important Docker concepts, and take you through the core workflow
and commands you’ll use. You’ll also see how to build your own images by containerizing a
real application. And because we’re approaching this from a software development and Linux
perspective, you'll also develop a good intuition for how containerization works under the hood,

and how it’s different from virtual machines.

Chapter 16, Monitoring Application Logs, gives an overview of logging on Unix and Linux. We’ll
show you how (and where) logs are collected on most modern Linux systems using systemd, and
how more traditional approaches work (you’ll come across both in the real world). You’ll build
practical command-line skills finding and viewing logs and learn a bit about how logging is being

done in larger infrastructures.

Preface xxvii

Chapter 17, Load Balancing and HTTP, covers the basics of HTTP for developers, with a special
focus on the complexities that you'll come across when working with HTTP services in larger
infrastructures. We’ll correct some common misunderstandings about HTTP statuses, HTTP
headers, and HTTP versions and how applications should handle them. We’ll also introduce
how load balancers and proxies work in the real world, and how they make the experience of
troubleshooting a live application quite different from troubleshooting a development version
on your laptop. Many of the Linux skills that you will have learned up to this point will come in
handy here, and we’ll introduce a new tool — curl — to help you troubleshoot a wide variety of

HTTP-related issues.

To get the most out of this book

If you can get yourself to a Linux shell prompt — by installing Ubuntu in a virtual machine or

running it as a Docker container, for example — you can follow along with everything in this book.

You can get away with even less — on Windows, there’s WSL, and macOS is a bona-fide Unix
operating system, so almost all of the practical commands you learn in this book (except those
called out as Linux-only) will work out of the box. That said, for the best experience, follow along

on a Linux operating system.

The skills required to get the most out of this book are only the basic computer skills that you
already have as a software developer — editing text, working with files and folders, having some
notion of what “operating systems” are, installing software, and using a development environ-

ment. Everything beyond that, we’ll teach you.

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book.
You can download it here: https://packt.link/gbp/9781804616925.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “The -f

I’

flag stands for ‘follow,” and the -u flag stands for ‘unit.

https://packt.link/gbp/9781804616925

xxviii Preface

A block of command line is set as follows:

/home/steve/Desktop# 1s

anotherfile documents somefile.txt stuff

/home/steve/Desktop# cd documents/

/home/steve/Desktop/documents# 1s

contract.txt

Bold: Indicates a new term, an important word, or words that you see on the screen For instance,
words in menus or dialog boxes appear in the text like this. For example: “When a file is set to be
executable, Unix will do its best to execute it, either succeeding in the case of ELF (Executable

and Linkable Format, probably the most widely used executable format today) or failing.”

\/;l’{ Warnings or important notes appear like this.

\ ! 7/
',@\' Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub. com, and mention the book’s title in the subject of
your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book we would be grateful if you would report this
to us. Please visit, http://www.packtpub.com/submit-errata, selecting your book, clicking on

the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would
be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.comwith alink to the material.

http://www.packtpub.com/submit-errata

Preface XXix

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit http://authors.packtpub.
com.

Share your thoughts

Once you've read The Software Developer’s Guide to Linux, we’d love to hear your thoughts! Please

click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://www.packtpub.com/

