PROGRAMMIEREN LERNEN
OHNE VORKENNTNISSE

FiiR
JANNE, JULIA, KATRIN UND DANIEL

Hans-Georg Schumann

PYTHON FUR KIDS

PROGRAMMIEREN LERNEN OHNE VORKENNTNISSE

mitp

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet Gber https://portal.dnb.def/opac.htm abrufbar.

ISBN 978-3-7475-1124-4
4. Auflage 2025

www.mitp.de

E-Mail: mitp-verlag@lila-logistik.com
Telefon: +49 7953 / 7189 - 079
Telefax: +49 7953 [7189 - 082

© 2025 mitp-Verlags GmbH & Co. KG, Augustinusstr. 9a, DE 50226 Frechen

Dieses Werk, einschlieBlich aller seiner Teile, ist urheberrechtlich geschiitzt. Jede Verwertung auBer-
halb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzuldssig und
strafbar. Dies gilt insbesondere fiir Vervielfiltigungen, Ubersetzungen, Mikroverfilmungen und die
Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk
berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne
der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wéren und daher von
jedermann benutzt werden diirften.

Lektorat: Katja Vélpel
Covergestaltung: Christian Kalkert
Satz: lll-satz, Kiel, www.drei-satz.de

INHALT

EINLEITUNG

Was heiB3t eigentlich Programmieren?
Was ist eine Entwicklungsumgebung?
Warum gerade Python?
Die Entwicklungsumgebung
Wie arbeite ich mit diesem Buch?
Was brauchst du fiir dieses Buch? L.
Hinweise fiir Lehrer

ERSTESCHRITTE

Mit Python loslegeno
Zahlen und Text ... e
Eine Arbeitsumgebung namens IDLE
Die erste py-Dateioo i
Quelltext-Spielereien
Python verlassen o i
ZusammeNnfassUNg . ..ot
Einpaar Frageno
.. aber noch keine Aufgabe i

BEDINGUNG UND KONTROLIE

Die if-Struktur o
ifund else ...
Ein bisschen Grundrechnen
Was flir Zahlen? e
Die Sache mit try und except i
ZusammeNnfassUNgvvine e e
Einpaar Frageno
..und ein paar Aufgaben

1

1
12
12
13
14
15
16

17

18
21
25
28
32
34
35
36
36

37
38
42
46
49
52
54
55
55

INHALT

VERGLEICHEN UND WIEDERHOLEN 57
Zensurenbild 58
Ein kleines Ratespiel 62
Dein Computerzahlt mit ... 67
Noch mehr Spielkomfort o i 69
ZuSammeNTassUNG . .. ovvu e 71
Einpaar Fragen o 72
..und ein paar Aufgaben 72

GELD-SPIELEREIENcc.cciiiiiiiiiiiin. 73
Spiel mitdem Gllck 74
Die for-Strukturo 76
Auf dem Weg zum Millionadr ... 79
Macht Lotto reich? 83
Zeichen-Verkettungo 86
ZuSammeENTassUNG . ..ot 88
Einpaar Fragen oo e 89
..und ein paar Aufgaben 89

FUNKTIONEN i 91
Python ist lernfahigco i 92
Lokal oder global? i e 95
Parameter 97
TausChprozesseot 100
Zahlen sortieren ... oo 104
ZuSammEeNTassSUNG . ..ot 107
Einpaar Fragen oo 107
..und ein paar Aufgaben 107

KIASSENUNDMODUIEccccccevn.. 109
Einneues Baby?o i e 110
self und NIt .o e 113
VererbuNng ..o 116
Programm-Module 120
Privat oder offentlich? 125
ZuSammeNTassUNG . ..o vu et e 129
Einpaar Fragen oo e 129

.. aber keine Aufgabe 129

INHALT

EINSTIEGINTKINTER,

Erstmal ein Fenstero
Es passiert etwas ...
Layout-Management i
Meldeboxen und Titelleisten il
Alles noch mal:als Klasse,
ZuSammeENTassUNG ..ot
Einpaar Frageno
..und eine Aufgabe

KOMPONENTEN-SAMMLUNG

Kleine Button-Parade i
Antwort-Kndpfe und Diagnose-Felder
Listenwahl
Von Plnktchen
und Hakchen o oo
VeISChONEIUNG o v ittt e e e
ZusammenfassUNg ... it e e
Einpaar Fragen o
..undein paar Aufgaben i

AKTION SEELENKLEMPNERcccccooii..

Klempner-Bauplan ...
Bereit zur Diagnose? i
Datentransfer o
Alles zusammen
Therapieprotokoll
ZusammeNnfassUng ...t e
Einpaar Fragen o
..und ein paar Aufgaben i

MENUS UNDDIALOGE i

Ein Mend fiir den Klempnero i
Zwei Dialoge ... e
AlleS ZUSAMMEN .. e

Shorteuts gefallig? ... e

131
132
135
138
141
142
143
144
144

145

145
148
151
153
156
159
162
163
163

165

166
169
172
176
178
180
180
181

183
184
186
189
191
194

INHALT

Zusammentassung 196
EinpaarFragen 197
..aberkeine Aufgabe 197
GRAFIKINPYTHON i, 199
Von Punkten und Koordinaten i, 199
Daserste Bild ... 202
Jetztwird'sbunt ... 205
Eckigundrund 207
MitText gehtauch ... 209
Farbtupfer 210
Selber zeichnen? 212
Turtle-Grafik 214
ZuSammeNTassUNG . ..o vuu et 217
EinpaarFragen 218
..und ein paar Aufgaben 218
ANIMATIONEN i, 219
ErstmaleinKreiso 219
CanvasruftImage 223
Bildersammlung i 225
Eine Player-Klassecuiiiiin i e 228
Wie [auft's? .. 231
DrehUNgeN ... e 233
Verschwinden und auftauchen, 235
Zusammentassung 238
Eine Frageo 238
..und ein paar Aufgaben 238
KLEINER KRABBELKURS, 239
Einstieg mit Pygame i 240
Ein Objekt im Fenster i 242
Insekt als Playert e 245
TasteNStEURIUNG .ottt e 250
Drehmomenteo 253
Grenzkontrollen 257

Zusammentassung 258

INHALT

Ein paar Fragen
... und eine Aufgabe

VOM KAFER ZUR WANZE . . .

Die Sache mit der Maus . .

Ohne Mathe geht es nicht

Alles zusammen
Freilauf
Klick und Platt
Klassentrennung
Zusammenfassung
Ein paar Fragen
.. und eine Aufgabe

DODGE ODERHIT

Ein neuer Player
Stand, Duck, Jump
Die Ding-Klasse
Ausweichmandver
Das Hauptprogramm
Zusammenfassung
Keine Fragen...
... und nur eine Aufgabe ..

PIAYTHEGAME

Punkte sammeln
Eine Game-Klasse
Wanzen-Sammlung
Killer-Punkte

Zusammenfassung und Schluss oo

ANHANG

Python installieren
Pygame installieren 1
Pygame installieren 2

Einsatz der Buch-Dateien

259
260

261
262
263
268
269
273
275
278
279
279

281
282
285
288
291
295
296
297
297

299
300
303
306
309
312

315
315
319
323
324

INHALT

10

ANHANG
Kleine Checkliste

STICHWORTVERZEICHNIS

EINLEITUNG

Python - wer denkt da nicht an eine Schlange? Eine, die zwar nicht giftig ist, aber
einem samtliche Knochen brechen und die Luft abschniiren kann. Du weiBt natiir-
lich, dass es hier bei Python um eine Programmiersprache geht.

Python wurde Anfang der 1990er-Jahre entwickelt. Der Name dieser Sprache geht
jedoch nicht auf die gleichnamige Schlange zuriick, sondern auf eine Truppe von
englischen Komikern namens »Monthy Pythong, die vor allem in den 70er-Jahren
mit ihren skurrilen Filmen erfolgreich war (unter anderem mit »Das Leben des
Brian«).

Natiirlich hat Python viel von anderen Programmiersprachen {ibernommen. Sie hat
sich einen Namen gemacht, weil sie als leicht erlernbar und bersichtlich gilt. In
diesem Buch geht es um die bereits dritte Version von Python, die aktuell auch die
neueste (und vielseitigste) ist.

WAS HEIRT EIGENTLICH PROGRAMMIEREN?

Wenn du aufschreibst, was ein Computer tun soll, nennt man das Programmieren.
Das Tolle daran ist, dass du selbst bestimmen kannst, was getan werden soll. Lasst
du dein Programm laufen, macht der Computer die Sachen, die du ausgeheckt hast.

11

EINLEITUNG

12

Natiirlich wird er dann dein Zimmer nicht aufrdumen und dir auch keine Tasse
Kakao ans Bett bringen. Aber beherrschst du erst mal das Programmieren, kannst
du den Computer sozusagen nach deiner Pfeife tanzen lassen.

Allerdings passiert es gerade beim Programmieren, dass der Computer nicht so will,
wie du es gerne hattest. Meistens ist das ein Fehler im Programm. Das Problem
kann aber auch irgendwo anders im Computer oder im Betriebssystem liegen. Das
Dumme bei Fehlern ist, dass sie sich gern so gut verstecken, dass die Suche danach
schon manchen Programmierer zur Verzweiflung gebracht hat.

Vielleicht hast du nun trotzdem Lust bekommen, das Programmieren zu erlernen.
Dann brauchst du ja nur noch eine passende Entwicklungsumgebung, und schon
kann's losgehen.

WAS IST EINE ENTWICKLUNGSUMGEBUNG?

Um ein Programm zu erstellen, musst du erst einmal etwas eintippen. Das ist wie
bei einem Brief oder einer Geschichte, die man schreibt. Das Textprogramm dafiir
kann sehr einfach sein, weil es ja nicht auf eine besondere Schrift oder Darstellung
ankommt wie bei einem Brief oder einem Referat. So etwas wird Editor genannt.

Ist das Programm eingetippt, kann es der Computer nicht einfach lesen und ausfiih-
ren. Jetzt muss es so libersetzt werden, dass der PC versteht, was du von ihm willst.
Weil er aber eine ganz andere Sprache spricht als du, muss ein Dolmetscher her.

Du programmierst in einer Sprache, die du verstehst, und der Dolmetscher liber-
setzt es so, dass es dem Computer verstandlich wird. So etwas heiBt dann Compiler
oder Interpreter.

Python bietet solche Dolmetscher gleich fiir mehrere Betriebssysteme. Dein Compu-
ter kann also ein Windows-PC oder ein Linux-PC sein, ein Macintosh oder irgendein
anderes Computersystem. Ein und dasselbe Python-Programm kann so (eventuell
mit kleinen Abweichungen) auf jedem beliebigen Computer funktionieren.

SchlieBlich miissen Programme getestet, liberarbeitet, verbessert, wieder getestet
und weiterentwickelt werden. Dazu gibt es noch einige zusatzliche Hilfen. Daraus
wird dann ein ganzes System, die Entwicklungsumgebung.

WARUM GERADE PYTHON?

Leider kannst du nicht so programmieren, wie dir der Schnabel gewachsen ist. Eine
Programmiersprache muss so aufgebaut sein, dass mdoglichst viele Menschen in
mdglichst vielen Landern einheitlich damit umgehen kénnen.

DIE ENTWICKLUNGSUMGEBUNG

Weil in der ganzen Welt Leute zu finden sind, die wenigstens ein paar Brocken Eng-
lisch kdnnen, besteht auch fast jede Programmiersprache aus englischen Wortern. Es
gab auch immer mal Versuche, z.B. in Deutsch zu programmieren, aber meistens klin-
gen die Worter dort so kiinstlich, dass man lieber wieder aufs Englische zuriickgreift.

Eigentlich ist es egal, welche Programmiersprache du benutzt. Am besten eine, die
moglichst leicht zu erlernen ist. Wie du weil3t, bekommst du es in diesem Buch mit
der Programmiersprache Python zu tun, die mittlerweile sehr weit verbreitet ist.
(Willst du mal in andere Sprachen hineinschnuppern, dann empfehle ich dir z.B.
eines der anderen Kids-Biicher tiber C++ oder Java.)

Der Weg zum guten Programmierer kann ganz schon steinig sein. Nicht selten
kommt es vor, dass man die Lust verliert, weil einfach gar nichts klappen will. Das
Programm tut etwas ganz anderes, man kann den Fehler nicht finden und man
fragt sich: Wozu soll ich eigentlich programmieren lernen, wo es doch schon genug
Programme gibt?

Gute Programmierer werden immer gesucht, und dieser Bedarf wird weiter steigen.
Und Python gehort dabei durchaus zu den erwiinschten Sprachen. Wirklich gute
Programmierer werden auch wirklich gut bezahlt. Es ist also nicht nur einen Ver-
such wert, es kann sich durchaus lohnen, das Programmieren in Python zu erlernen.

DIE ENTWICKLUNGSUMGEBUNG

Um eine Entwicklungsumgebung fiir Python musst du dich nicht weiter kiimmern,
wenn dir eine einfache reicht. Die namlich bekommst du kostenlos mit dem
Python-Paket (sie heiBt IDLE = »Integrated Development and Learning Environ-
ment«). Die werden wir hier ausgiebig benutzen.

Das komplette Paket kannst du dir von dieser Seite herunterladen:
https://www.python.org/

Dabei muss es nicht unbedingt die neueste Version sein. Dieses Buch bezieht sich
auf Python 3 (aktuelle Versionen 3.12 und 3.13).

UND WAS BIETET DIESES BUCH?

Uber eine ganze Reihe von Kapiteln verteilt lernst du
<> das Basiswissen von Python kennen
< etwas liber objektorientierte Programmierung

< mit Komponenten des Moduls tkinter zu arbeiten (das sind Bausteine, mit
denen du dir viel Programmierarbeit sparen kannst)

EINLEITUNG

14

< die grafischen Mdglichkeiten von Python kennen
< etwas liber den Umgang mit dem Spiele-Modul pygame
< wie man eigene Game- und Player-Klassen programmiert

Im Anhang gibt es dann noch zusatzliche Informationen und Hilfen, unter anderem
uber Installationen und den Umgang mit Fehlern.

WIE ARBEITE ICH MIT DIESEM BUCH?

Grundsatzlich besteht dieses Buch aus einer Menge Text mit vielen Abbildungen
dazwischen. Natiirlich habe ich mich bemiiht, alles so zuzubereiten, dass daraus
lauter gut verdauliche Happen werden. Damit das Ganze noch genieBbarer wird,
gibt es zusatzlich noch einige Symbole, die ich dir hier gern erkldren mochte:

ARBEITSSCHRITTE

> Wenn du dieses Zeichen siehst, heiBt das: Es gibt etwas zu tun. Damit kommen
wir beim Programmieren Schritt fiir Schritt einem neuen Ziel immer néher.

Grundsatzlich lernt man besser, wenn man einen Programmtext selbst eintippt oder
andert. Aber nicht immer hat man grof3e Lust dazu. Deshalb gibt es alle Projekte im
Buch auch als Download:

http://www.mitp.de/1123

Und hinter einem Programmierschritt findest du auch den jeweiligen Namen des
Projekts oder einer Datei (z.B. = PROJEKT1.PY). Wenn du also das Projekt nicht selbst
erstellen willst, kannst du stattdessen diese Datei laden (zu finden im Ordner PRo-
JEKTE).

AUFGABEN

Am Ende eines Kapitels findest du jeweils eine Reihe von Fragen und Aufgaben.
Diese Ubungen sind nicht immer ganz einfach, aber sie helfen dir, noch besser zu
programmieren. Losungen zu den Aufgaben findest du in verschiedenen Formaten
ebenfalls im Verzeichnis PROJEKTE. Du kannst sie dir alle im Editor von Windows oder
auch in deinem Textverarbeitungsprogramm anschauen. Oder du ldsst sie dir aus-
drucken und hast sie dann schwarz auf weiB3, um sie neben deinen Computer zu
legen. (Auch die Programme zu den Aufgaben liegen im Ordner PROJEKTE.)

WAS BRAUCHST DU FilR DIESES BUCH?

NOTFALLE

Vielleicht hast du irgendetwas falsch gemacht oder etwas vergessen. Oder es
wird gerade knifflig. Dann fragst du dich, was du nun tun sollst. Bei diesem
Symbol findest du eine Losungsmaoglichkeit. Notfalls kannst du aber auch ganz
hinten im Anhang B nachschauen, wo ein paar Hinweise zur Pannenhilfe auf-
geflhrt sind.

WICHTIGE STELLEN IM BUCH

Hin und wieder findest du ein solch dickes Ausrufezeichen im Buch. Dann ist Z7
das eine Stelle, an der etwas besonders Wichtiges steht.

EXPERTENWISSEN

Wenn du ein solches »"Wow« siehst, geht es um ausfiihrlichere Informationen
zu einem Thema.

WAS BRAUCHST DU FUR DIESES BUCH?

Installiert wird Python mit einem Setup-Programm in ein Verzeichnis deiner Wahl,
z.B. D:\PYTHON. Dort solltest du spéter auch deine Python-Projekte unterbringen.

Die Beispielprogramme in diesem Buch gibt es alle als Download von der Home-
page des Verlages, falls du mal keine Lust zum Abtippen hast:

http://www.mitp.de/1123

Und auch die Losungen zu den Fragen und Aufgaben sind dort untergebracht (alles
im Ordner PROJEKTE).

BETRIEBSSYSTEM

Die meisten Computer arbeiten heute mit dem Betriebssystem Windows. Davon
brauchst du eine der Versionen 7 bis 11. (Python gibt es unter anderem auch fiir
Linux.)

15

EINLEITUNG

16

SPEICHERMEDIEN

Auf jeden Fall bendtigst du etwas wie einen USB-Stick oder eine SD-Card, auch
wenn du deine Programme auf die Festplatte speichern willst. Auf einem externen
Speicher sind deine Arbeiten auf jeden Fall zusatzlich sicher aufgehoben.

Gegebenenfalls bitte deine Eltern oder Lehrer um Hilfe.

HINWEISE FUR LEHRER

Dieses Buch versteht sich auch als Lernwerk fiir den Informatik-Unterricht in der
Schule. Dort setzt natiirlich jeder Lehrer seine eigenen Schwerpunkte. Benutzen Sie
an lhrer Schule bereits ein Werk aus einem Schulbuchverlag, so lasst sich dieses
Buch auch als Materialienband einsetzen - in Ergdnzung zu dem vorhandenen
Schulbuch. Weil dieses Buch sozusagen »von null« anfangt, ist ein direkter Einstieg
in Python mdglich - ohne irgendwelche anderen Programmierkenntnisse.

Ein wichtiger Schwerpunkt in diesem Buch ist die objektorientierte Programmierung
(OOP). Auf die wichtigsten Eigenheiten (Kapselung, Vererbung und Polymorphie) wird
ausfiihrlich eingegangen. Ein anderer Schwerpunkt ist die Programmierung von Spie-
len. In den Projekten werden alle wesentlichen Elemente des Python-Wortschatzes
wie auch die wichtigsten Grafik-Komponenten von tkinter eingesetzt. In den Losun-
gen zu den Aufgaben finden Sie weitere Vorschldge zur Programmierung.

UBUNGSMEDIEN

Fiir den Informatik-Unterricht sollte jeder Schiiler ein eigenes externes Speicher-
medium haben, um darauf seine Programmierversuche zu sichern. So wird verhin-
dert, dass sich auf der Festplatte des Schulcomputers mit der Zeit allerlei
»Datenmiill« ansammelt. AuBerdem dient der eigene Datentrager dem Datenschutz:
Nur der betreffende Schiiler kann seine Daten manipulieren.

AUF DIE DATEIEN ZUM BUCH VERZICHTEN?

Vielleicht ist es Ihnen lieber, wenn Ihre Schiiler die Projekte alle selbst erstellen.
Dann lassen Sie die Download-Dateien einfach (erst einmal) weg.

REGELMARIG SICHERN

Es kann nicht schaden, die Programmdateien, an denen gerade gearbeitet wird,
etwa alle zehn Minuten zu speichern. Denn Computer pflegen gern gerade dann
rabzustilirzens, wenn man seine Arbeit ldngere Zeit nicht gespeichert hat.

1 ERSTE SCHRITTE

Hier geht es gleich ans »Eingemachte«. Nachdem wir Python installiert und gestar-
tet haben, machen wir unsere ersten Gehversuche. Um spater auch gréBere Pro-
grammprojekte erstellen zu kdnnen, brauchen wir das passende Werkzeug. Wir
richten uns so komfortabel ein, dass schlieBlich auch dein erstes Programm ent-
steht.

In diesem Kapitel lernst du

®© wie man Python startet

© Anweisungen fiir Ausgabe und Eingabe kennen
© was Variablen sind

© den Typ String kennen

© etwas liber den Einsatz von IDLE

© wie man ein Programm erstellt und speichert

© wie man Python beendet

7

KAPITEL 1

ERSTE SCHRITTE

18

MIT PYTHON LOSLEGEN

Bevor wir mit dem Programmieren anfangen konnen, muss Python erst installiert
werden.

Die Installation iibernimmt ein sogenanntes Setup-Programm. Genaues erfahrst du
im Anhang A. Hier musst du dir von jemandem helfen lassen, wenn du dir die
Installation nicht allein zutraust. Eine Mdglichkeit, Python zu starten, ist diese:

> (Offne den Ordner, in dem du Python untergebracht hast - z.B. C:\PRo-
GRAMME\PYTHON oder D:\PYTHON.

n| | = | Python Anwendungstaols
Start Freigeben Ansicht Verwalten o
« v P « \WorkDisk (D:) » Python 4o Python” durchsuchen 2
DLLs Doc include Lib libs Scripts

e o

tcl LICENSE.txt MNEWS .t python.exe python3.dll python313.
dil
[o o o
pythonw.ex vcruntime 1 veruntime1
e 4041l 40 1.4l
15 Elemente 1 Element ausgew&hlt (102 KB) ==

> Hier suchst du unter den vielen Symbolen das mit dem Namen PYTHON.EXE heraus.
Doppelklicke auf das Symbol.

Wenn du willst, kannst du auch eine Verkniipfung auf dem Desktop anlegen:

<> Dazu klickst du mit der rechten Maustaste auf das Symbol fiir Python
(PYTHON.EXE). Im Kontextmenl wéhlst du KOPIEREN.

<> Dann klicke auf eine freie Stelle auf dem Desktop, ebenfalls mit der rechten
Maustaste. Im Kontextmenii wahlst du VERKNUPFUNG EINFUGEN.

< Es ist sinnvoll, fiir das neue Symbol auf dem Desktop den Text python.exe
- Verknlpfung einfach durch Python zu ersetzen.

Von nun an kannst du auf das neue Symbol doppelklicken, um die Arbeitsum-
gebung von Python direkt zu starten.

MIT PYTHON LOSLEGEN

Was dich nach dem Start erwartet, sieht etwa so aus:

« Python — O X

@ 64 bit (Intel)] on win32
“license” tor more intormation.

Die ersten beiden Zeilen informieren dich unter anderem {iber die aktuelle Python-
Version, aber du bekommst auch schon ein paar Befehle vorgeschlagen, die du hin-
ter den drei spitzen Klammern (>>>) eintippen kannst.

Die drei Zeichen werden hier auch Prompt genannt. Das ist eine Art Eingabe-
aufforderung, weil du dahinter etwas eingeben kannst (und musst, wenn es
weitergehen soll).

> Probieren wir es doch gleich einmal mit »help«. Tippe dieses Wort ein.

Und prompt gibt es etwas zu meckern: Na ja, es ist eher ein netter Hinweis: Man
muss help mit zwei runden Klammern dahinter eintippen.

> Gib also help() ein.

[/

Q

9

KAPITEL 1 ERSTE SCHRITTE

Und du bekommst gleich eine ganze Menge Text serviert:

on win32
~ more intormation.

Type help() for interactive help, or help(object) for help about object.
>>> help()

Welcome to Python 3.6"'s help utility!

I¥ this i: your first time UHIHE P»tlnn. you should definitely check o

utorial/.

Enter the e of odule, r topic to get help on writing
Python : 3 To quit this help utility and
return to e interpreter, just type “"quit".

rds, symbols, or topics,
cs' Each module a 5
to list the modules whose name
as "spam", type "modules spam".

help> _

Nun steht da help> als Prompt. Du kannst dahinter ein Wort eingeben, und wenn
es zum Python-Wortschatz gehért, bekommst du dazu eine (kurze) Erlduterung.

> Um zum urspriinglichen Prompt zuriickzukehren, tippe quit ein.

« Python
help> quit

[You are now leaving help and returning to the Python interpreter.
sk for help a particular t directly from the

can type "help(object)". xecuting "help('string')
has the same effect as typing a particular string at the help> prompt.

3>

Und du bist wieder zuriick im Python-Interpreter.

20

ZAHLEN UND TEXT

Was ist ein Interpreter? Zuerst solltest du wissen, dass das, was du als Befehl
hinter dem Prompt eintippst, fiir den Computer erst einmal vollig unverstand-
lich ist. Normalerweise kann er also den jeweiligen Befehl gar nicht ausfiihren.

Ein Interpreter libersetzt die Befehlszeile in eine Sprache, die der Computer
versteht, sodass er den Befehl ausfiihren kann - genannt Maschinensprache.
Bei einem Programm, das aus einigen bis sehr vielen Zeilen bestehen kann, wird
von einem Interpreter jede Zeile einzeln tbersetzt und dann ausgefiihrt.

Im Gegensatz dazu gibt es Compiler, die das gesamte Programm in Maschinen-
sprache Ubersetzen. Erst wenn das Programm komplett und fehlerfrei ist, kann
es vom Computer ausgefiihrt werden. Fiir Python benutzen wir hier einen Inter-
preter, es gibt aber auch Python-Compiler.

ZAHLEN UND TEXT

Nun wollen wir aber endlich mal was ausprobieren.

> Tippe also ein: 1+2+3 und driicke dann die [«]-Taste.

« Python

»>»> 14243

5]

x>

Und tatsdchlich wird das Ergebnis dieser kleinen Matheaufgabe angezeigt.

> Du kannst gern ein paar weitere Aufgaben stellen und dabei auch die Opera-
tionszeichen fiir minus (-), mal (*) und geteilt durch (/) benutzen.

Na ja, als Taschenrechner scheint der Python-Interpreter ja gut zu funktionieren,
aber natirlich erwartest du viel mehr als das.

> Versuchen wir es mal mit einem netten GrufB3: Tippe Hallo ein und schlieBe das
mit der [<]-Taste ab.

KAPITEL 1

ERSTE SCHRITTE

22

« Python

>>> Hallo

st recent call 1
>", line 1, in

MameError: name ‘Hallo' is not defined

-3

Na ja, irgendwie gibt es jetzt wirklich was zu meckern. »Error« hei3t »Fehlers, dem-
nach ist hier eindeutig etwas falsch. Was ist das Ziel? Ich méchte, dass der Compu-
ter ein freundliches »Hallo« sagt (bzw. schreibt).

> Dazu tippe jetzt mal folgende Zeile ein:
> print("Hallo")

« Python

»>>> print(“"Hallo™)

Das geht. Dabei bedeutet print() hier anzeigen, ausgeben. Und in den runden
Klammern dahinter steht das, was angezeigt werden soll. Das nennt man Parame-
ter.

Natiirlich geht das auch mit Zahlen:

« Python

>>> print(55)
55

-3

ZAHLEN UND TEXT

> Probiere selber aus, was der print-Befehl alles ausgeben kann.

Nun wird es ein bisschen komplizierter. Bis jetzt haben wir immer nur einen Befehl
eingegeben. Aber richtige Programme bestehen natiirlich aus mehr als nur einer
Zeile. Versuchen wir es mal mit diesem kleinen Programmstiick:

Text = "Hallo"
print(Text)

> Gib diese beiden Zeilen ein. Wird angezeigt, was du erwartet hast?

« Python

> Text = "Hallo”
> print(Text)

Nach der ersten Zeile gibt es noch nichts anzuzeigen. Aber offenbar hat sich der
Python-Interpreter gemerkt, was Text bedeutet. Und er weiB, welchen Wert
print() als Parameter libernehmen soll.

Genauer: Bei Text handelt es sich um eine sogenannte Variable, der wird ein
Wert zugewiesen, in diesem Fall ist das das Woértchen "Hallo". Und das Gleich-
heitszeichen (=) wird Zuweisungsoperator genannt.

"Variable) =|Wert]

In Python werden Variablen neu erzeugt, wenn ihnen zum ersten Mal ein Wert
zugewiesen werden soll. Bei einer Zuweisung steht immer links die Variable
und rechts der Wert, das Gleichheitszeichen hat also quasi die Bedeutung eines
Pfeils:

Variable < Wert

Variablen sind niitzlich, weil sie Daten »aufheben«, sodass der Computer sich
an einen Wert erinnern kann. Vor allem in gréBeren Programmen ist es wichtig,
dass der Inhalt einer Variablen auch mehrmals benutzt werden kann. Einige
Beispiele dafiir wirst du noch kennenlernen.

23

KAPITEL 1 ERSTE SCHRITTE

Nun hat der Computer so schén »Hallo« gesagt, das kénnte man doch noch um
einigen Text erweitern:

Text = "Hallo, wer da?"
print(Text)

Name = input()

print (Name)

In Python muss ein Text wie unser Hallo-GruB immer in Anfiihrungszeichen

gefasst werden. Ich benutze hier die doppelten ("), aber auch die einfachen (')
Z7 sind erlaubt.

Diese beiden Zeilen sind also véllig gleichwertig:

Text = "Hallo, wer da?"
Text = 'Hallo, wer da?'

> Tippe alle diese Zeilen nacheinander ein. Beachte, dass du nach der input-Zeile
erst selber deinen Namen eingeben musst, ehe es weitergeht.

Bei mir sieht das Ganze so aus:

'I%ﬂhon

>»> Text = "Hallo, wer da?"
>»> print(Text)

Hans-Georg
b 3 pr‘-in (N

-Georg

Gar nicht so schlecht. Und dabei hast du gleich einen neuen Befehl kennengelernt:
input () heiBt hier eingeben. Damit ldsst sich doch schon was anfangen. Wenn
man oft genug print() und input() benutzt, kann man schon ein ansehnliches
Gesprach mit dem Computer fiihren.

24

EINE ARBEITSUMGEBUNG NAMENS IDLE

Aber etwas geféllt mir nicht. Zum Beispiel das dauernde Neueingeben. Man kann
nicht einfach beliebig mit den Pfeiltasten im Programm herumwandern oder mit
der Maus irgendwohin klicken und dort Text dndern. Besser wéare es doch, wenn
man sich im Python-Fenster wie in einem Texteditor bewegen kdnnte.

Unvorstellbar, dass wir auf diese Weise groBBere Programmprojekte erstellen wollen.
Dazu muss man auch die Mdglichkeit haben, den miihsam eingetippten Text
irgendwo als Datei zu speichern. Das aktuelle Werkzeug, das wir mit dem Eingabe-
Fenster haben, reicht also offenbar nicht aus.

EINE ARBEITSUMGEBUNG NAMENS IDLE

Wir brauchen also ein Fenster, liber das man eingegebenen Text auch speichern und
dorthin wieder laden kann. Genannt Editor. Im Python-Paket ist ein solcher Editor
bereits enthalten, man muss ihn nur finden.

Wenn bei der Installation im START-Menii von Windows eine Verkniipfung zu
Python eingerichtet wurde, dann findest du dort auch einen Eintrag wie IDLE
(PYTHON).

Python o

Neu

h IDLE (Python 32-bit)

Python (32-bit)
Neu

i

@

n Python Manuals (32-bit)
" Neu

h Python Module D

MNeu

A Zur Suche Text hier eingeben

> Klicke darauf, um dieses Programm zu starten.

KAPITEL 1

ERSTE SCHRITTE

Wenn du diesen Eintrag nicht in deinem Start-Menii findest, dann kannst du
dir selber eine Verknilipfung auf dem Desktop erstellen.

< Klicke mit der rechten Maustaste auf eine freie Stelle im Desktop und wahle
im Kontextmenii NEU und dann VERKNUPFUNG.

< Im Dialogfeld gibst du als SPEICHERORT DES ELEMENTS ein:
D:\Python\pythonw.exe "D:\Python\Lib\idlelib\idle.pyw"

Fir welche Elemente mochten Sie eine Verkniipfung erstellen?

Mit diesem Assistenten kénnen Sie Verkniipfungen mit lokalen oder vernetzten Programmen,
Dateien, Ordnern, Computern oder Internetadressen erstellen.

Geben Sie den Speicherort des Elements ein:

D:\Python\pythonw.exe "D:\Python\Lib\idlelib\idle.pyw" J ‘ Durchsuchen...

Klicken Sie auf "Weiter”, um den Viorgang fortzusetzen.

Abbrechen

< Wichtig ist, dass D:\PYTHON auch das Verzeichnis ist, in das du Python in-
stalliert hast. Sonst musst du das entsprechend anpassen.

< Nenne das neue Symbol auf dem Desktop IDLE (Python).

Wie mochten Sie die Verknlpfung benennen?

Geben Sie den Mamen fiir die Verknipfung ein:
 ——

(| IDLE Python) | ‘

Klicken Sie auf "Fertig stellen”, um die Verknupfung zu erstellen.

Fertig stellen Abbrechen

Damit kannst du von nun an den Python-Editor direkt von Desktop aus per
Doppelklick starten.

EINE ARBEITSUMGEBUNG NAMENS IDLE

Nach dem Start von IDLE findest du dich in einem solchen Fenster wieder:

& python Shell
File Edit Shell Debug Options Window Help
Python 3.13.4 (2025, 64 bit)
Type "copyright", "credits"™ or "license ()" for more information.
>>> |
Ln:3 Col: 4

Sieht irgendwie dhnlich aus wie das Fenster des Python-Interpreters, und irgendwie
auch anders. Nicht nur, dass es hier statt weil3 auf schwarz umgekehrt zugeht, hier
gibt es auch eine Menlileiste. Und das Ganze nennt sich »Shell«.

IDLE ist die Abkiirzung fiir »Integrated Development and Learning Environ-
mente, frei lbersetzt ist das eine Umgebung in diesem Fall fiir das Entwickeln
und Lernen von Python-Programmen. Der Begriff Shell bedeutet »Schale« und
zielt in dieselbe Richtung.

Wir kdnnen auch in dieser Umgebung unsere Python-Befehle eintippen, dann
bekommen wir dieselben Ergebnisse wie ganz oben (im »schwarzen« Fenster):

£ python Shell
File Edit Shell Debug Options Window Help
>>> Text = "Hallo, wer da?"

>>> print (Text)
Hallo, wer da?
>>> Name = input ()
Hans-Georg

>>»>> print (Name)
Hans-Georg

>>> |

Ln: 10 Col: 4

Allerdings sieht es hier etwas bunter aus. Worter wie print und input werden far-
big angezeigt, ebenso wie in Anflihrungsstriche gesetzter Text.

> Probiere das selber aus, indem du die Zeilen von oben auch hier noch mal ein-
gibst.

KAPITEL 1

ERSTE SCHRITTE

28

DIE ERSTE PY-DATEI

Wie kriegen wir es nun hin, dass aus den paar Zeilen ein komplettes Programm
wird, das sich immer wieder laden und ausfiihren l&sst?

> Klicke im Menii auf FILE und dann auf NEw FILE (oder driicke die Tastenkombina-
tion [Strg]+[nN]).

File Edit Shell Debug Options

New File Ctrl+N

Open... Ctrl+O
Open Module... Alt+M
Recent Files 4

Class Browser Alt+C

Path Browser

Save Ctrl+S
Save As... Ctrl+Shift+S
Save Copy As... Alt+Shift+S

Print Window Ctrl+P

Close Alt+F4
Exit Ctrl+Q

Und schon haben wir ein weiteres (neues) Fenster mit dem Titel UNTITLED. Die
Meniileiste ist dhnlich wie vorher, ansonsten ist das Fenster leer.

B Untitled

File Edit Format Run Options Window Help

Ln:1 Col: 0

Hier kénnen wir nun unser Programm eingeben, ohne dass irgendeine Zeile davon
direkt vom Python-Interpreter ausgefiihrt wird.

DIE ERSTE PY-DATEI

> Tippe also diese Zeilen ein:

Text = "Hallo, wer da?"
print(Text)

Name = input()
print(Name)

> Und damit du sie nicht wieder verlierst (nachdem du sie ja jetzt so oft eingeben
musstest), klicke nun auf FILE und SAVE oder SAVE As.

File Edit Shell Debug Options

New File Ctrl+N
Open... Ctrl+O
Open Module... Alt+M
Recent Files 4

Class Browser Alt+C

Path Browser

Save Ctrl+S

Save As... Ctrl+Shift+S
Save Copy As... Alt+Shift+S

Print Window Cirl+P

Close Alt+F4
Exit Ctrl+Q

> Im Dialogfeld gibst du einen Namen fiir dieses Programm ein, z.B. erstes (oder
was du willst). Das Py wird als Kennung fiir »Python« automatisch angehingt,
wenn du es nicht angibst.

B Speichern unter

« v 4 « Python > Projekte v O/ | "Projekte” durchsuchen £
Dateiname: | erstes.py —
Dateityp: Python files (*.py;*.pyw) ~
J

~ QOrdner durchsuchen Abbrechen

Ich habe im PYTHON-Verzeichnis einen Unterordner namens PROJEKTE erstellt
und speichere meine Python-Projekte dort ab.

KAPITEL 1 ERSTE SCHRITTE

> Um das Programm zu starten, klickst du jetzt auf RUN und RUN MoDULE. Oder du
driickst die Taste [F5].

B> erstes.py - D:\Python\Projekte\erstes.py
File Edit Format Run Options Window Help

Text = "Hallo, Eyngviet i F5
rint (Text
. () Run... Customized Shift+F5

Name = input ()
print (Name) Check Module Alt+X
Python Shell

Ln:5 Col: 0

Und du landest wieder im ersten Fenster, wo dich der GruB-Text »Hallo, wer da?«
erwartet.

> Tippe nun deinen Namen ein und bestitige das mit der [«]-Taste. Dann konnte
das Ergebnis so dhnlich aussehen:

E python Shell
File Edit Shell Debug Options Window Help

———————————— RESTART: D:\Python\Projekte\erstes.py ============

Hallo, wer da?
Hans—-Georg
Hans—Georg

>>>

Ln: 8 Col: 4

Wenn du nun dieses Fenster schlieB3t, gibt es deine Programmdatei immer noch. Du
musst sie dir einfach nur wieder zuriickholen.

> Dazu klickst du auf FILE und OPEN.

DIE ERSTE PY-DATEI

File Edit Shell Debug Options
New File Ctrl+N
Open... Ctrl+O
Open Module... Alt+M
Recent Files »
Class Browser Alt+C
Path Browser
Save Ctrl+S
Save As... Ctrl+Shift+S
Save Copy As... Alt+Shift+S
Print Window Cirl+P
Close Alt+F4
Exit Ctrl+Q

> Im Dialogfeld wahlst du die betreffende Datei (bei mir im Ordner PYTHON\PRO-

JEKTE).

B Offnen

« v 1 « Python > Projekte v O/ | "Projekte” durchsuchen PR
Organisieren ~ Neuer Ordner = I @
Y)
= Computer
= Bilder p
m Desktop erstes.py
Dokumente w0 v
| Dateiname: |er5‘[es.pyr V| |Python files (*.py;*.pyw) v|
| Offnen | ‘ Abbrechen ‘

> Klicke auf OFFNEN, das Editor-Fenster Gffnet sich und dein erstes Programm ist
wieder verfligbar.

In Python wird ein Programm in einer Datei auch Skript genannt.

KAPITEL 1

ERSTE SCHRITTE

32

QUELLTEXT-SPIELEREIEN

Schauen wir uns jetzt diesen Quelltext, wie man die Summe der Textzeilen auch
nennt, noch einmal ndher an:

Text = "Hallo, wer da?"
print(Text)

Name = input()
print(Name)

Es gibt zwei Variablen Text und Name. In denen wird jeweils eine sogenannte Zei-
chenkette gespeichert, auch String genannt. AuBerdem werden hier zwei Funktio-
nen benutzt:

print() Ausgabe von Zahlen und Strings auf dem Monitor
input() Eingabe von Zahlen und Strings liber die Tastatur

Wie du siehst, haben Funktionen immer runde Klammern als »Anhéngsels, in denen
kann etwas drinstehen, sie kénnen aber auch leer sein - je nach Art und Anwen-
dung der Funktion.

Und wenn du noch etwas genauer hinschaust, dann fallt dir auf, dass print()
direkt als Anweisung aufgefiihrt wird, input() aber wird in einer Zuweisung einge-
setzt. Also wird uber diese Funktion ein Wert an die Variable Name zugewiesen.

ﬂ(i/a_riab[e;? =|Formel]

Dass ich hier die Bezeichnung »Formel« benutze, soll bedeuten, dass man auf der
rechten Seite der Zuweisung auBer Funktionen auch z.B. so etwas einsetzen kann:

1L 2 % g
"Du bist also " + Name

Zahl
Text

Wobei das Plus (+) offenbar eine Doppelrolle hat: Man kann damit Zahlen
addieren und Strings verketten.

Nachdem du jetzt weiBt, wie man auch eine ganze Reihe von Programmzeilen sam-
meln und als Datei speichern kann, setzen wir doch gleich mal unser erstes Beispiel
fort:

QUELLTEXT-SPIELEREIEN

Text = "Hallo, wer da?"

print(Text)

Name = input()

Text = "Du bist also " + Name
print(Text)

print("Und wie geht es?")

Antwort = input()

print("Dir geht es also " + Antwort);

Wie du siehst, habe ich nicht {iberall Variablen benutzt, eigentlich ist das nur nétig,
wenn man will, dass der Computer sich etwas merkt. Das betrifft in unserem Bei-
spiel nur die Eingaben. Demnach kann unser Programmprojekt auch so aussehen:

print("Hallo, wer da?")

Name = input()

print("Du bist also " + Name)
print("Und wie geht es?")

Antwort = input()

print("Dir geht es also " + Antwort);

n

> Tippe erst den oberen Quelltext ein, probiere ihn Gber RUN und RuN MoDULE (oder
[F5]) aus. Dann dndere alles so, dass daraus die zweite Version wird. Lasse das
Programm erneut laufen.

Bei jeder Anderung wirst du vor dem Programmstart aufgefordert, den Quelltext zu
speichern:

B2 Save Before Run or Check X
o Source Must Be Saved
OK to Save?

CK Abbrechen

> Klicke dann auf OK.

Und so kénnte unsere letzte Version im Python-Interpreter-Fenster ablaufen:

KAPITEL 1

ERSTE SCHRITTE

E python Shell

File Edit Shell Debug Options Window Help

============ RESTART: D:\Python\Projekte\erstes.py ============

Hallo, wer da?
Hans-Georg

Du bist also Hans-Georg
Und wie geht es?

gut

Dir geht es also gut
>>>

Ln: 11 Col: 4

Wie du sehen kannst, ist Python zeilenorientiert: In jeder Zeile steht eine
Anweisung (auch eine Zuweisung ist eine Anweisung). Man darf also Anwei-
sungen nicht einfach auf zwei Zeilen verteilen. Und wenn das doch mal nétig
sein sollte, muss am Ende der ersten Zeile ein sogenannter Backslash stehen,
das ist ein umgekehrter Schrégstrich (\).

B> erstes.py - D:\Python\Projekte\erstes.py

File Edit Format Run Options Window Help
print ("Hallo, wer da?")

Name = input()

print ("Man mag es kaum glauben, aber du bi.st@
tatsachlich alsoc "™ + Name)

print ("Und wie geht es?")

Antwort = input ()
print ("So ist das also. Dir geht E.EO

tatsachlich "™ + Antwort);

Ln: 9 Col: 0

PYTHON VERLASSEN

Um die Python-Umgebung zu beenden, miissen alle offenen Fenster geschlossen
werden:

> Das geht entweder (iber das jeweilige FILE-Menii und den Eintrag ExiT. Oder du
klickst auf das kleine X oben rechts in der Titelleiste. Wenn du willst, kannst du
auch die Tastenkombination [strg]+[a] benutzen.

