>>>network RtoCode) (pCICk‘l')

Network Automation
with Nautobot

Adopt a network source of truth and
a data-driven approach to networking

JASON EDELMAN GLENN MATTHEWNS | JOSH VANDERAA
KEN CELENZA | CHRISTIAN ADELL BRAD HAAS
BRYAN CULVER JOHN ANDERSON GARY SNIDER

Foreword by Mike Bushong, Vice President, Data Center at Nokia

Network Automation
with Nautobot

Adopt a network source of truth and a data-driven
approach to networking

Jason Edelman | Glenn Matthews | Josh VanDeraa
Ken Celenza | Christian Adell | Brad Haas
Bryan Culver | John Anderson | Gary Snider

Network Automation with Nautobot

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Khushboo Samkaria
Book Project Manager: Ashwin Kharwa

Senior Editor: Athikho Sapuni Rishana

Technical Editor: Nithik Cheruvakodan

Copy Editor: Safis Editing

Proofreader: Athikho Sapuni Rishana

Indexer: Hemangini Bari

Production Designer: Aparna Bhagat

DevRel Marketing Coordinator: Marylou De Mello

First published: May 2024
Production reference: 1300424

Published by Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK

ISBN 978-1-83763-786-7

www.packtpub.com

http://www.packtpub.com

To the Nautobot and wider network automation community, for showing us that change was needed
and that if you focus time, energy, and development on the right areas, good things will happen. Thank
you to the Nautobot community for the continued support and the fostering of an environment that is

welcoming and makes it okay to challenge the status quo.

— The authors

Foreword

George Bernard Shaw wrote in his 1905 play Man and Superman the age-old quip “Those who can, do;
those who can't, teach” It's no doubt a catchy line, but I think it misses the mark a bit. Theory can be
understood without being practiced. But practice cannot be mastered alone by high-level engagement
with theory.

I have been working on network automation since 2007. And I can tell you with absolute confidence
that tools and methods have existed for literally decades at this point, but the vast majority of network
operations are still painfully manual. Now, this fact hasn’t been missed by networking vendors and
would-be technology entrepreneurs. But if the pain is so acute, the ambition so strong, and the solutions
so plentiful, why is this still such a struggle?

In my not terribly humble opinion, it’s because the gap between theory and practice has never been
wider. And even worse, with every new technology cycle, the gap gets bigger as technology after
technology leads to promise after promise. All without an on-the-ground understanding of the actual
networks and the people who manage them.

I have known Jason and members of the Network to Code team for years. As I have dabbled in strategy
(yet more theory), they have doubled down on practice. And out of that practice has emerged a set
of core principles accompanied by real-life experiences. It's these that bridge the gap between theory
and practice. And frankly, it’s what’s allowed Jason and the team to develop a solution to a problem
that has thus far proved difficult to tame.

This book represents the very best of their collective experience. They have captured details - including
specific steps and the thought process required to succeed - that are unknowable by those who watch
from the outside and merely opine on what ought to be done. They have transformed a product into
a solution.

Most of us have heard the Man in the Arena quote made famous by Theodore Roosevelt. Jason and
his team are active participants in the arena. And this book will help convert those spectators with
the will to succeed into automation gladiators.

- Mike Bushong

Vice President, Data Center at Nokia

Contributors

About the authors

Jason Edelman is the founder and CTO at Network to Code. Observing how DevOps was radically
changing IT operational models for systems administrators and developers, Jason saw an opportunity
to combine existing technologies from the worlds of DevOps and software development within the
networking infrastructure domain to create holistic network automation solutions. Prior to Network
to Code, Jason spent a career in technical sales developing and architecting network solutions, with
his last role leading efforts around SDN and programmability. Jason is also a coauthor of O’Reilly’s
Network Programmability ¢ Automation book. He is a former CCIE and has a B.E. in Computer
Engineering from Stevens Institute of Technology. He can be found on X as @jedelmans.

Glenn Matthews is a principal engineer at Network to Code and is the technical lead of the Nautobot
project. Prior to Network to Code, he worked at Cisco Systems for more than a decade in software
testing and software development roles with technical focuses including routing protocols, virtualization,
and network automation, including the YANG Suite project. Glenn is committed to designing and
developing quality software to help make the world a better place. His academic background includes
a master’s degree in computer science from the University of Georgia. He lives in Durham, North
Carolina, with his daughter and a very persistent cat.

Josh VanDeraa is a 20-year networking veteran who has been doing network automation for the
past 8 years. He has worked in large enterprise retail, travel, managed services, and most recently,
professional services industries. He has worked on networks of all sizes, bringing multiple network
automation solutions to the table to drive real value with Python, Ansible, and Python web framework
solutions. Josh is the author of Open Source Network Management and maintains a blog site to provide
additional content to those on the web.

Ken Celenza is VP of Network Automation Architecture at Network to Code. Ken is an experienced
network and automation engineer with over 20 years of experience working in military, consulting,
and enterprise environments. Ken leads client engagements at Network to Code as both a developer
and an architect and serves as a mentor to network engineers.

Christian Adell is a network software engineer who has played multiple roles related to networking
and IT automation. Currently, as principal architect at Network to Code, he is focused on building
network automation solutions for diverse use cases, with great emphasis on open source software. He
is passionate about learning and helping others to be happier, but also has more hobbies than hours in
the day, so working remotely from Barcelona gives him the time and the space to achieve his dreams.
Christian is co-author of O’Reilly’s Network Programmability & Automation book.

Brad Haas is a seasoned professional serving as the Vice President of Professional Services at Network
to Code. With a career spanning more than two decades, Brad has been instrumental in delivering
innovative technology solutions, particularly in network automation and the integration of software-
defined infrastructure. Brad is known for his advocacy of a data-informed approach to automation,
ensuring technology aligns with business goals. Brad’s career is distinguished by his achievement of
numerous technical certifications, encompassing multiple CCIEs as well as a range of cloud certifications.
His philosophy centers on using technology not just as a tool, but as a driving force for organizational
transformation and growth.

Bryan Culver is an engineering manager at Network to Code, where he is currently enjoying building
the team and platform behind Nautobot Cloud. He has served many roles in his career directly and
indirectly related to network automation, from templating configs while racking data centers to
deploying automation solutions in enterprise environments. He has a strong software engineering
background, having worked in software development with start-ups and Fortune-sized companies.
Outside of work, he enjoys time with his amazingly supportive wife and children, wielding power
tools on any number of home renovation projects, traveling to beaches, and watching Formula 1 races.

John Anderson is a principal consultant at Network to Code and the Nautobot product owner,
responsible for the direction of the project. John has 10 years of experience in network engineering
and software development in higher education and global enterprise environments. He has been a
maintainer and contributor to a number of network automation projects over the years. John lives
in Charleston, SC and is working on a Ph.D. in computer science with a focus on zero trust network
security, at Clemson University.

Gary Snider is a software engineer with 10 years of experience in network automation for global
corporate networks and 10 years of experience in routing, switching, and network security. He has
designed and maintained data center, branch office, and large campus networks for state and federal
government. Gary is a core developer for the Nautobot project at Network to Code.

About the reviewers

Eric Chou is a seasoned technologist with over 20 years of experience. He has worked on some of the
largest networks in the industry while working at Amazon, Azure, and other Fortune 500 companies.
Eric is passionate about network automation, Python, DevOps, and helping companies build better
security postures. Eric is the primary inventor or co-inventor of three U.S. patents in IP telephony
and networking. He shares his deep interest in technology through his books, classes, and blog, and
contributes to some of the popular Python open source projects.

I would like to thank my wife, Joanna, and my kids, Mikaelyn and Esmie, for inspiring me to be the
best version of myself.

Tim Fiola, in automation since 2009, advocates for network engineers to embrace automation. Starting
as a network engineer, he delved into Junos automation in 2009, crafting solutions and authoring Day
1 - Navigating the Junos XML Hierarchy for Juniper Networks. Starting out with Python in 2012, he
went on to automate network planning for cloud providers and automated device upgrade workflows
using SaltStack. Coauthoring This Week — Deploying MPLS showcased his expertise in RSVP and MPLS
services. His open source project, pyNTM, simulates traffic failover in wide area networks. Joining
Network to Code in 2021, he continues championing Python for network engineers, emphasizing the
value of automating to free up time for high-value tasks.

Id first like to thank my family, who supports me and tolerates my nerdy tendencies.

Professionally, I want to give a large shout-out to those technical experts who tolerated and still
tolerate my persistent questions when I am having trouble understanding a complex topic. Without
your patience and kindness, itd have been a much tougher road.

Finally, thank you to the NTC team, where the work continues to challenge me and teach me
every day.

Cristian Sirbu is a consultant, trainer, and community builder, with a particular interest in infrastructure
design, automation, and solving business problems with technology. He’s been in the industry for a
while (getting his CCIE #43453 in the process), building, breaking, and fixing networks of various
sorts and sizes. He currently lives in Ireland, helping businesses around the world understand network
automation and learn about the technologies that drive it. Ever since being introduced to Linux back
in high school, he has loved free and open source software. So, today Cristian’s focus is on building
the Nautobot ecosystem together with the talented folks at Network To Code and its worldwide
community of practice.

Table of Contents

Preface Xix
Part 1: Introduction to Source of Truth
and Nautobot
Introduction to Nautobot 3
Introduction to network automation 3 Approaches to SoT 17
What is network automation? 4 SoT tools and products 18
Network automation use cases 5 Nautobot overview 19
?

Why automate your network? 7 Nautobot use cases 20
Persona-driven network automation 9

Network SoT 20
Industry trends 10

Network automation platform 23
Understanding SoT 13

Nautobot ecosystem 26
Defining SoT 15

Summary 28
Nautobot Data Models 29
Nautobot data models overview 30 Manufacturer 42
Data model summary 30 Roles and statuses 42

K L. del Platform 43

Network device inventory data models 31 . . . 3
Devices 31 Device redundancy groups 43
Device components 32 Interface redundancy groups 44
Device types 40 Racks 45

Table of Contents

Locations 47
Location type 48
Tenants 49
IPAM data models 49
Namespaces 50
Prefixes 51
IP addresses 52
RIRs 53
VRFs 53
Route targets 54
VLANSs and VLAN groups 54

Circuits data models 54
Circuits 55
Circuit terminations 56
Circuit types 57
Circuit providers 57
Provider networks 58
Data model extensibility 58
Custom fields 59
Computed fields 60
Relationships 62
Config contexts 63
Custom data models 64
Summary 64

Part 2: Getting Started with Nautobot

3

Installing and Deploying Nautobot 67
Nautobot architecture overview 68 Nautobot worker 84
Installing Nautobot 69 Nautobot web service 86
Getting Nautobot up and ready on Ubuntu 70 Running Nautobot as Linux services 88
Installing dependencies 70 Loading data into Nautobot 93
Installing the Nautobot application 74 Using the graphical user interface 94
Launching Nautobot 79

Summary 105
Understanding the User Interface and Bootstrapping Nautobot 107

Understanding the navigation and UI 108

Navigation menu 108
Nautobot home page and panels 111
Footer navigation 118
Table views 122
Detailed views 127

Managing inventory and
bootstrapping your first installation 128

Identifying your data 129
Organizational data 129
Device data 139

Summary 145

Table of Contents

5

Configuring Nautobot Core Data Models 147
IP address management in Nautobot 147 Power panels 167
IP addresses 148 Power feeds 167
Prefixes 149" Understanding the blast radius
Namespaces 149 through comprehensive data 169
VRES 9 Secrets management 170
VLANs 149
Why use secrets? 170
RIRs 149
. . Core concepts 170
Configuring IP address management in)
Nautobot 150 Secret.s versus. Secre.ts Groups in Nautobot 170
IPAM configuration for Wayne Enterprises 151 Security considerations 174
Accessing secrets in code 174
Modeling HA and virtual devices 156 Nautobot Secrets Providers app (plugin)
Device Redundancy Groups 157 overview 175
Vlrtuﬁ;hams) 158 Using Notes, Tags, Changelog,
Key differences between device redundancy and Filter forms 176
and virtual chassis 159
Setting up a firewall redundancy group for Notes 177
Wayne Enterprises in Nautobot 160 Tags 178
Interface Redundancy Groups 163 Change log 179
Filter forms 182
Cabhng and power management 163 Best practices for inventory management 184
Cables 164
Summary 186
Incorporating power management
with cabling 166
Using Nautobot’s Extensibility Features 187
Statuses 188 Tags 193
Managing statuses 189 Managing tags 194
Applying a status 191 Applying a tag 196
Use cases for statuses 192 Use cases for tags 196
Best practices for statuses 193 Best practices for tags 198

Xi

xii

Table of Contents

Custom fields 198 Best practices for export templates 224
Managing custom fields 200 Conﬁg contexts 224
Diving into custom field attributes 200 Exploring the config context hierarchy 226
Validation rules 203 Managing and applying config contexts 227
Custom field choices 203 Use cases for config contexts 232
Applying a custom field 206 f h
Use cases for custom fields 206 Config context schemas 232
Best practices for custom fields 208 Git as a data source 235
Managing and applying Git data sources 235
Computed fields 208
p_) Use cases for data sources 238
Managing and applying computed fields 209 Best practices for data sources 239
Computed field template context 210
Use cases for computed fields 212 Relationships 239
Best practices for computed fields 213 Use cases for relationships 239
. Managing and applying relationships 240
Custom links 213
Creating a relationship 244
Managing and applying custom links 214
Use cases for custom links 219 Dynamic groups 247
Best practices for custom links 219 Use cases for dynamic groups 247
Export templates 219 Managing and applying dynamic groups 248
P P Best practices for dynamic groups 251
Default export templates 219
Use cases for export templates 221 Summary 251
Managing and applying export templates 221
Managing and Administering Nautobot 253
Administration with the Admin Ul = 253 Preferred primary IP version 286
User, group, and permissions Handling logs 288
management 256 Customizing sanitizer patterns 289
Groups 257 Common settings 290
Users 258 Advanced settings 290
Permissions enforcement 261 Setting up and using
Exploring Nautobot’s settings 273 ~ NAPALM integration 291
Understanding setting precedence 273 Exp lor ing nautobot-server
Setting banner and support messages 274 CLI commands 295
Adding your company’s logos and branding 278 Creating a superuser account 295
Customizing pagination 285 Exporting and importing data 296

Table of Contents

Cleaning up old scheduled jobs 296 Upgrading Nautobot 300
Retracing corrupted/missing cable paths 297 Troubleshooting Nautobot 303
Getting help 297 Performing a health check 303
Exploring the Nautobot Shell 297 Troubleshooting the configuration 304
Working with objects 298 Debugging Nautobot 304
Monitoring Nautobot metrics 299 Summary 307
Part 3: Network Automation with Nautobot
Learning about Nautobot APIs - REST, GraphQL, and Webhooks 311
Technical requirements 312 GraphiQL 347
Nautobot REST APIs 312 GraphQL queries with Python 358
Nautobot’s interactive API documentation 312 GraphQL versus REST 363
Understanding Nautobot APIs 319 Webhooks 364
API authentication 324 Exploring webhooks 364
Using the API with Python 326 Example - using a Webhook to trigger an
API tips 341 Ansible AWX playbook 365

nautobot 346
Py Summary 370
GraphQL with Nautobot 346
GraphQL primer 346
Understanding Nautobot Integrations for NetDevOps Pipelines 371
Technical requirements 371 Working with Nautobot Apps 390
Exploring pynautobot 372 Using GraphQL with pynautobot 392
Installing pynautobot 372 Using pynautobot to get the next available

. IP address 393

Getting started 373
Retrieving objects 374 Exploring the Nautobot Ansible
Updating an object 386 Collection 396
Deleting an object 389 Installing the collection 398
Creating an object 389 Reading data with Ansible 399

Xiii

Xiv

Table of Contents

Ansible write operations

Exploring Ansible inventory sources

Using Nornir Nautobot

Installing Nornir Nautobot

402
404

412
412

Exploring Nautobot Docker
containers 415

Exploring the Nautobot Go library 418

Introducing the Nautobot Terraform
provider 421

Summary 421

Embracing Infrastructure as Code with Nautobot, Git, and Ansible 423

Technical requirements 423 Performing a config replace with
Setting up the environment 424 Nautobot, NAPALM, and Ansible on
Network topology 44 Aristaand Juniper devices 438
Linux host 16 Performing config changes with
Ansible 426 Nautobot and Ansible for Cisco
Nautobot 407 1OS devices 440
The book’s Git repo 431 Performing config changes with
Nautobot and Ansible for Cisco NX-
Adding data to Nautobot 0OS devices 449
with Ansible 432 M 1o data with coni rext
. .. anaging data with config contexts
Settlr.1g up a dynamic 1m{entory 435 and using Git 450
Backing up network devices 437 Nautobot jobs versus Ansible
playbooks 451
Summary 452
Automating Networks with Nautobot Jobs 453
Technical requirements 453 Adding Jobs to Nautobot 466
Nautobot Jobs overview 454 Synchronizing Jobs into Nautobot from
Introduction to the Django ORM 454 @ Gitrepository 467
Distributi b t of a Nautobot 467
Learning about the Nautobot Shell Miurrllt;;:)gr];a::;zl: diiecjll; ;)n orapp
and ORM 456 ;5ps ROOT 467
Reading data 458
Adding and updating data 461 Creating your first Nautobot Job 467
Deleting data 466 “Hello World” Nautobot Job 468

Table of Contents

Breaking down and building a Nautobot Job 475 Diving into even more Job features 499
Adding dynamic dropdowns to your job 481 Job buttons 499
Using Jobs to populate data Job Hooks 505
in Nautobot 495 Job scheduling 507
. . . b 1 509
Converting Python scripts into ?h p EHZ;IS 510
Nautobot Jobs 496 eJobs
Job permissions 513
Summary 513
Data-Driven Network Automation Architecture 515
Data-driven network automation Automation and orchestration 536
architecture 515 Understanding workflows 537
Evolution of managed networks 516 Nautobot enablers for automation and
Manually managed networks 517 orchestration 341
Power tool automated networks 517 APIs - REST, GraphQL, and Webhooks 541
Legacy and domain network management Modern network monitoring - telemetry
managed networks 517 and observability 542
Infrastructure as Code (IaC) automated Data enrichment 543
networks 518 Data normalization 544
Nautobot automated networks 520 Data collection 544
. Closed loop network automation 545
SoT with Nautobot 522
Integrations and extensibility 522 User interactions 546
SoT life cycle 523 Summary 547
Nautobot enablers for SoT 524
Part 4: Nautobot Apps
Learning about the Nautobot App Ecosystem 551
Nautobot Apps overview 551 Accessto SoT data 554
Why Nautobot Apps? 553 Accelerated development 555
Reduced tool sprawl 555

Flexibility 554

XV

XVi

Table of Contents

Nautobot Apps ecosystem 556
Golden Config 556
Nornir 558
Device Onboarding app 558
Device Lifecycle Management (DLM) 558
Data Validation Engine 559
Single Source of Truth (SSoT) 560
Network data models 561
Design Builder app 562
Circuit Maintenance app 563
Secrets Providers app 565
Floor Plan app 566
ChatOps 566

14

Welcome Wizard app 568
What’s possible with Nautobot Apps? 568

Creating data models 568
Creating APIs 570
Creating Ul elements to enhance the user

experience 571
Distributing jobs 573
Creating network automation solutions 574
Nautobot Apps administration 575
Installing Nautobot Apps 575
Uninstalling Nautobot Apps 580
Summary 582

Intro to Nautobot App Development 583
Setting up your system for Nautobot Building the Docker image 599
App development 583 Defining credentials 599
Installing Docker 584 Running Nautobot 600
Installing Python 3, Pip, Cookiecutter, Exploring the Nautobot
and Poetry 86 Developer API 605
Starting a Nautobot App with Configuring a Nautobot App 605
Cookiecutter 588 Extending the existing Nautobot Ul 608
Exploring the App structure 590 Extending core functionality 618
Exploring pyproject.toml 593 Adding entirely new functionality 628
Post-Cookiecutter tasks and Poetry 597 Summary 631
Introducing Invoke 598
Building Nautobot Data Models 633
A real-world use case for Considering composability, reusability,
custom Apps 633 and deduplication of data 636
Data model design 634 Considering built-in Nautobot

extensibility features 636

Gathering representative data
and requirements 634

Table of Contents

When the data model suggests you should Adding ACL details as a REST API endpoint 654
build an App 637 Review 658
Building an App around existing Building an App with custom
data models 637 data models 659
Data model based on extensibility features 639 Designing the ACL data models 659
Adding an ACL overview to the Device Implementing the ACL data models 661
detail view 642 Implementing the REST API 669
Adding ACL details as a Device tab 645 Implementing the UI 673
Adding a new Devices/ACLs view 649 .
Implementing the data table 650 Exercises or next steps 686
Summary 686
Automating with Nautobot Apps 687
A real-world use case for network Writing a job to push config to a device
automation in a Nautobot app 687 using Netmiko 692
Design requirements 688 Preparing the device and related data
in Nautobot 697
Building an App for network Running the job 700
automation 688 Adding a job button to enable
Rendering IP ACL config using Jinja2 688 one-click configuration 701
Next steps on your journey 705
Summary 706
Appendix 1
Nautobot Architecture 707
Nautobot components and services 707 Job execution: Celery Worker(s) 712
Database: PostgreSQL or MySQL 709 Job queues: Celery task queues 712
In-memory data store: Redis 709 Job scheduler: Celery Beat 714
In-Memory Data Store Web server: uWSGI 715
High-Availability: Redis Sentinel 711

XVii

xviii

Table of Contents

Appendix 2

Integrating Distributed Data Sources of Truth with Nautobot 719
Understanding distributed Getting started with the Nautobot

data sources 719 SSoT framework 725
Challenges of distributed data 721 Existing SSoT integrations 735
Benefits of aggregating data 721 Building your own SSoT integration 740

Approaches to distributed data management 722

Exploring the Nautobot SSoT
framework 723

Appendix 3

Defining the data model mappings 740
Creating a data sync job 741
Using the custom SSoT job 746

Performing Config Compliance and Remediation with Nautobot 749
Why Golden Config 749 Generating intended configurations 755
Golden Config design 750 Performing config compliance 757
Golden Config use cases 751 Automating config remediation and

deployments 764
Performing Config backups 753

Best practices and tips 769
Index 771
Other Books You May Enjoy 788

Preface

In an ever-changing world that is multi-vendor, multi-domain, and multi-cloud, there needs to be
a consistent and holistic approach to network automation. Having a data-first approach provides
consistency from day one. Consistent and uniform data powers pervasive network automation. Moreover,
the process of data curation and data management is one of the most, if not the most, time-consuming
tasks and problems of network automation. Consider these questions. What data should be used in
a network change? Where does that data come from? The answer is, the Network Source of Truth!

A source of truth or data-first approach changes what is possible for network automation. It attacks
the problem head-on and provides the path for long-term success. Network data is the foundation
of defining intent and allows users to finally answer the question, what is the intended configuration
(rather than what is the current configuration)?

Data is the foundation of network automation. This is made possible by adopting a Network Source of
Truth strategy that defines the intended state of the network. Having clean and quality data inside the
Source of Truth results in trusted data being deployed by the automation platform and onto the network.

Nautobot is an open source Network Source of Truth for enterprises looking to adopt a data-driven
approach to network automation and a platform that complements any network automation journey.
Nautobot is open source and has a growing open source ecosystem of Nautobot Apps that help users
all over the world take back control of their network.

Come along for the ride and learn how Nautobot can be deployed as a Network Source of Truth and
network automation platform to power your network automation journey.

Who this book is for

This book is for network engineers who manage and deploy networks, network automation engineers
who automate networks and support network engineers, and network developers and software engineers
who create software that supports network and automation teams.

What this book covers

Chapter 1, Introduction to Nautobot, is a comprehensive overview of network automation, data, and
sources of truth. It introduces Nautobot and its key use cases and lays the foundation for the rest of
the book.

XX

Preface

Chapter 2, Nautobot Data Models, dives into the built-in core data models of Nautobot, highlighting
the breadth and depth of Nautobot as a Network Source of Truth. It provides an understanding of the
relationships between the components that comprise a network modeled in Nautobot.

Chapter 3, Installing and Deploying Nautobot, explores the architecture of Nautobot and then takes you
through your first Nautobot deployment. You’ll learn how to install each core component (Nautobot
itself, workers, scheduler, database, etc.) and start to configure and load data into Nautobot.

Chapter 4, Understanding the User Interface and Bootstrapping Nautobot, explains how to add devices
to your fresh Nautobot installation, including learning about many other attributes and models and
how they relate to your inventory.

Chapter 5, Configuring Nautobot Core Data Models, dives deep into adding and configuring Nautobot
with IP addresses, circuits, cabling and power management, secrets, and modeling high-availability,
and covers notes, tags, the changelog, and filter forms.

Chapter 6, Using Nautobot's Extensibility Features, demonstrates how flexible Nautobot is by leveraging
its extensibility feature set, which allows users to customize Nautobot to their specific network or
design. You'll learn about using Git as a data source, Config Contexts and JSON schemas, relationships,
and much more.

Chapter 7, Managing and Administering Nautobot, focuses on Nautobot platform administration. It
enables a platform admin to best administer Nautobot using the nautobot -server command
and manage permissions, along with tips for upgrading and troubleshooting Nautobot.

Chapter 8, Learning about Nautobot APIs - REST, GraphQL, and Webhooks, explains how Nautobot is
integrated with other tools by examining its APIs. This chapter first covers its RESTful and GraphQL
APIs, then goes into webhooks, setting the stage to learn about Jobs and JobHooks in Chapter 11.

Chapter 9, Understanding Nautobot Integrations for NetDevOps Pipelines, explores Nautobot integrations
with a focus on pynautobot and its Ansible collection, while providing an overview of its Docker,
Kubernetes, Terraform, and Go projects.

Chapter 10, Embracing Infrastructure as Code with Nautobot, Git, and Ansible, focuses on enabling
users who use both Ansible and Nautobot together. It provides a deeper look at the Ansible collection,
explains how to set up dynamic inventory, and then builds a playbook using various Ansible modules
to perform network automation.

Chapter 11, Automating Networks with Nautobot Jobs, begins with an overview and an introduction
to the Django ORM, then walks through how to create Jobs, migrate scripts to Nautobot, and create
self-service forms that allow anyone to execute Jobs. Beyond setup and configuration, Job permissions,
logging, and scheduling, approvals are also covered.

Chapter 12, Data-Driven Network Automation Architecture, dives into network automation architecture
and highlights why data-driven network automation is the best approach to guarantee success

Preface

in a network automation journey, and explains how this is accomplished with Nautobot and its
surrounding ecosystem.

Chapter 13, Learning about the Nautobot App Ecosystem, demystifies the Nautobot app ecosystem
and reveals all that the ecosystem has to offer, while highlighting the best is yet to come and is in the
hands of the community.

Chapter 14, Intro to Nautobot App Development, provides an overview of the developer API that is
used to extend Nautobot and create Nautobot apps, ranging from lightweight Nautobot apps that are
only data models to full-blown apps that cater to specific outcomes.

Chapter 15, Building Nautobot Data Models, covers real-world use cases for building custom Nautobot
with a case study of an organization that needs custom data models and walks through the path to
create them from start to finish.

Chapter 16, Automating with Nautobot Apps, continues building the app from the previous chapter,
showcasing how Jobs can be packaged with apps to create an end-to-end network automation solution.

Appendix 1, Nautobot Architecture, dives into the internal components of Nautobot, reviewing its use
of Django, Celery, Beat, and databases such as Postgres and MySQL for those who want to understand
Nautobot at a deeper level.

Appendix 2, Integrating Distributed Data Sources of Truth with Nautobot, introduces the problem of
managing distributed data sources and explains how Nautobot can be used as part of the solution to
integrate and aggregate data by using the Nautobot Single Source of Truth framework. Solving network
data problems in large enterprises is not a trivial task.

Appendix 3, Performing Config Compliance and Remediation with Nautobot, explains how Nautobot
Golden Config can be used to conquer the most common use cases in networking, including backups,
generating intended configurations, and ultimately performing compliance and remediation.

To get the most out of this book

You should have basic network knowledge (CCNA or greater), along with at least 6-12 months’ experience
of using Python and Ansible for network automation, and you should be comfortable with Netmiko,
NAPALM, or Nornir. You should understand how to read and use Jinja templates, YAML, and JSON.

Software/hardware covered in the book
Ubuntu 22.04

Python 3+

Ansible 2.16+

Nautobot 2.1

Many of the demos can be followed on the public Nautobot instance hosted by Network to Code at
https://demo.nautobot . com. This is mentioned throughout the book.

XXi

https://demo.nautobot.com

xXii

Preface

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Network-Automation-with-Nautobot. If there’s an update to the
code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at ht tps: //
github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

Code in text:Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “In the
device management section, search for the WayneEnt FW1 firewall”

A block of code is set as follows:

devices _url = "https://demo.nautobot.com/api/dcim/devices/"
adds ams0l-leaf-11 to the location AMSO01

r = session.post (devices url, data=json.dumps (payload))

the UUID of the device will be saved for the next API call
device id = r.json() ["id"]

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

payload = {

"name": "amsO0l-leaf-11",

"device type": "74cf95a8-4233-46b9-a740-fba4f5d4c88d3",
"status": "9f38bab4-4b47-4e77-b50c-£fda62817b2db",
"role": "869267d8-7d75-4bd3-8a%9e-5e6adcf200£f6",
"tenant": "1f£7fbd07-111a-4091-81d0-f34db26d961d",
"platform": "f48fd9e2-45c5-4c2f-aa54-28964edb3ele",

"location": "9e39051b-e968-4016-b0cf-63a5607375de"

}

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “Click on the Interfaces tab; if one does
not exist already, you can click Add Components | Add Interface.

https://github.com/PacktPublishing/Network-Automation-with-Nautobot
https://github.com/PacktPublishing/Network-Automation-with-Nautobot
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

Tips or important notes
Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub . comand mention the book title in the subject of your message. You can also talk to the
authors directly if you join the #nautobot channel in the Network to Code slack. Self sign-up is
at slack.networktocode.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www . packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors . packtpub. com.

Share your thoughts

Once you've read Network Automation with Nautobot, wed love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure were delivering
excellent quality content.

xxiii

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1837637865
https://packt.link/r/1837637865

XXiv

Preface

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-83763-786-7

2. Submit your proof of purchase

3. That’s it! We'll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-83763-786-7

Part 1:
Introduction to Source
of Truth and Nautobot

This part covers the what and why of network automation, Source of Truth, and Nautobot. It provides
you with a general overview of the problems in network automation and how understanding the
relationship between data and network automation changes the way you think about and approach
network automation. From there, you will learn about Nautobot and how it is used to power enterprise
network automation solutions, understanding key use cases and the Nautobot core data models.

This part consists of the following chapters:

o Chapter 1, Introduction to Nautobot
o Chapter 2, Nautobot Data Models

1

Introduction to Nautobot

Data-driven network automation powered by Nautobot is gaining momentum across the industry. This
chapter provides the foundation required to understand the what and why of network automation and
gives an overview of Nautobot and the role it can play in the greater network automation ecosystem.
This chapter will start by uncovering the relationship between data and network automation and
how Source of Truth (SoT), when used with Nautobot, is an integral part of the network automation
journey. You'll learn what network automation is, key use cases for network automation, and why you
should consider network automation, dive into SoT, and be introduced to Nautobot and the power it
can provide on the journey with Nautobot as a SoT and a network automation platform.

This chapter covers the following main topics:

« Introduction to network automation
+ Understanding SoT
« Nautobot overview
« Nautobot use cases

» Nautobot ecosystem

Introduction to network automation

If you're reading this book, you've realized you need to think differently about managing your network.
And you are not alone. If you ask any network engineer, there is still not a day that goes by when they
are not logging into a device via SSH and doing work manually. Over the last few decades, the most
common approach to managing networks of any size, ranging from tens to thousands of devices, was
connecting to the device and using the network command-line interface (CLI). The network CLI is
used to gather data, troubleshoot, and make configuration changes. This remains the most common
way of managing networks. However, this is changing.

Introduction to Nautobot

Over the last 10 years, we've seen significant growth and improvements around the operational models
for networks. The software-defined networking (SDN) era brought us controllers and APIs. Controllers
provide APIs and fewer points of management. Rather than manage thousands of devices, it is possible
to manage tens of controllers (or fewer in some cases). Independent of the number, the point is that
the number of directly managed nodes continues to decrease. The SDN era also shined a light on the
programmatic interfaces, or lack thereof, of network devices. We have evolved from SSH and SNMP to
APIs - REST APIs, GraphQL, gRPC, and event-driven webhooks from controllers and devices. While
SSH and SNMP are still the de facto standards across the industry - even for automation, progress is
being made. For that, we need to recognize the progress and celebrate, but continue to demand more.

The progress around network automation has been driven by open source. Before network automation,
there wasn't much use of open source in the network industry. The industry is learning from its
history - that is, if you solely purchase and use vertically integrated tools, there is less flexibility
and you could lose control of your network. With current trends, the belief is that those that adopt
even just some open source remain in control and can extend libraries and tools as needed to ensure
maximum adoption of network automation in their environment. Don’t worry — we'll cover some of
the most common open source tools and technologies for network automation in the Industry trends
section of this chapter.

We'll start by exploring what network automation is, its key use cases, and the value it can provide an
organization. From there, we'll dive into SoT and Nautobot.

What is network automation?

Any advanced and hot technology always gets flak when there are formal definitions because there
are always varying opinions, and that’s okay. For this book, our approach is to keep it simple. So,
what is network automation? Network automation is next-generation network management. Period.
We can talk about Python, Ansible, Nautobot, YAML, JSON, REST APIs, NETCONF, RESTCONE,
YANG - the list can go on for pages. Here is the bottom line - all of these tools and technologies are
being used to improve how networks are managed and consumed daily, which is, simply put, better
network management. Network automation involves transforming operational models that can
radically transform careers and technical and business operations.

One major point you should think about on your network automation journey is that it isn’t just about
doing your tasks better and more efficiently. That is only the starting point. You need to be thinking
about how to expose your automation to other engineers, teams, and even non-technical people, thus
enabling all parties with the self-service they need to do their job functions.

Let’s assume you are automating tasks such as operating system (OS) upgrades, which involves
gracefully moving traffic from one device (and circuit) to another. This is a complex workflow. Sure,
this can help you when you need to upgrade a device or perform maintenance on a device, but what
about exposing that automation to individual site leads? If this workflow is made more accessible,
can this expand who can perform the task using your trusted automation? Does it allow you or your

Introduction to network automation

team to delegate a little more? How often are upgrades happening today contrasted with how often
youd like them to happen?

What about if you had automated diagnostics? What if your Network Operations Center (NOC),
Security Operations Center (SOC), or service desk could go to a portal, click a button, and diagnose
their most common issues? In a manual process, one person opens a ticket, and that ticket remains open
and an engineer picks it up. The engineer reviews the request and sees it is a semi-common problem.
Maybe they need to check with another engineer or two along the way. After a few discussions, they
know where to go, which devices to log in to, and which tools to log in to. They correlate the data
gathered between the devices and tools. They ensure things look good and update the ticket. Common
workflows like this should be automated.

Would your leadership be astounded to learn that the countless hours needed to gather data, let alone
the hours spent formatting to make it look good, can be eliminated with automation? Compliance
and reporting tasks often take a lot of engineering time and effort because they involve manually
gathering and processing information. Now, imagine being able to automatically create any compliance
document or report you need. Documents that include pre/post change tests. Documents required
for change control. Reports you need to run monthly, quarterly, or annually for compliance. Reports
that verify your devices are operating as expected.

This is network automation.

Network automation use cases

We just discussed some examples of network automation to bring it to life. Now, let’s look at some of
the most common use cases, including the ones that were already mentioned:

« Common config changes: Is your team performing the same types of changes day to day, week
to week, or month to month? These are changes such as adding VIPs, turning up a port, adding
a VLAN to a switch port, managing firewall policies (also discussed later in this chapter),
turning up a new BGP peer, updating routing preferences, adding static routes, and updating
zones and ACLs. These changes are ripe for automation because they happen so frequently.

o Common operational tasks: These are similar to the previous use case, but they involve performing
operations tasks that do not require a configuration change. Some examples include updating
SSH keys and certificates on devices, performing a config save or backing up a configuration,
copying files to devices, rebooting devices, checking logs, and even performing non-network
device tasks such as checking and updating tickets.

« Mass changes: While common config changes are scoped to a set of devices (this could be just
a few devices), mass changes are meant to be site, campus, regional, or global. Mass changes
include changes such as updating AAA, NTP, or SNMP but could also include changing the
format and structure of all interface descriptions on every device. These types of changes don’t
happen as frequently, but when they do, they are impactful and usually a large project.

6

Introduction to Nautobot

Data gathering and reporting: How often is someone you know logging into numerous devices
or tools to perform health checks, troubleshooting, or simply to execute a request that comes
in for application or network performance degradation? Automated data gathering, reporting,
and documentation is not only one of the best use cases for network automation - it is a great
area to start with since it is less impactful in the event there is bad automation (because itd be
read-only automation). It could also be added to nearly any other use case producing reports
before and after changes or generating compliance reports specific to your team or organization.

Configuration and operational state compliance: Compliance comes in two major flavors
and can be best understood by asking the following two questions: Is the network configured
as expected? and Is the network operating as expected? Configuration is easy to understand, but
it does mean you’ll need to understand the intended state of the network. This is where SoT
and data-driven network automation comes into play. We'll cover this in more detail later in
this chapter in the Understanding SoT section, as well as Chapter 11.

Pre/post-change state validation: Similar to the previous compliance use case, pre/post-change
state validation is more focused on a defined scope of devices. There may be automation when
performing global compliance that only runs daily, but changes are happening continuously.
Pre/post change state validation ensures that the network is healthy and operating as expected
before and after the change.

Firewall policy automation: How many firewall rules are you adding per day, week, or month?
How do you know which firewalls need a new policy? How do you know where in the list of
rules the new one should go? Do you know? Could you document this for a fellow engineer?
Try. This is the start of firewall policy automation. While the last mile is configuring the actual
firewall, the questions prior illustrate that a company’s firewall rule change workflow often
involves many steps before the actual configuration change.

OS upgrades: While already mentioned briefly, how often are upgrades happening today
contrasted with how often youd like them to happen? How many of your devices adhere to
your software standards? How many upgrades can you currently do in a single change window?
Do you find yourself watching the console of devices as you upgrade them? Do you run any
automation to see if devices have the required disk space before copying the new image to
the device? Do you run any automation to verify the md5 checksum of the image after it is
copied to ensure it isn't corrupt? Is your network at risk due to vulnerabilities left unpatched?
Upgrading devices often happens when needed, versus having a defined cadence. It is never a
priority. Automation changes that.

Greenfield sites and devices: If you are repeating deployments, there is room for automation.
It may mean adding new top-of-rack switches in the data center, it may mean adding a closet or
IDF closet in a growing campus, adding a new retail location, or even a new colocation facility
or point of presence (PoP). Much of the automation discussed here is around the configuration
of these devices, but that is the easy part. Site planning and deployment is about data curation
and management not to mention each organization’s business logic required for deployments.

Introduction to network automation

How do you and your team know which IP addresses, VLANs, ASNs, and overall configuration
should be entered on those devices? Is it from spreadsheets or a SoT? Again, more on SoT later.

o Vendor migrations: Have you ever not moved forward with changing vendors due to the work
effort of migrating configurations? With a properly defined SoT and data strategy, this becomes
trivial. Your focus becomes storing the intended state of the network using data, decoupled
from any vendor-specific syntax. Syntax for a given vendor is generated by running the data
through a set of vendor-specific configuration templates. In a migration, you can generate the
desired state configuration for a given vendor by running the data through a different set of
templates and then deploying those new configurations. Beyond configuration management,
you'll also want to ensure multi-vendor operational state compliance to ensure there are no
gaps in visibility during the end-to-end migration.

o Self-service: It is critical to think through how a given workflow will be triggered along with who
the target user is. Self-service does not mean that it needs to be a click-button UI. It may mean
an IT tool, CLI tool, pull/merge request, ChatOps, or yes, it may mean a full self-service user-
friendly form. The point is that you do not need one way to expose network automation or even
one way per workflow. Using an architectural and a platform approach to network automation
allows you to expose the same workflow through multiple self-service interfaces. You should
cater to your culture and your users. This will drive more adoption of network automation.

It is recommended to use a holistic multi-domain network automation architecture to serve as a
platform to meet today’s requirements. This architecture will also serve as the foundation for tomorrow’s
requirements. As you embark on the journey, be cautious about using different network automation
architectures for different types of networks and domains. If so, it'll create more issues and give your
team even more tools to manage while making it harder to unify standards and processes. In Chapter 10,
we will talk much more about network automation architecture to ensure a consistent approach to
managing networks independent of size, domain, and location.

Why automate your network?

After covering the what, let’s take a look at the why. While many use cases are horizontal and can be
used by any organization type (or verticals), the actual why, impact, and justification will differ per
organization. Just to clarify, by vertical, we're referring to companies with different business types. A
few examples of different verticals include financial services, pharmaceutical, retail, telco/the cloud,
manufacturing, accounting/legal professional services firms, state and federal government, K-12
education, and universities.

Introduction to Nautobot

For some verticals, the network may be the business. It may either be a business enabler or have serious
consequences if the network is down. For other verticals, other factors may be a bigger concern. For
this reason, the why is going to vary widely, and we'll cover general reasons to automate the network.
Here are some common examples:

Lower costs: Every leader in every business is always asked by their leaders or directly by finance
if there is a way to lower costs. In reality, automation helps lower longer-term costs. The more a
company can show how automation lowers costs, the greater the chances are that the automation
projects get initial buy-in and long-term support. With some of the use cases already mentioned,
costs can be significantly lowered. If a company truly documents each of the tasks required and
the time to do each for a workflow (such as OS upgrades or troubleshooting) and verifies the
most common incidents, they are going to see drastic savings in time and effort when using
automation. Time equates to money. It doesn’t mean anyone is getting replaced. However, it
does mean that there is more time for more projects, each of which adds more value to the
business. Increasing velocity without needing to hire new people is a tremendous cost savings.

Enhance security and reduce risk: In today’s world, security is top of mind for everyone; it’s
integrated into all that we do. No company wants to be the headline in the local, national, or global
news. Security-focused automation ranges from automated scans, firewall provisioning, VPN
connects and disconnects, compliance and remediation, governance adherence and monitoring,
and patch management just to name a few. Even if you are not directly on a security team, you
should ask yourself if security can be improved in your domain. Can you rotate passwords
more frequently? Maybe change those SNMP community strings? The list can easily go on.

Provide greater insight and control: Data is king and that includes greater visibility into your
network and automation infrastructure. Automation can be used to gather data, document
data, understand patterns, and compare against known baselines. Sure, there may be tools that
provide this in the user interface (UI). That’s a great start, but what about seamless workflows
that open tickets, update tickets, send emails, and send chat messages in response to network
data that is outside the expected range? With automation, you have the opportunity to get the
insights you need to answer the questions you have and know that the answers are contained
within the network. Think about that. If you are logging into a few portals, copying data into
a spreadsheet, creating Excel formulas, or creating a new document to then turn into a PDF
and email, there is a better way. There is an automated way.

Increase business agility: Each business and team is always trying to go faster and also perform
activities that are not possible without automation. Organizations need to work smarter and more
efficiently. In some cases, it may also make sense to hire more people. However, hiring more
people often slows things down because, at a certain point, people can start to get in each other’s
way. In contrast, automation can reduce cost, improve performance/velocity, increase reliability,
and do things that humans just cannot do. One example is automation-enabled self-service,
which helps business stakeholders obtain the outcome they need sooner. Automation can also
improve business-to-business connectivity, allowing organizations to either recognize revenue
sooner (for those that are doing business over those connections, tunnels, or circuits) or start

Introduction to network automation

consuming a new service. Think about deploying a new application in a lab or test environment.
If it takes weeks to get a new application and its network and security configurations deployed
for each environment (dev, test, UAT, and so on), it may be an aggregate delay of months. This
is either delaying employee or customer satisfaction or revenue. Using automation improves
this and increases business agility.

In all that you do, keep automation top of mind, and try to understand the business and organization-
level benefits for various leaders in your organization.

Persona-driven network automation

While we already looked at network automation use cases and the rationale for automation, let’s
take a different spin on use cases. There is usually never one network team. There are usually teams
focused on day 0 or architecture and/or engineering; day 1 or implementation; day 2 or operations.
These teams may even span network domains such as LAN, WAN, WLAN, or Security, depending
on the size of the network. Recognizing the work of the various teams will help structure automation
projects for what’s possible within your team.

Here is a list of example projects and tasks broken down by the three types of teams often found in
network organizations:

o Day 0 or architecture and/or engineering:

* Ensure configuration standards are documented in a structured and modeled manner that
is programmatically accessible

= Ensure hardware standards are documented in a structured and modeled manner that is
programmatically accessible

= Ensure software standards are documented in a structured and modeled manner that is
programmatically accessible

* Ensure architectural and engineering tests exist within every CI pipeline - for example is
there redundancy?

* Develop automation architecture and framework used by other teams
» Day 1 or implementation:

* Use automation to generate configurations
* Use automation to perform configuration changes
* Use automation for pre- and post-deployment verification

* Use automation for continuous verification of deployment standards

10

Introduction to Nautobot

Day 2 or operations:

* Execute network device automation for common troubleshooting tasks

* Continuously update automation that is used for common troubleshooting tasks

* Execute network device automation for common changes

* Ensure automation for dynamically reading emails from ISP/NSPs for circuit notifications

* Execute automation for gathering and collecting information from various tools and devices
to aid in troubleshooting

* Execute automation for dynamically creating, updating, and closing change management tickets

Industry trends

As we've already discussed, the CLI still dominates the industry. However, each year, month, week, and
day brings us closer to transformative and better network management through the use of network

automation. In this section, we'll look at several of the trends that are collectively driving the industry
forward to do more with less and allow for more efficient network operations.

This list is not meant to be exhaustive, but illustrative of the trends that are driving operational
efficiencies and automation:

SDN: SDN took the industry by storm in the 2010s. Most modern network architectures include
controllers that simplify management and visibility and provide programmatic access with
APIs. Simplified management is made possible because it allows users to manage systems versus
managing devices and nodes, which allows more abstract policies to be created and applied.
Because they allow for fewer points of management, SDN controllers simplify workflows and
integrations using the controller (versus individual device) APIs. With SDN, you may have
different controllers and solutions for campuses, WAN, data centers, and the cloud. So, if you
are looking for a unified network automation strategy, there will be a bit of integration that
needs to happen when it comes to data and orchestration. More on this later.

NetDevOps: We've learned a lot about the DevOps industry over the last 10 years. When we
talk about NetDevOps, were referring to doing DevOps but applied to network infrastructure,
engineering, and operations. Here are a few examples that highlight trends:

= Using Git-based version control systems (VCSs) such as GitHub, GitLab, or BitBucket.
Using VCS enables collaboration while providing traceability and audibility on all software
or file-based artifacts (templates, data files, scripts). VCS allows users to create owners of
particular projects or sections of a project providing accountability to the respective teams.

* Using continuous integration (CI). Organizations that use VCS will require basic CI. CI
allows users to create tests that must pass before accepting or approving any changes. These
tests focus on ensuring nothing is going to break in the automation or the application. CI
can also be applied more directly to the network, enabling network CI.

Introduction to network automation

* Implementing network CI. If the initial CI tests pass on code and static files, users can do
tests such as pre-change analysis based on models of the network (mock devices or real
equipment, if you have a larger budget), running active tests on the network (does the
network need to be a certain state before making the change?), perform the actual change,
and then finally ensure the network is operating as expected after the change.

While DevOps and NetDevOps can be talked about for days, the actual industry facts show
that nearly every network automation project in the world includes version control, automated
tests, and some level of CI. If your organization is one of the few that aren’t using these three
key items, be sure to explore them as soon as you can.

Open source: Many open source tools are used in the DevOps ecosystem. The same holds for
NetDevOps. We'll mention some of the most common tools in the Tools and technology point
covered in this section. Regardless of the tools deployed, it is more important to understand the
real value of open source. In the context of open source, the real value lies in its extensibility,
ecosystems, and community. Extensibility and ecosystems can drastically change and improve
what’s possible on your network automation journey. Keep in mind that each of these is
predicated on the fact that there is a strong community at the foundation. Extensibility is what
should give you confidence that no matter what decision is made for your network, you can
adapt and change to account for that decision. A change may be as simple as upgrading to the
latest version of software, migrating from vendor A to vendor B, or migrating from a traditional
network to a controller-based network. In any of these scenarios, an organization needs to be
confident that its automation can be tailored, updated, or augmented for their needs. While
certain commercial tools offer extensibility, it is usually limited and extensibility features tend to
be in a perpetual state of coming soon. Ecosystems built around community also play a critical
role in open source software, further enhancing what is possible with particular open source
projects. Ecosystems are usually fostered around extensions, adapters, apps, or add-ons that
are outside of the core open source project but are powered by it. It is these ecosystems that
usually incorporate the solutions required for true multi-vendor management and automation.
The point is not that everything needs to be open source, but that open source software and
solutions should either lead or complement any network automation strategy. If they do not,
there may be a great risk to the success of the automation journey three to five years out.

SoT: Since you're reading this book, you've likely heard about SoT. In fact, the main topic of
this book is Nautobot! At its core, Nautobot is a network SoT that is actively being developed
specifically for network automation environments. A SoT is a growing industry trend and
probably why you're reading this book, but the short overview of a SoT is that it is the location
where you can define the intended state of the network. This is the truth; it is what should be. The
SoT is not what is on the device or network. That is referred to as the actual or observed state.
The intended state, or SoT, can be extrapolated and used to document the intended configured
state and intended operational state, or even used as the place to define the intended state for
monitoring thresholds and events. Overall, it allows for greater governance of network data
with a focus on what should be in a manner that is often vendor-neutral. We'll spend much
more time on SoT in the next section and throughout every other chapter in this book.

12

Introduction to Nautobot

Self-service: We covered self-service in the Network automation use cases section, but to
restate it one more time, the notion of self-service is not one-sided. Those organizations that
are successful on their network automation journey understand that it is about having the
right mapping of workflows to people (consumers) and from those people to the right user
interaction, or the right tool to execute and request that automation. If you get this wrong,
there is a great chance to end up with network management systems that aren’t used, which
will take us back a few decades.

Streaming telemetry: SNMP has been around for decades, and network visibility as we know
it is largely based on SNMP. Streaming telemetry is what you may expect when you think about
modern network visibility. In this modern era of streaming telemetry, network devices can
continuously “push” or “stream” network data to a centralized location. This allows for greater
visibility, querying, and trending based on data that would have normally been lost. Wouldn’t
it be great if the network device could send you the information you need when you need it?
Wouldn't it be great if you could turn on a stream of data (collection of data points) from a series
of devices on particular interfaces versus getting a response from an interface poll that may kill
the device if your poll frequency is too high? Wouldn't it be great if you could build a closed-
loop system that can operate in near real time? This is made possible by streaming telemetry.

Intent-based networking (IBN): When you look at the key use cases and trends, you can
start to see common components of an architecture, such as orchestration, automation, SoT,
and telemetry. When these components are fully integrated, the result is an IBN. An IBN
is just a comprehensive network automation architecture. It allows organizations to define
intent, continuously collect network data (streaming telemetry, SNMP, show commands, and
configuration data), analyze that data, ensure intent is deployed, and then react based on intent
violations. The reaction to the data may be to remediate or make a change for managing capacity
or minimizing the blast radius for a known issue. IBN becomes a natural progression as you
start to deploy a holistic architecture for network automation.

Artificial intelligence (AI): Our general belief is that a significant amount of automation must
be implemented without AI/ML, meaning don't let flashy new tech derail projects and outcomes
that are solving today’s problems. That said, at the time of writing, we've seen the launch of
OpenATs ChatGPT (https://openai.com/blog/chatgpt/), Google’s Gemini, and
many more services like these. It should be obvious that AI/machine learning (ML) coupled
with natural language processing (NLP) creating more digital assistants is going to have a
transformative impact on where we are as an industry in 5 to 10-plus years as it gets mainstream
adoption. Until then, it'll be explored and implemented by pioneers and manufacturers who
can make it consumable in a turnkey and meaningful way.

Tools and technology: This is always one of my favorite topics since we live in a product- and
tool-centric industry, but let’s look at existing tools trends for network automation. From an
open source perspective, the dominant tools are Ansible, Nautobot, Batfish, and Terraform.
We also see a sprinkling of Salt, but its presence is still largely seen in application and systems
automation. Looking at open source from a lower-level library perspective, there is continued

https://openai.com/blog/chatgpt/

Understanding SoT

growth with Netmiko, NAPALM, Nornir, pyntc, ntc-templates, and scrapli. If you are using
open source or building your solutions, you want to check out these projects. For example, if
you need a custom Ansible module or custom Nautobot App, youre more than likely going to
consume those libraries to perform your automation. From a telemetry perspective, there is
also growth in various stacks that include Prometheus, Influx, Telegraf, and Grafana. Teams that
have the skills or are further on their journey can use these stacks to provide greater visibility
through data aggregation, data enrichment, extremely powerful queries, and a holistic view of
their networks and their IT infrastructure. From a commercial tool perspective, and exclusive
of SDN products, we're seeing the most adoption of Itential, IP Fabric, and Forward Networks.

Information

Interested in seeing a comprehensive list of all network automation projects, tools, and products?
Check out Awesome Network Automation (https://github.com/networktocode/
awesome-network-automation).

From a trends perspective, we thought it may be worth calling out a few things that get attention at
industry events and in social circles, but aren’t gaining traction. The first is the direct use of YANG
data models within automation tools. They are still mostly used by vendors to define their schema. Of
course, there are outliers such as hyperscalers or a select few enterprises, but generally speaking, the
actual use of YANG by network teams is not a trend. If you're using an API that is based on a YANG
schema, we do not consider that a trend for end users, but it is a trend for certain manufacturers. We'll
also call out REST APIs on network devices. While they are becoming more commonplace because
the dominant majority of devices in production still don’t have APIs, and instead have two or more
(different APIs per vendor and OS) ways of performing automation, the majority of device-specific
automation still happens via SSH.

Understanding SoT

We've already mentioned SoT a few times. It’s finally time to dive in. Let’s start by talking about data.
We'll do that through the lens of making a change on the network.

Let’s assume that you want to turn up a new port that’s going to terminate a connection to a new
building. If you look at other similar configurations on the same device, you're going to find a
configuration similar to this:

interface vlanl00
description Routed Interface for connection to off campus house
ip address 10.1.100.1/24

interface GigabitEthernet4/1

description connects to och-sw-01 GigabitEthernetl/1l (off campus
house)

https://github.com/networktocode/awesome-network-automation
https://github.com/networktocode/awesome-network-automation

14

Introduction to Nautobot

switchport
switchport access vlan 100

vlan 100
name off campus house

Is there any other way to configure the same interface? Could we have used a routed port? Could we
have configured a trunk instead? A different prefix? Sure, these are all valid possibilities. The point
is that you are going to have your own standards, and they will drive your new configuration. When
adopting a SoT approach, we need to decouple data from configuration syntax.

For example, the standard configuration you copy and paste becomes your template while you extract
the data. That data becomes any input that changes to derive a configuration. In this example, the
data is as follows:

o SVIinterface: 100

o SVIdescription: Routed interface for connection to off-campus house

o SVIIP address: 10.1.100.1/24

« Physical interface: GigabitEthernet4/1

o Physical interface description: Connects to och-sw-01 GigabitEthernet1/1
« VLANID: 100

In reality, both descriptions - that is, the SVI interface and the IP address, could be removed from
data inputs since they can be auto-generated from the VLAN ID. We'll see that soon. For descriptions,
they can be auto-generated by having a use case or description of the project defined. Let’s look at a
few examples of showing this data as YAML structured data:

Note
Teaching YAML and Jinja2 is outside the scope of this book.

svi interface: 100

svi description: Routed Interface for connection to off campus house
svi ip address: 10.1.100.1/24

physical interface: GigabitEthernet4/1

physical interface description: connects to och-sw-01
GigabitEthernetl/1 (off campus house)

vlan_id: 100

Understanding SoT

You may opt to nest some data, like this:

svi:
interface: 100
description: Routed Interface for connection to off campus house
ip address: 10.1.100.1/24
physical interface:
name: GigabitEthernet4/1
description: connects to och-sw-01 GigabitEthernetl/1 (off campus
house)
vlan id: 100

Going one step further, a few values could be eliminated if there is more logic in your Jinja2 template.
This one also adds data for the remote peer:

physical interface: GigabitEthernet4/1
vlan id: 100
connection:
description: Routed Interface for connection to off campus house

remote peer: och-sw-01
remote interface: GigabitEthernetl/1

Finally, a Jinja template that could consume this data and render a configuration snippet would look
like this (focused on one of the devices):

interface vlan{{ vlan_ id }}
description {{ connection['description'] }}
ip address 10.1.{{ vlan id }}.1/24

interface {{ physical interface }}

description connects to {{ connection['remote peer'] }} {{
connection['remote interface'] }}

switchport
switchport access vlan {{ vlan id }}

vlan {{ vlan id }}
name {{ connection['description'] }}

Defining SoT

After looking at a few different ways to represent data, the main point is that we have successfully
decoupled data, which is shown as YAML, and syntax, which is shown as a Jinja template. The templates
are built or defined by those who own the standards. However, data is what needs to be created or
updated for any given change. Focusing on the data focuses on a change, without getting pulled into
syntactical details that vary per vendor.

15

16

Introduction to Nautobot

This data is now the SoT (technically, the SoT would be the file that contains the data).

With our focus on the data, now comes the real questions to ask:

« Why did we pick GigabitEthernet4/1?
o Why was VLAN 100 chosen?
o Why was 10.1.100.1 chosen?

o How did we construct the interface descriptions?

It would be fairly common if you were checking one or more spreadsheets to get this data, but it’s
more likely that you just knew because you're good at what you do and you checked the devices and
connections that you most recently deployed.

The idea of a SoT is that it allows you to plan and focus on what should be. A SoT defines the
desired state. With a SoT, users manage the data that’s used for upcoming changes, which is then
programmatically accessed by automation tools during a change. The automation tools access the
data, render a network configuration, and then ensure that configuration exists on the network. On
your SoT journey, you should be able to build a document that defines one tool as the authoritative
source per type of data - for example, ASNs, VLANS, and so on.

Due to the breadth of network data required to manage a production network, often, one or more
systems are used as an authoritative source of information to build a configuration. For example, a
database might be used for inventory and IP addresses, and another that has policies used for ACLs.
The authoritative source of data is the location where updates are made. This is also often referred to
as a system of record (SoR). It’s worth calling out that SoT and SoR are often used interchangeably:

Network Properties

-NTP
- Circuits -AAA
-DNS
- Routing
-ACLs

- Device List - Location - IP Addresses
- Software Version - Racks - IP Prefixes 3
- Hardware - Cables ~VLANs - Providers

EXYZ

- License - Power -VRFs - Maintenances - Your Data

Figure 1.1 - Visualizing SoR, SoT, and SSOT

Generally speaking, the term SoT is a system that stores data from one or more SoRs. However, how
often SoR and SoT are used interchangeably, the term Single Source of Truth (SSoT) is often used to
reflect a system that is aggregating data from multiple SOR. This type of system allows relationships
to be formed between these datasets and also provides one unified API that can be used to access all
network data. Having this data accessed from a single API significantly lowers the amount of work

Understanding SoT

required by your automation tooling. In Appendix 2, we review working with multiple SoTs, doing a deep
dive on the Nautobot SSoT application, and discussing other designs used for managing network data.

Approaches to SoT

The previous section described the purist view and the most correct approach to understanding a
SoT. It is based on the premise that the SoT always contains the intended state. This means that as a
user, you change the data and then perform your change using that data. Of course, using automation
to fetch the data is the ideal state, but even if you were using it as a documentation store, it’s a step in
the right direction. The gap in this approach is that the SoT does not always reflect the actual state
of the network (maybe a user makes a manual change because they don’t like automation or they are
just fixing something quickly). There should be tooling built around the SoT in this approach that
compares the SoT and the actual network. This provides assurance and compliance that the network
is operating as expected.

(1
Note

Based on the network technology deployed or your preference, another approach is also
possible when implementing a SoT. The alternative is to ensure the SoT reflects what exists on
the network. This approach may be used as a one-time event to turn the initial data population
into a SoT. This may seem a little confusing because it goes against the purist view of SoT, but
we thought it is worth calling out because it is reality.

. J

With the growth of NetDevOps over the past few years, one common place to start with a SoT is to
define data in a YAML file and version it in a Git repository. The YAML data is the intended state. That
data gets rendered with one or more templates to generate the intended configuration, which is later
deployed to the network. This approach provides peer review (through pull and merge requests) on
the data before being merged and later deployed and also enables users to run automated tests with
CI on the data providing even more assurances the data is good. This approach of defining the data
first and having that drive automation is what data-driven network automation is all about.

Due to the plethora of technologies that exist today from SDN and cloud-native networking, networks
are not always planned - they may be dynamic. There may be auto-scaling or dynamic policies. In these
types of environments, you may prefer to see the actual state in one place. This is also possible by using a
SoT. With this approach, it is more analogous to a discovery engine, but for configuration data.

It is also possible to employ a hybrid approach. This would mean certain data in the SoT is authoritative
and drives the intent of the network, and other data shows what exists in certain domain managers,
controllers, or clouds. The general assumption here would be that the data added via controllers or
the cloud is authoritative and what is intended to be configured.

18

Introduction to Nautobot

Opverall, it’s always worth remembering that not all purist points of view and ideals can be implemented
in a network that has been evolving for 25 years. We need to take a pragmatic approach, but it is
important to recognize proper definitions and terminology to ensure everyone embarking on their
SoT journey is on the same page.

Keeping the purist view in mind allows us to see the relationship between network data and network
automation, given the data is ultimately at the center and driving network automation. The beautiful
thing about data-driven network automation is that it allows us to start thinking about abstractions
and the level of intent that we want to describe the network.

Even in this book, we're talking about lower-level data, which leads to lower-level intent. However,
once you've embraced data, it is possible to build abstractions around design. Consider the earlier
example at a higher level of intent:

connection:

source:

device: nyc-sw-01

interface: GigabitEthernet4/1
destination:

device: och-sw-01

interface: GigabitEthernetl/1
type: off campus

In this example YAML data file, you’ll notice of £ campus defined as a type. This was not used in
the prior example. With logic in your templates and automation, the right data will be generated and
then populated in the SoT based on the standard of £ _campus designs for both required devices.
You could go one step further and not even choose the devices and let the automation tell you the
ports to use on particular devices that have capacity. This will take time, but it starts with repeatable
standards (few to no snowflakes) and data, meaning it starts with SoT.

SoT tools and products

After learning more about SoT and the role of network data in network automation, were ready to
look at SoT tools and products. The fact is that there are not many tools that focus on network data
specifically for network automation. Let’s look at some tools that may be used in building out an
overarching SoT strategy. Some are more common than others:

o Nautobot: It should be obvious and is likely the reason you're reading this book, but we believe
Nautobot is the SoT for networking. With native models, extensibility, and a framework in
place for aggregating data to and from other data sources, it is becoming the de facto standard
for enterprises adopting a SoT for network automation. Nautobot is an open source project
sponsored by Network to Code. Network to Code’s mission is to continue to drive network
automation around the world, one network at a time.

Nautobot overview

o YAML files: Usually playing a part in almost every network automation journey, they provide a
solid path to getting started and understanding data-driven network automation. In Chapter 6,
we'll look at integrating YAML files stored in a Git repository directly into Nautobot — showing
that with the click of a button, those files and data can be pulled directly into Nautobot.

o NetBox: The motivation for Nautobot, NetBox is a solution that models and documents modern
networks. NetBox is an open source project sponsored by NetBox Labs. Nautobot forked
NetBox when NetBox was at v2.10 and has continued to diverge (as a hard fork (https://
producingoss.com/en/forks.html#:~:text=Hard%20forks%20 (also%20
sometimes%20called, line%$20with%20their%20own%20vision)) since
February 2021.

o Configuration management databases (CMDBs): More often than not, CMDBs are part of
a greater ITSM strategy, including ServiceNow and BMC Remedy. These tools may be used as
the SoT for inventory or general asset management but are usually not used to model network
configuration data due to a lack of data models, lack of skills, and how these teams are often
disconnected from the network teams. These tools are often built off auto-discovery engines
with a general trend toward showing what is versus the intended state.

o Device42: This is usually seen and adopted for data center infrastructure management (DCIM)
with a focus on inventory, data center design, rack layouts, and IPAM with automated discovery.
Similar to CMDBs, there is a focus on auto-discovery with a general trend toward showing
what is versus the intended state, but usually not used to model actual network configurations
such as routing, interfaces, and more and powering network automation solutions.

o Infoblox and BlueCat: Arguably the most widely deployed IPAM solutions, their focus is on
IPAM. They also have discovery capabilities. They have some SoT branding and marketing,
but usually, it’s on discovering IPs versus defining the intent of IP schemes and having that
drive automation.

These are just a select few tools that exist on the market and are being used by network teams. What
we believe, and the premise for creating this book, is that Nautobot has grown immensely over the
past 2 years and fills a gap in the market as an enterprise network SoT catered specifically for network
automation. Through the remainder of this book, we hope you’ll see what Nautobot has to offer and
how it can act as the SoT and nucleus to power your data-driven network automation stack on your
network automation journey.

Finally, let’s dive into Nautobot.

Nautobot overview

Nautobot is an open source network SoT and automation platform that launched in February 2021.
Being an open source company-sponsored project, its maintainers are from the official sponsor -
Network to Code. Network to Code is a network automation solutions provider that helps clients
around the world build and deploy network automation technology.

https://producingoss.com/en/forks.html#:~:text=Hard%20forks%20(also%20sometimes%20called,line%20with%20their%20own%20vision
https://producingoss.com/en/forks.html#:~:text=Hard%20forks%20(also%20sometimes%20called,line%20with%20their%20own%20vision
https://producingoss.com/en/forks.html#:~:text=Hard%20forks%20(also%20sometimes%20called,line%20with%20their%20own%20vision

20

Introduction to Nautobot

It's now been over 2 years since the launch of Nautobot and there has been significant growth, traction,
and development by the Nautobot core team, as well as the community. There have been nine minor
releases since inception with the second major release, 2.0, that just launched in September 2023.
Nautobot 2.0 is a major milestone for the project bringing many new features and improved usability
to Nautobot.

Nautobot forked NetBox in February 2021. This was due to the industry’s need for a network SoT
that had an immense focus on network automation with great flexibility and extensibility capabilities.
Nautobot was also created to foster an ecosystem around an open source network automation platform.
The details of the fork can be found at https: //blog.networktocode . com/post /why-did-
network-to-code-fork-netbox/.

Some statistics, as of March 2024, regarding the project and community are as follows:

o Over 120 releases, including two major releases, nine minor releases, and 100+ patch releases
(on a defined biweekly cadence)

o Over 1,600 members in the #nautobot channel in NTC Slack (self-signup at ht tps: //
slack.networktocode.com)

« Over 110 Nautobot blog posts on the NTC blog (blog.networktocode.com)

o Over 60 Nautobot YouTube videos in the All Things Nautobot playlist on the Network to Code
YouTube channel

We'll highlight several key Nautobot features in this chapter but will spend a lot more time on them
throughout this book.

Nautobot use cases

Before we get deep into Nautobot, let’s level set on what Nautobot is as a network SoT and network
automation platform. These are the two primary use cases for Nautobot.

These are not mutually exclusive and can be used in conjunction with other solutions. We'll review

all of that and more, but let’s start with the basics.

Network SoT

We already introduced the concept of a SoT and how it is the foundation for data-driven network
automation. Adopting a SoT shifts the paradigm to focus on intended state data. At its core, Nautobot
is a network SoT. What does this mean?

https://blog.networktocode.com/post/why-did-network-to-code-fork-netbox/
https://blog.networktocode.com/post/why-did-network-to-code-fork-netbox/
https://slack.networktocode.com
https://slack.networktocode.com

Nautobot use cases

First off, it probably means a migration away from spreadsheets, which is a big win in itself:

X

=

Step 1: Migrate from spreadsheets Step 2: Determine the right data store
YAML is usually the first step For each type of data

Figure 1.2 - Evolution of implementing a network SoT

The usual next step is YAML and then deciding which data should be in Nautobot. However, these are
not mutually exclusive as Nautobot has native Git integration, which allows users to sync YAML files
directly into Nautobot. Much more on that later. The following are the power of Nautobot, where you
can effortlessly manage your network inventory, define locations, and organize your infrastructure
according to your unique needs:

Nautobot allows you to store network inventory-defining locations, location types, floor plans,
racks, and more alongside custom location types. In the real world, network devices are everywhere.
They are in campuses, buildings, closets, racks, ceilings, locations on a manufacturing plant
floor, cars, and spaceships... the list goes on. The goal of Nautobot is to provide an opinionated
way to get started but allow users to define an inventory and organization structure that makes
sense to them. The Nautobot data model will be discussed in great detail in Chapter 2.

Nautobot allows you to store and model your devices based on vendors (manufacturers), device
models, platforms, and roles. All of these are extensible and customizable for your environment.
For example, common roles are leaf and spine for the data center, but if you use different roles
or naming conventions, it is as simple as adding them.

Nautobot allows you to store your IP Addresses and prefixes with support for namespaces that
allow for overlapping IP space. This is an area where there may be existing solutions in place,
such as Infoblox or BlueCat, as mentioned earlier in this chapter. However, IP addresses are
required for assignment to interfaces and policies in Nautobot. With the Nautobot SSoT app,
it’s possible to synchronize data from third-party systems into Nautobot, giving you flexibility
if you need it. Having this data aggregated in Nautobot streamlines your automation initiatives.

Nautobot allows you to store and model circuit data ranging from circuit providers to individual
circuits and then allows you to attach them to specific interfaces on a device. Going one step
further, it is possible to use the Nautobot Circuit Maintenance app to dynamically parse and
read circuit notification emails from providers and update Nautobot accordingly attaching that
notification to a circuit and a device.

21

22

Introduction to Nautobot

Nautobot embraces extensibility by allowing users to add any model to Nautobot to store the data
they need and how they need it. For example, there are already open source Nautobot applications
for Nautobot that allow you to store security ACLs, BGP routing protocol configuration, and
device life cycle information such as End-of-Sale/End-of-Life data in Nautobot. This means that
as the Nautobot core project continues to evolve, the community and users around the world
can add data models they need to continue to store the intent needed to drive their network.

Nautobot allows users to define the relationships that make sense for them. Nautobot has a
defined data model, but relationships allow users to associate unrelated object types. For example,
you can map a VLAN to a rack; you can map an IP address to a device (remember, IPs are
assigned to interfaces); you can map a circuit to an IP address; when using Nautobot apps such
as Device Lifecycle Management, you can map contracts to devices, and more. The list goes on.

With flexibility in mind, Nautobot supports a Data Validation API that allows users to write any
logic required to accept and add data to Nautobot. While many users use the Data Validation
app, which allows for RegEx and ranges in the UI, the Data Validation API allows you to write
any Python logic to ensure your standards and governance are enforced - for example, naming
conventions, preventing certain data from being deleted, and more. All of your data standards
can be codified and enforced so that bad data never finds its way into Nautobot.

This is just a glimpse into how Nautobot is a network SoT. The following visual also shows firsthand
how Nautobot can power data-driven network automation:

[
Design e

e 11T O

Figure 1.3 - Codifying network designs through data enables network automation

As a network SoT focused on network automation, Nautobot has many features that showcase how
it can seamlessly integrate into NetDevOps environments. Let’s look at a few of those features as a
precursor of what will be covered throughout this book:

APIs: From REST APIs to GraphQL to webhooks, data in Nautobot is very accessible. The
REST APIs provide your traditional Create, Read, Update, and Delete (CRUD) operations.
GraphQL provides an extremely efficient and user-friendly way to query the exact data you want.
Rather than parse through large data sets from a REST API, GraphQL allows users to query
for the exact element or elements needed. We'll cover APIs in much more detail in Chapter 8.

Native Git integration: Nautobot supports the ability to use NetDevOps workflows, allowing
you to store files in a Git repository; then, in the UL, you can configure Nautobot to clone
those specific repositories. You can store YAML data, Nautobot jobs, and export templates in a
repository and easily clone into Nautobot all from the UL This ensures you can run CI on your
repositories, perform peer reviews, and then, once merged, sync those updates into Nautobot.

Nautobot use cases

 Job automation: Nautobot Jobs are arbitrary Python code that can be used to perform any task
you would script, including analysis of the data in Nautobot and simplifying data management
and population, though they can be used to perform actual network automation tasks. Jobs
also simplify creating self-service forms to streamline the adoption of network automation.
Jobs also supports Job Hooks, which are similar to webhooks, in that when there is a change to
data in Nautobot, a job can be triggered. Chapter 10 is fully dedicated to jobs, so there’s much
more to come on this topic.

o Secrets integration: To perform network automation, there need to be integrations with secrets,
credentials, SSH keys, and API tokens. There needs to be intent on which secrets are needed
for a location or device. Nautobot has native secrets integration to map secrets to environment
variables or files on the system, while also providing more advanced features with the Nautobot
Secrets Providers app, which includes dynamic integration with HashiCorp Vault, AWS Secrets
Manager, and many more Enterprise Secrets Management tools. This allows users to rotate
and change secrets in secrets management or vault platforms with Nautobot fetching them as
automation is performed.

+ Flexible location models and dynamic groups: Nautobot supports flexible location models
and allows you to filter on many different attributes. However, Nautobot also supports dynamic
groups, which are based on the metadata of a given object. With automation, you likely need
to automate based on predefined criteria. For example, you may need to automate all devices
that are in a given region, are a given device type, and have a given status. So, the next time a
device enters that status, it's automatically part of that group, so targeting that dynamic group
simplifies the automation required. Rather than checking the devices, device types, and statuses,
you're simply querying for devices in that logical group.

These are merely five ways Nautobot embraces network automation as a first-class citizen. All of these
and many more will continue to be covered throughout this book.

Network automation platform

Nautobot is also a network automation platform, thus going beyond a SoT. Let’s take a look at this in
more detail to understand what this means.

Nautobot jobs

The first major feature to be aware of for Nautobot being a network automation platform is the support
of Nautobot jobs.

Nautobot jobs offer users the ability to create self-service forms in a matter of minutes. Self-service is
needed to drive the adoption of network automation; Nautobot jobs are the foundation of Nautobot’s
platform strategy. Imagine having data stored in Nautobot and you want to verify that it is on the device:

23

24

Introduction to Nautobot

>>> Backup ConFfigurations
Backup the configurations of your network devices.

Run

Job Data

Tenantgroup |

Tenant
Location | T
Rackgroup | —
Rack |

Role | ——

Manufacturer | T

Platform

Device type

Device @ | T

Figure 1.4 — Example of a self-service job form

Usually, there is a need to create some code or automation somewhere, often in another tool. Based
on size or scale, that may be needed; but for many environments, tying it into Nautobot as a job
makes sense because the data is already there. Keeping in mind that jobs are Python code, that code
can be stored as a job in a Git repository and easily integrated into Nautobot, thus providing self-
service to any user that needs to execute it. This is just a basic example, but any automation task that
can be built as a script can be deployed as a Nautobot job. There are already Nautobot integrations
to Nornir, which is one of the most common Python-based network automation frameworks in the
open source community.

Nautobot apps

Beyond Nautobot jobs, Nautobot as a Platform has a powerful developer API that allows users to
create Nautobot apps. Nautobot apps enable users to create APIs, create new views and pages, and
create any data model required in Nautobot. Nautobot Apps are what encapsulate specific functionality

Nautobot use cases

and are the entities that are created for specific use cases. Thus, apps can be as lightweight as only
modeling and storing new data - maybe you want to model and store SNMP data, maybe you want
to model load balancers, and so on. Apps can be heavier-weight Python applications that perform
actual network automation tasks:

Note

Nautobot Apps is the new name for Nautobot Plugins. You may see older commentary online
and in the code base that says the word plugin, but that is referring to what is now called
Nautobot Apps.

+7L| Golden BGPModels _~ Capacity [y Circuit
coo) Configuration é ﬂmﬂ Metrics ‘%Jlk Maintenance

Automate configuration backups, Allows users to model ASNs and Exposes key data in Nautobot as Helps manage and view
perform configuration compliance, BGP Peerings (internal and Prometheus endpoints to be later maintenances for circuits directly
and generate intended... external) within Nautobot. consumed and visualized in tool... in Nautobot.
N N N
E > Data [ﬁ Device Nautobot =m=m | Nautobot
© validation Onboarding Firewall @ ChatOps
Ensure proper data hygiene and Simplifies onboarding and re- Models Overall chat framework and adds a
that corporate standards are onboarding devices into Nautobot. chatbot to Nautobot so you can

Allows users to model firewall

policies in Nautobot. easily get data from Nautobot...

enforced when adding new data...

T Floor Plan Single Device f@? Secrets
i Source of Lifecycle (~2J) Management
Create and manage the racks of Truth (SSOT) Management Integrates Secrets Providers such
y.our data center with a floor plan Facilitates integration and data Helps manage lifecycle related :s A:VCS Sec\;etsltMa.rt:gNer atm: .
view. synchronization between various data such as end-of-life dates, ashiCorp Vault wi autobot.
source of truth (SoT) systems, wi... viable software versions, and...

Figure 1.5 - Overview (subset) of Nautobot apps

Nautobot apps leverage the power of Nautobot as a Platform. Using Nautobot as a Platform to construct
a network automation application allows users to focus on the actual development without doing the
heavy lifting of creating an application from scratch. You get to take advantage of Nautobot APIs,
RBAC, logging, GraphQL, relationships, Git as a data source, SSO, and the list goes on. What this
means is you can add your own items in the navbar, insert menu items in existing dropdowns, insert
new pages, and insert new tables and widgets on detailed object pages. This flexibility allows you to
tailor Nautobot to your liking by building Nautobot apps driven by your requirements. Nautobot apps
are built at a more accelerated rate than building custom stand-alone applications.

There are already numerous Nautobot apps in the open source community and this number continues
to grow. Let’s explore some of them.

25

26

Introduction to Nautobot

Nautobot ecosystem

The Nautobot ecosystem is comprised of Nautobot apps that solve a variety of use cases. There are
already 15+ open source Nautobot apps written by Network to Code and numerous others written by
individuals in the community. Keep in mind that a Nautobot app can be as lightweight or as robust as
needed to address the requirements at hand. Here are some examples of different types of applications
that could be built using the Nautobot App developer API:

o Lightweight examples:

Create a database table, UI views, and API to manage NTP

Create a new page (Ul view) to aggregate data from devices and VLANSs the way you want
to see it based on relationships

Create Nautobot jobs that are distributed through a Nautobot app

Create a command runner that fires off commands to selected devices that are already
in Nautobot

o Robust examples:

Create an application to store, manage, and deploy firewall policies (inclusive of database
tables, views, and APIs).

* Create an application to discover and crawl the network (inclusive of database tables, views,
and APIs).

Create an application that performs network configuration backups, generates intended
configurations, and performs compliance (which, by the way, exists already in the Golden
Config app!). You’ll get a deep dive into Golden Config (https://github.com/
nautobot /nautobot -app-golden-config) with Nautobot in Appendix 3.

Note

There is also a Nautobot app template in the form of a cookie-cutter GitHub repository
(https://github.com/nautobot/cookiecutter-nautobot-app) that helps
anyone create a new app.

If you can't see it already, the opportunities are endless with Nautobot apps.

As mentioned previously, the Nautobot ecosystem already consists of many Nautobot Apps. We'll take
alook at a summary of a few of them while diving into a few of these in Chapter 13:

o Golden configuration: Automates configuration backups, performs configuration compliance,
and generates intended configurations (https: //github.com/nautobot /nautobot -
app-golden-config).

https://github.com/nautobot/nautobot-app-golden-config
https://github.com/nautobot/nautobot-app-golden-config
https://github.com/nautobot/cookiecutter-nautobot-app
https://github.com/nautobot/nautobot-app-golden-config
https://github.com/nautobot/nautobot-app-golden-config

Nautobot ecosystem

Floor plan: Allows users to create a floor plan of their data center or other locations of the
racks and devices that exist within Nautobot (https://github.com/nautobot/
nautobot-app-floor-plan).

Version control: Allows users to have change (workflow) management with approvals when
managing data within Nautobot powered by a Dolt database. This is in an alpha state, but watch
out for the announcement of the official release (https://github.com/nautobot/
nautobot-app-version-control).

Design builder: Allows users to create data-driven designs (such as small, medium, and large
sites) that then allow you to deploy a new device/site/location with that design, automatically
generating the desired data for that design based on your data standards.

BGP models: Allows users to model ASNs and BGP peerings (internal and external) within
Nautobot (https://github.com/nautobot/nautobot-app-bgp-models).

Capacity metrics: Exposes key data in Nautobot as Prometheus endpoints to be later consumed
and visualized in tools such as Grafana (https://github.com/nautobot /nautobot -
app-capacity-metrics).

Circuit maintenance: Helps manage and view circuit maintenance directly in Nautobot (https://
github.com/nautobot/nautobot-app-circuit-maintenance).

Data validation: Ensures proper data hygiene and that corporate standards are enforced when
adding new data to Nautobot (https://github.com/nautobot/nautobot-app-
validation-engine).

Device life cycle management: Helps manage life cycle-related data such as end-of-life dates,
viable software versions, and maintenance contract information (https://github.com/
nautobot/nautobot-app-device-lifecycle-mgmt).

Device onboarding: Simplifies onboarding and re-onboarding devices into Nautobot (https://
github.com/nautobot /nautobot-app-device-onboarding).

Firewall models: Allows users to model firewall policies in Nautobot (https://github.
com/nautobot/nautobot-app-firewall-models).

Secrets providers: Integrates secrets providers, such as AWS Secrets Manager and HashiCorp
Vault, with Nautobot (https://github.com/nautobot/nautobot-app-secrets-
providers).

SSoT: Facilitates integration and data synchronization between various SoT systems, with Nautobot
acting as a central clearinghouse for data. Open source integrations exist for ServiceNow, Cisco
ACI, Infoblox, IP Fabric, and Arista CloudVision, but integrations can be written for any remote
system. Note that these integrations used to exist as their own dedicated GitHub projects, but
were recently consolidated into the main SSoT project. SSoT will be covered in greater detail
in Appendix 2 (https://github.com/nautobot/nautobot-app-ssot).

27

https://github.com/nautobot/nautobot-app-floor-plan
https://github.com/nautobot/nautobot-app-floor-plan
https://github.com/nautobot/nautobot-app-version-control
https://github.com/nautobot/nautobot-app-version-control
https://github.com/nautobot/nautobot-app-bgp-models
https://github.com/nautobot/nautobot-app-capacity-metrics
https://github.com/nautobot/nautobot-app-capacity-metrics
https://github.com/nautobot/nautobot-app-circuit-maintenance
https://github.com/nautobot/nautobot-app-circuit-maintenance
https://github.com/nautobot/nautobot-app-validation-engine
https://github.com/nautobot/nautobot-app-validation-engine
https://github.com/nautobot/nautobot-app-device-lifecycle-mgmt
https://github.com/nautobot/nautobot-app-device-lifecycle-mgmt
https://github.com/nautobot/nautobot-app-device-onboarding
https://github.com/nautobot/nautobot-app-device-onboarding
https://github.com/nautobot/nautobot-app-firewall-models
https://github.com/nautobot/nautobot-app-firewall-models
https://github.com/nautobot/nautobot-app-secrets-providers
https://github.com/nautobot/nautobot-app-secrets-providers
https://github.com/nautobot/nautobot-app-ssot

28

Introduction to Nautobot

o Nautobot ChatOps: Provides an overall chat framework and adds a chatbot to Nautobot so that
you can easily get data from Nautobot directly from chat, including Slack, Microsoft Teams,
Webex Teams, and Mattermost. This also has out-of-the-box chat integrations for Grafana, IP
Fabric, Cisco Meraki, Cisco ACI, Ansible AWX, Arista CloudVision, and Palo Alto Panorama.
Note that these integrations used to exist as their own dedicated GitHub projects but were
recently consolidated into the main ChatOps project (https://github.com/nautobot/
nautobot -app-chatops).

Summary

This chapter provided a general overview of data-driven network automation with Nautobot. It started
by reviewing key use cases for network automation before highlighting the important relationship
between data and network automation. It should be evident that getting an understanding of the data
that drives network automation should not be understated and that having good, clean data will simplify
the overall network automation journey. Finally, this chapter provided an overview of Nautobot and
its two key use cases — SoT and network automation platform, and how both are further enhanced
through its developer API and the Nautobot ecosystem that continues to grow with open source apps
such as Firewall Models and Golden Config.

In the next chapter, we'll explore and start to understand the data models at the core of Nautobot.

https://github.com/nautobot/nautobot-app-chatops
https://github.com/nautobot/nautobot-app-chatops

2
Nautobot Data Models

At the core of Nautobot are two main use cases that were covered in Chapter I: a network automation
platform and a network Source of Truth (SoT). While it is true that certain classes of automation can
be built void of specific structured data, it is generally true that the SoT powers much of the automation
that provides the most business value.

The mantra that holds in Nautobot is that the automation that you rely on is only as good as the worst
data you feed into that machine. It is this fundamental truth that drives the SoT aspect of Nautobot.
In this chapter, we will focus on the critical data models and relationships of the data in Nautobot
that are used to power your network automation stacks.

The following are the main topics that will be covered in this chapter:

o Nautobot data models overview

o Network device inventory data models
o IPAM data models

o Circuits data models

o Data model extensibility

o Custom data models

While this book is focused primarily on enabling you to make effective use of Nautobot in your
network automation journey through deeply technical hands-on topics, this chapter will first lay the
foundation for the network data model that Nautobot provides. This understanding is key to how you
will later use the data model to build automation capabilities through its consumption, and even by
extending it to meet your specific needs

30

Nautobot Data Models

Nautobot data models overview

Before we begin, let’s touch base on a few terms and concepts. First, data modeling refers to defining
business requirements for the expression and relationships of data in Nautobot. Thus, the output of
our efforts is the network data model, which we will dive into now. Such a comprehensive data model
is naturally broken down into several high-level data domains, such as the inventory, circuits, and IP
addresses. While we logically compartmentalize our network data model to make it easier to manage, it
still comprises many cross-model relationships that span the boundaries of the domains. For example,
a router has interfaces and those interfaces have Layer-3 IP addresses. These relationships are the key
aspect of a comprehensive network SoT that positions it as a better way to manage data than numerous
siloed spreadsheets or even disconnected systems.

Data model summary

We will begin our journey through the Nautobot data model with a high-level review of the landscape.
Here you will note some of the data domains we spoke about earlier, and hopefully will appreciate the
need to logically break the data model up in this way.

Network Device Inventory N Data Model Extensibility Device Components
[Devices } [Custom Fields } [e]
[Device Types } [Computed Fields J [Front & Rear Ports]
[Manufacturers J [Relationships } [Power Ports & Outlets]
[Roles & Statuses J [Console & Server Ports]
[Platforms } [[Custom Data Models }j [Cables & Connections]
[Virtual Chassis J [Device Bays]
[Redundancy Groups J T h [Inventory Items]
[Racks J [Tenants } ~ -
[Locations } Y
\ / [Tenant Groups J IP Address Management
[Namespaces]
Circuits [Prefixes]
(ircuits) (1P Addresses]
[Circuit Terminations J [Regional Internet Registries]
[Circuit Types J [VRFs]
[Providers } [Route Targets]
[Provider Networks J [VLANs & Groups]

Figure 2.1 - Nautobot data model overview

Network device inventory data models

As you can see, Nautobot affords the ability to track a tremendous amount of specific networking data
out of the box. In this chapter, we will dig into each of these domains in more detail. Still, though, you
are likely wondering about other parts of the networking world not covered in the preceding list. This
is natural, and rest assured that Nautobot has you covered through its extensibility features (covered
in Chapter 6) and the ability to build custom Nautobot data models (covered in Chapter 15), which
allow for additional models to be provided through a variety of means. You’ll see more on that at the
end of the chapter, and even more in Part 4, where you'll get to see firsthand how to extend Nautobot.

For now, we will take a closer look at each of these models, their common and important attributes,
and what you can do with them.

Network device inventory data models

The foundation of the network data model is rooted in the primary entities that a network organization
cares about, namely devices. You will find the Device model in Nautobot to be the proverbial heart
of the operation, with many ancillary models such as Interfaces associated with it, and tie-ins to
other important areas of the data model. You will soon see that there are many aspects of metadata
surrounding the Device model that go into constructing a logical and robust view of the world.

Devices

Tracking network devices is arguably the most popular feature of Nautobot and serves as the basis
for many other data modeling and automation activities. In Nautobot, a device can represent many
different types of network assets, from the obvious rack-mounted router or switch, to firewalls, and
even servers. Going further, it is perfectly valid to track virtual networking appliances using the Device
model. This also means that a device need not be constrained to a physical rack at all (though tracking
racks affords other possibilities that we will discuss later).

Devices in Nautobot track common attributes such as the hostname, serial number, asset tag, and
primary IP address (with options for both IPv4 and IPv6). Here is an example of a Devices table
from Nautobot:

o v D DD

Name Status Tenant Role Type Location Rack IP Address

Devices

ams01-gist-01 Nautobot Airports [Cdicerbuion | Cisco Catalyst 6509-E ANS01 - —

ams01-edge-01 Nautobot Airports. Arista DCS-7280CR2-60 —_ 10.11.128.1/32

ams01-edge-02 Nautebot Airports ams01-102

ams01-eaf02

Mautobot Airports [1eat | AMS01 ams01-102 10.11.128.4/32

Figure 2.2 — Nautobot Devices table (list) view

31

32

Nautobot Data Models

Beyond the obvious, we also associate a device with a physical location (more on that in a moment).
We can also attribute tenant ownership, which is its own area of the data model. As network engineers,
we usually want to know the purpose of a device, and for that, the device model has a linkage to the
role model, which is user-definable based on your network. Likewise, the Status field allows your
organization to define lifecycle values based on how you operate the network. The Platform relationship
is commonly employed to designate the software family the device is running, such as Cisco IOS or
Juniper JunOS. As in the real world, devices can be located inside a rack, where we track which rack,
which position in the rack, and on which side or face the device is installed. Finally, a device has a
linkage to a Device Type, which represents the hardware model. In terms of the data model, we could
say that devices are instances of a Device Type, and this works in much the same way as if we took a
piece of hardware off a shelf or pallet and deployed it on a rack.

You can start to get the sense that the relationships in the data model are what makes Nautobot
interesting as a network SoT. Still, though, at this point, we have described only the ability to create
Device records with some specific attributes, and while that is certainly important in asset inventory
and even automation contexts, we could do that with a spreadsheet! So let’s explore some of the more
intricate data models and their features in Nautobot.

Device components

With devices being an anchor point in the data model, device components primarily make up
relationships to other parts of the model, for example, tracking interfaces and other port types. There
are other general component types such as Inventory Items and additional use cases with Device Bays,
such as chassis child devices.

. N

Device

Device Components

Interfaces

Front & Rear Ports

Power Ports & Outlets

Cables & Connections

Device Bays

(U U | U | R | G | S |

(
[
[
{ Console & Server Ports
[
(
[

Inventory ltems

(&)

Figure 2.3 —Visual of a device model in Nautobot

We'll now take a look at these other components that can be mapped back to a given device.

Network device inventory data models

Interfaces

Probably the most commonly used device component in Nautobot is the Interface model. Network
interfaces play several vital roles in the real world of networking. They provide physical connectivity
between devices, logical addressing, and Layer 2 management. So too, Nautobot supports all of these
use cases and more. Nautobot can model both the physical and logical interfaces with support for
most common form factors and configurations, including LAGs, bridges, and parent/child virtual
relationships. Here is a snapshot into an Interfaces table inside Nautobot:

terfaces @) | ConsolePorts@]) PowerPorts@ Status LLDP Neighbors Corfiguration Corfig Context Notes DynamicGroups Changelog DataCompliance Cenfiguration Compliance
Interfaces [Gcomreers
Name Status Label Enabled Type Parent LAG MTU VRF Mode Description Cable Connection 1P Addresses
[Ethernett = — v SFP+ (10GE) = = = = — #35500704-0259-4270-92¢6- 2ms01-edge01 > LRRELECEC + |58 v [#] @]
dod7961cd1ab Ethernet4/1
[Ethernet2 =3 - v SFP= (10GE) - - - = = - #F16c6412-6016-4745-2c18- ams01-edge-02 > 10.11.192.11/32 [+|s]&«[2]n]
da43c3a2530e Ethernetd/1 (Glabal)

Figure 2.4 - Glimpse into the interfaces of a device

We'll dive much deeper into what’s possible in later chapters in the book, but take note of the icons
on the right-hand side of each row. You can perform a trace when there are cables connecting two
interfaces in Nautobot, which proves to be a valuable function.

Layer-3 addressing is covered with support for primary and multiple secondary IP addresses per
interface. You can also specify the 802.1Q mode with lists of tagged and untagged VLANSs. You can
enable or disable an interface, and make use of customizable statuses that allow for use cases such
as tracking the provisioning state of an interface in some business process—it’s up to you. Perhaps
the most interesting usage of interfaces in Nautobot, though, is the ability to connect them to other
interfaces or components, thereby creating a cable, which means you can track your entire physical
cable plant if you wish, or simply indicate that two interfaces are connected “in some way.” You can
also flag such connections as reserved, allowing you to plan capacity (you might also do this by having
a “reserved” status on the interface, depending on your use case).

Front and rear ports

The ability to model a cable plant is achieved through the usage of front and rear ports. In practice, these
are combined to create patch panels and fiber cassettes in which the front port accepts the connection
to an interface or other front port. A rear port is mapped to a front port and allows for multiplexing
to model the bundles of cables or shrouded fiber runs that go between termination panels.

33

34

Nautobot Data Models

Power ports and outlets

Like the physical cable plant, Nautobot can also be used to track the power plant. This starts with
power ports and outlets that model PSUs and the corresponding PDUs they plug into within a rack.
Here is a view of Power Ports within Nautobot:

(v [o LT

ams01-leaf-02

A s 200am. | @) smonths, 3 weeks ag
interfeces @) Corsole Ports @) | PowerPorts @) | Stetus LLDPNeighbors Corfiguration Config Context Notes Dynamic Groups Changelog Deta Compliance Configuration Compliance
Power Ports [#pcons
Name Label Type Maximum draw Allocated draw Description Cable Connection
© pst - cia 334 191 — #9bF46609-1chc-4F36-5322-b0551c202204 ams01-pdu-02 > Outlet1 B800820
© Ps2 = c14 334 191 - #c2e12834-b061-4660-97a1-6Te31 46607 ams01-pdu-12 > Outlet1 g n n

Figure 2.5 - Power Ports tab on a detailed device view

In this model, Nautobot tracks the power draw so you can budget the PDUs and connect them to
power feeds and power panels to track the power type (phase, etc.) and distribution. The budget and
utilization calculations are visible in a few different areas, such as viewing racks, allowing for effective
capacity planning. It’s worth noting that as with any of the device component feature sets, you are not
required to use them if you simply want to track an inventory of devices.

Console and console server ports

Console and server ports follow the same basic principle as their power-related counterparts but
allow you to model the actual console port(s) on a regular network device, but also the console server
devices themselves, and the relationship between the two via a connection. You will note the ability
to designate the port type, such as DB-25, RG-45, USB-A, and so on, as can be seen in the following
screenshot showing the adding of a console port to an instance of a device:

Network device inventory data models

Console port

Device ams01-leaf-02

Name Console

Lzbel

Physical label

Type

Description

Mini-DIM &
Notes UsSB

USB Type A
USB Type B
Mate USB Type C
USE Mini A
USB Mini B
USB Micro &
USB Micro B
USB Micro AB
Other
Other

Figure 2.6 — Console port Type options

It's in many of these little details, which are usually never tracked anywhere, that Nautobot tends to shine.

Cables and connections

Having now covered many of the various port types, it is important to understand how they can be
connected together. Every connection between device components is represented as a cable, embodying
a direct physical link between two termination points. These points could range from console ports
to patch panels, or between network interfaces. Each cable is defined by two endpoints, often referred
to as A and B, but it's important to note that cables in Nautobot are inherently direction-agnostic,
meaning the order of terminations doesn’t impact their function. Cables can connect to a variety of
objects, including instances of Circuit terminations, Console Ports, Interfaces, Pass-through Ports,
Power Feeds, Outlets, and Ports. For each cable, details such as the type, label, length, and color can be
assigned. Additionally, an operational Status is required for every cable, with default statuses including
Active, Planned, and Decommissioning. This comprehensive approach allows for detailed tracking
and management of the physical connections in a network.

While the power to track an entire physical cable plant is present, sometimes it is not warranted or
necessary. It is perfectly acceptable and possible to treat cables as abstracted connections between
Device Interfaces, ignoring the physical aspect, but retaining the context of the connected interfaces.

35

36 Nautobot Data Models

Nautobot also provides a tracing feature for cables. Users can trace a cable from either of its endpoints,
either through the UI or using a REST API endpoint. Here is an example of a simple cable trace:

Cable Trace For Interface Ethernet1

ams01-leaf-02
Arista DCS-T1505-24
Europe — Metherlands — AMS01 / ams01-102

Ethernet1
Interface (SFP+ (10GE)]

#a5800704-0a59-42Thb-9ae6~
dod7981dd1ab

Ethernetd/1
Interface (QSFP2E (100GE))

ams01-edge-01
Arista DCS-7280CR2-60
Europe — Metherlands — AMS01

Trace completed
Total segments: 1

Total length: WA
Figure 2.7 - Visual of a cable trace in Nautobot

This function follows the path of the connected cable from one termination point to another. If a
cable connects to a pass-through port and there’s another cable connected to the peer port, Nautobot
continues tracing the path until it reaches a non-pass-through or unconnected termination point.
This tracing capability is crucial for mapping out the physical path of connectivity across a network,
aiding in troubleshooting and network documentation. An interesting aspect of cable tracing is its
ability to trace through circuits. For instance, if a cable path includes a circuit, the tracing will show
the connection from a device interface to the circuit’s termination points, providing a clear view of
how different network elements are interconnected through physical cabling. This feature enhances
the understanding of network topology and the role of each physical connection within it.

Network device inventory data models

The following diagram shows an example of modeling a cable plant that includes patch panels.

Device A

Interface 1

Cable 1

Front Port 1

Device B

Rear Port 1

Device D

Interface 2

Cable 3

Front Port 2

Device C

Rear Port 2

Cable 2

Figure 2.8 - Visualizing device connectivity with a patch panel (Device B and C) in use

Device A is connected to Device D through two patch panels, B and C. The rear ports of B and C
represent the riser cable between the two panels.

This next example shows a cable path trace across a circuit, connecting two Device Interfaces.

Device A

Interface 1

Cable 1

Side A

Circuit

Side Z

Cable 2

Interface 2

Device B

Figure 2.9 - Cable path trace across a circuit that connects two device interfaces

37

38

Nautobot Data Models

Device bays

Device bays diverge from the norm we have just discussed with other components. They are used as
the basis to model hardware chassis-based devices. In this way, we create an instance of a device that
represents the chassis itself and then create bays within that chassis that individually accept other child
devices. It is very important to consider the specific set of use cases that are intended with this model.

Device bays adopt the ability to create parent/child relationships between child devices and the chassis
that houses them, but the chassis is intended to be “dumb” in this model. That is, the intent is more
to model blade servers in which the chassis provides housing, power, and connectivity, but has no
other relation to the child blades installed in the bays, or vice versa.

This means in the networking world, device bays would not typically be the best way to model a
chassis-based switch or router that contains several line cards. The litmus test for this distinction is to
ask whether the chassis device has a single management IP from which you configure and control the
entire device across all line cards. If you do have a case where you are managing line cards independently
of one another (thereby logically managing each line card as its own device), device bays might be
an acceptable means of modeling such devices. But we typically find that to be rare. Instead, it would
be more appropriate to create the chassis network device as normal, but create all of the interfaces
across the line cards as discrete interfaces on the chassis (named accordingly) and track the line cards
as Inventory Items on the device. There are ways to bulk-rename interfaces if you need to move line
cards around. Chassis devices are also not meant to model distinct network devices with a shared
control plane, like a Cisco StackWise switch. The virtual chassis model is suited for that purpose and
will be discussed later in this chapter.

e . N
Chassis
(Parent Device)
4 N
Device Bay 1
[Child Device 1]

N J
4 N
Device Bay 2
[Child Device 2]

_ J
e p
Device Bay 3
[Child Device 3]

N J
AN)

Figure 2.10 - Usage of device bays to model a chassis-based device and its
relationship to child devices, such as blade compute servers

Network device inventory data models

Inventory items

Speaking of inventory items models, they are a way to associate any other type of component to an
individual instance of a device for tracking. Normally, we would think of things such as hard drives,
CPUgs, PCI cards, and so on—basically, anything ancillary to the device itself that you want to track for
asset inventory purposes. As you might imagine, we have the option to attribute a manufacturer, part
ID, serial number, and asset tag to Inventory Items. Inventory items can also have their own parent/
child relationships, which helps in tracking things such as optical transceivers in line cards. In the near
future, Nautobot will allow more direct modeling on device modules, such as chassis line cards and
their direct relationships to device interfaces. In doing so, the Inventory Item data model will evolve
to allow hierarchical relationships and more meaningful tracking of ancillary device components.

Using device components in Nautobot

In order to add or manage device components in the Nautobot UI, you add interfaces, device bays,
and any other component within or under a device as shown here:

Devices / AMS01 [ams01-edge-01 : £ “_
T e 2
ams01-edge-01 _@

Console Server Ports

Device | Acvanced Interfaces @) ConsolePorts @) PowerPorts @) Config Context MNotes Power Ports slog DataCompliance

ConFiguration Compliznce Power Outlets

Interfaces

Device Assigned VR T "ont Ports
Rear Ports

Location Europe (Regicn) Device Bays

|, Netherlands (Region

Inventory Items

L AMS01 (Site)

Figure 2.11 — Add device components for a single device

39

40

Nautobot Data Models

However, you may be thinking that you want to apply those components across all similar devices
and device types. That is possible by also adding components at the device-type level as shown here:

Device Types / Cisco / Cisco Nexus 8372TX Search device types n
= Add Components » k’am [Delete

Cisco Nexus 9372TX Console Ports
_II Sept. 21, 2023 12:00a.m 6 3 months, 3 weeks ago Console Server Ports

Power Ports

Device Type | Advanced Notes Changeleg Data Compliance Bower Outles
Interfaces

Chassis Comments Front Ports

Manufacturer Cisco None Rearforts
Device Bays

Mocel Name Nexus 9372TX

Figure 2.12 — Add device components for a device type

Now we'll dive deeper into device types.

Device types

Device types are closely related to devices, in that they represent the hardware model, or type, of
the device. But in Nautobot this manifests in modeling several aspects of the hardware model. You
have self-explanatory attributes such as the manufacturer and model number, but the real power of
device types comes from the tracking of component templates. Basically, we take all of the port-based
component models, plus the device bays previously discussed, and create simplified versions of them
called component templates. You can see them at the bottom of device-type details pages as shown
in the following screenshot.

Network device inventory data models 41

Device Types [Arista / Arista DCS-71505-24

Arista DCS-71505-24

R sept 21,2023 1200 2m. | @ 3 months, 3 weeks ago

Device Type | Advanced Notes Changelog Data Compliance
Chassis

Manufacturer Arista

Mocel Name DCS-T1505-24
Part Number DC5-71505-24
Height (U 1

Full Depth x
Parent/Child

Front Image —

Rear Image

Device Instances 266

Tags

Component Templates

nterfaces @y | FrontPorts RearPorts Console Ports¢) Console Server Ports PowerPorts @) Power Outlets Device Bays

Figure 2.13 - Components templates for a device type

Don’t worry, you'll have plenty of time to navigate the UI in the next few chapters.

The idea is that we create a representation of a device as that particular hardware is shipped to you from
the manufacturer. It is important to note that a device type is specifically void of any deployment type
logic or anything that would be used to distinguish two devices of the same type. In this way, they are
true templates of the devices that we instantiate, or rather deploy, in our network. For instance, if we
use Juniper EX3400-48P switches in our network, we would create a device type for the model number,

42

Nautobot Data Models

and then add 48 interfaces to that template. When we have several device types, which is certainly
common in most networks, we end up with a library of types to choose from when creating devices;
and yes, they can be imported from shareable definitions. Because we have defined templates, when
you do create an actual instance of a device, you are asked which device type it uses. This causes all of
the template components to be copied into the new device that gets created, effectively jump-starting
the definition of that device in Nautobot.

Manufacturer

The manufacturer of a device is tracked as an attribute of the device type. The model itself is very
simple, namely tracking just the name of the entity, such as Cisco or Palo Alto Networks. But having
a separate entity in the data model allows for more complex use cases, as we will later discuss with
elements such as custom fields and relationships.

You might ask why the manufacturer is only an attribute of a device type and not also, or exclusively,
of the device. The answer lies in understanding data normalization, which is an advanced topic of
data modeling and ultimately out of the scope of our discussion. But we point it out to say that great
care has gone into the design of the core data model in Nautobot. In this case, the normalization is
explained by pointing out that a device is always associated with a device type. And since a device type
carries the understanding of the manufacturer for that type of hardware model, we can then infer the
manufacturer for a given device without having to track it directly on the device model.

Roles and statuses

Now that we have described how to use the device model to create an inventory of devices, what can
we do with it? One of the most basic questions we often need to answer in our network inventory
is, “What does this device do on the network?” The role model is the primary mechanism to express
that in the Nautobot data model. The role model itself is simple, but again, you will see the power
of model extension later. Out of the box you get to specify the name of the role, a description, and a
color to visually distinguish roles in the web UL This means that the definition of roles is entirely up
to you as a user. Your organization might create roles such as switch, router, or firewall, or
more complex roles such as dmz -edge -peer - the point is that it is up to you. Once roles have
been defined, you assign them to devices and begin consuming that added context in your SoT and
automation endeavors.

Likewise, statuses reflect the administrative state of devices or interfaces. Just as with roles, you can
create organizational-significant status values, or can use the ones provided out of the box, such as
Active, Offline, or Staged. Both the role and status models in Nautobot are actually generic in nature
and are used across several other use cases such as IPAM and circuit tracking. This gives platform
administrators a central place to manage this type of metadata, and reduce duplication where the
same values might be relevant across multiple uses. Similar to roles, statuses are covered in more
detail in Chapter 6.

Network device inventory data models

Platform

The platform model is an example in the core data model of something abstract that can be implemented
to suit your needs, or simply ignored. This model is commonly used to specify the software family or
even the specific version that a device is running. This is of course done by defining a platform instance
and then optionally relating it to a device. The platform model also has special attributes related to
Nautobot’s built-in NAPALM integration feature set and these are used to tell NAPALM what driver
and configuration options to use for a given device connection. More on that later.

Virtual chassis

Virtual chassis is a device deployment-specific model that allows you to track switch stacks or instances
of multiple devices that share a common control plane, such as the Cisco StackWise or Juniper virtual
chassis products. In Nautobot, you create a virtual chassis by grouping two or more member devices,
specifying a master device from that group, and assigning membership priority values. Then, when
dealing with components of the virtual chassis, we have an aggregate of all components (like interfaces)
across all members. Virtual chassis are covered in more detail in Chapter 5.

Virtual Chassis

s N
Switch Member 0
(master)
. J
(-)
' ™
Switch Member 1
S J
(- N)
Switch Member 2

Figure 2.14 - A virtual chassis depicting a three-member switch stack (such as
Cisco StackWise or Juniper VC, and their backplane connectivity)

Device redundancy groups

Related in nature but serving a different set of networking use cases is the device redundancy group
model. The intent here is to model High Availability (HA) topologies involving separate control
planes. Examples of this are two routers participating in an ECMP topology or perhaps a set of
firewalls with some form of proprietary failover mechanism. We are tracking clusters of devices that
have some form of HA, so an individual device may only be a member of one group at a time, and

43

a4

Nautobot Data Models

carries a membership priority value for that group. The group itself designates an HA strategy, either
active/active or active/passive.

The following diagram shows one example use of device redundancy groups wherein pairs of routers
are participating in a redundant ECMP topology.

Device Redundancy Groups

/

— —
— -

Figure 2.15 - Redundant ECMP topology using device redundancy groups

Note that device redundancy groups are covered in much more detail in Chapter 5.

Interface redundancy groups

Interface redundancy groups are similar in concept, but are designed to group interfaces that share a
single virtual address, typically used in redundancy protocols such as HSRP or VRRP to provide fault-
tolerant default gateways in networks. These groups must be created prior to assigning interfaces to
them, ensuring proper setup and configuration. While their primary design is for first-hop redundancy
protocols, they are versatile enough to represent any grouping of redundant interfaces, regardless
of addressing or not. Adding interfaces to these groups requires setting a priority value for each
interface, dependent on the redundancy protocol used, such as a range of 1 to 255 for HSRP. Optional
features include associating an IP address with the group to act as the virtual address, specifying the
redundancy protocol (such as HSRP, VRRP, GLBP, or CARP), using secrets groups to store sensitive
information such as authentication keys, and including a protocol group ID, which can be either an
integer or a text label up to 50 characters long. Like device redundancy groups, the flexibility in the

Network device inventory data models

model means you can use the feature in a number of ways. For example, it is not uncommon to use

interface redundancy groups to express circuit redundancy at a site by terminating circuits to interfaces
participating in a group.

D0 — D00
] LAG> <LAG>

LAG 4| [P

[Interface Redundancy Group
4 Interfaces across 2 Devices

"Min=0
1Mninr=0
"min=0

Figure 2.16 — Two-switch MC-LAG topology

The diagram shows a two-switch MC-LAG topology, where an interface redundancy group is used to

track the aggregate of interface members across devices and is where config such as virtual Layer-3
addresses live.

Racks

Racks are another cornerstone of tracking a physical device plant. In Nautobot, a rack specifies its
position within a location and its dimensions, in terms of width and total number of units that can be
populated. It is not required to make use of racks at all in Nautobot, as evidenced by the data model

relationship between devices and racks being options. Here is an example of viewing an example of
a rack in Nautobot:

45

46

Nautobot Data Models

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31

If you do wish to “rack” a device, you specify the relevant attributes on the Device instance. Those
are the rack to assign the device to, the base (bottommost) used to install the device inside the rack,
and the face (front or back) of the rack. The height of the device (measured in whole rack units) is
specified in the device type. You have the option of reserving space in a rack, which will block devices
from occupying such space at the data model level.

Going beyond just viewing racks in Nautobot, you can also populate a floor plan with racks to view

Front

ams01-leaf-01

ams01-edge-01

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31

Rear

VO I IS

amSUIEedges0

Figure 2.17 — Front and rear rack views shown on a detailed rack view

an end-to-end layout of a given room, as can be seen in the following screenshot:

Network device inventory data models

Floor Plan for Location "Room-04"

Use scroll wheel to zoom in or out. Click and drag to scroll.

1 2 3 4 5 6 7 8 9 10
1 (-] (-] (+] (] (-] (-] (<] (<] (-] (]
Reserved [X)
Rack 04F
2 Planned [+ [+
0/21RU 0/21RU
® Unavaiable % ® Unavaiable X
3 ©
4 (-] (-] (-] (-] (]
5 [} [+]
Rack 04C
6 Deprecated [+] [+]
0/42 RU
7 [} [+] [+]

Figure 2.18 — Data center floor plan view with the Nautobot floor plan app

In order to place and view racks on a floor plan, you need to use the Nautobot floor plan app.

Rack groups

Rack groups allow you to build a nestable hierarchy of rack groups that in practice are used to represent
entities such as network closets, floors in a building, rows and cages in a data center, and so on. Their
use is optional, but a rack may be assigned to only one group.

Locations

Locations are an example of an organizational model that is ancillary to the network data model
but still very useful in aggregating assets and other aspects of our network data. Broadly speaking,
locations are any entity in which you might place network assets or associate some context, such as a
prefix or VLAN. The location model is very flexible, allowing you to define a hierarchy that suits your
needs. An example might be countries divided by business regions, or you might create states in the
USA. The Location model is also great for modeling more fine-grained physical entities such as the

47

48

Nautobot Data Models

buildings on a campus, floors in those buildings, or even network closets on those floors. Locations are
not limited to just the physical world, though; you can also use them to designate logical areas in your
network. Locations have a name, a linkage to their parent (within the user-defined hierarchy), and a
set of metadata fields, such as contact name, email, phone number, address, and so on. A few models
in Nautobot require assignment to a location, including devices and racks. Several others allow the
optional association to a location, including VLANS, and in some cases (like VLANs) certain feature
sets are augmented based on the assignment of a location.

Location type

The location type model is the underpinning of the user-definable hierarchy. You define a set of types
and how they relate to one another in terms of the parent/child tiering. So, from our earlier example, a
hierarchy of Country | City | Building would be represented as three location types with the relevant
parent relationships set. Location types also designate what other types of objects may relate to a given
location. For example, if you wanted to ensure that all devices are assigned to a building, and not simply
a country, the location type is the place to define that constraint. The following screenshot shows an
example that nests three location types for a higher-education use case in a university. It includes a
Campus | Building | IDF hierarchy, and here it is shown in the Nautobot UL

ams01-sw-01
n Sept. 21,2023 12:00 a.m. | e 0 minutes ago

Device | Advanced Interfaces @) Console Ports @) Power Ports @)

Device

Location NTC University West Coast (Campus)
l, Crament Library (Building)
|, Computer Lab IDF (IDF)

Figure 2.19 - Viewing user-defined location types in use for a single device

These location types are completely configurable to make sure you and your user base understand
the data in your vocabulary.

Tenants

Tenants

In Nautobot, tenants represent distinct groupings of resources, commonly used for administrative
segmentation within an organization. They are typically utilized to symbolize individual customers or
internal departments. A wide range of objects within Nautobot can be assigned to tenants, including
locations, racks, rack reservations, devices, VRFs, prefixes, [P addresses, VLANS, circuits, clusters, and
virtual machines. This assignment is crucial for indicating the ownership or association of a specific
object with a particular tenant, thereby organizing the network resources efficiently.

For instance, if a rack is exclusively serving a specific customer, it would be assigned to the tenant instance
representing that customer. In a service provider scenario, a container network may be split into many
child subnets, each of which is assigned to a particular tenant that relates to a customer environment.

>>> Wayne Enterprises
n Jan. 17, 2024 8:45 p.m. | 0 1 minute ago

Tenant | Advanced Notes (Changelog DataCompliance

Tenant
Tenant Group ABC Holding Corp — Customer Accounts —+ Conglomerates

Description —

Figure 2.20 - Viewing a tenant definition inside of a user-defined tenant group hierarchy

Additionally, tenants can be grouped together for better organization. Custom groups such as “Customers”
and “Departments” can be created, with the assignment of tenants to these groups being optional. This
grouping allows for more structured and understandable organization within Nautobot, especially in
scenarios where a clear distinction between different operational or customer segments is necessary.

Furthermore, Nautobot supports recursive nesting within tenant groups, enabling the creation of a
multi-level hierarchy. For example, under a broader “Customers” group, there could be subgroups for
individual tenants categorized by specific products or account teams. This hierarchical approach to
organizing tenants provides a flexible and scalable way to manage and represent various entities and
their relationships within an organization’s network infrastructure.

IPAM data models

The next major area of the network data model is for tracking IP Address Management (IPAM) data.
This includes IP addresses and subnets (called prefixes in Nautobot), but also other related models
such as VRFs, route targets, and VLANS.

49

50

Nautobot Data Models

Namespace
"MPLS Backbone"
Namespace "Corp" Prefixes
100.64.0.0/10
- 100.64.0.0/31
- 100.64.0.2/31

Namespace
Prefixes - ete (m "Customer A"
10.0.0.0/8) 100.64.0.0/31 \’
—— Prefixes
- 10.0.90.0/9 4 ’W‘ ﬂ\ 10.0.0.0/8
- 10.128.8.0/9 —— . 1en
AR 192.168.0.0/16

192.168.0.0/16

G

Namespace
"Customer B"
1 100.64.0.4/31
\am Prefixes
J / 1ee.sa.0.6/31
10.0.0.0/8

172.16.0.0/12

MPLS VRF
CustB

Namespace
mm "Customer C"
ooo 1
AN Prefixes

192.168.0.8/23
192.168.2.8/23

13?:':;9 ?;_’:;:_'&fg: J /“ 1ee.ea.e.10/31

Figure 2.21 — Various aspects of the Nautobot IPAM data model

192.168.0.0/23

"M "M <M <M
() () () ([~
N N A N

The preceding diagram describes the various aspects of the Nautobot IPAM data model. Take note
of the manner in which namespaces, devices, prefixes, and VRFs all play a part. In particular, this
diagram shows the uses of overlapping address space and duplicate network deployment scenarios.

Namespaces

In the IPAM domain in Nautobot, namespaces are integral for grouping and managing VRFs, prefixes,
and IP addresses. They act as boundaries or constraints for ensuring uniqueness and avoiding duplication
within IPAM data, where use of overlapping address space occurs. The single, default namespace
might suffice for simpler networks without overlapping prefixes or duplicate IP addresses, even with
thousands of IPAM records. However, in more complex scenarios, such as those of managed service
providers or large enterprises, multiple namespaces become essential to accurately model the network
and differentiate between records that might appear duplicate.

IPAM data models

Each namespace in Nautobot is identified by a name and a description, and optionally, it can be
linked to a specific location for informational purposes. Within any given namespace, there must be
only one record for each distinct VRE, prefix, or IP address. While a single record, such as a VRF or
a virtual IP address, may be utilized in various parts of the network—such as being configured on
multiple devices or assigned to multiple interfaces—it is treated as a singular network entity in these
instances, aligning with Nautobot’s data-modeling approach.

Nautobot’s implementation of namespaces particularly addresses scenarios where what appears to
be the same VRE, prefix, or IP address might actually represent distinct entities within a network.
This is especially relevant in situations such as corporate mergers, where overlapping network spaces
from different entities might need to coexist in parallel namespaces rather than being merged into a
single namespace. Another example could be an MSP that deploys network segments in an identical
fashion for each of its customers. This functionality ensures accurate and distinct representations of
network components in complex or evolving network environments.

Prefixes

A prefix represents an IPv4 or IPv6 network defined by a network address and mask in CIDR notation,
suchas 192.0.2.0/24. It includes only the network portion of an IP address, meaning all bits
outside the mask must be zero, except for /32 IPv4 and /128 IPv6 prefixes, which can represent
specific IP addresses. Each prefix is unique within a specified namespace and can optionally be linked
to a location or associated with one or more VRF instances. Those not assigned to a VRF are deemed
part of the global VRF within their namespace.

Prefixes have assigned statuses to indicate their operational state. Default statuses include Active for
in-use prefixes, Reserved for future use, and Deprecated for those no longer in use. Additionally,
prefixes can have an optional role, which is customizable and represents their function, such as
distinguishing between production and development environments. A prefix may also be linked to a
VLAN, aiding in correlating address spaces with Layer-2 domains. VLANSs can have multiple prefixes
associated with them. Prefixes can be assigned to an Regional Internet Registry (RIR) for tracking
authorization to use certain public IP spaces. The date allocated field is available to mark the
allocation date of a prefix, whether by an RIR or for internal assignment.

The prefix model includes a type field with three options: Container, Network (default), and Pool. A
Pool type indicates that every IP within the range is assignable, while Network type assumes the first
and last IP addresses in an IPv4 prefix are unusable. Nautobot organizes prefixes and IP addresses
into a hierarchy using the parent field. A Container type prefix should only have a Container parent;
a Network type should have a Container parent; and a Pool type should have a Network parent. Any
prefix can be a root prefix, meaning it has no parent. This hierarchical structure aids in managing and
understanding the relationships between different network segments.

51

52

Nautobot Data Models

; 10.128.0.0/16
| Type: Container 3

10.128.0.0/18 :
Type: Container :

10.128.0.0/24
Type: Network !
i 10.128.1.0/24 §
E Type: Pool :

10.128.64.0/21
Type: Network

Figure 2.22 — IPAM prefix hierarchy showing how /16 could be carved
up using Container, Network, and Pool prefix types

IP addresses

An IP address is its own model and is defined as a single host address, either IPv4 or IPv6, along
with its subnet mask, mirroring its real-world configuration on an interface. These IP addresses are
automatically organized under parent prefixes in accordance with the IP hierarchy. They do not have
direct assignments to namespaces or VRFs; instead, they inherit these attributes from their parent prefix.

Each IP address in Nautobot can be assigned an operational status and a functional role. The default
statuses are the same as those provided for prefixes. Functional roles, which are conceptual and not
customizable, include options such as ‘Loopback; ‘Secondary’, ‘Anycast, ‘VIP, and various roles for
redundancy protocols such as VRRP, HSRP, and GLBP. These roles help to indicate special attributes
or uses of an IP address. IP addresses can also be classified by types indicating specific functions,
such as ‘Host, ‘DHCP;, or ‘SLAAC’ The default type is “host”. This classification aids in identifying the

specific function or behavior of an IP address within the network.

An IP address in Nautobot can be linked to interfaces of devices or virtual machines, and an interface
may have multiple IP addresses assigned to it. Furthermore, each device or virtual machine can
designate one of its interface IPs as its primary IP for each address family (IPv4 and IPv6). Nautobot
also supports the designation of IP addresses as inside addresses for Network Address Translation
(NAT). This feature is useful for denoting translations between public and private IP spaces, and the
relationship is maintained bidirectionally.

IPAM data models

With regard to data modeling, the IP address model has a direct relationship to its parent prefix,
and this relationship aids in many areas, including the performance of working with deeply nested
address space.

RIRs

RIRs are recognized as authorities responsible for allocating globally routable IP address space. The
primary RIRs are ARIN (North America), RIPE (Europe, the Middle East, and parts of Central Asia),
APNIC (Asia-Pacific region), LACNIC (Latin America and the Caribbean), and AFRINIC (Africa).
In addition to these, Nautobot also treats certain RFCs, such as RFCs 1918 and 6598 that define
address spaces for internal use, as equivalent to RIRs. This categorization acknowledges these RFCs
as authorities owning specific address ranges. Nautobot provides flexibility in managing RIRs. Users
can create custom RIRs and assign prefixes to them as needed. The RIR model in Nautobot includes
a Boolean flag to indicate whether the RIR is designated for private IP space allocation only.

For practical application, consider an organization that has been allocated a specific IP range, such as
7.128.0.0/16, by ARIN. This organization also uses internal addressing as defined by RFC 1918.
In Nautobot, the organization would create two RIRs, one named “ARIN” for the publicly routable
space and another named “RFC 1918 for internal addressing. Subsequently, prefixes corresponding
to these address spaces would be created and assigned to their respective RIRs. This approach allows
for organized management of IP spaces, both public and private, ensuring clear documentation and
tracking of address allocations within the network.

VRFs

In Nautobot, a Virtual Routing and Forwarding (VRF) object is used to represent a VRF domain,
which functions as an isolated routing table. VRFs are instrumental in segmenting networks, commonly
used for isolating different customers or organizations within a network, or for managing overlapping
IP address spaces, such as multiple instances of the 10.0.0.0/8 space.

Each VREF is given a name and a route distinguisher, which must be unique within the namespace
to which the VRF is assigned. VRFs in Nautobot can be associated with specific tenants, aiding in
organizing and managing the IP space according to customer or internal user groups. This association
is particularly useful for service providers or large organizations managing multiple customer networks.
Additionally, VRFs can have import and export route targets. These are used in Layer-3 VPNs (L3VPNs)
to control the exchange of routes (or prefixes) among different VRFs, facilitating the selective sharing
of routing information across different segments of the network.

In terms of IP address management, prefixes and their contained IP addresses can be assigned to one
or more VRFs within their namespace. This flexibility allows for the alignment of IP address usage
with the specific requirements of different parts of the network. Any prefix or IP address not assigned
to a specific VRF is considered part of the implied “global” VRF within its namespace. It is important
to note that this “global” VRF is distinct from any other “global” namespace, which might contain
several different VRFs.

53

54

Nautobot Data Models

Route targets

A route target is used as an extended BGP community for controlling route redistribution among
VRE tables, especially in L3VPNs. Each route target is assigned a unique name following the format
prescribed by RFC 4364, similar to VRF route distinguishers. In Nautobot, route targets are linked to
individual VRFs as either import or export targets to accurately model route exchange in an L3VPN.
Additionally, route targets can be optionally associated with a tenant and tagged, providing further
organizational capabilities within the network.

Note
For more advanced BGP modeling capabilities, see the Nautobot BGP app.

VLANs and VLAN groups

VLANS are used to represent isolated Layer-2 domains, as defined by IEEE 802.1Q. Each VLAN is
identified by a unique name and a numeric ID that ranges from 1 to 4094. VLANs in Nautobot can
be assigned to a location, a tenant, or a VLAN group. Each VLAN is required to have an assigned
status and, like prefixes, can also be assigned a functional role.

VLAN:S have relationships to prefixes and device interfaces. Prefixes, of course, track which Layer-3
networks reside on the VLAN. Nautobot also allows proper modeling of 802.1Q by way of tracking
tagged and untagged VLANs on individual interfaces. While one might expect a relationship directly
between VLAN and device, the interface tagging is more meaningful to the device configuration and
through understanding of the overall network data model, we are able to derive all VLANS relevant
to a device, through its interfaces.

VLAN groups in Nautobot serve as a means to organize VLANs. Each VLAN group can be optionally
linked to a specific location. VLAN groups are particularly useful for enforcing uniqueness among
VLANS: within a group, each VLAN must have a unique ID and name. In terms of network management,
this is helpful in distinguishing discrete VLANs when repeated in various network segments/topologies
that are designed to look the same way, such as branch offices.

Please also note that VLANS not assigned to any group can have overlapping names and IDs, even if
they belong to the same location. For instance, it’s possible to have two VLANSs with the ID 123, but
they cannot be part of the same VLAN group.

Circuits data models

The circuit domain is the other large area of the network model. Here you can track your providers’
details and certainly your inventory of circuits, but also how those circuits connect to the network.
There are also abstractions that allow you to model your provider networks, which you do not control
but that play a role in connectivity.

Circuits data models

e ™
Circuits
7 ~
[Circuits J
{ Circuit Terminations }
{ Circuit Types]
[Providers J
[Provider Networks]
N Y,
. Y,

Figure 2.23 — Overview of the circuits data model provided in Nautobot

Circuits

Circuits in Nautobot play a crucial role in representing the physical connectivity within a network,
much like the device types and devices do for hardware. At its core, a circuit in Nautobot is defined
as a communications link that connects exactly two endpoints, known as A and Z terminations. This
model allows for a flexible representation of a circuit’s connection points; it's not uncommon to define
only one termination, especially in cases where the details of the provider side, such as in internet
access circuits, are not a primary concern. However, for more complex setups, such as private network
connections linking customer locations, both terminations are typically modeled to accurately reflect
the network’s physical layout.

Every instance of a circuit in Nautobot is linked to a provider. This relationship is akin to how devices
are linked to device types. Additionally, each circuit is categorized by a user-defined type, allowing
for a detailed and customized classification of the network’s various connections. For instance, a
network might utilize internet access circuits from one provider and private MPLS circuits from
another, each distinctly identified by their type. Circuits are primarily identified by the combination
of their provider and unique circuit ID. Nautobot also introduces a robust status system for circuits,
with default statuses encompassing the entire lifecycle of a circuit—from Planned and Provisioning
to Active, Offline, Deprovisioning, and eventually Decommissioned. These statuses are also fully
customizable, with more detail later in the chapter. Circuits in Nautobot can be enriched with several
optional fields. These fields include the installation date and commit rate, adding layers of detail similar
to how device types track attributes such as manufacturer and model number. Additionally, just as
devices can be attributed to a location or tenant, circuits may also be assigned to Nautobot tenants,
providing a clear demarcation of responsibility and ownership within the network’s infrastructure.

55

56

Nautobot Data Models

Circuit terminations

A circuit termination in Nautobot is essentially the point where a circuit connects to a specific location
or device, capturing the physical reality of network connectivity. A circuit in Nautobot can have up
to two terminations, labeled as A and Z, echoing the common practice in networking of identifying
the two ends of a link. The flexibility of having either one or two terminations allows for various use
cases: a single-termination circuit is apt for scenarios where the far end of the circuit is unknown or
irrelevant, such as an internet access circuit connecting to a transit provider. On the other hand, a
dual-termination circuit is instrumental in tracking circuits that link two specific locations, mirroring
the physical connection between them.

Circuit Termination: A side

Circuit Termination: Z side

ID: 123
Device B

Provider
ATT

Circuit type: MPLS

ID: 456

Circuit type: DIA

. Circuit Termination: Z side

Device C

Figure 2.24 - A diagram showing various circuits terminated to devices

Each termination of a circuit is associated with either a specific location or a provider network. When
linked to a location, a termination may be further detailed by connecting it via a cable to a particular
device interface or port within that location, much like how devices are connected to the network. This
level of granularity allows for precise tracking and management of network connections. Furthermore,
each circuit termination is required to have an assigned port speed, mirroring the operational parameters
of the network. Additionally, it can optionally have an upstream speed defined, especially relevant in
scenarios where downstream and upstream speeds differ, such as with DOCSIS cable modems. This
mirrors the attention to detail seen in other aspects of Nautobot’s data model, such as the specific
attributes of devices and device types.

In line with Nautobot’s philosophy of closely modeling the real-world configurations, a circuit is
restricted to connecting only to physical interfaces. This means circuits cannot terminate at virtual
interfaces, such as LAG interfaces. In scenarios where a circuit connects to a LAG, each physical
member of the LAG must have its separate circuit, and each one must be modeled discretely. This
approach ensures that the Nautobot model stays true to the actual physical layout and functioning of
the network, ensuring accuracy and clarity in network documentation and management.

Circuits data models

Circuit types

Circuit types in Nautobot are entirely customizable, offering a high degree of flexibility to adapt to
the specific needs and terminologies of different network environments. The primary purpose of
defining circuit types is to convey the nature of the service being delivered over a particular circuit.
By categorizing circuits based on their function, network administrators can easily understand and
manage the various types of connectivity within their infrastructure. This is especially important in
complex networks where different types of circuits serve distinct roles.

Examples of commonly defined circuit types in Nautobot include the following:

o Internet Transit
o Out-of-Band Connectivity
o Peering

o Private Backhaul

Circuit providers

A circuit provider is defined as any entity that facilitates connectivity, whether between different
locations or within a single location in Nautobot. This broad definition encompasses a variety of
entities, not limited to traditional carriers, but also including internet exchange points, and even
organizations that are direct peering partners. The role of a circuit provider is fundamental in the
configuration of circuits in Nautobot.

Providers
O Name ASN Account number Circuits
O ATaT 7018 — 0
O Cogent 174 — 0
(J Deutsche Telekom 3320 — 0
O ¢TT 3257 — 0

Figure 2.25 - Circuit Providers table (list) view

Each circuit must be linked to a specific provider, ensuring that there’s clear documentation of the
entity responsible for the connectivity service. Providers can be detailed with additional attributes,
enhancing the depth of information available for network management, such as ASNs, customer
account numbers, or contact information.

57

