
Let’s Play
Programmieren lernen mit

Java und Minecraft

Daniel Braun

Let’s Play
Programmieren lernen mit

Java und Minecraft

Plugins erstellen ohne Vorkenntnisse

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische
Daten sind im Internet über <http://dnb.d-nb.de> abrufbar.

ISBN 978-3-7475-0782-7
5. Auflage 2023

www.mitp.de
E-Mail: mitp-verlag@sigloch.de
Telefon: +49 7953 / 7189 - 079
Telefax: +49 7953 / 7189 - 082

© 2023 mitp Verlags GmbH & Co. KG, Frechen

KEIN OFFIZIELLES MINECRAFT-PRODUKT.
NICHT VON MOJANG GENEHMIGT ODER MIT MOJANG VERBUNDEN.

Minecraft and its graphics are a trademark of Mojang Synergies AB.

Dieses Werk, einschließlich aller seiner Teile, ist urheberrechtlich geschützt.
Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist
ohne Zustimmung des Verlages unzulässig und strafbar. Dies gilt insbesondere
für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die
Einspeicherung und Verarbeitung in elektronischen Systemen.
Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen
usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht
zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und
Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von
jedermann benutzt werden dürften.

Lektorat: Sabine Schulz, Nicole Winkel
Sprachkorrektorat: Petra Heubach-Erdmann, Knut Lorenzen
Coverbild: Daniel Braun
Satz: III-satz, Kiel, www.drei-satz.de

http://dnb.d-nb.de
http://www.mitp.de
http://www.drei-satz.de

Inhalt

Einleitung . 11

Kapitel 1 Java 15

1.1 Programmiersprachen . 15
1.2 Besonderheiten von Java . 17
1.3 Installation und Einrichtung . 18

1.3.1 Java-Compiler installieren . 20
1.3.2 Ordner einrichten . 22

1.4 Editor . 23
1.5 Zusammenfassung . 24

Kapitel 2 Minecraft-Server 25

2.1 Installation . 26
2.1.1 CraftBukkit . 26
2.1.2 Spigot . 28

2.2 Konfiguration . 31
2.3 Befehle . 36
2.4 Verbinden . 38
2.5 Updates . 41

Kapitel 3 Das erste Plugin 43

3.1 Programmieren . 43
3.2 Kompilieren . 46

3.2.1 Fehler finden . 47
3.2.2 Jar-Datei erstellen . 49

3.3 Starten . 50
3.4 Entdecken . 52
3.5 Rätsel . 53
3.6 Zusammenfassung . 53
5

Inhalt
Kapitel 4 Chat-Befehle 55

4.1 Eigene Befehle definieren . 56
4.2 Chat-Nachrichten versenden . 60
4.3 Rätsel . 61
4.4 Zusammenfassung . 61

Kapitel 5 Eclipse installieren und einrichten 63

5.1 Installation . 63
5.2 Einrichtung . 64
5.3 Ein neues Projekt anlegen . 65
5.4 Neue Dateien in einem Projekt anlegen 67

5.4.1 Java-Datei . 68
5.4.2 Info-Datei . 70

5.5 Kompilieren und packen . 70

Kapitel 6 Variablen und Konstanten 73

6.1 Variablen . 73
6.1.1 Zahlen . 74
6.1.2 Zeichenketten . 77
6.1.3 Konvertierung . 82
6.1.4 Arrays . 93

6.2 Konstanten . 95
6.3 Rätsel . 96
6.4 Zusammenfassung . 97

Kapitel 7 Schleifen 101

7.1 Kürbis-Plugin . 101
7.1.1 Positionierung . 102
7.1.2 Blöcke platzieren . 104

7.2 Die verschiedenen Schleifen . 107
7.2.1 for-Schleife . 108
7.2.2 while-Schleife . 112
7.2.3 do-while-Schleife . 117
7.2.4 Verschachtelte Schleifen . 118
6

Inhalt
7.3 Rätsel . 122
7.4 Zusammenfassung . 124

Kapitel 8 Verzweigungen 127

8.1 if-Verzweigung . 127
8.2 case-Verzweigung . 134
8.3 Rätsel . 136
8.4 Zusammenfassung . 137

Kapitel 9 Funktionen 139

9.1 Deklaration von Funktionen . 139
9.2 Rückgabewerte . 140
9.3 Parameter . 141
9.4 Anwendungsbeispiel . 142
9.5 Rätsel . 146
9.6 Zusammenfassung . 147

Kapitel 10 Klassen und Objekte 149

10.1 Die ganze Welt ist ein Objekt . 149
10.2 Erstellung einer eigenen Klasse . 152
10.3 Funktionen in Klassen . 156
10.4 Zugriffskontrolle . 163
10.5 Vererbung . 165
10.6 Abstrakte Methoden und Klassen . 170
10.7 Bau-Plugin . 173
10.8 Rätsel . 179
10.9 Zusammenfassung . 179

Kapitel 11 Bauen 183

11.1 Notunterkunft . 183
11.1.1 Wände und Decke . 184
11.1.2 Tür . 189
11.1.3 Bett . 193
11.1.4 Fackel . 196
7

Inhalt
11.2 Runde Objekte . 200
11.2.1 Kreise . 200
11.2.2 Kugeln . 205

11.3 Zusammenfassung . 208

Kapitel 12 Schilder 209

12.1 Hängende Schilder . 209
12.2 Stehende Schilder . 210
12.3 Text festlegen . 212

12.3.1 Farbe . 213
12.3.2 Formatierung . 215

12.4 Schilder-Plugin (Listen) . 216
12.4.1 Listen-Grundlagen . 217
12.4.2 Das Plugin . 220

12.5 Rätsel . 236
12.6 Zusammenfassung . 237

Kapitel 13 Listener 239

13.1 Grundgerüst . 239
13.2 Spieler-Events . 240
13.3 Kreaturen-Events . 247
13.4 Block-Events . 251
13.5 Inventar-Events . 254
13.6 Server-Events . 255
13.7 Fahrzeug-Events . 256
13.8 Wetter-Events . 257
13.9 Welt-Events . 257

13.10 Mehrere Listener in einem Plugin . 258
13.11 Zusammenfassung . 260

Kapitel 14 Crafting-Rezepte 261

14.1 Rezepte festlegen . 261
14.2 Eigene Rezepte entwerfen . 264
14.3 Feuerschwert . 265
14.4 Enderbogen . 269
8

Inhalt
14.5 Rätsel . 272
14.6 Zusammenfassung . 272

Kapitel 15 Informationen dauerhaft speichern 275

15.1 Konfigurationsdateien . 275
15.1.1 Lesen . 275
15.1.2 Schreiben . 278

15.2 Objekte in Dateien speichern . 281
15.3 Zusammenfassung . 296

Kapitel 16 Eigene Spielmodi entwickeln 299

16.1 Schneeballschlacht . 299
16.1.1 Schneebälle verteilen . 300
16.1.2 Schneebälle automatisch auffüllen 302
16.1.3 Punkte zählen . 303
16.1.4 Highscore-Liste anzeigen . 306
16.1.5 Vollständiger Quellcode . 308

16.2 Sammelspiel . 310
16.2.1 Aufbau des Plugins . 310
16.2.2 Plugin starten . 311
16.2.3 Spieler betritt den Server . 313
16.2.4 Gegenstände zählen . 314
16.2.5 Auftrag anzeigen . 315
16.2.6 Vollständiger Quellcode . 316

16.3 Rätsel . 317
16.4 Zusammenfassung . 318

Kapitel 17 Eigenständige Java-Programme 321

17.1 Grundgerüst . 321
17.2 Statische Variablen und Funktionen . 322
17.3 Ein- und Ausgabe . 324

17.3.1 »Hallo Welt!«-Programm . 324
17.3.2 Eingaben . 325

17.4 Quiz programmieren . 326
9

Inhalt
Anhang A Rätsel-Lösungen 333

Anhang B Befehlsreferenz 341

Anhang C Materialien 359

Index . 373
10

Einleitung

Liebe Leserinnen und Leser,

die Welt von Minecraft steckt voller Dinge, die es zu entdecken gilt. Verschiedene Land-
schaften, Hunderte verschiedene Gegenstände und allerlei Tiere und Monster sind nur
einige der Dinge, die dich erwarten.

Irgendwann ist aber selbst diese Vielzahl an Möglichkeiten erschöpft und man hat das
Gefühl, alles schon einmal gesehen oder gemacht zu haben. Wenn es dir so geht, dann
ist dieses Buch genau das Richtige für dich. Denn im Verlaufe dieses Buches lernst du,
wie man mithilfe von Java und dem Bukkit- oder Spigot-Server eigene Erweiterungen für
Minecraft programmiert, sogenannte Plugins, die du dann zusammen mit deinen Freun-
den auf deinem eigenen Minecraft-Server ausprobieren kannst.

Egal ob du neue Crafting-Rezepte entwerfen möchtest, ganze Häuser mit einem einfa-
chen Chat-Befehl bauen oder sogar einen eigenen Spielmodus programmieren möch-
test, mit eigenen Plugins steckt die Welt von Minecraft wieder voller Herausforderungen
und Dingen, die entdeckt werden wollen. Und ganz nebenbei lernst du auch noch zu pro-
grammieren – und wer weiß, vielleicht kommt das nächste Minecraft eines Tages von dir!

Bevor es so weit ist, liegt allerdings noch ein ordentliches Stück Weg vor dir. Die ersten
beiden Kapitel dieses Buches beschäftigen sich deshalb zunächst einmal damit, wie du
deinen Computer für das Programmieren und Testen eigener Plugins vorbereitest. Dazu
wird dir erklärt, wie du den Bukkit- oder Spigot-Server installierst, der in diesem Buch
verwendet wird, ihn nach deinen Wünschen konfigurierst und wie du deinen Computer
so einrichtest, dass du Java-Programme schreiben kannst.

Direkt im Anschluss geht es im dritten Kapitel ohne Umschweife direkt los mit dem Pro-
grammieren deines ersten eigenen Plugins. Die ersten Schritte werden dir vielleicht
noch etwas unspektakulär vorkommen, aber mit jedem der folgenden Kapitel wirst du
immer mehr Möglichkeiten haben, um immer ausgeklügeltere Plugins zu programmie-
ren. Schon im vierten Kapitel wirst du zum Beispiel lernen, wie du eigene Chat-Befehle
programmieren und verwenden kannst.

In Kapitel 5 lernst du Eclipse kennen, einen Editor, der dich beim Programmieren
von Plugins mit vielen nützlichen Funktionen unterstützen kann. Die Kapitel 6 bis 10
beschäftigen sich mit grundlegenden Konzepten des Programmierens im Allgemeinen
und der Programmiersprache Java im Besonderen. Was du hier liest, wird dir nicht nur
beim Programmieren von Minecraft-Plugins helfen, sondern beim Programmieren jedes
Programms in jeder Programmiersprache. Trotzdem entstehen dabei natürlich auch
einige praktische kleine Plugins wie zum Beispiel das Mauer-Plugin, das es dir erlaubt,
mit einem einfachen Chat-Befehl auf die Schnelle eine Mauer zu bauen – wenn du möch-
test, sogar aus purem Gold.
11

Einleitung
Das elfte Kapitel widmet sich dann ganz der Baukunst. Häuser, Schilder, Kreise und
Kugeln – hier wird kein Block auf dem anderen gelassen. Und wenn du schon einmal ver-
sucht hast, eine Kugel in Minecraft von Hand zu bauen, dann wirst du ganz besonders
die Dienste des Kugel-Plugins zu schätzen wissen, das dir auf Knopfdruck eine nahezu
perfekte Kugel zaubern kann. Weiter geht es danach mit dem Bau von Schildern, denen
das gesamte zwölfte Kapitel gewidmet ist.

Und wenn dir selbst ein Knopfdruck noch zu viel ist, dann wird dir das dreizehnte Kapitel
besonders gefallen. Dort geht es nämlich um Plugins, die vollautomatisch auf Gescheh-
nisse in der Spielwelt reagieren. Egal ob ein Creeper über die Karte schleicht, ein Spieler
etwas isst oder ein Baum wächst: Hier lernst du, wie deinem Plugin nichts mehr von dem
entgeht, was auf deinem Server passiert, und natürlich auch, wie du darauf reagieren
kannst.

Falls du dich um die umherschleichenden Creeper aber doch lieber ganz manuell küm-
mern möchtest, kannst du die Informationen aus Kapitel 14 nutzen, um ganz eigene Waf-
fen zu kreieren. In diesem Kapitel geht es nämlich um das Erstellen eigener Crafting-
Rezepte und ein Beispiel, das dir dort begegnen wird, ist ein Rezept für ein Flam-
menschwert, das alles in Brand setzt, worauf es trifft.

Kapitel 15 ist dann wieder etwas technischer, aber nicht weniger nützlich. Hier lernst du
nämlich, wie du Informationen dauerhaft speichern kannst, die auch dann erhalten blei-
ben, wenn der Server zwischenzeitlich ausgeschaltet wird. Das ist zum Beispiel prak-
tisch, wenn du wie in Kapitel 16 eigene Spielmodi kreieren willst, also sozusagen ein
Spiel im Spiel. Wie wäre es zum Beispiel mit einem Schneeballschlacht-Mod mit eigener
Highscore-Liste, die die Treffer zählt? Oder lieber ein lustiges Suchspiel, bei dem der
Gewinner mit Erfahrungspunkten oder wertvollen Gegenständen belohnt wird? Ganz
wie du möchtest: Deiner Kreativität sind keine Grenzen gesetzt!

Im letzten Kapitel bekommst du dann noch einen kurzen Ausblick darauf, was du mit dei-
nen neu gewonnenen Programmierfähigkeiten noch anstellen kannst, außer Minecraft-
Plugins zu programmieren. Denn wenn du am Ende des Buches angelangt bist, hört der
Spaß noch lange nicht auf, denn dann hast du alle Werkzeuge und alles Wissen, das du
benötigst, um ganz eigene Plugins, ganz nach deinen Vorstellungen zu entwerfen. Dabei
helfen dir einige Listen im Anhang des Buches, in denen du Befehle und besonders häu-
fig benötigte Dinge schnell nachschlagen kannst. Denn egal wie erfahren man als Pro-
grammierer ist, alles kann und muss man nicht auswendig können, man muss nur wis-
sen, wo man es nachschlagen kann – und genau dazu dient der Anhang dieses Buches.

Für Fragen, Kritik oder Anregungen zum Buch oder generell zu Minecraft-Plugins,
kannst du mich gerne jederzeit kontaktieren. Du erreichst mich per Mail an info@
daniel-braun.com oder über meine Website www.daniel-braun.com.
12

www.daniel-braun.com

 Einleitung
Mein besonderer Dank gilt Karl-Heinz Barzen, der den Entstehungsprozess dieses
Buches unermüdlich mit zahlreichen hilfreichen Kommentaren und Anmerkungen be-
gleitet und damit einen wichtigen Beitrag dazu geleistet hat, dass dieses Buch mög-
lichst verständlich und einsteigerfreundlich wird.

Nun wünsche ich dir aber vor allem viel Spaß beim Lesen, Programmieren und Ent-
decken!

Daniel Braun

Downloads zum Buch
Unter der Webadresse buch.daniel-braun.com findest du:

• Links zu allen Downloads, die du benötigst

• Alle Plugins, die du im Rahmen des Buches programmieren wirst, falls du den
Code nicht aus dem Buch abtippen möchtest
13

https://www.daniel-braun.com/buch/

Kapitel 1

Java
Ob bewusst oder unbewusst, eine der wichtigsten Entscheidungen, die man auf dem
Weg zum Programmierer zu treffen hat, hast du bereits getroffen: welche Programmier-
sprache du lernen möchtest. Mit diesem Buch hast du dich nämlich für die Programmier-
sprache Java entschieden. Bevor wir uns aber mit den Besonderheiten von Java beschäf-
tigen und damit, warum es eine gute Entscheidung ist, Java zu lernen, soll es zunächst
um die Frage gehen, was Programmiersprachen eigentlich sind und warum sie benötigt
werden.

1.1 Programmiersprachen
Beim Programmieren geht es im Wesentlichen darum, dass der Programmierer dem
Computer eine bestimmte Aufgabe gibt, die dieser erledigen soll. Damit er das kann,
braucht der Computer eine genaue Handlungsvorschrift, die auch Algorithmus genannt
wird. Auch im Alltag begegnen uns oft Handlungsvorschriften, zum Beispiel in Form
eines Rezepts:

1. 250 Gramm Mehl in eine Schüssel geben

2. 500 Milliliter Milch dazugeben

3. 2 Eier hinzugeben

4. Mit einer Prise Salz würzen

5. Umrühren

Fertig ist der Crêpes-Teig! Damit eine Handlungsvorschrift korrekt ausgeführt werden
kann, müssen sich beide Seiten auf eine gemeinsame Sprache einigen. Wenn dir jemand
ein Rezept auf Chinesisch gibt, kannst du vermutlich nicht viel damit anfangen.

Computer »sprechen« in Einsen und Nullen, also in einer Sprache, mit der Menschen
nicht besonders gut umgehen können. Unsere Sprache wiederum, egal ob es sich um
Deutsch, Englisch oder Chinesisch handelt, ist für den Computer viel zu ungenau. Neh-
men wir zum Beispiel den Satz: »Da vorne ist eine Bank.« Obwohl es sich dabei um einen
vollkommen korrekten deutschen Satz handelt, ist doch nicht eindeutig klar, was mit
dem Satz eigentlich gemeint ist. Steht da vorne eine Parkbank, auf die man sich setzen
kann, oder ist dort die Filiale einer Bank, auf der man Geld einzahlen und abheben kann?
15

1 Java
Es wäre ein recht kostspieliger Fehler, wenn dein Computer beim Online-Shoppen aus
Versehen die Deutsche Bank statt einer Bank für den Garten kauft.

Algorithmen müssen deshalb nicht nur Handlungsvorschriften sein, sie müssen eindeu-
tige Handlungsvorschriften sein. Auch mit Begriffen wie »eine Prise« kann ein Computer
wenig anfangen. Aus diesem Grund nutzen wir Programmiersprachen, denn sie ermög-
lichen es uns, eindeutige Handlungsvorschriften festzulegen. Und obwohl sie auf den
ersten Blick recht kompliziert scheinen, können wir sie doch leichter lernen als eine
Sprache aus Nullen und Einsen.

Damit der Computer die Programmiersprache auch versteht, muss sie aber zunächst
übersetzt werden, in die sogenannte Maschinensprache. Diese Übersetzung findet
durch ein Programm statt, das Compiler genannt wird. Das Ergebnis sind dann soge-
nannte Binärdateien, die vom Computer ausgeführt werden können. Diese Binärdateien
bestehen, wie in Abbildung 1.1 gezeigt, nur aus Nullen und Einsen.

Abbildung 1.1: Funktionsweise eines Compilers

Compiler

0101010
0000110
0011000
1001010
1001110

void main(){

int var1 = 0;
int var2 = 3;
....

}

16

1.2 Besonderheiten von Java
Der einfache Satz »Das ist ein Test.« wird so zum Beispiel zu einer 136 Zeichen langen
Kette aus Nullen und Einsen, die du in Listing 1.1 sehen kannst.

1.2 Besonderheiten von Java
Verschiedene Programmiersprachen haben verschiedene Vor- und Nachteile. Einige
sind besonders leicht zu erlernen, wie zum Beispiel Python, andere, wie zum Beispiel C,
sind besonders für zeitkritische Anwendungen geeignet, also Anwendungen, bei denen
es auf schnelle Reaktionszeiten ankommt, und wieder andere sind besonders universell
einsetzbar, wie zum Beispiel Java. Die eine »richtige« oder »beste« Programmiersprache
gibt es daher nicht – je nach Anwendungsfall kann der Einsatz einer anderen Program-
miersprache sinnvoll sein.

Der Hauptgrund, warum wir Java zum Programmieren unserer Plugins verwenden, ist,
dass sowohl Minecraft selbst als auch der Minecraft-Server in Java programmiert sind.
Außerdem können Java-Programme, im Gegensatz zu vielen in anderen Programmier-
sprachen geschriebenen Programmen, problemlos auf allen gängigen Betriebssyste-
men ausgeführt werden, also insbesondere auf Windows, GNU/Linux und macOS.

Damit das möglich ist, funktioniert der Java-Compiler anders als andere Compiler. Er
wandelt die Programmiersprache nicht sofort in Maschinencode um, sondern zunächst
in den sogenannten Java-Bytecode. Dieser ist ein Zwischenschritt zwischen der für
Menschen gut lesbaren Programmiersprache und dem für den Computer gut lesbaren
Maschinencode. Erst die sogenannte Java Virtual Machine (JVM) wandelt das Programm
in Maschinencode um.

Der Vorteil: Statt jedes Programm in Maschinencode für jedes Betriebssystem, also zum
Beispiel Windows, macOS und GNU/Linux übersetzen zu müssen, muss nur ein Pro-
gramm, nämlich die Java Virtual Machine, für jedes Betriebssystem übersetzt werden –
und das bedeutet deutlich weniger Aufwand.

01000100 01100001 01110011 00100000 01101001 01110011 01110100 00100000
01100101 01101001 01101110 00100000 01010100 01100101 01110011 01110100
00101110

Listing 1.1: Binärcodierung von »Das ist ein Test.«

Merke
• Ein Algorithmus ist eine eindeutige Handlungsvorschrift.

• Der Compiler übersetzt Programmiersprache in Maschinensprache.

• Eine Binärdatei besteht aus Nullen und Einsen.
17

1 Java
Abbildung 1.2: Funktionsweise des Java-Compilers

1.3 Installation und Einrichtung
Bevor du mit dem eigentlichen Programmieren loslegen kannst, musst du daher dafür
sorgen, dass auf deinem Computer sowohl die Java Virtual Machine als auch der Java-
Compiler installiert sind. Auf manchen Systemen, insbesondere GNU/Linux-Systemen,

Java Compiler

iload_0
iload_1
iadd
ireturn
iconst_4
iconst_2
invokestatic [f]

class Test {
public static
...
...

}

Java Virtual Machine

0101010
0000110
0011000
1001010
1001110
18

1.3 Installation und Einrichtung
sind beide Programme schon vorinstalliert. Um zu testen, ob das bei deinem System der
Fall ist, musst du zunächst die Eingabeaufforderung (Windows) beziehungsweise das
Terminal (GNU/Linux, macOS) öffnen, denn im Gegensatz zu den meisten modernen
Programmen, wie wir sie heute kennen, hat der Java Compiler keine grafische Ober-
fläche, sondern wird komplett über die Eingabeaufforderung bedient. Unter Windows
findest du die Eingabeaufforderung entweder, indem du den Namen einfach in das
Suchfeld im Startmenü eingibst, oder ebenfalls im Startmenü unter ZUBEHÖR. Unter
macOS findest du das Terminal im Ordner /Programme/Dienstprogramme oder indem
du in die Suche Terminal eingibst. In der Eingabeaufforderung beziehungsweise im
Terminal gibst du dann den Befehl javac ein und bestätigst die Eingabe mit der
(Enter)-Taste. Ist danach eine Ausgabe wie in Abbildung 1.3 zu sehen, ist der Java-
Compiler bereits korrekt auf deinem Computer installiert und du kannst direkt weiter zu
Abschnitt 1.3.2 springen. Bekommst du dagegen eine Meldung wie Der Befehl
"javac" ist entweder falsch geschrieben oder konnte nicht gefunden werden.
oder Ähnliches, so muss der Java-Compiler noch auf deinem Computer installiert werden.

Abbildung 1.3: Ausgabe bei korrekt installiertem Java-Compiler
19

1 Java
1.3.1 Java-Compiler installieren
Der Java-Compiler ist, wie auch die Java Virtual Machine, Teil des Java Development
Kit (JDK) und kann kostenlos heruntergeladen werden. Einen Link zum Download findest
du auf buch.daniel-braun.com.

Unter GNU/Linux kannst du Java direkt über den Paketmanager deiner Wahl installie-
ren. Unter macOS und Windows lädst du zunächst ein gepacktes Verzeichnis herunter,
das nach dem Download entpackt werden muss. Dieses Verzeichnis, das je nach Ver-
sion zum Beispiel den Namen jdk-20.0.2 trägt, kopierst du unter macOS in den Ord-
ner /library/Java/JavaVirtualMachines/ und unter Windows in ein beliebiges
Verzeichnis deiner Wahl, zum Beispiel direkt in C:\. Unter Windows musst du dieses
Verzeichnis dann noch zur sogenannte PATH-Variable hinzufügen. Dazu musst du
zunächst die erweiterten Systemeinstellungen deines Computers öffnen.

Unter Windows 8, 10 und 11 kannst du die erweiterten Systemeinstellungen öffnen,
indem du den Begriff einfach direkt in die Suche eingibst. Alternativ kannst du auch
zunächst mit der rechten Maustaste auf das Windows-Logo in der unteren linken Ecke
klicken und dort dann auf SYSTEM und in dem sich öffnenden Fenster wieder auf ERWEI-
TERTE SYSTEMEINSTELLUNGEN.

Nun solltest du, unabhängig von deiner verwendeten Windows-Version, das in Abbil-
dung 1.4 gezeigte Fenster sehen. Dort findest du in der rechten unteren Ecke einen But-
ton mit der Beschriftung UMGEBUNGSVARIABLEN. Bei einem Klick darauf öffnet sich das in
Abbildung 1.5 gezeigte Fenster.

Dort wählst du dann, wie in Abbildung 1.5 gezeigt, den Eintrag PATH aus und klickst
anschließend auf BEARBEITEN. Sollte der Eintrag nicht vorhanden sein, so kannst du
direkt zum nächsten Absatz springen. Danach öffnet sich ein langes Textfeld, in dem es
schon zahlreiche Einträge gibt, die auf keinen Fall geändert werden dürfen. Stattdessen
solltest du am Ende, abgetrennt durch ein Semikolon, den Pfad angeben, an dem du
zuvor das Java Development Kit installiert hast. Standardmäßig sähe das so aus:

C:\jdk-20.0.2\bin;

Je nachdem, welche Java-Version du installiert hast, kann der Pfad aber, insbesondere
bei der Versionsnummer, leicht abweichen. Daher solltest du unbedingt darauf achten,
den tatsächlichen Installationspfad zu nutzen. Danach musst du die Änderungen nur
noch mit OK und ÜBERNEHMEN bestätigen.
20

1.3 Installation und Einrichtung
Abbildung 1.4: Erweiterte Systemeinstellungen

Sollte es bei dir noch keinen Eintrag mit dem Namen PATH geben, so kannst du diesen
ganz einfach selbst anlegen. Dazu klickst du statt auf BEARBEITEN einfach auf NEU. Im
Fenster, das sich daraufhin öffnet, gibst du als NAME DER VARIABLEN das Wort PATH ein und
als WERT DER VARIABLEN den Pfad zur Installation, beendet durch ein Semikolon, und
bestätigst deine Eingabe mit OK.

Anschließend sollte der javac-Befehl dann in der Eingabeaufforderung funktionieren.
21

1 Java
Abbildung 1.5: Umgebungsvariablen

1.3.2 Ordner einrichten
Im Verlaufe des Buches wirst du zahlreiche Plugins programmieren, einige davon auch
in verschiedenen Versionen. Damit du darüber später leichter den Überblick behalten
kannst, solltest du jetzt schon vorsorgen.

Am besten legst du einen eigenen Ordner an, in dem du später alle Projekte aus dem
Buch speicherst. Prinzipiell kannst du diesen Ordner natürlich, wie den des Servers, wie-
der speichern, wo du möchtest. Es wird dir später aber das Leben erleichtern, wenn du
ihn im selben Verzeichnis wie den Server-Ordner platzierst, unter Windows also zum
Beispiel unter C:\ und unter GNU/Linux und macOS unter /home/Benutzername be-
ziehungsweise /Benutzer/Benutzername. Als Namen für den Ordner kannst du zum
Beispiel einfach plugins wählen.
22

1.4 Editor
1.4 Editor
Damit sind auch fast alle Vorbereitungen abgeschlossen, die nötig sind, bevor es mit
dem Programmieren losgehen kann. Was dir jetzt noch fehlt, ist ein Programm zum
Schreiben deiner zukünftigen Plugins. Grundsätzlich kannst du dazu nahezu jedes Pro-
gramm verwenden, mit dem man Texte verfassen kann. Der mit Windows mitgelieferte
EDITOR, den du im Startmenü unter ZUBEHÖR findest, ist zum Beispiel völlig ausreichend.
macOS bringt das Programm TEXTEDIT mit, das sich im Ordner Programme befindet oder
über die Suche gefunden werden kann. Solltest du dich für den Windows-Editor ent-
scheiden, so musst du beim SPEICHERN darauf achten, dass du als DATEITYP den Eintrag
ALLE DATEIEN auswählst. Beim Programm TEXTEDIT sollte nach dem Neuanlegen eines
Dokuments der Menüpunkt FORMAT|IN REINEN TEXT UMWANDELN ausgewählt werden. Und
unabhängig davon, welches Programm du verwendest, solltest du beim Speichern an
den Dateinamen die Endung .java anhängen, damit dein Computer weiß, dass es sich
bei der gespeicherten Datei um Java-Code handelt.

Abbildung 1.6: Speichern von Dateien mit dem Windows-Editor

Wenn du es gerne etwas komfortabler hättest, kannst du aber auch einen Editor wählen,
der speziell dafür entwickelt wurde, Java-Programme zu schreiben. Solche Editoren bie-
ten dir in der Regel zahlreiche Komfortfunktionen wie das automatische Einfärben von
Quellcode, automatisches Einrücken oder sogar eine automatische Vervollständigung
23

1 Java
an. Einige Editoren, die besonders viele solcher Zusatzfunktionen mitbringen, nennt
man auch integrierte Entwicklungsumgebungen, oder englisch Integrated Develop-
ment Environment, kurz IDEs. Zu den bekanntesten Java-IDEs gehören zum Beispiel
Eclipse und NetBeans.

Diese sind mitunter allerdings sehr komplex zu bedienen. Fürs Erste solltest du daher
vielleicht einen etwas weniger umfangreichen Editor wählen, da du die meisten Funk-
tionen der großen IDEs anfangs ohnehin nicht nutzen wirst. Der Editor jEdit, der kosten-
los für alle gängigen Betriebssysteme erhältlich ist, bietet sich dafür zum Beispiel an.
Den Link zum Download sowie eine Installationsanleitung findest du ebenfalls unter
buch.daniel-braun.com.

Abbildung 1.7: jEdit

1.5 Zusammenfassung

Begriff Bedeutung

Algorithmus Eine eindeutige Handlungsvorschrift, die festlegt, was genau zum Beispiel
ein Programm tun soll.

Compiler Ein Programm, das Programmiersprache in Maschinensprache übersetzt.

Binärdatei Eine Datei, die Maschinensprache enthält, die nur aus Nullen und Einsen
besteht.
24

Kapitel 2

Minecraft-Server
Alleine Minecraft zu spielen, kann schon jede Menge Spaß machen, noch lustiger wird
es aber, wenn du dich mit anderen Spielern zusammentust, um mit ihnen oder auch
gegen sie zu spielen. Dazu kannst du dir entweder einen der Hunderten öffentlichen
Server aussuchen, die du überall im Internet findest, oder du kannst deinen eigenen
Server nutzen – dann hast du die volle Kontrolle über alle Einstellungen. Noch mehr
Spaß wird dir dein eigener Server machen, wenn du im Laufe des Buches lernst, immer
ausgefeiltere Plugins für ihn zu programmieren, mit denen du Minecraft nach deinen
Vorstellungen erweitern kannst.

Um deinen eigenen Server zu betreiben, benötigst du neben dem normalen Minecraft-
Spiel, das auch Client genannt wird, noch ein weiteres Programm, nämlich den Mine-
craft-Server. Den »normalen« Minecraft-Server, manchmal auch »Vanilla-Server« ge-
nannt, kannst du auf der offiziellen Minecraft-Webseite www.minecraft.net herunter-
laden. Neben dieser Version gibt es aber auch noch zahlreiche sogenannte Mods, also
Modifikationen des Original-Servers. Als Mods oder Modifikationen bezeichnet man im
Zusammenhang mit Spielen Versionen eines Spiels, die in irgendeiner Form verändert,
also modifiziert wurden. Diese meist von Fans entwickelten Mods bieten häufig viele
zusätzliche Funktionen und Annehmlichkeiten, über die der Vanilla-Server nicht verfügt,
wie zum Beispiel auch die Möglichkeit, eigene Plugins zu programmieren.

Dieses Buch ist für gleich zwei der beliebtesten Server ausgelegt. Du kannst dich ent-
scheiden zwischen dem CraftBukkit-Server, häufig auch einfach nur Bukkit genannt,
und dem Spigot-Server. Da der Spigot- auf dem Bukkit-Server aufbaut, funktionieren
alle Plugins, die wir im Rahmen dieses Buches programmieren werden, auf beiden Ser-
vern. Der einzige Unterschied liegt in der Administration der Server, hier bietet Spigot
mehr Möglichkeiten, ist dafür in der Bedienung aber auch etwas komplexer. Außerdem
ist der Spigot-Server etwas effizienter, was bedeutet, dass er insbesondere etwas weni-
ger Arbeitsspeicher (RAM) benötigt. Für Anfänger, die zum ersten Mal einen eigenen
Server betreiben, ist es daher ratsam, zunächst auf Bukkit zu setzen; wer schon Erfah-

Merke
Das normale Minecraft-Spiel, das du auch startest, wenn du alleine spielst, wird Client
genannt. Das Programm, das wir in diesem Kapitel installieren werden, das du benö-
tigst, um mit Freunden zusammen spielen zu können, heißt hingegen Server.
25

2 Minecraft-Server
rung mit der Verwaltung eines Minecraft-Servers hat, kann sich auch an Spigot heran-
trauen. Ein Wechsel ist ohnehin jederzeit möglich.

2.1 Installation
An dieser Stelle musst du dich nun entscheiden, welchen Server du zum Testen deiner
Plugins verwenden möchtest. Wenn du dich für den Bukkit-Server entscheidest, kannst
du in Abschnitt 2.1.1 weiterlesen; möchtest du lieber den Spigot-Server verwenden,
dann kannst du direkt zu Abschnitt 2.1.2 springen.

2.1.1 CraftBukkit
Einen Link zum Download der neuesten Version des Bukkit-Servers findest du auf der
Website zum Buch unter buch.daniel-braun.com. Dabei handelt es sich um eine einzelne
sogenannte Jar-Datei, die, je nach Version, zum Beispiel den Namen craftbukkit-
1.20.1.jar trägt. Zunächst solltest du einen leeren Ordner anlegen, in den du diese
Datei kopierst. Prinzipiell kannst du diesen Ordner nennen, wie du möchtest, im Ver-
laufe des Buches werden wir davon ausgehen, dass der Ordner den Namen server trägt
und in C:\server unter Windows, /home/Benutzername/server unter GNU/Linux
beziehungsweise /Users/Benutzername/server unter macOS abgelegt ist.

Um den Server nun zum ersten Mal zu starten, musst du zunächst wieder die Eingabe-
aufforderung beziehungsweise ein Terminal öffnen und in den Server-Ordner wechseln.
Das kannst du mithilfe des Befehls cd. Die englische Abkürzung steht für »change direc-
tory«, also »Ordner wechseln«, und genau das, also zwischen verschiedenen Ordnern
hin- und herwechseln, kann man mit diesem Befehl auch tun. Unter Windows gibst du
also zum Beispiel cd C:\server ein und unter GNU/Linux cd /home/Benutername/
server. Bist du erst einmal im richtigen Ordner, so kannst du den Server mit dem Be-
fehl java -jar craftbukkit-1.20.1.jar starten. Beim ersten Starten wirst du aber
zunächst einmal nur die in Abbildung 2.1 gezeigten Warnhinweise sehen.

Dort steht im Wesentlichen, dass du zunächst den Nutzungsbedingungen zustimmen
musst, bevor du den Server verwenden kannst. Wenn du jetzt einen Blick in deinen Ser-
ver-Ordner wirfst, dann wird dir auffallen, dass es dort, wie in Abbildung 2.2, nun zwei
weitere Dateien und einen Ordner gibt.

Merke
Der Server wird mit dem Befehl java -jar craftbukkit-1.20.1.jar gestartet.
Achte darauf, die Versionsnummer im Befehl an die von dir verwendete Server-Version
anzupassen.
26

2.1 Installation
Abbildung 2.1: Ausgabe nach dem ersten Starten des Servers

Abbildung 2.2: Inhalt des Server-Ordners nach dem ersten Start

Um den Nutzungsbedingungen zuzustimmen, musst du die dort nun vorhandene Datei
eula.txt öffnen. In dieser Datei findest du auch einen Link, unter dem du die Bedingun-
gen lesen kannst. Wenn du diesen Link öffnest, wirst du auf die offizielle Seite des
Minecraft-Herstellers Mojang geleitet, wo du die Nutzungsbedingungen glücklicher-
weise auch auf Deutsch vorfindest. Dort wird geregelt, was du mit dem Spiel und dem
Server machen darfst – und was nicht. Außerdem steht dort auch explizit, dass du, soll-
test du unter 18 sein, die Zustimmung eines gesetzlichen Vertreters einholen musst,
also zum Beispiel eines Elternteils. Auf jeden Fall solltest du die Bedingungen sorgfältig
lesen.

Den Inhalt der eula.txt findest du auch in Listing 2.1. Bist du mit den Bedingungen ein-
verstanden, so kannst du dies kenntlich machen, indem du die letzte Zeile der Datei von
eula=false zu eula=true änderst. Nur wenn du das tust, kannst du den Server benut-
zen. Genau das wird in der ersten Zeile der Datei auf Englisch erklärt.

Wenn du die Änderungen gespeichert hast, kannst du wieder versuchen, den Server mit
dem Befehl java -jar craftbukkit-1.20.1.jar zu starten. Der Startvorgang wird die-
ses Mal wahrscheinlich eine Weile dauern und es werden sehr viele Zeilen relativ schnell
über den Bildschirm laufen. Wichtig ist besonders die letzte Zeile. Steht dort so etwas wie
Done (13,370s)! For help, type "help" or "?", dann bedeutet das, dass dein Server
nun problemlos läuft. Ein erneuter Blick in den Server-Ordner wird dir zeigen, dass es dort
nun, wie in Abbildung 2.3 zu sehen, noch einmal deutlich mehr Dateien gibt.

#By changing the setting below to TRUE you are indicating your agreement
to our EULA (https://account.mojang.com/documents/minecraft_eula).
#Mon Apr 01 13:37:00 BST 2021
eula=false

Listing 2.1: Inhalt der Datei eula.txt
27

2 Minecraft-Server
Abbildung 2.3: Inhalt des Server-Ordners nach erfolgreichem Starten des Servers

2.1.2 Spigot
Einen Link zum Download der neuesten Version des Spigot-Servers findest auf der Web-
site zum Buch unter buch.daniel-braun.com. Dabei handelt es sich um eine einzelne
sogenannte Jar-Datei, die, je nach Version, zum Beispiel den Namen spigot-1.20.1.
jar trägt. Zunächst solltest du einen leeren Ordner anlegen, in den du diese Datei
kopierst. Prinzipiell kannst du diesen Ordner nennen, wie du möchtest, im Verlaufe des
Buches werden wir davon ausgehen, dass der Ordner den Namen server trägt und
unter Windows in C:\server, unter GNU/Linux in /home/Benutzername/server
beziehungsweise unter macOS in /Users/Benutzername/server abgelegt ist.

Um den Server zum ersten Mal zu starten, musst du zunächst wieder die Eingabeauffor-
derung beziehungsweise ein Terminal öffnen, und in den Server-Ordner wechseln. Das
kannst du mithilfe des Befehls cd. Unter Windows gibst du also zum Beispiel cd
C:\server ein und unter GNU/Linux cd /home/Benutzername/server. Bist du erst
einmal im richtigen Ordner, so kannst du den Server mit dem Befehl java -jar spigot-
1.20.1.jar starten. Beim ersten Starten wirst du aber zunächst einmal nur die in Abbil-
dung 2.4 gezeigten Warnhinweise sehen.

Hinweis
Der Server läuft nur, solange das entsprechende Fenster der Eingabeaufforderung
beziehungsweise des Terminals geöffnet bleibt. Schließt du das Fenster, so wird auch
der Server geschlossen.
28

2.1 Installation
Abbildung 2.4: Ausgabe nach dem ersten Starten des Servers

Dort steht im Wesentlichen, dass du zunächst den Nutzungsbedingungen zustimmen
musst, bevor du den Server verwenden kannst. Wenn du jetzt einen Blick in deinen Ser-
ver-Ordner wirfst, dann wird dir auffallen, dass es dort, wie in Abbildung 2.5, nun zwei
weitere Dateien und einen Ordner gibt.

Abbildung 2.5: Inhalt des Server-Ordners nach dem ersten Start

Merke
Der Server wird mit dem Befehl java -jar spigot-1.20.1.jar gestartet. Achte darauf,
die Versionsnummer im Befehl an die von dir verwendete Server-Version anzupassen.

Tipp
Sollte beim Starten des Servers folgender Hinweis angezeigt werden:

*** Error, this build is outdated ***
*** Please download a new build as per instructions from

 https://www.spigotmc.org/go/outdated-spigot ***
*** Server will start in 20 seconds ***

dann bedeutet das, dass du nicht die aktuellste Version des Servers benutzt. Du
kannst den Server trotzdem weiterhin wie gewohnt nutzen, oder eine neuere Version
aus dem Internet herunterladen.
29

2 Minecraft-Server
Um den Nutzungsbedingungen zuzustimmen, musst du die dort nun vorhandene Datei
eula.txt öffnen. In dieser Datei findest du auch einen Link, unter dem du die Bedingun-
gen lesen kannst. Wenn du diesen Link öffnest, wirst du auf die offizielle Seite des
Minecraft-Herstellers Mojang geleitet, wo du die Nutzungsbedingungen glücklicher-
weise auch auf Deutsch vorfindest. Dort wird geregelt, was du mit dem Spiel und dem
Server machen darfst – und was nicht. Außerdem steht dort auch explizit, dass du, soll-
test du unter 18 sein, die Zustimmung eines gesetzlichen Vertreters einholen musst,
also zum Beispiel eines Elternteils. Auf jeden Fall solltest du die Bedingungen sorgfältig
lesen.

Den Inhalt der eula.txt findest du auch in Listing 2.1. Bist du mit den Bedingungen ein-
verstanden, so kannst du dies kenntlich machen, indem du die letzte Zeile der Datei von
eula=false zu eula=true änderst. Nur wenn du das tust, kannst du den Server benut-
zen. Genau das wird in der ersten Zeile der Datei auf Englisch erklärt.

Abbildung 2.6: Inhalt des Server-Ordners nach erfolgreichem Starten des Servers

Wenn du die Änderungen gespeichert hast, kannst du wieder versuchen, den Server mit
dem Befehl java -jar spigot-1.20.1.jar zu starten. Der Startvorgang wird dieses
Mal wahrscheinlich eine Weile dauern und es werden sehr viele Zeilen relativ schnell
über den Bildschirm laufen. Wichtig ist besonders die letzte Zeile. Steht dort so etwas
wie Done (13,370s)! For help, type "help" or "?", dann bedeutet das, dass dein
Server nun problemlos läuft. Ein erneuter Blick in den Server-Ordner wird dir zeigen, dass
es dort nun, wie in Abbildung 2.6 zu sehen, noch einmal deutlich mehr Dateien gibt.
30

2.2 Konfiguration
2.2 Konfiguration
Die Konfiguration der Server funktioniert für beide Versionen sehr ähnlich. Größter und
offensichtlicher Unterschied ist es hier, dass der Spigot-Server über eine zusätzliche
Datei, die spigot.yml, verfügt.

In den Ordnern world, world_nether und world_the_end werden, unabhängig vom
verwendeten Server, Informationen über die Spielwelt gespeichert. Im Ordner logs wer-
den sogenannte Log-Dateien gespeichert, diese Dateien enthalten im Wesentlichen alle
Informationen, die dir auch in der Eingabeaufforderung beziehungsweise dem Terminal
angezeigt werden. Das ist besonders später beim Programmieren von Plugins praktisch,
denn sollte es einmal zu einem Fehler kommen, so kannst du die genaue Fehlermeldung
hier in Ruhe nachlesen. Der Ordner plugins ist zu Beginn noch leer, hier werden wir spä-
ter unsere selbst geschriebenen Plugins speichern.

Zunächst einmal interessieren uns aber vor allem die zahlreichen .properties-, .json-
und .yml-Dateien, die erzeugt wurden. Mit diesen kannst du deinen Server nämlich
konfigurieren und ihn nach deinen Wünschen anpassen.

Die Datei server.properties

Die wichtigsten Grundeinstellungen findest du in der Datei server.properties. 35
verschiedene Einstellungen kannst du hier insgesamt vornehmen. Welche das sind,
kannst du in Tabelle 2.1 sehen. Am Anfang kannst du aber ruhig auch alle Einstellungen
unverändert lassen, dann wird dein Server auf jeden Fall problemlos funktionieren.

Tipp
Wenn beim Versuch, den Server zu starten, die Fehlermeldung java.lang.OutOf-
MemoryError erscheint und der Server wieder heruntergefahren wird, dann steht der
JVM nicht genug Speicher zur Verfügung. Wenn du beim Starten vor dem Dateinamen
java -Xms2048M -Xmx2048M -jar eingibst statt nur java -jar, dann wird der Speicher
erhöht und der Server kann starten.

Einstellung Erklärung

spawn-porection=16 Legt fest, in welchem Radius um den Spawn-Punkt
Blöcke unzerstörbar sind.

generator-settings= Ist der Welttyp FLAT oder CUSTOMIZED (s. level-type),
können hier Optionen für die Generierung festgelegt
werden. Für den Welttyp FLAT erzeugt zum Beispiel
3;minecraft:bedrock, 2*minecraft: dirt,mine-
craft:grass;1;village eine Ebene mit Dörfern.

Tabelle 2.1: Einstellungsmöglichkeiten der server.properties
31

2 Minecraft-Server
op-permission-level=4 Bestimmt, welche Rechte Nutzer mit dem Status Operator
haben (1 = können geschützten Spawnbereich verändern,
2 = können Befehlsblöcke editieren und Chat-Befehle
ausführen, 3 = können Spieler verbannen, kicken und
zum Operator ernennen, 4 = können den Server stoppen).

allow-nether=true Aktiviert (true) oder deaktiviert (false) Nether-Portale.
level-name=world Der Name des Ordners, in dem sich die Welt-Datei

befindet.
enable-query=false Aktiviert (true) oder deaktiviert (false) die Schnittstelle

zum Abfragen von Server-Informationen.
allow-flight=false Erlaubt (true) oder verbietet (false) Spielern, im Über-

lebensmodus zu fliegen.
announce-player-
achievements=true

Aktiviert (true) oder deaktiviert (false) Nachrichten an alle
Spieler, wenn ein Spieler ein Achievement erzielt.

server-port=25565 Legt den Port des Servers fest.
max-world-size=29999984 Legt die Größe der Welt fest (maximal 30.000.000,

größere Werte werden ignoriert).
level-type=DEFAULT Legt den Welttyp fest (DEFAULT = Standardwelt, FLAT =

komplett flache Welt, LARGEBIOMES = große Biome,
AMPLIFIED = Welt mit extremen Höhenunterschieden,
CUSTOMIZED = individuelle Welt nach den Einstellungen
in generator-settings).

enable-rcon=false Aktiviert (true) oder deaktiviert (false) den Fernzugriff auf
die Server-Konsole.

level-seed= Erlaubt die manuelle Eingabe eines Startwerts (Seed) für
die Generierung der Welt.

force-gamemode=false Legt fest, ob Spieler beim Betreten in den Spielmodus
zurückkehren, in dem sie den Server verlassen haben
(false), oder immer im Standardmodus (true) starten.

server-ip= Soll der Server nur unter einer bestimmten IP erreichbar
sein, so kann diese hier eingetragen werden.

network-compression-
threshold=256

Legt die Kompressionsstärke der Datenübertragung fest.

max-build-height=256 Legt die maximale Bauhöhe fest.
spawn-npcs=true Aktiviert (true) oder deaktiviert (false) die Generierung

von Dorfbewohnern.
white-list=false Legt fest, ob nur Spieler, die sich auf der Whitelist befin-

den, den Server betreten dürfen (true) oder alle Spieler,
die nicht verbannt sind (false).

Einstellung Erklärung

Tabelle 2.1: Einstellungsmöglichkeiten der server.properties (Forts.)
32

2.2 Konfiguration
spawn-animals=true Aktiviert (true) oder deaktiviert (false) die Generierung
von Tieren.

hardcore=false Aktiviert (true) oder deaktiviert (false) den Hardcore-
Modus (Spieler werden dauerhaft gebannt, sobald sie
sterben).

snooper-enabled=true Aktiviert (true) oder deaktiviert (false) das Senden von
anonymisierten Server-Daten an Mojang.

resource-pack-sha1= Prüfsumme des Ressourcenpakets, kann genutzt werden,
um zu überprüfen, dass das Paket nicht verändert wurde.

online-mode=true Gleicht verbundene Spieler mit der Datenbank von
Mojang ab, falls aktiviert (true). Verhindert Fake-
Accounts.

resource-pack= Legt das empfohlene Ressourcenpaket des Servers fest.
pvp=true Legt fest, ob sich Spieler gegenseitig angreifen können

(true) oder nicht (false).
difficulty=1 Legt den Schwierigkeitsgrad fest, von 0 (friedlich) bis

3 (schwer).
enable-command-
block=false

Aktiviert (true) oder deaktiviert (false) Befehlsblöcke.

gamemode=0 Legt den Spielmodus fest (0 = Überlebensmodus,
1 = Kreativmodus, 2 = Abenteuermodus, 3 = Zuschauer-
modus).

player-idle-timeout=0 Legt fest, nach wie vielen Minuten inaktive Spieler vom
Server gekickt werden (0 = überhaupt nicht).

max-players=20 Legt die Zahl der maximal auf dem Server erlaubten Spie-
ler fest.

max-tick-time=60000 Schaltet den Server automatisch ab, wenn zwischen zwei
Aktualisierungen (Ticks) mehr als die angegebene Zahl
von Millisekunden vergeht (-1 = deaktiviert).

spawn-monsters=true Aktiviert (true) oder deaktiviert (false) die Generierung
von Monstern.

generate-structu-
res=true

Aktiviert (true) oder deaktiviert (false) die Generierung
von Dörfern, Tempeln und anderen Gebäuden.

view-distance=10 Legt die Sichtweite fest.
motd=A Minecraft Server Text, der in der Serverliste als Beschreibung angezeigt

wird.

Einstellung Erklärung

Tabelle 2.1: Einstellungsmöglichkeiten der server.properties (Forts.)
33

2 Minecraft-Server
Die Datei bukkit.yml

Die zweite wichtige Datei mit Einstellungen, die, trotz des Namens, sowohl bei Bukkit als
auch bei Spigot vorhanden ist, ist die bukkit.yml. Sie bietet noch einmal 24 weitere
Einstellmöglichkeiten, die du in Tabelle 2.2 finden kannst.

Einstellung Erklärung

allow-end: true Aktiviert (true) oder deaktiviert (false) Endportale.

warn-on-overload: true Aktiviert (true) oder deaktiviert (false) Warnhinweis
bei Überlastung des Servers.

permissions-file:
permissions.yml

Dateiname der Datei, die die Berechtigungen festlegt.

update-folder: update Legt den Ordner (im Plugin-Ordner) fest, in dem
Updates für Plugins gespeichert werden.

plugin-profiling: false Aktiviert (true) oder deaktiviert (false) den Befehl
/timings.

connection-throttle: 4000 Zeit in Millisekunden, bevor ein Client sich nach
einer Trennung wieder verbinden darf.

query-plugins: true Aktiviert (true) oder deaktiviert (false) den Remote-
Zugriff auf die Plugin-Liste.

deprecated-verbose: default Aktiviert (true) oder deaktiviert (false) Warnhinweis
bei Plugins, die veraltete Methoden verwenden.

shutdown-message: Server
closed

Legt die Nachricht fest, die beim Schließen des
Servers an die Spieler gesendet wird.

monsters: 70 Legt die Zahl der Monster fest, die in der Welt spaw-
nen können.

animals: 15 Legt die Zahl der Tiere fest, die in der Welt spawnen
können.

water-animals: 5 Legt die Zahl der Wassertiere fest, die in der Welt
spawnen können.

ambient: 15 Legt die Zahl der »Ambient«-Kreaturen fest, die in
der Welt spawnen können (zurzeit nur Fledermäuse).

period-in-ticks: 600 Legt fest, in welchen Abständen (in Ticks) geprüft
wird, ob Chunks aus dem Speicher entfernt werden
können.

load-threshold: 0 Zahl der Chunks, die geladen sein müssen, bevor
versucht wird, ältere Chunks aus dem Speicher zu
entfernen.

Tabelle 2.2: Einstellungsmöglichkeiten bukkit.yml
34

2.2 Konfiguration
Die Datei spigot.yml

Wem diese fast 60 Einstellungsmöglichkeiten noch nicht kompliziert genug sind, der
kann in der spigot.yml noch fast 100 weitere Einstellungen vornehmen, vorausgesetzt,
man verwendet den Spigot-Server, denn nur der verfügt über diese Datei. Das sind so
viele, dass an dieser Stelle nicht einzeln auf alle eingegangen werden kann. Zudem han-
delt es sich bei den meisten Optionen um Detaileinstellungen, die du vermutlich nie-
mals benötigen wirst. Folgende sechs Einstellmöglichkeiten könnten aber durchaus
interessant für dich sein: whitelist, unknown-command, server-full, outdated-
client, outdated-server und restart. Mit diesen sechs Befehlen kannst du die
Nachrichten festlegen, die an einen Spieler geschickt werden, wenn er sich nicht auf der
Whitelist befindet, einen unbekannten Befehl eingibt, der Server voll ist, der Client des
Spielers veraltet ist, der Server veraltet ist oder der Server neu gestartet wird. Mit eige-
nen Nachrichten kannst du deinem Server schnell und unkompliziert eine persönliche
Note verleihen.

Die Dateien banned-ips.json, banned-players.json, ops.json, whitelist.json

Die Dateien banned-ips.json, banned-players.json, ops.json, whitelist.json
gibt es wieder unabhängig davon, welchen Server du verwendest. In ihnen wird gespei-

animal-spawns: 400 Legt fest, in welchen Abständen (in Ticks) der Server
versucht, Tiere zu spawnen.

monster-spawns: 1 Legt fest, in welchen Abständen (in Ticks) der Server
versucht, Monster zu spawnen.

autosave: 6000 Legt die Zahl von Ticks fest, nach denen die Inhalte
des Servers gespeichert werden (6000 entspricht ca.
alle 5 Minuten).

aliases: now-in-commands.yml Gibt an, in welcher Datei alternative Namen für
Befehle festgelegt werden.

username: bukkit Legt den Nutzernamen für Datenbankzugriff fest.

isolation: SERIALIZABLE Datenbankeinstellung, die nicht verändert werden
sollte.

driver: org.sqlite.JDBC Verwendeter Treiber für die Verbindung zur
Datenbank.

password: walrus Legt das Passwort für Datenbankzugriff fest.

url:
jdbc:sqlite:{DIR}{NAME}.db

Adresse der Datenbank.

Einstellung Erklärung

Tabelle 2.2: Einstellungsmöglichkeiten bukkit.yml (Forts.)
35

2 Minecraft-Server
chert, welche IPs und Spieler vom Server verbannt wurden, welche Spieler Adminis-
tratoren oder genauer ausgedrückt Operatoren sind und welche Spieler sich auf der
Whitelist befinden.

Wie so eine Datei aussehen kann, zeigt Listing 2.2. Die dort dargestellte whitelist.
json würde es nur einem Spieler, dem mit dem Namen »notch«, erlauben, auf dem Ser-
ver zu spielen.

Alle vier Dateien sind nach diesem Prinzip aufgebaut und können theoretisch auch von
Hand verwaltet werden, vorausgesetzt, du kennst die uuid des Spielers, also seine ein-
deutige Benutzeridentifizierung, den du zu einer Liste hinzufügen möchtest. Allerdings
ist das überhaupt nicht notwendig, denn viel bequemer lassen sich all diese Listen
durch die Eingabe von Befehlen im Server verwalten. Wie genau das funktioniert, darum
soll es im nächsten Abschnitt gehen.

2.3 Befehle
Einige Befehle kennst du vermutlich schon aus dem Einzelspielermodus von Minecraft.
Wenn du im Spiel mit der (T)-Taste den Chat öffnest, stehen dir verschiedene Befehle
oder Cheats zur Verfügung, mit denen du die Welt beeinflussen kannst. Mit /weather
rain kannst du es zum Beispiel regnen lassen, mit /time set day kannst du die Nacht
zum Tag machen.

Alle Befehle, die du bereits aus dem Einzelspielermodus kennst, funktionieren auch auf
deinem Server. Du kannst sie sogar direkt in dein geöffnetes Server-Fenster eingeben,
dann allerdings ohne den Schrägstrich am Anfang, also zum Beispiel weather rain
statt /weather rain. Wie das aussieht, kannst du in Abbildung 2.7 sehen.

Abbildung 2.7: Befehlseingabe im Server-Fenster

Darüber hinaus stehen dir aber noch weitere Befehle zur Verfügung, die dir bei der Ver-
waltung deines Servers helfen. Mit dem Befehl help bekommst du eine Liste aller ver-

[
 {
 "uuid": "8d15678-a7f3-1234-8d11-c2ab1234dc9",
 "name": "notch"
 }
]

Listing 2.2: Beispielinhalt whitelist.json

1
2
3
4
5
6

36

2.3 Befehle
fügbaren Befehle angezeigt, die wichtigsten von ihnen findest du in alphabetischer Rei-
henfolge in Tabelle 2.3.

Spieler, die Operatoren sind, also mit op <spielername> zur Liste der Operatoren hin-
zugefügt wurden, können diese Befehle auch direkt im Spiel, wie gewohnt über den
Chat, verwenden.

Befehl Beschreibung

/ban <spielername> Verbannt einen Spieler dauerhaft vom Server.

/ban-ip <ip> Verbannt eine IP-Adresse dauerhaft vom
Server.

/kick <spielername> Wirft einen Spieler temporär vom Server.

/op <spielername> Gibt einem Spieler Administrationsrechte.

/pardon <spielername> Hebt die Verbannung eines Spielers auf.

/pardon-ip <ip> Hebt die Verbannung einer IP-Adresse auf.

/restart Startet den Server neu.

/say <nachricht> Sendet eine Nachricht an alle Spieler.

/spawnpoint <x> <y> <z> Setzt den Spawnpunkt an die angegebene
Stelle.

/stop Schaltet den Server ab.

/tell <spielername> <nachricht> Sendet eine private Nachricht an einen Spieler.

/version Zeigt die Versionsnummer des Servers an.

/whitelist on Erlaubt nur Spieler auf dem Server, die auf der
Whitelist stehen.

/whitelist off Erlaubt alle Spieler auf dem Server, die nicht
verbannt sind.

/whitelist add <spielername> Fügt der Whitelist einen Spieler hinzu.

/whitelist remove <spielername> Entfernt einen Spieler von der Whitelist.

Tabelle 2.3: Liste der Server-Befehle

Merke
Wenn du Befehle direkt ins Server-Fenster eingibst, muss der Schrägstrich am Anfang
des Befehls weggelassen werden.
37

2 Minecraft-Server
2.4 Verbinden
Inzwischen ist dein Server perfekt eingerichtet und konfiguriert, deshalb wird es jetzt
langsam Zeit, ihn endlich einmal zu testen, indem du dich mit deinem Minecraft-Client
darauf verbindest. Bevor du das machst, solltest du noch einmal überprüfen, dass du
alle vorherigen Schritte ausgeführt hast und dein Server auch läuft.

Nachdem du das erledigt hast, kannst du Minecraft wie gewohnt starten. Im Hauptmenü
wählst du dort dann den Eintrag MEHRSPIELER aus. Daraufhin öffnet sich das in Abbildung
2.8 gezeigte Menü.

Abbildung 2.8: Mehrspieler-Menü

Dort klickst du nun auf den Button mit der Beschriftung DIREKT VERBINDEN, worauf sich die
in Abbildung 2.9 gezeigte Maske öffnet.

Wenn du den Server auf demselben Computer laufen hast, auf dem auch der Client läuft,
so muss als SERVERADRESSE immer 127.0.0.1 angegeben werden. Damit sagst du

Merke
Bevor du weiterliest, solltest du noch einmal überprüfen, ob du alle nötigen Installa-
tionsschritte ausgeführt hast:

1. Installation von Java

2. Herunterladen der Server-Datei von buch.daniel-braun.com

3. Neuen Ordner server anlegen und die Datei dorthin kopieren

4. Datei mit java -jar starten

5. Nutzungsbedingungen lesen und akzeptieren

6. Server erneut starten

7. Server-Fenster geöffnet lassen
38

