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Preface

Deep learning is driving the Al revolution and PyTorch is making it easier than ever before for any-
one to build deep learning applications. This book will help you uncover expert techniques and gain
insights to get the most out of your data and build complex neural network models.

The book starts with a quick overview of PyTorch and explores convolutional neural network (CNN)
architectures for image classification. Similarly, you will explore recurrent neural network (RNN)
architectures as well as Transformers and use them for sentiment analysis. Next, you will learn how
to create arbitrary neural network architectures and build Graph neural networks (GNNs). As you
advance, you'll apply deep learning (DL) across different domains such as music, text, and image
generation using generative models including Generative adversarial networks (GANs) and diffusion.

Next, you'll build and train your own deep reinforcement learning models in PyTorch, as well as in-
terpreting DL models. You will not only learn how to build models but also how to deploy them into
production and to mobile devices (Android and iOS) using expert tips and techniques. Next, you will
master the skills of training large models efficiently in a distributed fashion, searching neural archi-
tectures effectively with AutoML, as well as rapidly prototyping models using fastai. You'll then create
a recommendation system using PyTorch. Finally, you'll use major Hugging Face libraries together
with PyTorch to build cutting edge artificial intelligence (AI) models.

By the end of this PyTorch book, you'll be well equipped to perform complex deep learning tasks using
PyTorch to build smart ATl models.

Who this book is for

This book is for data scientists, machine learning researchers, and deep learning practitioners look-
ing to implement advanced deep learning paradigms using PyTorch 2.x. Working knowledge of deep
learning with Python programming is required.

What this book covers

Chapter 1, Overview of Deep Learning Using PyTorch, includes brief notes on various deep learning termi-
nologies and concepts useful for understanding later parts of this book. This chapter also gives a quick
overview of PyTorch in contrast with TensorFlow as a language and tools that will be used throughout
this book for building deep learning models. Finally, we train a neural network model using PyTorch.
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Chapter 2, Deep CNN Architectures, is a rundown of the most advanced deep CNN model architectures
that have been developed in recent years. We use PyTorch to create many of these models and train
them for appropriate tasks.

Chapter 3, Combining CNNs and LSTMs, walks through an example where we build a neural network
model with a CNN and LSTM that generates text/captions as output when given images as inputs
using PyTorch.

Chapter 4, Deep Recurrent Model Architectures, goes through recent advancements in recurrent neural
architectures, specifically RNNs, LSTMs, and GRUs. Upon completion, you will be able to create com-
plex recurrent architecture in PyTorch.

Chapter 5, Advanced Hybrid Models, discusses some advanced, unique hybrid neural architectures such
as the Transformers that have revolutionized the world of natural language processing. This chapter
also discusses RandWireNNs, taking a peek into the world of neural architecture search, using PyTorch.

Chapter 6, Graph Neural Networks, walks us through the basic concepts behind GNNs, different kinds
of graph learning tasks, and different types of GNN model architectures. The chapter then dives deep
into a few of those architectures, namely Graph Convolutional Networks (GCNs) and Graph Attention
Networks (GATs). This chapter uses PyTorch Geometric as the library of choice for building GNNs in
PyTorch.

Chapter 7, Music and Text Generation with PyTorch, demonstrates the use of PyTorch to create deep
learning models that can compose music and write text with practically nothing being provided to
them at runtime.

Chapter 8, Neural Style Transfer, discusses a special type of CNN model that can mix multiple input
images and generate artistic-looking arbitrary images.

Chapter 9, Deep Convolutional GANs, explains GANs and trains one using PyTorch on a specific task.

Chapter 10, Image Generation Using Diffusion, implements a diffusion model from scratch as a state-of-
the-art text-to-image generation model, using PyTorch.

Chapter 11, Deep Reinforcement Learning, explores how PyTorch can be used to train agents on a deep
reinforcement learning task, such as a player in a video game.

Chapter 12, Model Training Optimizations, explores how to efficiently train large models with limited
resources through distributed training as well as mixed precision training practices in PyTorch. By the
end of this chapter, you will have mastered the skill of training large models efficiently using PyTorch.

Chapter 13, Operationalizing PyTorch Models into Production, runs through the process of deploying a
deep learning model written in PyTorch into a real production system using Flask and Docker, as well
as TorchServe. Then you’ll learn how to export PyTorch models both using TorchScript and ONNX.
You'll also learn how to ship PyTorch code as a C++ application. Finally, you'll learn how to use PyTorch
on some of the popular cloud computing platforms.
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Chapter 14, PyTorch on Mobile and Embedded Devices, walks through the process of using various pre-
trained PyTorch models and deploying them on different mobile operating systems - Android and iOS.

Chapter 15, Rapid Prototyping with PyTorch, discusses various tools and libraries such as fastai and Py-
Torch Lightning that make the process of model training in PyTorch several times faster. This chapter
also explains how to profile PyTorch code to understand resource utilization.

Chapter 16, PyTorch and AutoML, walks through setting up ML experiments effectively using AutoML
and Optuna with PyTorch.

Chapter 17, PyTorch and Explainable AI, focuses on making machine learning models interpretable to
a layman using tools such as Captum, combined with PyTorch.

Chapter 18, Recommendation Systems with PyTorch, builds a deep-learning-based movie recommendation
system from scratch using PyTorch.

Chapter 19, PyTorch and Hugging Face, discusses how to use Hugging Face libraries such as Transformers,
Accelerate, Optimum, and so on, with PyTorch to build cutting-edge multi-modal AI models.

To get the most out of this book

To fully benefit from this book, it is necessary that you meet the following prerequisites and recom-
mendations:

. Hands-on Python experience as well as basic knowledge of PyTorch is expected. Because
most exercises in this book are in the form of notebooks, a working experience with Jupyter
notebooks is expected.

«  Some of the exercises in some of the chapters might require a GPU for faster model training,
and therefore having an NVIDIA GPU is a plus.

. Finally, having registered accounts with cloud computing platforms such as AWS, Google
Cloud, and Microsoft Azure will be helpful to navigate parts of Chapter 13 as well as to facilitate
distributed training in Chapter 12 over several virtual machines.

Download the example code files

The code bundle for the book is hosted on GitHub at https://github.com/arj7192/MasteringPyTorchv2.
We also have other code bundles from our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You
can download it here: https://packt.link/gbp/9781801074308.
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Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Mount the
downloaded WebStorm-10*. dmg disk image file as another disk in your system.”

A block of code is set as follows:

def forward(self, source):
source = self.enc(source) * torch.sqrt(self.num_inputs)
source = self.position_enc(source)
op = self.enc_transformer(source, self.mask_source)
op = self.dec(op)

return op

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

def forward(self, source):
source = self.enc(source) * torch.sqrt(self.num_inputs)
source = self.position_enc(source)
op = self.enc_transformer(source, self.mask_source)
op = self.dec(op)
return op

Any command-line input or output is written as follows:

loss improvement on epoch: 1

[601/200] train: 1.1996 - val: 1.0651
loss improvement on epoch: 2
[602/200] train: 1.0806 - val: 1.0494

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,
words in menus or dialog boxes appear in the text like this. For example: “Select System info from
the Administration panel.”

\/Ql’{ Warnings or important notes appear like this.
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_,@\_ Tips and tricks appear like this.
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Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your
message. If you have questions about any aspect of this book, please email us at questions@packtpub.
com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit
http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are
interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

Share your thoughts

Once you've read Mastering Pytorch, Second Edition, we'd love to hear your thoughts! Please click here
to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we'’re delivering
excellent quality content.


http://www.packtpub.com/submit-errata
http://authors.packtpub.com
https://packt.link/r/1801074305
https://packt.link/r/1801074305
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Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free
content in your inbox daily.
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Overview of Deep Learning Using
PyTorch

Deep learning is a class of machine learning methods that has revolutionized the way computers/
machines are used to build automated solutions for real-life problems in a way that wasn’t possible
before. Deep learning uses large amounts of data to learn non-trivial relationships between inputs and
outputs in the form of complex nonlinear functions. Some of the inputs and outputs, as demonstrated
in Figure 1.1, could be the following:

. Input: An image of a text; output: Text
. Input: Text; output: A natural voice speaking the text

«  Input: A natural voice speaking the text; output: Transcribed text

And so on. (The above examples deliberately exclude tabular input data because gradient boosted
trees (XGBoost, LightGBM, CatBoost) still outperform deep learning on such data.)
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output—p THE SUPERVISED LEARNING WORKSHOP SECOND EDITION

THE SUPERVISED LEARNING WORKSHOP SECOND EDITION —input—», __1eXt-to-Speech

Deep Learning Model outpar
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Figure 1.1: Deep learning model examples

Deep neural networks involve a lot of mathematical computations, linear algebraic equations, non-
linear functions, and various optimization algorithms. In order to build and train a deep neural net-
work from scratch using a programming language such as Python, it would require us to write all the
necessary equations, functions, and optimization schedules. Furthermore, the code would have to
be written such that large amounts of data can be loaded efficiently, and training can be performed
in a reasonable amount of time. This amounts to implementing several lower-level details each time
we build a deep learning application.

Deep learning libraries such as Theano and TensorFlow, among various others, have been developed
over the years to abstract these details out. PyTorch is one such Python-based deep learning library
that can be used to build deep learning models.

TensorFlow was introduced as an open source deep learning Python (and C++) library by Google in
late 2015, which revolutionized the field of applied deep learning. Facebook, in 2016, responded with
its own open source deep learning library and called it Torch. Torch was initially used with a scripting
language called Lua, and soon enough, the Python equivalent emerged called PyTorch. Around the
same time, Microsoft released its own library - CNTK. Amidst the hot competition, PyTorch has been
growing fast to become one of the most used deep learning libraries.

This book is meant to be a hands-on resource on some of the most advanced deep learning problems,
how they are solved using complex deep learning architectures, and how PyTorch can be effectively
used to build, train, and evaluate these complex models.
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While the book keeps PyTorch at the center, it also includes comprehensive coverage of some of the
most recent and advanced deep learning models. The book is intended for data scientists, machine
learning engineers, or researchers who have a working knowledge of Python and who, preferably, have
used PyTorch before. For those who are not familiar with PyTorch or are familiar with TensorFlow
but not PyTorch, I recommend spending more time on this chapter alongside other resources such
as basic tutorials on Torch’s website to get comfortable with the basics of PyTorch first.

Due to the hands-on nature of this book, it is highly recommended to try the examples in each chapter
by yourself on your computer to become proficient in writing PyTorch code. We begin with this intro-
ductory chapter and subsequently explore various deep learning problems and model architectures
that will expose the various functionalities PyTorch has to offer.

This chapter will review some of the concepts behind deep learning and will provide a brief overview
of the PyTorch library. For those familiar with TensorFlow who are looking to transition to PyTorch,
we will also see how PyTorch’s APIs differ from TensorFlow’s at various points in this chapter. We will
conclude this chapter with a hands-on exercise where we train a deep learning model using PyTorch.

The following topics will be covered in this chapter:

+  Arefresher on deep learning
+  Exploring the PyTorch library in contrast to TensorFlow

+  Training a neural network using PyTorch

A refresher on deep learning

Neural networks are a sub-type of machine learning methods that are inspired by the structure and
function of the biological brain, such as the biological neuron shown in Figure 1.2. In neural networks,
each computational unit, analogically called a neuron, is connected to other neurons in a layered
fashion. When the number of such layers is more than two, the neural network thus formed is called
a Deep Neural Network (DNN). Such models are generally called deep learning models.

Biological Neuron Artificial Neuron

input_1

Dendrites

input_2

input_3 Weights | Activation output

Nucleus input_n

Figure 1.2: Artificial neuron inspired by biological neuron. (Biological neuron image by: https://
pixabay.com/users/clker-free-vector-images-3736)
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Deep learning models have been proven superior to other classical machine learning models because
of their ability to learn highly complex relationships between input data and the output (ground truth).
In recent times, deep learning has gained a lot of attention, and rightly so, primarily because of the
following two reasons:

+  The availability of powerful computing machines, including GPUs

«  The availability of huge amounts of data

Owing to Moore’s law, which states that the processing power of computers will double every two
years, we are now living in a time when deep learning models with several thousands of layers can
be trained within a realistic and reasonably short amount of time. At the same time, with the expo-
nential increase in the use of digital devices everywhere, our digital footprint has exploded, resulting
in gigantic amounts of data being generated across the world every moment.

Hence, it has been possible to train deep learning models for some of the most difficult cognitive
tasks that were either intractable earlier or had sub-optimal solutions through other machine learning
techniques.

Deep learning, or neural networks in general, have another advantage over the classical machine
learning models. Usually, in a classical machine learning-based approach, feature engineering plays
a crucial role in the overall performance of a trained model. However, a deep learning model does
away with the need to manually craft features. With large amounts of data, deep learning models can
perform very well without requiring hand-engineered features and can outperform the traditional
machine learning models.

The following graph indicates how deep learning models can leverage large amounts of data better
than the classical machine models:
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4 How machine learning models scale with data

Deep Learning
Models

Classical Machine
Learning Models

Model Performance

\4

Dataset Size

Figure 1.3: Model performance versus dataset size

As can be seen in the graph, deep learning performance isn’t necessarily distinguished up to a certain
dataset size. However, as the data size starts to further increase, deep neural networks begin outper-
forming the non-deep learning models.

A deep learning model can be built based on various types of neural network architectures that have
been developed over the years. A prime distinguishing factor between the different architectures is
the type and combination of layers that are used in the neural network.
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Some of the well-known layers are the following:

+  Fully-connected or linear: In a fully connected layer, as shown in the following diagram, all
neurons preceding this layer are connected to all neurons succeeding this layer:

Fully Connected Layer

Fully Fully
Input Data Connected Connected
Layer 1 Layer 2

Figure 1.4: Fully connected layer

This example shows two consecutive fully connected layers with N1 and N2 number of neurons,
respectively. Fully connected layers are a fundamental unit of many - in fact, most - deep
learning classifiers.

«  Convolutional: The following diagram shows a convolutional layer, where a convolutional
kernel (or filter) is convolved over the input:

2 1 3 2

3 1 4
4 1 0 1 1 0
3 0 2 2 0 1

4 3 6
0 1 3 4 Kernel/Filter

OQutput
Input

Figure 1.5: Convolutional layer
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Convolutional layers are a fundamental unit of Convolutional Neural Networks (CNNs), which
are the most effective models for solving computer vision problems.

«  Recurrent: The following diagram shows a recurrent layer. While it looks similar to a fully con-
nected layer, the key difference is the recurrent connection (marked with bold curved arrows):

Recurrent layer

Input Data Recurrent Layer 1 Fully Connected Layer 1

Figure 1.6: Recurrent layer

Recurrent layers have an advantage over fully connected layers in that they exhibit memo-
rizing capabilities, which comes in handy working with sequential data where one needs to
remember past inputs along with the present inputs.

«  DeConv (the reverse of a convolutional layer): Quite the opposite of a convolutional layer, a
DeConvolutional Layer works as shown in the following diagram:

S0 0 0 0 :
....... ‘ 1 3 0
i 0 1 3 o 1 0

* —> DeConv Layer ’—> 2 0 3
g 2 1 0 3 o | -1

hesessss ......-: O 2 1
o fo0 to o0

; : : s A Kernel/Filter

................................. Output

Figure 1.7: DeConvolutional Layer
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This layer expands the input data spatially and hence is crucial in models that aim to generate
or reconstruct images, for example.

Pooling: The following diagram shows the max-pooling layer, which is perhaps the most widely
used kind of pooling layer:

1 1 0 1
2 8 4 2 3 4
Max Pool Layer
0 4 1 3 4 3
3 0 2 0 Output
Input

Figure 1.8: Pooling layer

This is a max-pooling layer that pools the highest number each from 2x2 sized subsections of the
input. Other forms of pooling are min-pooling and average-pooling. A number of well-known
architectures based on the previously mentioned layers are shown in the following diagram:
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Figure 1.9: Different neural network architectures
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A more exhaustive set of neural network architectures can be found at [1].

Besides the types of layers and how they are connected in a network, other factors such as activation
functions and the optimization schedule also define the model.

Activation functions

Activation functions are crucial to neural networks as they add the non-linearity without which, no
matter how many layers we add, the entire neural network would be reduced to a simple linear model.
The different types of activation functions listed here are basically different nonlinear mathematical
functions.

Some of the popular activation functions are as follows:

+  Sigmoid: A sigmoid (or logistic) function is expressed as follows:

y=f@) = =

Equation 1.1

The function is shown in graph form as follows:

(=]
)

S
i

Figure 1.10: Sigmoid function
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As can be seen from the graph, the sigmoid function takes in a numerical value x as input and
outputs a value y in the range (0, 1).

+  TanH: TanH is expressed as follows:
eX —e~*
y=f)= prampe
Equation 1.2

The function is shown in graph form as follows:

0.5

Figure 1.11: TanH function

Contrary to sigmoid, the output y varies from -1 to 1 in the case of the TanH activation function.
Hence, this activation is useful in cases where we need both positive as well as negative outputs.

. Rectified linear units (ReLUs): ReLUs are more recent than the previous two and are simply
expressed as follows:

y = f(x) = max (0,%)

Equation 1.3
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The function is shown in graph form as follows:

IS

Figure 1.12: ReLU function

A distinct feature of ReLU in comparison with the sigmoid and TanH activation functions is that
the output keeps growing with the input whenever the input is greater than 0. This prevents
the gradient of this function from diminishing to 0 as in the case of the previous two activation
functions. Although, whenever the input is negative, both the output and the gradient will be 0.

. Leaky ReLU: ReLUs entirely suppress any incoming negative input by outputting 0. We may,
however, want to also process negative inputs for some cases. Leaky ReLUs offer the option
of processing negative inputs by outputting a fraction k of the incoming negative input. This
fraction k is a parameter of this activation function, which can be mathematically expressed
as follows:

y = f(x) = max (kx, x)

Equation 1.4
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The following graph shows the input-output relationship for leaky ReLU:

" /
6
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Figure 1.13: Leaky ReLU function

Activation functions are an actively evolving area of research within deep learning. It will not be
possible to list all of the activation functions here but I encourage you to check out the recent devel-
opments in this domain. Many activation functions are simply nuanced modifications of the ones
mentioned in this section.

Optimization schedule

So far, we have spoken of how a neural network structure is built. In order to train a neural network,
we need to adopt an optimization schedule. Like any other parameter-based machine learning mod-
el, a deep learning model is trained by tuning its parameters. The parameters are tuned through the

process of backpropagation, wherein the final or output layer of the neural network yields a loss. This

loss is calculated with the help of a loss function that takes in the neural network’s final layer’s outputs

and the corresponding ground truth target values. This loss is then backpropagated to the previous

layers using gradient descent and the chain rule of differentiation.
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The parameters or weights at each layer are accordingly modified in order to minimize the loss. The
extent of modification is determined by a coefficient, which varies from 0 to 1, also known as the
learning rate. This whole procedure of updating the weights of a neural network, which we call the
optimization schedule, has a significant impact on how well a model is trained. Therefore, a lot of
research has been done in this area and is still ongoing. The following are a few popular optimization
schedules:

. Stochastic Gradient Descent (SGD): It updates the model parameters in the following fashion:

SL(X,y,B)
5B

Equation 1.5

B=p—ax

B is the parameter of the model and X and y are the input training data and the corresponding
labels respectively. L is the loss function and «a is the learning rate. SGD performs this update
for every training example pair (X, y). A variant of this -mini-batch gradient descent - performs
updates for every k examples, where k is the batch size. Gradients are calculated altogether for
the whole mini-batch. Another variant, batch gradient descent, performs parameter updates
by calculating the gradient across the entire dataset.

+  Adagrad: In the previous optimization schedule, we used a single learning rate for all the pa-
rameters of the model. However, different parameters might need to be updated at different
paces, especially in cases of sparse data, where some parameters are more actively involved
in feature extraction than others. Adagrad introduces the idea of per-parameter updates, as

shown here:
e+l = gt a *5L(X,y,ﬁ)
JSSGE+e 8B
Equation 1.6

Here, we use the subscript i to denote the i parameter and the superscript t is used to denote
the time step t of the gradient descent iterations. SSG{ is the sum of squared gradients for the
i™ parameter starting from time step 0 to time step ¢. € is used to denote a small value added
to SSG to avoid division by zero. Dividing the global learning rate a by the square root of SSG
ensures smaller updates for frequently changing parameters and vice versa.

+  Adadelta: In Adagrad, the denominator of the learning rate is a term that keeps on rising in
value due to added squared terms in every time step. This causes the learning rates to decay
to vanishingly small values. To tackle this problem, Adadelta introduces the idea of computing
the sum of squared gradients only up to a few preceding time steps. In fact, we can express it
as a running decaying average of the past gradients:

SL(X,y,B)

SSGE =y *«SSGF*+ (1 —y) * (T
i

)2

Equation 1.7



Chapter 1 15

Y here is the decaying factor we wish to choose for the previous sum of squared gradients.
With this formulation, we ensure that the sum of squared gradients does not accumulate to a
large value, thanks to the decaying average. Once SSG{ is defined, we can use Equation 1.6 to
define the update step for Adadelta.

However, if we look closely at Equation 1.6, the root mean squared gradient is not a dimen-
sionless quantity and hence should ideally not be used as a coefficient for the learning rate. To
resolve this, we define another running average, this time for the squared parameter updates.
Let’s first define the parameter update:

a . SL(X,y,pB)

JSSGE+e OB

Equation 1.8

MBS = BT~ Bt = -

And then, similar to Equation 1.7, we can define the square sum of parameter updates as follows:
SSPUf =y« SSPUF* + (1 —y) = (ABH)?
Equation 1.9

Here, SSPU is the sum of squared parameter updates. Once we have this, we can adjust for the
dimensionality problem in Equation 1.6 with the final Adadelta equation:

it+1 — ,Blt _ \J SSPUlt te % 6L(le:ﬁ)
JSSGE+ € 6B}

Equation 1.10

Noticeably, the final Adadelta equation doesn’t require any learning rate. One can still, however,
provide a learning rate as a multiplier. Hence, the only mandatory hyperparameter for this
optimization schedule is the decaying factors:

. RMSprop: We have implicitly discussed the internal workings of RMSprop while dis-
cussing Adadelta as both are pretty similar. The only difference is that RMSprop does
not adjust for the dimensionality problem and hence the update equation stays the
same as Equation 1.6, wherein the SSG} is obtained from Equation 1.7. This essentially
means that we do need to specify both a base learning rate as well as a decaying factor
in the case of RMSprop.

+  Adaptive Moment Estimation (Adam): This is another optimization schedule that cal-
culates customized learning rates for each parameter. Just like Adadelta and RMSprop,
Adam also uses the decaying average of the previous squared gradients as demonstrated
in Equation 1.7. However, it also uses the decaying average of previous gradient values:

SL(X,y,B)

SGE=y"*SGI M+ (1 —y") x ——=""2
i =V *SG; (1-yD= ShE

Equation 1.11
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SG and SSG are mathematically equivalent to estimating the first and second moments
of the gradient respectively, hence the name of this method - adaptive moment esti-
mation. Usually, ¥ and ¥’ are close to 1, and in that case, the initial values for both SG
and SSG might be pushed towards zero. To counteract that, these two quantities are
reformulated with the help of bias correction:

SGt

SGf =
i 1_]/’

Equation 1.12
and

SSGt

SSGf =T

Equation 1.13
Once they are defined, the parameter update is expressed as follows:

t+1 t

_ﬁt_L*S
' bo/ssGf e

Equation 1.14

Basically, the gradient on the extreme right-hand side of the equation is replaced by the decaying
average of the gradient. Noticeably, Adam optimization involves three hyperparameters - the base
learning rate, and the two decaying rates for the gradients and squared gradients. Adam is one of
the most successful, if not the most successful, optimization schedule in recent times for training
complex deep learning models.

So, which optimizer shall we use? It depends. If we are dealing with sparse data, then the adaptive
optimizers (numbers 2 to 5) will be advantageous because of the per-parameter learning rate updates.
As mentioned earlier, with sparse data, different parameters might be worked at different paces and
hence a customized per-parameter learning rate mechanism can greatly help the model in reaching
optimal solutions. SGD might also find a decent solution but will take much longer in terms of training
time. Among the adaptive ones, Adagrad has the disadvantage of vanishing learning rates due to a
monotonically increasing learning rate denominator.

RMSprop, Adadelta, and Adam are quite close in terms of their performance on various deep learning
tasks. RMSprop is largely similar to Adadelta, except for the use of the base learning rate in RMSprop
versus the use of the decaying average of previous parameter updates in Adadelta. Adam is slightly
different in that it also includes the first-moment calculation of gradients and accounts for bias cor-
rection. Overall, Adam could be the optimizer to go with, all else being equal. We will use some of
these optimization schedules in the exercises in this book. Feel free to switch them with another one
to observe changes in the following:

«  Model training time and trajectory (convergence)

. Final model performance
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In the coming chapters, we will use many of these architectures, layers, activation functions, and
optimization schedules in solving different kinds of machine learning problems with the help of
PyTorch. In the example included in this chapter, we will create a convolutional neural network that
contains convolutional, linear, max-pooling, and dropout layers. Log-Softmax is used for the final layer
and ReLU is used as the activation function for all the other layers. And the model is trained using an
Adadelta optimizer with a fixed learning rate of 0.5.

Exploring the PyTorch library in contrast to TensorFlow

PyTorch is a machine learning library for Python based on the Torch library. PyTorch is extensively
used as a deep learning tool both for research as well as building industrial applications. It is primarily
developed by Meta. PyTorch is competition for the other well-known deep learning library - Tensor-
Flow, which is developed by Google. The initial difference between these two was that PyTorch was
based on eager execution whereas TensorFlow was built on graph-based deferred execution. Although,
TensorFlow now also provides an eager execution mode.

Eager execution is basically an imperative programming mode where mathematical operations are
computed immediately. A deferred execution mode would have all the operations stored in a com-
putational graph without immediate calculations and then the entire graph would be evaluated later.
Eager execution is considered advantageous for reasons such as intuitive flow, easy debugging, and
less scaffolding code.

PyTorch is more than just a deep learning library. With its NumPy-like syntax/interface, it provides
tensor computation capabilities with strong acceleration using GPUs. But what is a tensor? Tensors
are computational units, very similar to NumPy arrays, except that they can also be used on GPUs to
accelerate computing.

With accelerated computing and the facility to create dynamic computational graphs, PyTorch provides
a complete deep learning framework. Besides all that, it is truly Pythonic in nature, which enables
PyTorch users to exploit all the features Python provides, including the extensive Python data science
ecosystem.

In this section, we will expand on what a tensor is and how it is implemented with all of its attributes
in PyTorch. We will also take a look at some of the useful PyTorch modules that extend various func-
tionalities helpful in loading data, building models, and specifying the optimization schedule during
the training of a model. We will compare these PyTorch APIs with the TensorFlow equivalent to un-
derstand the differences in how these two libraries are implemented at the root level.

Tensor modules

As mentioned earlier, tensors are conceptually similar to NumPy arrays. A tensor is an n-dimensional
array on which we can operate mathematical functions, accelerate computations via GPUs, and can
also keep track of a computational graph and gradients, which prove vital for deep learning. To run
a tensor on a GPU, all we need is to cast the tensor into a certain data type.

Here is how we can instantiate a tensor in PyTorch:

points = torch.tensor([1.0, 4.0, 2.0, 1.0, 3.0, 5.0])
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To fetch the first entry, simply write the following:

points[@]

We can also check the shape of the tensor using this:

points.shape

In TensorFlow, we typically declare a tensor as shown below:

points = tf.constant([1.0, 4.0, 2.0, 1.0, 3.0, 5.0])

And commands for accessing the first element or getting the tensor shape are the same as in PyTorch.

In PyTorch, tensors are implemented as views over a one-dimensional array of numerical data stored
in contiguous chunks of memory. These arrays are called storage instances. Every PyTorch tensor has
a storage attribute that can be called to output the underlying storage instance for a tensor, as shown
in the following example:

points = torch.tensor([[1.0, 4.0], [2.0, 1.0], [3.0, 5.0]])
points.storage()

This should output the following:

1.0
4.0
2.0
1.0
3.0
5.0

[torch.storage._ TypedStorage(dtype=torch.float32, device=cpu) of size 6]

TensorFlow tensors do not have the storage attribute. When we say a PyTorch tensor is a view on the
storage instance, the tensor uses the following information to implement the view:

. Size

. Storage
+  Offset

. Stride

Let’s look into this with the help of our previous example:
points = torch.tensor([[1.0, 4.0], [2.0, 1.0], [3.0, 5.0]])

Let’s investigate what these different pieces of information mean:

points.size()

This should output the following:

torch.Size([3, 2])
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As we can see, size is similar to the shape attribute in NumPy, which tells us the number of elements
across each dimension. The multiplication of these numbers equals the length of the underlying
storage instance (6 in this case). In TensorFlow, the shape of a tensor can be derived by using the
shape attribute:

points = tf.constant([[1.0, 4.0], [2.0, 1.0], [3.0, 5.0]])
points.shape

This should output the following:

TensorShape([3, 2])

Aswe have already examined what the storage attribute means for a PyTorch tensor, let’s look at offset:

points.storage_offset()

This should output the following:

The offset here represents the index of the first element of the tensor in the storage array. Because
the output is 0, it means that the first element of the tensor is the first element in the storage array.

Let’s check this:

points[1].storage offset()

This should output the following:

‘

Because points[1] is [2.0, 1.0] and the storage array is [1.0, 4.0, 2.0, 1.0, 3.0, 5.0], we can see that the
first element of the tensor [2.0, 1.0], that is, 2.0 is at index 2 of the storage array. The storage_offset
attribute, just like the storage attribute, doesn't exist for a TensorFlow tensor.

Finally, we’ll look at the stride attribute:

points.stride()

This should output the following:

(2, 1)

As we can see, stride contains, for each dimension, the number of elements to be skipped in order
to access the next element of the tensor. So, in this case, along the first dimension, in order to access
the element after the first one, that is, 1.0 we need to skip 2 elements (that is, 1.0 and 4.0) to access
the next element, that is, 2.0. Similarly, along the second dimension, we need to skip 1 element to
access the element after 1.0, that is, 4.0. Thus, using all these attributes, tensors can be derived from
a contiguous one-dimensional storage array. TensorFlow tensors do not have the stride or storage_
offset attributes.
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The data contained within tensors is of numeric type. Specifically, PyTorch offers the following data
types to be contained within tensors:

*  torch.float32 or torch.float—32-bit floating-point

. torch.float64 or torch.double—64-bit, double-precision floating-point
«  torch.float16 or torch.half—16-bit, half-precision floating-point

+  torch.int8—Signed 8-bit integers

+  torch.uint8—Unsigned 8-bit integers

*  torch.int16 or torch.short—Signed 16-bit integers

. torch.int32 or torch.int—Signed 32-bit integers

+  torch.int64 or torch.long—Signed 64-bit integers

TensorFlow offers similar data types [2].
An example of how we specify a certain data type to be used for a PyTorch tensor is as follows:

points = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float32)

In TensorFlow, this could be done with the following equivalent code:

points = tf.constant([[1.0, 2.0], [3.0, 4.0]], dtype=tf.float32)

Besides the data type, tensors in PyTorch also need a device specification where they will be stored.
A device can be specified as instantiation:
points = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float32,
device="cpu')
Or, we can also create a copy of a tensor on the desired device:
points_2 = points.to(device="cuda')
As seen in the two examples, we can either allocate a tensor to a CPU (using device="'cpu'), which

happens by default if we do not specify a device, or we can allocate the tensor to a GPU (using
device="cuda"). In TensorFlow, device allocation looks slightly different:

with tf.device('/CPU:0"):
points = tf.constant([[1.0, 2.0], [3.0, 4.0]], dtype=tf.float32)

\/:ﬁ{ PyTorch currently supports NVIDIA (CUDA) and AMD GPUs.

When a tensor is placed on a GPU, the computations speed up and because the tensor APIs are largely
uniform across CPU and GPU tensors in PyTorch, it is quite convenient to move the same tensor across
devices, perform computations, and move it back.
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If there are multiple devices of the same type, say more than one GPU, we can precisely locate the
device we want to place the tensor in using the device index, such as the following:

points_3 = points.to(device='cuda:0")
You can read more about PyTorch-CUDA here [3]. And you can read more generally about CUDA here [4].

Let’s now look at some important PyTorch modules aimed at building deep learning models.

PyTorch modules
The PyTorch library, besides offering the computational functions as NumPy does, also offers a set of

modules that enable developers to quickly design, train, and test deep learning models. The following
are some of the most useful modules.

torch.nn

When building a neural network architecture, the fundamental aspects that the network is built on
are the number of layers, the number of neurons in each layer, and which of those are learnable, and
so on. The PyTorch nn module enables users to quickly instantiate neural network architectures by
defining some of these high-level aspects as opposed to having to specify all the details manually. The
following is a one-layer neural network initialization without using the nn module:

import math

""'we assume a 256-dimensional input and a 4-dimensional
output for this 1-layer neural network

hence, we initialize a 256x4 dimensional matrix

filled with random values'''

weights = torch.randn(256, 4) / math.sqrt(256)

""'we then ensure that the parameters of this neural network are
trainable, that is, the numbers in the 256x4 matrix

can be tuned with the help of backpropagation of gradients'''
weights.requires_grad_()

''"'finally we also add the bias weights for the
4-dimensional output, and make these trainable too'''

bias = torch.zeros(4, requires_grad=True)

We can instead use nn.Linear(256, 4) to represent the same thing in PyTorch. In TensorFlow, this
could be written as tf.keras.layers.Dense(256, input_shape=(4,), activation=None).

Within the torch.nn module, there is a submodule called torch.nn.functional. This submodule
consists of all the functions within the torch.nn module, whereas all the other submodules are classes.
These functions are loss functions, activating functions, and also neural functions that can be used
to create neural networks in a functional manner (that is, when each subsequent layer is expressed
as a function of the previous layer) such as pooling, convolutional, and linear functions.
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An example of a loss function using the torch.nn.functional module could be the following:

import torch.nn.functional as F
loss_func = F.cross_entropy
loss = loss_func(model(X), y)

Here, X is the input, y is the target output, and model is the neural network model. In TensorFlow, the
above code would be written as:

import tensorflow as tf
loss_func = tf.keras.losses.SparseCategoricalCrossentropy(from logits=True)
loss = loss_func(y, model(X))

torch.optim

As we train a neural network, we back-propagate errors to tune the weights or parameters of the net-
work - the process that we call optimization. The optim module includes all the tools and functional-
ities related to running various types of optimization schedules while training a deep learning model.

Let’s say we define an optimizer during a training session using the torch.optim modules, as shown
in the following snippet:

opt = optim.SGD(model.parameters(), lr=1r)

Then, we don’t need to manually write the optimization step as shown here:

with torch.no_grad():

for param in model.parameters():
param -= param.grad * lr
model.zero_grad()

We can simply write this instead:

opt.step()

opt.zero_grad()
TensorFlow doesn'’t require such explicitly coded gradient update and flush steps and the code for the
optimizer looks like the following:

opt = tf.keras.optimizers.SGD(learning_rate=1r)

model.compile(optimizer=opt, loss=...)

Next, we will look at the utils.data module.

torch.utils.data

Under the utils.data module, Torch provides its own dataset and DatalLoader classes, which are
extremely handy due to their abstract and flexible implementations. Basically, these classes provide
intuitive and useful ways of iterating and performing other such operations on tensors.
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Using these, we can ensure high performance due to optimized tensor computations and also have
fail-safe data I/O. For example, let’s say we use torch.utils.data.DataLoader as follows:

from torch.utils.data import (TensorDataset, DatalLoader)
train_dataset = TensorDataset(x_train, y_train)

train_dataloader = DatalLoader(train_dataset, batch_size=bs)

Then, we don’t need to iterate through batches of data manually, like this:

for i in range((n-1)//bs + 1):
X_batch = x_train[start_i:end_i]
y_batch = y_train[start_i:end_i]
pred = model(x_batch)

We can simply write this instead:

for x_batch,y_batch in train_dataloader:
pred = model(x_batch)

The torch.utils.data is similar to the tf.data.Dataset in TensorFlow. The preceding code for
iterating through batches of data would be written in the following way in TensorFlow:

import tensorflow as tf
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y train))
train_dataloader = train_dataset.batch(bs)

for x_batch, y_batch in train_dataloader:
pred = model(x_batch)

Now that we have explored the PyTorch library (in contrast to TensorFlow) and understood the PyTorch
and Tensor modules, let’s learn how to train a neural network using PyTorch.

Training a neural network using PyTorch

For this exercise, we will be using the famous MNIST dataset [5], which is a sequence of images of
handwritten postcode digits, zero through nine, with corresponding labels. The MNIST dataset consists
of 60,000 training samples and 10,000 test samples, where each sample is a grayscale image with 28 x
28 pixels. PyTorch also provides the MNIST dataset under its Dataset module.

In this exercise, we will use PyTorch to train a deep learning multi-class classifier on this dataset and
test how the trained model performs on the test samples. The full PyTorch code [6] for this exercise
as well as the equivalent TensorFlow code [7] can be found in this book’s GitHub repository.

1. For this exercise, we will need to import a few dependencies. Execute the following import
statements:

import torch
import torch.nn as nn
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import torch.nn.functional as F

import torch.optim as optim

from torch.utils.data import DatalLoader
from torchvision import datasets, transforms

import matplotlib.pyplot as plt

2. Next, we define the model architecture as shown in the following diagram:
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Figure 1.14: Neural network architecture
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The model consists of convolutional layers, dropout layers, as well as linear/fully connected
layers, all available through the torch.nn module:

class ConvNet(nn.Module):
def __init_ (self):

super(ConvNet, self). init_ ()
self.cnl = nn.Conv2d(1, 16, 3, 1)
self.cn2 = nn.Conv2d(16, 32, 3, 1)
self.dpl = nn.Dropout2d(0.19)
self.dp2 = nn.Dropout2d(0.25)
self.fcl = nn.Linear (4608, 64)

self.fc2 = nn.Linear(64, 10)
def forward(self, x):

x = self.cnl(x)
x = F.relu(x)
x = self.fc2(x)

op = F.log_softmax(x, dim=1)
return op

The __init__ function defines the core architecture of the model, that is, all the layers with
the number of neurons at each layer. And the forward function, as the name suggests, does
a forward pass in the network. Hence it includes all the activation functions at each layer as
well as any pooling or dropout used after any layer. This function shall return the final layer
output, which we call the prediction of the model, which has the same dimensions as the
target output (the ground truth).

Notice that the first convolutional layer has a 1-channel input, a 16-channel output, a kernel
size of 3, and a stride of 1. The 1-channel input is essentially for the grayscale images that will
be fed to the model. We decided on a kernel size of 3x3 for various reasons. Firstly, kernel
sizes are usually odd numbers so that the input image pixels are symmetrically distributed
around a central pixel. 1x1 would be too small because then the kernel operating on a given
pixel would not have any information about the neighboring pixels. 3 comes next, but why not
go further to 5, 7, or, say, even 27?

Well, at the extreme high end, a 27x27 kernel convolving over a 28x28 image would give us very
coarse-grained features. However, the most important visual features in the image are fairly
local (in a small spatial neighborhood) and hence it makes sense to use a small kernel that
looks at a few neighboring pixels at a time, for visual patterns. 3x3 is one of the most common
kernel sizes used in CNNs for solving computer vision problems.



Chapter 1 27

Note that we have two consecutive convolutional layers, both with 3x3 kernels. This, in terms

of spatial coverage, is equivalent to using one convolutional layer with a 5x5 kernel. However,

using multiple layers with a smaller kernel size is almost always preferred because it results

in deeper networks, hence more complex learned features as well as fewer parameters due to

smaller kernels. Using many small kernels across layers may also result in specialized kernels
- one for detecting edges, one for circles, one for the color red, and so on.

The number of channels in the output of a convolutional layer is usually higher than or equal
to the input number of channels. Our first convolutional layer takes in one channel’s data and
outputs 16 channels. This basically means that the layer is trying to detect 16 different kinds
of information from the input image. Each of these channels is called a feature map and each
of them has a dedicated kernel extracting features for them.

We escalate the number of channels from 16 to 32 in the second convolutional layer, in an
attempt to extract more kinds of features from the image. This increment in the number of
channels (or image depth) is common practice in CNNs. We will read more on this under
Width-based CNNs in Chapter 2, Deep CNN Architectures.

Finally, the stride of 1 makes sense, as our kernel size is just 3. Keeping a larger stride value -
say, 10 - would result in the kernel skipping many pixels in the image and we don’t want to do
that. If, however, our kernel size was 100, we might have considered 10 as a reasonable stride
value. The larger the stride, the lower the number of convolution operations but the smaller
the overall field of view for the kernel.

The preceding code could also be written using the torch.nn.Sequential API:

model = nn.Sequential(
nn.Conv2d(1, 16, 3, 1),
nn.ReLU(),
nn.Conv2d(16, 32, 3, 1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Dropout2d(0.190),
nn.Flatten(),
nn.Linear (4608, 64),
nn.ReLU(),
nn.Dropout2d(0.25),
nn.Linear(64, 10),
nn.LogSoftmax(dim=1)
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It is usually preferred to initialize the model with separate __init__ and forward methods in
order to have more flexibility in defining model functionality when not all layers are executed
one after another (parallel or skip connections, for example). The sequential code written
above looks very similar in TensorFlow:

import tensorflow as tf

model = tf.keras.Sequential([
tf.keras.layers.Conv2D(16, 3, activation='relu’,

input_shape=(28, 28, 1)),

tf.keras.layers.Conv2D(32, 3, activation='relu'),
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
tf.keras.layers.Dropout(0.10),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Dense(10, activation='softmax')

D

And the code with __init__ and forward methods looks like the following in TensorFlow:

import tensorflow as tf

class ConvNet(tf.keras.Model):
def _init (self):
super(ConvNet, self)._ init_ ()
self.cnl = tf.keras.layers.Conv2D(16, 3,
activation="relu’,
input_shape=(28, 28, 1))
self.fc2 = tf.keras.layers.Dense(10, activation='softmax")

def call(self, x):
x = self.cnl(x)
x = self.fc2(x)
return x

Instead of forward, we use the call method in TensorFlow, and the rest looks similar to Py-
Torch code.

We then define the training routine, that is, the actual backpropagation step. As can be seen,
the torch.optim module greatly helps in keeping this code succinct:

def train(model, device, train_dataloader, optim, epoch):
model.train()
for b_i, (X, y) in enumerate(train_dataloader):
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X, y = X.to(device), y.to(device)
optim.zero_grad()

pred_prob = model(X)

loss = F.nll loss(pred_prob, y)

loss.backward()

optim.step()

if b_i % 10 == 0:

print(‘epoch: {} [{}/{} ({:.0f}%)]\t \
training loss:\ {:.6f}'.format(

epoch, b_i * len(X),
len(train_ dataloader.dataset),
100. * b_i / len(train_dataloader),
loss. item()))

This iterates through the dataset in batches, makes a copy of the dataset on the given device,
makes a forward pass with the retrieved data on the neural network model, computes the loss
between the model prediction and the ground truth, uses the given optimizer to tune model
weights, and prints training logs every 10 batches. The entire procedure done once qualifies as
1 epoch, that is, when the entire dataset has been read once. For TensorFlow, we will run the
training directly at a high level, in step 7. The detailed training routine definition in PyTorch
gives us the flexibility to closely control the training process as opposed to training with a
single line of code at a high level.

4. Similar to the preceding training routine, we write a test routine that can be used to evaluate
the model performance on the test set:

def test(model, device, test_dataloader):

model.eval()

loss = 0

success = 0

with torch.no_grad():

for X, y in test_dataloader:

X, y = X.to(device), y.to(device)
pred_prob = model(X)

loss += F.nll _loss(pred_prob, vy,

reduction="sum").item()

pred = pred_prob.argmax(dim=1, keepdim=True)
success += pred.eq(y.view_as(pred)).sum().item()
loss /= len(test_dataloader.dataset)
print('\nTest dataset: Overall Loss: {:.4f}, \
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Overall Accuracy: {}/{} ({:.0f}%)\n'.format(loss,
success, len(test_dataloader.dataset),
100. * success / len(test_dataloader.dataset)))

Most of this function is similar to the preceding train function. The only difference is that
the loss computed from the model predictions and the ground truth is not used to tune the
model weights using an optimizer. Instead, the loss is used to compute the overall test error
across the entire test batch.

Next, we come to another critical component of this exercise, which is loading the dataset.
Thanks to PyTorch’s DataLoader module, we can set up the dataset loading mechanism in a
few lines of code:

The mean and standard deviation values are calculated as
the mean of all pixel values of all images in
the training dataset'''
train_dataloader = torch.utils.data.DatalLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),

transforms.Normalize((0.1302,),
(0.3069,))1)),

batch_size=32, shuffle=True)
test_dataloader = torch.utils.data.DatalLoader(
datasets.MNIST('../data', train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1302,),
(0.3069,))

),
batch_size=500, shuffle=False)

As you can see, we set batch_size to 32, which is a fairly common choice. Usually, there is a
trade-off in deciding the batch size. A very small batch size can lead to slow training due to
frequent gradient calculations and can lead to extremely noisy gradients. Very large batch
sizes can, on the other hand, also slow down training due to a long waiting time to calculate
gradients. It is mostly not worth waiting long before a single gradient update. It is rather ad-
visable to make frequent, less precise gradients as it will eventually lead the model to a better
set of learned parameters.

For both the training and test dataset, we specify the local storage location we want to save the
dataset to, and the batch size, which determines the number of data instances that constitute
one pass of a training and test run. We also specify that we want to randomly shuffle training
data instances to ensure a uniform distribution of data samples across batches.
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Finally, we also normalize the dataset to a normal distribution with a specified mean and
standard deviation. This mean and standard deviation comes from the training dataset if we
are training a model from scratch. However, if we are transfer-learning from a pre-trained
model, then the mean and standard deviation values are obtained from the original training
dataset of the pre-trained model. We will learn more on transfer learning in Chapter 2, Deep
CNN Architectures.

In TensorFlow, we would use tf.keras.datasets toload MNIST data and the tf.data.Dataset
module to create batches of training data out of the dataset, as shown in the following code:

(x_train, y train), (x_test, y test) =
tf.keras.datasets.mnist.load_data()

x_train = x_train.astype("float32") / 255.90
x_test = x_test.astype("float32") / 255.0

x_train = x_train[..., tf.newaxis]

x_test = x_test[..., tf.newaxis]

train_dataloader = tf.data.Dataset.from_tensor_slices(
(x_train, y_train))

train_dataloader = train_dataloader.shuffle(10000)

train_dataloader = train_dataloader.batch(32)

test _dataloader = tf.data.Dataset.from tensor_slices((x_test, y test))
test_dataloader = test_dataloader.batch(500)

6. We defined the training routine earlier. Now is the time to define the optimizer and device we
will use to run the model training:

torch.manual_seed(0)

device = torch.device("cpu")

model = ConvNet()

optimizer = optim.Adadelta(model.parameters(), 1lr=0.5)

We define the device for this exercise as cpu. We also set a seed to avoid unknown randomness
and ensure reproducibility. We will use Adadelta as the optimizer for this exercise with a learn-
ing rate of @. 5. While discussing optimization schedules earlier in the chapter, we mentioned
that Adadelta could be a good choice if we are dealing with sparse data.
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And this is a case of sparse data, because not all pixels in the image are informative. Having
said that, I encourage you to try out other optimizers such as Adam on this same problem to see
how it affects the training process and model performance. The following is the TensorFlow
equivalent code one would use to instantiate and compile the model:

tf.random.set_seed(0)
model = ConvNet()
optimizer = \
tf.keras.optimizers.experimental.Adadelta(learning_rate=0.5)
model.compile(optimizer=optimizer,
loss="sparse_categorical crossentropy’,

metrics=["'accuracy'])

And then we start the actual process of training the model for k number of epochs, and we
also keep testing the model at the end of each training epoch:

for epoch in range(1, 3):
train(model, device, train_dataloader, optimizer, epoch)
test(model, device, test_dataloader)

For demonstration purposes, we will run the training for only two epochs. The output will be
as follows:

epoch: [0/60000 (0%)] training loss: 2.31060
epoch: [320/60000 (1%)] training loss: 1.924133
epoch: [640/60000 (1%)] training loss: 1.313336
epoch: [960/60000 (2%)] training loss: ©.796470
epoch: [1280/60000 (2%) ] training loss: 0.819801

epoch: [58560/60000 (98%)] training loss: 0.007698

epoch: [58880/60000 (98%)] training loss: 0.002685
epoch: [59200/60000 (99%)] training loss: 0.016287
epoch: [59520/60000 (99%)] training loss: 0.012645
epoch: [59840/60000 (100%)] training loss: ©.007993

Test dataset: Overall Loss: 0.0416, Overall Accuracy: 9864/10000 (99%)

The training loop code equivalent for TensorFlow would be as follows:

model.fit(train_dataloader, epochs=2,
validation_data=test_dataloader)
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8. Now that we have trained a model, with a reasonable test set performance, we can also man-
ually check whether the model inference on a sample image is correct:

test_samples = (test_dataloader)
b_i, (sample_data, sample_targets) = (test_samples)
plt.imshow(sample_data[0@][@],

cmap="'gray', interpolation="none")

The output will be as follows:

0 5 10 15 20 25

Figure 1.15: Sample handwritten image

The equivalent Tensorflow code would be the same except for using sample_data[0] instead
of sample_data[@][@]:

test _samples = (test_dataloader)
b_i, (sample_data, sample_targets) = (test_samples)
plt.imshow(sample data[@],

cmap='gray', interpolation='none")
plt.show()

And now we run the model inference for this image and compare it with the ground truth:

(f"Model prediction is : \
{model(sample data).data. (1)[11[e1xr™
(f"Ground truth is : {sample_targets[@]}")

Note that, for predictions, we first calculate the class with maximum probability using the max ()
function on axis=1. The max() function outputs two lists - a list of probabilities of classes for

every sample in sample_data and a list of class labels for each sample. Hence, we choose the
second list using index [1].



