<packh

Rust for Blockchain
Application Development

Learn to build decentralized applications on
popular blockchain technologies using Rust

<> AKHIL SHARMA

Rust for Blockchain
Application Development

Learn to build decentralized applications on popular
blockchain technologies using Rust

Akhil Sharma

<packt

Rust for Blockchain Application Development

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Kaustubh Manglurkar
Publishing Product Manager: Arindam Majumder
Book Project Manager: Hemangi Lotlikar

Senior Editor: Vandita Grover

Technical Editor: Kavyashree K S

Copy Editor: Safis Editing

Proofreader: Safis Editing

Indexer: Rekha Nair

Production Designer: Shankar Kalbhor

Senior DevRel Marketing Executive: Nivedita Singh

First published: April 2024
Production reference: 1290324

Published by

Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square
Birmingham

B3 1RB, UK.

ISBN 978-1-83763-464-4

www . packtpub.com

http://www.packtpub.com

To the women in my life - my mother, Manisha Sharma, for all her sacrifices; my sister, Neha Sharma,
for being a constant source of encouragement; and my wife, Akanksha, for being extremely supportive
throughout this journey.

- Akhil Sharma

Contributors

About the author

Akhil Sharma is the founder of Armur Al a cybersecurity company that is backed by Techstars,
Outlier Ventures, and Aptos, and is part of the Google AI startups cloud program.

Akhil teaches advanced engineering topics (Rust, Go, Blockchain, and AI) on his YouTube channel
and has mentored more than 200,000 engineers across platforms such as Linkedin Learning, Udemy,
and Packt.

Being deeply involved with multiple Rust-based blockchain communities such as Aptos, Solana, and
Polkadot inspired Akhil to write this book.

In his free time, Akhil likes to train in jiu jitsu, play the guitar, and surf.

About the reviewers

Denis Cavalli is a lead software engineer with a strong background in embedded systems, software
development, and R&D. He graduated in computer engineering from the Universidade Federal do
Amazonas in Brazil, and has more than 10 years of experience in software development and team
leadership, working for start-ups and big companies.

Since 2021, he has been engaged with the Web3 environment, experimented with Ethereum/Solidity
and Solana, worked professionally for Web3 companies using the Helium SDK, designed decentralized
solutions targeted for Polkadot/Kusama networks using Substrate, and has had smart contracts deployed
on the Arbitrum Nova mainnet.

Ryu Kent is a senior blockchain engineer who has worked in the industry for 7 years. He is particularly
active in the DAO space and has launched a number of well-known smart contracts. Prior to moving
to Web3, Ryu spent over a decade working in financial services, including HSBC, Barclays Bank, and
PriceWaterhouseCoopers, building centralized ledgers.

Table of Contents

Preface XV
Part 1: Blockchains and Rust

Blockchains with Rust 3
Laying the foundation with the Tokens versus coins and ICOs 21
building blocks of blockchains 3 Smart contracts and NFTs 23
Blocks 5 DAOs 24
Hashes 6 Non-censorable apps 25
Transactions 7 Digital assets with real-world limits 25
Security 8 Scaling the blockchain 26
Storage versus compute ? The blockchain trilemma 26
Exploring the backbone Sharding 27
of blockchains 10 Interoperability 28
Decentralization 10 Consensus for scale 28
Peers, nodes, validators, and collators 11 Parallel processing 29
Consensus 13 Layer 2s and side chains 29
Mining 15 ZK rollups and optimistic rollups 30
Forking 16 Introducing smart contracts 30
Permissioned versus permissionless 17 .

o versts permisst The future of the adoption of
Understanding decentralization 18 blockchains 31
Replication 19 Industries disrupted 31
Governance 19 Sociocultural and economic changes 31
Cryptocurrencies and gas fees 19 Summary 32
Decentralized platforms 20

viii

Table of Contents

2

Rust — Necessary Concepts for Building Blockchains 33
Introducing Rust 34 Numeric operations 46
The benefit of being statically typed 34 Stack 47
A dive into Rust’s applicability as a systems Heap 47
programming language 34 V-tables 47
The reliability of Rust 35 Slices 48
The Rust ownership memory management Strings 49
model 36 Enums 50
Garb llecti 37 . .
arbage corlection Exploring intermediate Rust concepts 52
Speed and performance 37
. Control flow 52
Futures, error handling, and memory safety 38
While loops 53
Rust’s advantage for blockchains 38 Functions 54
Blockchains that use Rust 38 Match control flow 55
Foundry for Ethereum 39 Structs 56
The Fe, Move, and ink! languages 39 Vectors 57
Interesting blockchai jects built with Rust 40 . .
Heresting Dockehamn projects burt with Fus Delving deep into advanced Rust
Advantages of Rust-based languages
e concepts 59
compared to Solidity 41
Hashmaps 59
Learning basic Rust concepts 42 Ownership and borrowing 60
Variables and constants 42 Crates, modules, and cargo 62
Data types 44
P Summary 64
Tuples and arrays 45
Part 2: Building the Blockchain
Building a Custom Blockchain 67
Technical requirements 67 rust-analyzer 71
Windows installation 68 Cargo 72
Mac installation 68 Planning our first blockchain project 73
Ubuntu installation 68
Structs 73
VS Code 69 Required functions 78

Table of Contents

Getting started with building the Using helper functions 920
blockchain 83 Exploring embedded databases 94
Block 83
o Summary 96
Creating the genesis block 87
Adding More Features to Our Custom Blockchain 97
Technical requirements 97 Server struct and implemented methods 113
Connecting the blocks 98 Enums 115
Libraries powering blockchain operations 98 Helper functlorfs 116
Blockchain functions 100 The serve function 123
The Node struct 124
Starting the node server 112
Summary 126
The server 112
Finishing Up Our Custom Blockchain 127
Technical requirements 127 The Config implementation 148
Adding memory pools 128 Utility functions 149
I . Understanding the lib.rs file 150
mplementing a memory pool 128
The BlockinTransit implementation 131 Understanding the Main.rs file 152
Implementing transactions 133 Using your custom blockchain 154
Understanding TXInput transactions 133 Creating a new blockchain 155
Understanding TXOutput transactions 135 Creating a new wallet 156
Understanding the Transaction Checking the wallet balance 157
implementation 137 Starting a node 158
. . Sending currenc 159
Utilizing UTXOs and developing s Y
Listing all wallet addresses 160
wallets 141
) Printing the blockchain 160
Implementing UTXOSet 141 Rebuilding the UTXO set 161
Implementing wallets 143
Wallets 145 Summary 163
Setting up configurations
and utilities 147

Table of Contents

Part 3: Building Apps
6

Using Foundry to Build on Ethereum 167
Introducing Ethereum and Foundry 168 Overview of Anvil 180
Understanding Ethereum 168 Overview of Chisel 180
Why Rust and Foundry? 169 Cast, Anvil, and Chisel important commands 181
Installing Foundry 170" Testing and deployment 182
First steps with Foundry 171 Writing tests 183
Exploring Foundry 172 Fork and fuzz testing 185
Working on an existing Foundry project 172 Invariant and differential testing 186
Dependencies 173 Deployment and verification 187
Project layout 175 Gas reports and snapshots 187
Overview of Forge 176 A project using Foundry 188
Forge Standard Library overview 177 Getting started 189
Forge commands 178 A basic NET 189
Understanding Foundry with Cast, Testing the program 192
Anvil, and Chisel 179 Gasreports 192
Overview of Cast 179 Summary 194
Exploring Solana by Building a dApp 195
Introducing dApps 196 Working with Solana frameworks

What are dApps? 196 and tools 206
Types of dApps 197 Introducing Anchor 206
Benefits of dApps 198 Creating a new Anchor project 209
Setting up the environment Building and deploying a dApp 210
for Solana 199 Building and deploying with Anchor 210
Installing Rust 199 Running a local ledger 211
Introducing Solana 200 Updating the program ID 213
Why Solana? 202 Utilizing Anchor scripts 213
Generating a local key pair 205 Testing your dApp 214

Table of Contents

Creating accounts for our custom Introduction to instruction creation 221
dApp 216 Establishing account constraints 224
Defining accounts for our custom dApp 217 Implementing lOgiC 226
Implementation of message account . L .
Safeguarding against invalid data 230
structure 218
. .. . Instruction versus transaction 232
Understanding account sizing and rent in
Solana 219 Creating tests for our instructions 233
Sizing message accounts 219 Creating a client for tests 235
Implementation in code 220 Sending a message 236
Creating our first instruction 221 Symmary 241
Exploring NEAR by Building a dApp 243
Technical requirements 244 The Contract class 265
Prerequisites 244 State and data structures 268
Installation 244 Transfers and actions 269
I ducine NEAR 246 Cross contract calls 271
ntroducing 46 \EARCLI deep dive 272
Why choose NEAR? 246 .)
Understanding the foundational elements Cf eating our first project
of NEAR 247 with NEAR 272
. Understanding the structure and rules of the
Learning about the advanced d & 273
FNEAR 254 crossword game
concepts o Setting up the development environment 273
Transactions and gas 254 Creating a smart contract skeleton 274
Data flow 255 Testing and deployment 277
Tokens and avoiding loss 259 Interacting with the contract 278
Storage options 260
Validators and consensus 263 Summary 279
NEAR SDK 263
Getting started with the NEAR
blockchain 265

Xi

Xii

Table of Contents

Part 4: Polkadot and Substrate

9

Exploring Polkadot, Kusama, and Substrate 283
Introducing Polkadot 283 Learning about Kusama 302
Interoperability 285 Governance and on-chain upgrades 303
Relay chain 286 Chaos and experimentation 303
Parathread 287 .
aratireads Introducing Substrate 304
Bridges 287
Substrate architecture 304
Accounts 288
. Client and runtime 306
Transactions 288 N N 307
Tokens and assets 292 Net(;vor types 307
NFTs 292 ocetpes
. Diving deep into Substrate 308
Understanding the core concepts g deep
of PolkaDot 293 Runtime interfaces 308
XCM 293 Core primitives 309
Shared security 294 FRAME 310
Pallets 295 Bulijmg custom I')allets 311
Staking 296 Forkless and runtime upgrades 312
Advanced staking concepts 297 Consensus 313
Main actors 299 Summary 316
NPoS election algorithms 301
Hands-On with Substrate 317
Technical requirements 317 Transferring the funds 323
Installing Substrate 317 Simulating a network 325
Building our own blockchain 318 Starting the first blockchain node 325
Starting a local node 318 Adding more nodes 328
Installing a frontend template 321 Verifying block production 329
Starting the frontend template 321 Summary 331

Table of Contents

Part 5: The Future of Blockchains

Future of Rust for Blockchains 335
What the future looks like for Rust Jobs in the Web3 space 348
blockchains 335 Popular job roles 348
Popular blockchains 336 How to find Web3 jobs 350
Upcoming blockchains 339 Building a career 351
Upcoming Rust Web3 projects 344 Going beyond this book 352
The Rust community 347 Summary 353
Index 355
Other Books You May Enjoy 368

xiii

Preface

Rust is one of the most widely used languages in blockchain systems and many popular blockchains
including Solana, Polkadot, Aptos, and Sui are built with Rust. Rust frameworks such as Foundry are
also highly preferred by developers of established chains including Ethereum.

Learning how decentralized apps work on popular Rust chains and also how to build your own
blockchains — whether from scratch or using frameworks such as Substrate - is an important skill
to have since all big dApps, at some point, end up moving to their own chains, also referred to as
application chains.

This book is for developers who want to go deep and understand how Rust is used for building dApps
and blockchains and add a new dimension to their Rust skills.

Who this book is for

This book is for blockchain and dApp developers, blockchain enthusiasts, and Rust engineers who
want to step up their game by adding blockchain to their repertoire of skills.

What this book covers

Chapter 1, Blockchains with Rust, outlines the critical blockchain concepts that we will use in the book.

Chapter 2, Rust — Necessary Concepts for Building Blockchains, explores the critical Rust concepts that
we will be using to build our own blockchain.

Chapter 3, Building a Custom Blockchain, lays the foundation and the building blocks for our own
custom blockchain that we're building from scratch.

Chapter 4, Adding More Features to Our Custom Blockchain, sees up build on our blockchain and add
more features to it.

Chapter 5, Finishing Up Our Custom Blockchain, brings together all the individual blocks that we have
built and combines them into a complete blockchain.

Chapter 6, Using Foundry to Build on Ethereum, explores Foundry, a Rust framework that can be used
to build and deploy smart contracts on Ethereum.

XVi

Preface

Chapter 7, Exploring Solana by Building a dApp, teaches you how to build a dApp for Solana.

Chapter 8, Exploring NEAR by Building a dApp, teaches you how to build a dApp for an upcoming
blockchain, NEAR.

Chapter 9, Exploring Polkadot, Kusama, and Substrate, explores the basic concepts behind Substrate,
which enables developers to build their own chains.

Chapter 10, Hands-On with Substrate, uses our knowledge of Substrate to build a custom blockchain.

Chapter 11, Future of Rust for Blockchains, discusses the future of blockchains with Rust.

To get the most out of this book

We're assuming that you know your way around Rust and have knowledge of all its basic concepts.

Software/hardware covered in the book | Operating system requirements

Rust 1.74.0 or higher Windows, macOS, or Linux

Cargo Windows, macOS, or Linux

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Rust-for-Blockchain-Application-Development. If there’s
an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https: //
github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an example: “rustup
is the toolchain manager that includes the compiler and Cargo’s package manager.”

https://github.com/PacktPublishing/Rust-for-Blockchain-Application-Development
https://github.com/PacktPublishing/Rust-for-Blockchain-Application-Development
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

A block of code is set as follows:

pub struct Block {
timestamp: i64,
pre block hash: String,
hash: String,
transactions: Vec<Transactions>,
nonce: 164,
height: usize,

}

Any command-line input or output is written as follows:

brew install rustup

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “Working with strings is straightforward
in Rust, so it's important to know the difference between the String type and string literals”

Tips or important notes

Appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub. comand mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www . packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors . packtpub. com.

XVii

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

Xviii Preface

Share Your Thoughts

Once you've read Rust for Blockchain Application Development, wed love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

Preface

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don't worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don't stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781837634644

2. Submit your proof of purchase

3. That's it! We'll send your free PDF and other benefits to your email directly

Xix

https://packt.link/free-ebook/9781837634644

Part 1:
Blockchains and Rust

In this part, we will first get some knowledge about blockchains and some necessary Rust concepts
that'll help us in building a fully fledged blockchain.

This part has the following chapters:

o Chapter 1, Blockchains with Rust
o Chapter 2, Rust - Necessary Concepts for Building Blockchains

1

Blockchains with Rust

Blockchains have a lot of mystery around them, and only a few engineers have complete clarity of the
inner workings and how disruptive they will be to the incumbent way of working for many industries.

With the help of this chapter, we want to tackle the very core concepts of blockchains. Since this is a book
about using Rust for blockchains, we want to, at the same time, understand why Rust and blockchains
are a match made in heaven. This will also provide us with insight into why some popular blockchains
(Solana, Polkadot, and NEAR) have used Rust and why the latest blockchains to enter the market
(Aptos and Sui) are also choosing Rust above any other technology that exists on the market today.

The end goal of this chapter is to provide a comprehensive understanding of the critical concepts
around blockchains that will enable us to build a blockchain from scratch later in the book.

In this chapter, we're going to cover the following main topics:
o Laying the foundation with the building blocks of blockchains
o Exploring the backbone of blockchains
o Understanding decentralization
o Scaling the blockchain
o Introducing smart contracts

o The future of the adoption of blockchains

Laying the foundation with the building blocks of
blockchains

In this section, let's learn the most basic concept of blockchains—what a blockchain is made up of.

A blockchain can be imagined as a series of connected blocks, with each block containing a finite
amount of information.

4

Blockchains with Rust

The following diagram demonstrates this clearly with multiple connected blocks.

/ H // //

Figure 1.1 — Representation of a blockchain

Just like in a traditional database, there are multiple tables in which the data is stored sequentially in the
form of records, and the blockchain has multiple blocks that store a particular number of transactions.

The following diagram demonstrates blocks as a store for multiple transactions:

(Block 1 \ (Block 2 \ f Block 3 \

Ronnie -> Steve

Axe >R an _
Ruxzrt >O§§b g Jimi -> Ron Asana -> Simba
ng > Alice & Tomer -> Alexa Circa -> Candy

Lara -> Rimbo

N . W W

Figure 1.2 — Blocks with transaction data

The question now is, why not just use databases? Why do we even need blockchains? Well, the main
difference here is that there is no admin and nobody is in charge. The other significant difference is
that most blockchains are engineered to be permissionless at the core (even though permissioned
blockchains exist and have specific use cases at the enterprise level), making them accessible to everyone
and not just to people with access.

Another equally substantial difference is that blockchains only have insert operations, whereas databases
have CRUD operations, making blockchains inherently immutable. This also implies that blockchains
are not recursive in nature; you cannot go back to repeat a task on records while databases are recursive.

Now, this is a complete shift in how we approach data storage with blockchains in comparison to
traditional databases. Then there is decentralization, which we will learn about shortly and that is
what makes blockchains an extremely powerful tool.

Web 3.0, another confusing and mysterious term, can, at a considerably basic level, be defined as
the internet of blockchains. Until now, we have had client-server architecture applications being
connected to each other. That was Web 2.0, but suddenly, with the help of blockchains, we will have
a more decentralized internet. Even if most of this does not make sense right now, do not despair,
for we have plenty to cover.

Laying the foundation with the building blocks of blockchains

In the following subsections, we will learn about things such as hashes, transactions, security,
decentralized storage, and computing.

Blocks

The smallest or atomic part of any blockchain is a block. We learned in the previous section that
blocks contain transactions, but that’s not all; they also store some more information. Let’s peel
through the layers.

Let's look at a visual representation of the inner workings of a block:

[Genesis Block \ [Block #1 \ [Block #2 \

Transaction Data Transaction Data Transaction Data

Nonce Nonce Nonce

11316 35230 12937

Ronnie -> Steve
Axe > Rose

Rupert > Bob

Jimi > Ron Asana -> Simba
Tomer -> Alexa
Lara > Rimbo

Circa > Candy

Bob -> Alice Timestamp Timestamp Timestamp
Wed, 02 Nov 2022
07:11:35 GMT

Wed, 02 Nov 2022
07:11:35 GMT

Wed, 02 Nov 2022
07:11:35 GMT

Previous Hash Previous Hash Previous Hash

00000000 000015783b7642590382017d91a360206d0600¢| 000012fa9b916eb9078f8d98a7864e697ae83ed5
00000000000000000000000G0 2cbb3567748f46a33fe9297cF 4f5146bd84452cdafd043c19
Hash Hash Hash
000015783h764259d382017d91a360206d0600e 000012fa9b216eh907818d98a7864e697ae83ed5| 000002015ce2308b61216ba5a0778545bf4ddd7c|
2cbb356774846a33Fe9297cf eb7bbd85dd8062b29a9140bf

4f5146bd84452cdafd043c19

Figure 1.3 - Connected blocks of a blockchain

-

)

In the preceding diagram, we notice that the first block is called the Genesis Block, which is an
industry-standard term for the first block of the chain. Now, apart from transaction data, you also see
a hash. In the next section, Hashes, we will learn how this hash is created and why it is required. For
now, let's consider it to be a random number. So, each block has a hash, and you will also notice that
the blocks are storing the previous hash. This is the same as the hash of the previous block.

The previous hash block is critical because it is what connects the blocks to each other. There is no other
aspect that connects the blocks to make a blockchain; it’s simply the fact that a subsequent, sequential
block holds the hash of the previous block.

We also notice a field called nonce. This stands for number only used once. For now, we need to
understand that the nonce needs to be consistent with the hash for the block to be valid. If they’re
not consistent, the following blocks of the blockchain go completely out of sync and this fortifies
the immutability aspect of blockchains that we will learn about in detail in the Forking section. Now,
as we go further, we will uncover more layers to this, but we're at a great starting point and have a
broad overview.

Blockchains with Rust

Hashes

Hashes are a core feature of the blockchain and are what hold the blocks together. We remember
from earlier that blocks store hash and previous hash and hashes are simply created by adding up all
the data, such as transactions and timestamps, and passing it through some hashing algorithm. One
example is the SHA-256 algorithm.

The following diagram shows a visual representation of data being passed to the SHA-256 algorithm
and being converted into a usable hash:

DataData—p SHA-256 —> Hash

Figure 1.4 — Data to SHA-256 hash

A hash is a unique fixed-length string that can be used to identify or represent a piece of data and a
hash algorithm, such as SHA-256, is a function that computes data into a unique hash.

While there are several other SHA algorithms available (such as SHA-512), SHA-256 stands as the
most prevalent choice within blockchains due to its robust hash security features and the notable fact
that it remains unbroken to this day.

There are four important properties of the SHA-256 algorithm:

o One-way: The hash generated from SHA-256 is 256 bits (or 32 bytes) in length and is irreversible;
if you want to get the plaintext back (plaintext being the data that we passed through SHA-256),
you will not be able to do so.

o Deterministic: Every time you send a particular data through the algorithm, you will get the
same predictable result. This means that the hash doesn’t change for the same data.

o Avalanche effect: Changing one character of the data, completely changes the hash and makes
it unrecognizable.

o For example, the hash for abcd is
88d4266fd4e6338d13b845£cf289579d209¢c89782309217da3el61936£031589
but the hash for abce is
84e73dc50f2be9000ab2a87£8026c1f45elfec954af502e9904031645b190d4¢£.

Laying the foundation with the building blocks of blockchains

o The only thing common between them is that they start with 8. There’s nothing else that matches,
so you can't possibly predict how the algorithm represents a4, b, or ¢, and you can’t work your
way backward to either get the plaintext data or predict what the hash representation for some
other data will look like.

o Withstand collision: Collision in hashing means the algorithm produces the same hash for
two different values. SHA-256 has an extremely low probability of collision, and this is why
it’s heavily used.

All of these properties of the SHA-256 are the reason why blockchains are the way they are.

Let’s understand the effect that these properties have by going over the following few points:

o Irreversibility translates into immutability in blockchains (transaction data, once recorded,
can’t be changed)

o Determinism translates into a unique, identifiable hash that can identify a user, wallet, transaction,
token, or account on the blockchain (all of these have a hash)

o The avalanche effect translates into security, making the system extremely difficult to hack since
the information that’s encrypted can't be predicted by brute force (running multiple computers
to estimate incrementally, starting with a hypothesis)

« Collision tolerance leads to each ID being unique and there being an extremely high mathematical
limit to the unique hashes that can be produced, and since we require hashes to represent various
types of information on the blockchain, this is an important functionality

In this section, we have seen how the properties of blockchains actually come from the hashing
algorithms, and we can safely say that it’s the heart and soul of a blockchain.

Transactions

Because of the previously mentioned properties of blockchains, storing financial data is one of the
biggest use cases that blockchains are used for, as they have advanced security requirements.

A transaction is showcased through unspent cryptocurrency, or unspent transaction output (UTXO).
This refers to unused coins owned by individuals logged on the blockchain for transparency. It’s
essential to recognize that while UTXO is a key element in certain blockchains such as Bitcoin, it’s
not a universal feature across all blockchain platforms.

The following diagram helps us visualize all the fields in a transaction:

8 Blockchains with Rust

Version

Input Counter

Transaction Input

Output counter

Output
Locktime

Figure 1.5 - The contents of a blockchain transaction

Let’s go through all the fields that form a Bitcoin transaction:

 Version: This specifies which rules the transaction follows
« Input counter: This is the number of inputs in the transaction (this is just a count)
o Inputs: This is the actual input data

o Output counter: This is similar to the input counter, but it’s for keeping a count of the
transactions’ output

o Output: This is the actual output data from the transaction

o Blocktime: This is simply a Unix timestamp that records when the transaction happened.

Initially, blockchains were primarily designed to record financial transactions within the realm of
cryptocurrencies. However, as they evolved, blockchains demonstrated their versatility by finding
applications beyond this initial purpose. Soon, we'll delve into these additional uses.

But for now, it is important to understand that when we mention transactions, it does not strictly
mean financial or currency-related transactions. Rather, in modern blockchains, a transaction is
anything that changes the state of the blockchain, so any program that runs or any information that’s
stored is simply a transaction.

Security

So, the main selling point for blockchains is that they’re extremely secure. Now, let’s understand why
this is so:

o All the records are secured with cryptography thanks to the SHA-256 algorithm.

o The records and other blockchain data are copied to multiple nodes; we will learn about this
in the Peers, nodes, validators, and collators section. Even if the data gets deleted in one node,
it doesn’t mean that it’s deleted from the blockchain.

Laying the foundation with the building blocks of blockchains

o To participate as a node in the blockchain network, requiring ownership of private keys is essential.
Private keys and secret codes known only to you, grant access to control your cryptocurrency
holdings, sign transactions, and ensure security. Possessing private keys safeguards your digital
assets and enables engagement in network activities.

o Nodes need to come to a consensus on new data to be added to the blockchain. This means
bogus data and corrupted data cannot be added to the blockchain, as it could compromise the
entire chain.

o Data cannot be edited on the blockchain. This means the information you have stored cannot
be tampered with.

o They’re decentralized and don’t have a single point of failure. The bigger the network or the
more decentralized the network, the lower the probability of failure.

We will learn about nodes, decentralization, validation, and consensus later on in this book, and all
these points will be clearer.

Storage versus compute

Bitcoin introduced blockchain for the storage of financial transactions, but Ethereum took things a
bit further and helped us imagine what it could be like if you could run programs on a blockchain.
Hence, the concept of smart contracts was created (we will dig deeper into smart contracts later in
this chapter, but you can think of them as code that can run decentralized on the blockchain).

Independent nodes could join a network for the blockchain and pool their processing power in
the network.

According to Ethereum, they're building the biggest supercomputer in the world. There are two ways
to build the biggest supercomputer— build it centralized, where all machines will exist centrally in
one location, or build a decentralized version where thousands of machines can be connected over
the internet and divide tasks among themselves.

Ethereum enables you to process programs on the blockchain. This means anyone on the internet
can build a smart contract and publish it on the blockchain where anyone else across the world can
interact with the program.

This is the reason we see so many startups building their products on the Ethereum chain. After
Ethereum, blockchains such as Solana, NEAR, and Polkadot have taken this idea much further and
brought many new concepts by improving on Ethereum. This book is going to deal with all three of
these blockchains.

10

Blockchains with Rust

Exploring the backbone of blockchains

This section is a deep dive into what makes blockchains so special. We will cover topics such as
decentralization, forking, and mining, and we will understand how peers interact in a network and
how the blocks are validated. Let’s dive in.

Decentralization

From a purely technical standpoint, Web 1.0 started with a client-server architecture, usually monoliths.
When traffic and data started increasing, the monolithic architecture couldn’t scale well. Then, with
Web 2.0, we had concepts such as microservices and distributed systems,which helped not only
scale systems efficiently but also enhanced resilience and robustness, reduced failure instances, and
increased recoverability.

The data was still centralized and private and the systems were mostly centralized, meaning they still
belonged to a person/company and admins could change anything. The drawbacks were the following:

« A failure at the company’s end took the system down
o Admins could edit the data and block users and content from platforms

o Security was still not prioritized, leading to easy data hacks, although this could vary depending
on the company’s approach to safeguarding information

o All the data generated on the platform belonged to the platform

o Content created and posted on a platform became the property of the platform

Web 3.0 ushers in a new age of decentralization that is made possible with blockchains where the
entire blockchain data is copied to all the nodes. But even distributed systems had nodes and node
recovery, so the question is, how is this any different?

Well, in the case of distributed systems, the nodes still belonged to the centralized authority or the
company that owned the platform, and nodes were essentially their own servers in a private cloud.
With decentralized systems, the node can be owned by another entity, person or a company other
than the company that developed the blockchain.

In fact, in a blockchain network, having nodes owned by different companies is encouraged and this
increases the decentralization of the network, meaning there is no real owner or authority that can
block content, data, or users out and the data is accessible to all the nodes since all of them can store
a copy of the data.

Even if one node goes down, there are others to uphold the blockchain, and this makes the system
highly available. Advanced communication protocols among the nodes make sure the data is consistent
across all the nodes.

Exploring the backbone of blockchains 1

Nodes are usually monetized to stay in the network and to uphold the security of the network (we
will read more about this in the next section). Nodes also need to come to a consensus regarding the
next block that’s to be added to the chain. We will also read more about consensus shortly.

Peers, nodes, validators, and collators

In this section, we will further build upon the knowledge we have gained in the past few sections. A
blockchain does not exist in isolation; it is a peer-to-peer network, and all full nodes save the complete
copy of the blockchain, while some blockchains also permit other types of nodes that maintain state
without necessarily possessing a full copy.

In the following diagram, we see this in a visual format:

¢
= W

¢ Node 3
"’ !:I

Node 1 Node 2

Figure 1.6 — Multi-node networks

So, let’s dig a layer deeper. Nodes are listening to events taking place in the network. These events are
usually related to transactions. It is important to reiterate that a transaction is anything that changes
the state of the system.

As we know, a block contains the information of multiple transactions.

The following diagram shows a block with some example transactions:

Axel — Abbey

Ana — Aaron s
Reno — Robbie

Roy — Rexie

Figure 1.7 — Transactions finalized to a block

12 Blockchains with Rust

Once a new block is added by a node, which is known as mining, this new event is advertised to the
entire network. This is visually represented in the following diagram:

1 Node 2

A new block is created at Node 1

-
(¢- 3)

The new block is advertised
to the entire network

Figure 1.8 — The created block is advertised
Once the new block is advertised, the rest of the nodes act as validators that confirm the outputs

of the transactions once the block has been validated by the rest of the nodes. The nodes come to a
consensus that yes, this is the right block that needs to be added to the chain. We can visualize this

with the help of the following diagram:

‘/ The rest of the nodes validate this new block \/

2 .)) N ((.

Node 1
Figure 1.9 — Other nodes validate the block data

The new block is then copied to the rest of the nodes so that all of them are on the same page and added
to the independent chains being maintained at each node. This can be seen in the following diagram:

| The new block is added to the chain
’??3_;%‘#»;7_;5\ ,g""—"""«a‘y""’—""‘. ’fﬁkﬂﬁw‘
‘ O ‘ > . O ‘

Figure 1.10 — A block gets finalized

Exploring the backbone of blockchains 13

Once the blocks are added to the node, and the blockchain at each node is updated on any other node.
Another block could be listening to all the new transactions that have happened, and these are then
collated onto a block and the entire process then repeats.

The following criteria vary from blockchain to blockchain in terms of the following:

o The number of transactions that the block will store
o The mechanism that nodes use to collate the transactions (time-based or number-based)
o The validation mechanism

o The consensus mechanisms

Contemporary chains improved upon the Bitcoin and Ethereum blockchains by varying and innovating
on either all or some of these criteria, but the consensus mechanism is something that is most often
innovated upon. This is done to try and save the time required for new nodes to be added and copied
by the entire network, which is what really slows down the network.

We learned earlier that the nodes need to be incentivized to stay in the network and keep adding the
blocks to the chain. In chains such as Ethereum, this is achieved using gas fees, which are simply
small fees that users pay to carry forward their transactions. We know that blocks can contain only
a few transactions, and if the users want their transactions to get priority, they need to pay gas fees.

The gas fee depends on what other users are willing to pay to get their transactions forwarded; the
higher the gas fee, the higher the chance of getting your transaction accepted. Think of gas fees as the
rent that the nodes get paid for the users to use the nodes’” processors to process and validate their
transactions. The words peers and nodes are used interchangeably, and validators and collators can
also be used interchangeably depending on the blockchain you are on.

Consensus

In the last section, we learned that a node listens to transaction events, collates these transactions,
and creates a block. This is called mining. After a block is mined, other nodes need to validate it and
come to a consensus.

In this section, we want to peel the layers of consensus to understand it deeply. Understanding the
mechanics behind some popular consensus mechanisms will help us to learn by running through
actual examples, rather than learning in an abstract way. So, let’s understand some of these concepts:

o Proof of work (PoW): Nodes need to solve a particular cryptography problem (we will look at
this in detail in the Mining section), and the node with the highest processing power is usually
able to solve faster than others. This keeps the system decentralized but increases electricity
consumption by a huge amount. It's not considered to be very efficient and is even considered
bad for the environment, as it increases power wastage since all the nodes are up against each
other trying to solve the problem. Examples are Bitcoin, Litecoin, and Dogecoin.

14

Blockchains with Rust

Proof of authority (PoA): This is a consensus mechanism in blockchain where transactions
and blocks are verified by identified validators, typically chosen due to their reputation or
authority. Unlike energy-intensive mechanisms such as PoW, PoA offers efficiency by requiring
validators to be accountable for their actions. It's commonly used in private or consortium
blockchains, ensuring fast transactions and reducing the risk of malicious activities. However,
PoAs centralized nature may raise concerns regarding decentralization and censorship resistance
compared to other consensus methods.

Proof of stake (PoS): Nodes need to buy stakes in the network—basically, they buy the
cryptocurrency native to the network. Only a few nodes with a majority stake get to participate
in the mining activity in some cases. This is highly power efficient, and this is the reason why
Ethereum recently switched from PoW to PoS. However, it is considered to be less decentralized,
as only the nodes with enough resources get to add the next blocks and it can be seen that some
big players have been slowly taking ownership of the majority of the network since Ethereum
switched to PoS. The main benefit of PoS is that since nodes have a stake in the system, they
are de-incentivized to add unscrupulous blocks to the chain. Since the copy of the chain exists
with all the nodes of the entire network, the nodes are running the software of the blockchain
where the output hashes need to be consistent with the rest of the chain. Hence, when a node
tries to add the wrong block, the rest of the nodes do not validate this block, and if such a
scenario takes place, these nodes are then penalized where the amount of native cryptocurrency
owned by the node that is taken away can differ depending on the seriousness of the violation.
Generally, this penalty entails a partial loss of funds rather than a complete forfeiture of all
holdings. Some examples are Cardano, Ethereum, and Polkadot.

Proof of burn (PoB): Burning is a process where cryptocurrency is sent to a wallet address
from which it’s irrecoverable. The nodes that can burn the highest amount of cryptocurrency
get to add a node. Miners must invest in the blockchain to demonstrate their commitment
to the network. Even though PoB is the most criticized consensus model, it can actually be
highly effective for some blockchains that want to ensure deflationary tokenomics. Slimcoin
is an example of PoB.

Proof of capacity: In this consensus mechanism, the nodes with the highest storage space get
to add a node. This means that the nodes that partake in the network can use their hard drive
space to compete with each other to win the mining rights. An example is Permacoin.

Delegated PoS: Participants in the network, such as end users buying cryptocurrency, can stake
their coins in a pool, and the pool belongs to a particular node that can add blocks to a chain.
The more tokens you stake, the bigger your payout. Examples are EOS, BitShares, and TRON.

In this section, we've developed a rich understanding of consensus mechanisms, and this will help us

throughout the book, especially while building the blockchain.

Exploring the backbone of blockchains

Mining

By now, we have a very basic idea of what mining is and why it’s necessary. In this section, we will dive
into the specifics of mining. Mining happens quite differently in different consensus mechanisms. We
will look at mining for the two major consensus mechanisms: PoW and PoS. For instance, in Po§, let’s
consider the example of Ethereum 2.0, where validators are chosen to create new blocks and secure
the network based on the amount of cryptocurrency they hold and are willing to “stake” as collateral.

In a PoW blockchain, to add a block to the blockchain, a cryptographic problem needs to be solved.
The node that comes up with the solution first gets to win the competition. This means that nodes
with the highest computational power usually win and get to add a block.

The blockchain’s cryptography challenge adjusts in complexity over time to ensure consistent block
creation. Nodes predict a specific hash, focusing on a segment that aligns with the existing blockchain,
maintaining chain coherence.

Nodes employ a nonce, a unique value, to address the challenge. Incrementing from zero, this value
is adjusted until a matching hash is computed, pivotal for generating a valid hash in line with the
network’s rules.

Solving the cryptographic problem validates transactions and creates new blocks. A successful node
broadcasts its solution, swiftly verified by others. The first to find a valid solution is rewarded with
newly minted cryptocurrency, incentivizing participation and bolstering network security.

The following diagram shows the different fields that add up to produce a hash:

Nonce : 1

Nonce : 2

Hash from last block —I— —|—

Nonce : 3

Nonce : 4

e p— f— —
WU

Nonce : 5

| Nonce : 37921)|

0000f727854b50bb95c054b39c1fe5¢92e5ebcfadbch5dc279f56aa96a365e5a

Figure 1.11 — All the data that makes up a hash

15

16

Blockchains with Rust

Now, this means the following:

o 'This can only be solved with brute forcing, iterating from zero to a particular number, and
cannot be solved smartly

« All the nodes in the network compete with each other regardless of whether they ever win, and
this means a lot of computational energy gets wasted

o Nodes need to keep upgrading their computational power to win the competition

Now that we understand what mining is and how it works, it’s time to learn about forking—an
important blockchain concept.

Forking

There is one small detail about blockchains that we have talked about but haven’t discussed in detail yet,
and that’s immutability. In one of the earlier sections, we learned how SHA-256s properties translate
into immutability for blockchains. This means all transactions that happen on-chain are immutable,
and tokens once sent from one account to another cannot be reversed unless an actual transaction is
initiated from the second account.

In traditional payment systems, this is not the case. If money is sent to the wrong account by mistake,
this can be reversed, but this feature has been manipulated by centralized authorities and therefore
immutable transactions are valued highly.

Let’s take as an example the decentralized autonomous organization (DAO) attack in 2016 that led
to $50 million being stolen from the Ethereum blockchain due to a code vulnerability. The only way
to reverse this was to create an entire copy of the chain where this particular transaction didn’t take
place. This process of creating a different version chain is simply called forking. This event divided the
blockchain between Ethereum and Ethereum Classic.

The following diagram demonstrates what forking looks like:
gooigooigoolg
Figure 1.12 - Forks in a blockchain
Forking also comes into use when rules for the blockchain need to be modified. Traditional software

gets upgraded and new updates and patches are applied, whereas the way to upgrade a blockchain is to
fork (though some blockchains such as Polkadot have invented mechanisms to have forkless upgrades).

Exploring the backbone of blockchains

Forks typically occur intentionally, but they can also happen unintentionally when multiple miners
discover a block simultaneously. The resolution of a fork takes place as additional blocks are appended,
causing one chain to become longer than the others. In this process, the network disregards blocks
that are not part of the longest chain, labeling them as orphaned blocks.

Forks can be divided into two categories: soft forks and hard forks.

A soft fork is simply a software upgrade for the blockchain where changes are made to the existing
chain, whereas with a hard fork, a new chain is created and both old and new blockchains exist side
by side. To summarize, both forks create a split, but a hard fork creates two blockchains.

Permissioned versus permissionless

Blockchains can be permissionless or permissioned depending on the use case. A permissionless
blockchain is open to the public with all transactions visible, but they may be encrypted to hide some
crucial details and information if required. Anyone can join the network, become a node, or be a
validator if the basic criteria are met. Nodes can become a part of the governing committee as well once
they can meet additional requirements, and there are no restrictions on who can join the network. You
can freely join and participate in consensus without obtaining permission, approval, or authorization.

Most of the commonly known blockchains, such as Ethereum, Solana, and Polkadot, are all permissionless
chains and are easily accessible. Their transaction data is publicly available. So, a perfect use case for
permissionless chains is hosting user-facing and user interaction-based applications.

Permissioned chains have gatekeepers that define a permission, approval, or authorization mechanism
that only a few pre-authorized nodes can operate. So, to be a part of the permissioned blockchain
network, you may need a special set of private keys and may also need to match some security
requirements. Since the nodes copy the entire data of the chain and are also involved in adding blocks
to the chain and being a part of the governing committee for the blockchains, some use cases where
data and information need to be kept private can use permissioned chains.

The following diagram shows the difference between a public and a private blockchain network:

Public versus Private Blockchain Network

’

"5 ’

5, o5
‘50 5%,

.‘ o’
¢
L4 ’
r“ " “
s % 5 ‘
’ £ g7 s 0 s oL
® “ - oﬂf—:'
’
", -6 G-'
’ vy !,::‘ !':‘

¢
£
2%
"

Figure 1.13 - Permissioned versus permissionless chains

17

18

Blockchains with Rust

Governments, institutions, NGOs, and traditional corporations have found plenty of use cases for
permissioned chains, where only a few actors trusted by the centralized authorities are permitted to
join the network. Permissioned blockchains also have multiple business-to-business use cases and
may be centrally stored on a single cloud provider.

Blockchains help us decentralize computing and resources, and we have been using the word
decentralization quite often. In the next section, we will understand the concept of decentralization
in more depth.

Understanding decentralization

Decentralization is the guiding principle for Web 3.0. It's designed to create a win-win environment
for the builders of a platform, the people that build on the platform decentralized applications
(dApps), and the people that interact with the platform (users of dApps).

Let’s try and understand why decentralization is so important. In 2013, Twitter had a centralized
developers platform where developers could use their APIs to build apps on the Twitter platform.
A few years later, Twitter stopped the API support and also brought in a few restrictions, and every
few months, the API’s terms and conditions would change. This affected many app developers who
were either banned from the platform due to the restrictions or were unable to stay up to date with
the changing terms for API usage.

Similarly, Facebook had an app developer program as well, which many developers built their apps with.
However, developers faced similar problems here as well, and this problem is quite common wherever
a centralized platform is involved. Play Store and App Store can ban any app from their platform, and
Amazon can decide which sellers can sell and Uber can decide which drivers get more rides.

The issue is not just about getting banned from the platform and the policy changes, but it’s also about
monetization. For example, the Apple App Store can take about 30% of the entire revenue from app
developers. To prevent institutions, banks, and governments from curbing the freedom of individuals
and communities, decentralization is a popular solution that ensures everyone gets a voice and a few
owners of the platform do not end up controlling the entire platform.

It’s shared ownership where the ownership of the platform is not held closely by the founding team
or the committee; rather, it belongs to the community at large where each user can hold tokens and
gets a say in the system. We will read about this further in the DAOs section.

A blockchain network implements decentralization in a highly efficient manner, and this is why it’s
the primary technology for a decentralized use case.

So, now that we have a clearer understanding of decentralization, let’s dig into some of the concepts
that are closely related with decentralization that make it possible.

