Patrick Klein Thorsten Tietjen Günter Scheuermann

Inventor 2025

Grundlagen und Methodik in zahlreichen Konstruktionsbeispielen

7., aktualisierte Auflage

Klein / Tietjen / Scheuermann

Inventor 2025

Ihr Plus – digitale Zusatzinhalte!

Auf unserem Download-Portal finden Sie zu diesem Titel kostenloses Zusatzmaterial. Geben Sie dazu einfach diesen Code ein:

plus-69f4r-7v092

plus.hanser-fachbuch.de

Bleiben Sie auf dem Laufenden!

Hanser Newsletter informieren Sie regelmäßig über neue Bücher und Termine aus den verschiedenen Bereichen der Technik. Profitieren Sie auch von Gewinnspielen und exklusiven Leseproben. Gleich anmelden unter

www.hanser-fachbuch.de/newsletter

Patrick Klein Thorsten Tietjen Günter Scheuermann

Inventor 2025

Grundlagen und Methodik in zahlreichen Konstruktionsbeispielen

7., aktualisierte Auflage

HANSER

Über die Autoren: Patrick Klein, Bremen Thorsten Tietjen, Osterholz-Scharmbeck Günter Scheuermann, Nürnberg

Print-ISBN: 978-3-446-48227-2 E-Book-ISBN: 978-3-446-48365-1

Die allgemein verwendeten Personenbezeichnungen gelten gleichermaßen für alle Geschlechter.

Alle in diesem Werk enthaltenen Informationen, Verfahren und Darstellungen wurden zum Zeitpunkt der Veröffentlichung nach bestem Wissen zusammengestellt. Dennoch sind Fehler nicht ganz auszuschließen. Aus diesem Grund sind die im vorliegenden Werk enthaltenen Informationen für Autor:innen, Herausgeber:innen und Verlag mit keiner Verpflichtung oder Garantie irgendeiner Art verbunden. Autor:innen, Herausgeber:innen und Verlag übernehmen infolgedessen keine Verantwortung und werden keine daraus folgende oder sonstige Haftung übernehmen, die auf irgendeine Weise aus der Benutzung dieser Informationen – oder Teilen davon – entsteht. Ebenso wenig übernehmen Autor:innen, Herausgeber:innen und Verlag die Gewähr dafür, dass die beschriebenen Verfahren usw. frei von Schutzrechten Dritter sind. Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt also auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benützt werden dürften.

Die endgültige Entscheidung über die Eignung der Informationen für die vorgesehene Verwendung in einer bestimmten Anwendung liegt in der alleinigen Verantwortung des Nutzers.

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet unter http://dnb.d-nb.de abrufbar.

Dieses Werk ist urheberrechtlich geschützt.

Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Werkes, oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Einwilligung des Verlages in irgendeiner Form (Fotokopie, Mikrofilm oder einem anderen Verfahren), auch nicht für Zwecke der Unterrichtgestaltung – mit Ausnahme der in den §§ 53, 54 UrhG genannten Sonderfälle –, reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Wir behalten uns auch eine Nutzung des Werks für Zwecke des Text- und Data Mining nach § 44b UrhG ausdrücklich vor

© 2025 Carl Hanser Verlag GmbH & Co. KG, München Kolbergerstraße 22 | 81679 München | info@hanser.de *www.hanser-fachbuch.de* Lektorat: Dr. Philippa Söldenwagner-Koch Herstellung: Melanie Zinsler Covergestaltung: Max Kostopoulos Titelmotiv: © Patrick Klein, Thorsten Tietjen Satz: Eberl & Koesel Studio, Kempten Druck: CPI Books GmbH, Leck Printed in Germany

Inhalt

TEIL	I – Lea	rning by Doing	1
1	Einfül	hrung	3
1.1	Der Au	ıfbau dieses Buches	4
1.2	Install	ation von Inventor	5
2	Grund	Ilagen der Programmbedienung	7
2.1	Organi	sation in Projekten	8
2.2	Die Ar	beitsumgebung in Inventor	9
	2.2.1	Strukturbaum (Modellbrowser)	11
	2.2.2	Die Statusleiste	12
	2.2.3	Multifunktionsleiste (MFL)	12
2.3	Ansich	ten steuern und bearbeiten	13
	2.3.1	Zoom und Pan	13
	2.3.2	Der ViewCube	13
	2.3.3	Funktionsleiste zum Steuern der Ansicht	14
		2.3.3.1 Orbit, freies Drehen einer Ansicht	15
		2.3.3.2 Zoomen	16
2.4	Model	ansichten aktualisieren	16
2.5	Elemer	nte auswählen bzw. markieren	18
2.6	Das Ko	ontextmenü (rechte Maustaste)	19
3	Das P	rojekt "Rollenständer"	20
3.1	Für we	en und warum	20
3.2	Das Pr	odukt "Rollenständer"	21
3.3	Ein Pro	ojekt erstellen	22
3.4	Die Ba	ugruppe "Ständer" erstellen	23

3.5	Das Ba	auteil "Grundplatte" erstellen	23
	3.5.1	Mit der Konstruktion eines Bauteils starten	24
	3.5.2	Eine 2D-Skizze für die "Grundplatte" erstellen	25
		3.5.2.1 Konzentrische Kreise erstellen	26
		3.5.2.2 Linien in radialer Anordnung erzeugen	27
		3.5.2.3 Linien bis zum Kreisrand stutzen	28
		3.5.2.4 Abhängigkeiten kontrollieren und neu vergeben	29
		3.5.2.5 Bemaßen der aufgespannten Winkel	30
		3.5.2.6 Segmente vervielfältigen und Muster verwenden	31
		3.5.2.7 Skizze beenden	32
	3.5.3	Ein 3D-Bauteil aus der Skizze durch Extrusion erzeugen	32
	3.5.4	Abrunden und Anfasen der Bauteilkanten	33
	3.5.5	Nut (Langloch) für die Rippen einbringen	35
	3.5.6	Nuten vervielfältigen (Muster verwenden)	37
	3.5.7	Auswahl eines Materials für die fertige Grundplatte	38
3.6	Die Ba	ugruppe "Ständer" erstellen	40
3.7	Neue I	Baugruppenkomponenten im Kontext einer Baugruppe anlegen	43
3.8	Die Ri	ppe in der Baugruppe erstellen	50
	3.8.1	Die Extrusion der Rippe	53
	3.8.2	Zapfen an den Enden der Rippe anbringen	53
	3.8.3	Vervielfältigen der Rippe auf Baugruppenebene	55
3.9	Ein Ba	uteil nachträglich weiterbearbeiten	56
3.10	Eine fo	otorealistische Ansicht erzeugen	60
3.11	Die Ba	ugruppe "Schiebeteil"	61
3.12	Das Sc	hieberohr konstruieren	61
3.13	Anlege	en der Baugruppe "Schiebeteil"	64
3.14	Konsti	ruieren rotationssymmetrischer Teile	68
3.15	Bohru	ngen in das U-Profil (Traverse) einbringen	71
3.16	Einfüg	en von Normteilen (Schrauben und Muttern)	74
3.17	Erstell	en des Bauteils "Rolle" als Drehteil	77
3.18	Die Ba	ugruppe "Schiebeteil" vervollständigen	80
3.19	Der "R	ollenständer" wird zusammengebaut	81
3.20	Ableit	en von Zeichnungen und Präsentationen	86
	3.20.1	Die Einzelteilzeichnung	86
	3.20.2	Eine Explosionsdarstellung mit Stückliste erstellen	91
3.21	Fazit		94

TEIL	II – An	wendungsbereiche und Funktionen	95
4	Skizze	en und Arbeitselemente	97
4.1	Arbeit	selemente	97
	4.1.1	Die Ursprungsgeometrie	98
	4.1.2	Die Befehlsgruppe Arbeitselemente	99
	4.1.3	Koordinatensysteme	103
4.2	Grund	sätze einer Skizzenerstellung	104
4.3	Skizzei	numgebung öffnen	106
4.4	Einstel	lungen für das Arbeiten mit Skizzen	107
4.5	2D-Ski	zzen	110
	4.5.1	Profilskizzen	110
	4.5.2	Pfadskizzen	111
4.6	Die Ge	ometrieelemente der Skizze	111
	4.6.1	Standardlinien	112
	4.6.2	Konstruktionslinien	112
	4.6.3	Mittellinien, Mittel- und Skizzierpunkte	113
	4.6.4	Linie, Spline, Ellipse, Rechteck, Langloch und weitere Skizzenelemente	113
	4.6.5	Text in Skizzen einfügen	117
	4.6.6	Linien umformatieren	117
	4.6.7	Geometrie projizieren - Referenzgeometrien	118
	4.6.8	Muster - mehrfache Anordnung von Elementen	120
		4.6.8.1 Rechteckige Anordnung	120
		4.6.8.2 Runde Anordnung	121
		4.6.8.3 Spiegeln	121
	4.6.9	Blockgeometrie	122
4.7	Genau	es Zeichnen durch Koordinatenangabe	123
4.8	Elemer	nte in Skizzen bemaßen	123
	4.8.1	Ausgerichtete Bemaßung	124
	4.8.2	Getriebene Bemaßung	124
	4.8.3	Toleranzangaben	125
	4.8.4	Bemaßungsanzeige	126
4.9	2D-Abl	hängigkeiten in Skizzen erstellen	127
	4.9.1	Absolute Abhängigkeiten	127
	4.9.2	Geometrische Abhängigkeiten	128
4.10	Autom	atisch vergebene Abhängigkeiten	128

4.11	Abhän	gigkeiten ein- und ausblenden	130
4.12	Kontur	ren in Skizzen ändern	131
	4.12.1	Verschieben, Kopieren und Drehen	132
	4.12.2	Stutzen, Dehnen und Trennen	133
	4.12.3	Skalieren, Gestreckt und Versatz	133
	4.12.4	Rundung und Fasen	134
4.13	Maße r	nit Formeln oder Wertetabellen verknüpfen	135
	4.13.1	Die Parametrik des Systems	135
	4.13.2	Maße mit Formeln verknüpfen	136
	4.13.3	Maße mit einer Wertetabelle verknüpfen	137
		4.13.3.1 Erstellen und Verknüpfen der Wertetabelle	138
		4.13.3.2 Steuern des CAD-Modells über die Tabelle	140
4.14	Mehrfa	ache Skizzenverwendung	141
	4.14.1	Verwendung in anderen Bauteildateien	141
	4.14.2	Mehrfachverwendung innerhalb eines Bauteils	142
	4.14.3	Die Skizzen-Ableitung aus anderen Bauteilen	143
4.15	3D-Skiz	zzen	144
	4.15.1	Eine Stützkonstruktion erstellen	146
	4.15.2	Linienverlauf in 3D-Skizze erstellen	147
	4.15.3	Querschnitt entlang eines 3D-Pfades aufziehen	148
	4.15.4	Schnittkurven, Silhouettenkurven und Projektionen in 3D-Skizzen	149
4.16	3D-Pun	ktewolke importieren	153
_			
5	Baute		155
5.1	Bauteil		155
	5.1.1	Bauteile – regulär	155
	5.1.2	Freiformkörper, Flächen und Hüllkörper	156
	5.1.3	Blechbauteile, Schweißbauteile und Formenbau	157
5.2	Grund	körper erstellen	158
5.3	Freitor	mkörper	159
	5.3.1	Freiform erzeugen	159
	5.3.2	Freiform ändern	160
5.4	Bauteil	le erstellen	162
	5.4.1	Extrusion	163
	5.4.2	Drehung	165
	5.4.3	Erhebung	166
	5.4.4	Sweeping	169

	5.4.5	Rippe	172
	5.4.6	Spirale	175
	5.4.7	Prägen	177
	5.4.8	Aufkleber	178
	5.4.9	Abgeleitete Komponenten	180
5.5	Bauteil	e ändern	182
	5.5.1	Bohrungen und Innengewinde	182
	5.5.2	Rundung, Abrunden	186
	5.5.3	Fasen	191
	5.5.4	Wandung, Wandstärke	191
	5.5.5	Flächenverjüngung	193
	5.5.6	Außen- und Innengewinde	194
	5.5.7	Kombinieren	196
	5.5.8	Verdickung/Versatz	196
	5.5.9	Trennen	198
	5.5.10	Direkt, Direktbearbeitung	199
	5.5.11	Fläche löschen	203
	5.5.12	Verschieben und Drehen (von Körpern)	205
	5.5.13	Biegungsteil, Biegung	206
	5.5.14	Objekt kopieren	208
	5.5.15	Markieren	209
	5.5.16	Oberfläche	211
5.6	Flächer	nbefehle	212
	5.6.1	Fläche heften	212
	5.6.2	Umgrenzungsfläche	213
	5.6.3	Formen, Körper aus Flächen erstellen	214
	5.6.4	Regelfläche	215
	5.6.5	Stutzen	216
	5.6.6	Dehnen	217
	5.6.7	Fläche ersetzen	217
	5.6.8	Körper reparieren	218
	5.6.9	Netzfläche einpassen	218
5.7	Muster	•	219
	5.7.1	Rechteckige Anordnung	219
	5.7.2	Runde Anordnung	221
	5.7.3	Element spiegeln	222
	5.7.4	Skizzenbasierte Anordnung	223

5.8	Einem Bauteil ein Material und weitere Eigenschaften als iProperties zuweisen 2			
5.9	Adapti	ve Bauteile	227	
	5.9.1	Adaptive Bauteile durch unbestimmte Parameter	227	
	5.9.2	Adaptive Bauteile durch projizierte Geometrien	228	
6	Baugr	uppen	230	
6.1	Grund	lagen	230	
6.2	Freihei	itsgrade eines Bauteils	231	
6.3	Bauteil	le in eine Baugruppe einfügen	232	
	6.3.1	Platzieren mit Lageveränderung	235	
	6.3.2	Bauteile mit iMates einfügen	235	
	6.3.3	Bauteile fixieren	236	
	6.3.4	Mehrere identische Kopien eines Bauteils nach Muster gleichzeitig einfügen	237	
6.4	Einzelr	e Bauteile in einer Baugruppe bewegen	240	
	6.4.1	Freie Verschiebung	240	
	6.4.2	Freie Drehung	240	
	6.4.3	Rasterfang	241	
6.5	Abhän	gigkeit und Verbindung	242	
6.6	Freihei	itsgrade durch Abhängigkeit eliminieren	243	
	6.6.1	Abhängigkeit. Tvp Passend	244	
	6.6.2	Abhängigkeit. Tvp Winkel	247	
	6.6.3	Abhängigkeit. Tvp Tangential	248	
	6.6.4	Abhängigkeit, Typ Einfügen	249	
	6.6.5	Abhängigkeit. Tvp Svmmetrie	250	
	6.6.6	Abhängigkeiten kombinieren	250	
6.7	Verbin	dung(en) zwischen Bauteilen erzeugen	251	
6.8	Zusam	menfügen von Bauteilen	254	
6.9	Abhän	gigkeit und Verbindung: Sichtbarkeit und Bewegen	254	
	6.9.1	Beziehungen ein- bzw. ausblenden	254	
	6.9.2	Bewegungen ausführen	2.56	
6.10	Bauteil	le im Kontext einer Baugruppe bearbeiten	256	
6.11	Ein nei	ues Bauteil in einer Baugruppe erstellen	261	
	6.11.1	Bauteile hinzufügen (Befehlsgruppe Produktivität)	264	
612	Änderi	ungen an adaptiven Elementen einer Baugrunne	265	
0.12				

6.13	Weiter	e Gliederungselemente im Strukturbaum der Baugruppenumgebung	268
	6.13.1	Ansicht	269
	6.13.2	Position	270
	6.13.3	Modellzustand	271
6.14	Verein	fachung von Baugruppen	272
	6.14.1	Hüllen definieren	275
	6.14.2	Vereinfachtes Bauteil erstellen	275
6.15	Die Bei	fehlsgruppe Produktivität	277
7	Zeichi	nungsableitung	279
7.1	Einzelt	eil- und Gesamtzeichnungen	279
7.2	Arbeite	en mit Zeichnungsnormen	280
	7.2.1	Normenauswahl im Startfenster	280
	7.2.2	Erstellen einer neuen Zeichnung	280
	7.2.3	Anpassen von Zeichnungsvorlagen	282
7.3	Arbeits	sblatt, Zeichnungsrahmen und Schriftfeld	283
	7.3.1	Blattformate	283
	7.3.2	Zeichnungsrahmen	284
	7.3.3	Schriftfeld	285
7.4	Layer ı	and Linienstil	287
7.5	Zeichn	ungsansichten	290
	7.5.1	Erstansicht und parallele bzw. isometrische Ansicht einfügen	292
	7.5.2	Hilfsansicht erstellen	295
	7.5.3	Schnittansicht erzeugen	296
	7.5.4	Detailansicht erstellen	297
	7.5.5	Überlagerung	298
	7.5.6	Nagelbrettansicht	299
	7.5.7	Entwurfsansicht	299
7.6	Ansich	t ändern	299
	7.6.1	Lösen, Unterbrochene Ansicht	299
	7.6.2	Ausschnitt - Ausbruch	300
	7.6.3	Aufgeschnittene Ansicht erstellen	302
	7.6.4	Zuschneiden	303
7.7	Skizze	erstellen	303
7.8	Neues	Blatt, Ansichten auf mehreren Blättern	304
7.9	Zeichn	ung mit Anmerkung versehen	304
	7.9.1	Mittellinien in Ansichten erstellen	305

	7.9.2	Zeichnungen bemaßen	307
	7.9.3	Bemaßungen einfügen	308
		7.9.3.1 Durchmesser-Bemaßungen	310
		7.9.3.2 Bemaßung mit "gedachten" Schnittpunkten	311
		7.9.3.3 Bemaßungsstil während der Bemaßung ändern	312
		7.9.3.4 Genauigkeit und Toleranz angeben und einstellen	312
	7.9.4	Bemaßungen ändern	313
	7.9.5	Bemaßungen verschieben	314
	7.9.6	Tabellen, Revisionstabellen, Bohrungstabellen einfügen	314
	7.9.7	Symbole in Zeichnungen verwenden	316
	7.9.8	Revisionswolken	317
	7.9.9	3D-Anmerkungen übernehmen	317
7.10	Baugru	Ippenzeichnungen	319
	7.10.1	Baugruppenzeichnung erzeugen	320
	7.10.2	Ansichten in Baugruppenzeichnungen	320
	7.10.3	Zeichnungsansichten um Positionsnummern ergänzen	322
		7.10.3.1 Positionsnummernvergabe "von Hand"	322
		7.10.3.2 Automatische Positionsnummernvergabe	323
		7.10.3.3 Positionsnummern ändern	325
	7.10.4	Teileliste, Stückliste erzeugen und einfügen	325
	7.10.5	Stückliste bzw. Bauteilliste bearbeiten	327
8	Mode	II-, Zeichnungs- und Präsentationsaufbereitung	329
8.1	Präsen	tation und Animation	330
	8.1.1	Eine Präsentation beginnen	330
	8.1.2	Komponentenpositionen ändern	331
	8.1.3	Kamera erfassen (Zoom und Sichtachse einstellen)	333
	8.1.4	Aufzeichnungen als Videosequenz speichern	334
8.2	Zeichn	ungsableitung aus der Präsentationsumgebung	337
8.3	Bauteil	e mit 3D-Anmerkungen versehen	340
8.4	Materia	al- und Darstellungsbibliothek	345
	8.4.1	Der Materialien-Browser	346
	8.4.2	Mit Materialien und Darstellungen arbeiten	348
	8.4.3	Eigene Bibliothek(en) mit neuen Materialen erstellen	352
8.5	Invento	or Studio – Rendering	356

9	Datenaustausch	365
9.1	Import von Bauteilen und Baugruppen	365
9.2	Import in und Export von Skizzen	369
9.3	Export	370
9.4	Import und Export von Parametern	371
10	Konstruktionsassistenten	372
10.1	Befestigung, Feder und Berechnung	372
	10.1.1 Wellen-Generator	374
	10.1.2 Lager-Generator	378
	10.1.3 Riementrieb-Generator	380
	10.1.4 Keilverbindung (Welle-Nabe-Verbindung)	383
	10.1.5 Kurvenscheiben-Generator	385
	10.1.6 Schraubenverbindung	387
	10.1.7 Weitere Konstruktionsassistenten	390
10.2	Gestell- und Rahmen-Generator	393
	10.2.1 Konstruktiver Aufbau eines Gestells	394
	10.2.2 Gestellanalyse	399
11	Konstruktionsautomatisierung	403
11 11.1	Konstruktionsautomatisierung Normteilbibliothek – Inhaltscenter	403 403
11 11.1	Konstruktionsautomatisierung Normteilbibliothek – Inhaltscenter 11.1.1 Eigene Bibliotheken anlegen	403 403 405
11 11.1	Konstruktionsautomatisierung Normteilbibliothek - Inhaltscenter 11.1.1 Eigene Bibliotheken anlegen 11.1.2 Eigene Bauteilfamilien in Bibliotheken anlegen	403 403 405 406
11 11.1 11.2	Konstruktionsautomatisierung Normteilbibliothek - Inhaltscenter 11.1.1 Eigene Bibliotheken anlegen 11.1.2 Eigene Bauteilfamilien in Bibliotheken anlegen Vordefinierte Bauteilabhängigkeiten: iMates	403 403 405 406 408
11 11.1 11.2	Konstruktionsautomatisierung Normteilbibliothek – Inhaltscenter 11.1.1 Eigene Bibliotheken anlegen 11.1.2 Eigene Bauteilfamilien in Bibliotheken anlegen Vordefinierte Bauteilabhängigkeiten: iMates 11.2.1 Erstellen von iMates	403 403 405 406 408 408
11 11.1 11.2	Konstruktionsautomatisierung Normteilbibliothek - Inhaltscenter 11.1.1 Eigene Bibliotheken anlegen 11.1.2 Eigene Bauteilfamilien in Bibliotheken anlegen Vordefinierte Bauteilabhängigkeiten: iMates 11.2.1 Erstellen von iMates 11.2.2 Positionierung mit iMates	403 403 405 406 408 408 409
1111.111.211.3	Konstruktionsautomatisierung Normteilbibliothek - Inhaltscenter 11.1.1 Eigene Bibliotheken anlegen 11.1.2 Eigene Bauteilfamilien in Bibliotheken anlegen Vordefinierte Bauteilabhängigkeiten: iMates 11.2.1 Erstellen von iMates 11.2.2 Positionierung mit iMates Teilefamilien: iParts	403 403 405 406 408 408 409 409
 11 11.1 11.2 11.3 11.4 	Konstruktionsautomatisierung Normteilbibliothek - Inhaltscenter 11.1.1 Eigene Bibliotheken anlegen 11.1.2 Eigene Bauteilfamilien in Bibliotheken anlegen 11.1.2 Eigene Bauteilfamilien in Bibliotheken anlegen Vordefinierte Bauteilabhängigkeiten: iMates 11.2.1 Erstellen von iMates 11.2.2 Positionierung mit iMates Teilefamilien: iParts Baugruppenfamilien: iAssemblies	403 403 405 406 408 408 409 409 411
 11 11.1 11.2 11.3 11.4 11.5 	Konstruktionsautomatisierung Normteilbibliothek - Inhaltscenter 11.1.1 Eigene Bibliotheken anlegen 11.1.2 Eigene Bauteilfamilien in Bibliotheken anlegen Vordefinierte Bauteilabhängigkeiten: iMates 11.2.1 Erstellen von iMates 11.2.2 Positionierung mit iMates Teilefamilien: iParts Baugruppenfamilien: iAssemblies Nutzerdefinierte Features - iFeatures	403 403 405 406 408 408 409 409 411 415
11 11.1 11.2 11.3 11.4 11.5 11.6	Konstruktionsautomatisierung Normteilbibliothek - Inhaltscenter 11.1.1 Eigene Bibliotheken anlegen 11.1.2 Eigene Bauteilfamilien in Bibliotheken anlegen Vordefinierte Bauteilabhängigkeiten: iMates 11.2.1 Erstellen von iMates 11.2.2 Positionierung mit iMates Teilefamilien: iParts Baugruppenfamilien: iAssemblies Nutzerdefinierte Features - iFeatures Regeln und Formulare: iLogic	403 405 406 408 408 409 409 411 415 418
 11 11.1 11.2 11.3 11.4 11.5 11.6 	Konstruktionsautomatisierung Normteilbibliothek - Inhaltscenter 11.1.1 Eigene Bibliotheken anlegen 11.1.2 Eigene Bauteilfamilien in Bibliotheken anlegen Vordefinierte Bauteilabhängigkeiten: iMates 11.2.1 Erstellen von iMates 11.2.2 Positionierung mit iMates Teilefamilien: iParts Baugruppenfamilien: iAssemblies Nutzerdefinierte Features - iFeatures Regeln und Formulare: iLogic 11.6.1 Formular erstellen	403 405 406 408 409 409 411 415 418 419
11 11.1 11.2 11.3 11.4 11.5 11.6	Konstruktionsautomatisierung Normteilbibliothek - Inhaltscenter 11.1.1 Eigene Bibliotheken anlegen 11.1.2 Eigene Bauteilfamilien in Bibliotheken anlegen Vordefinierte Bauteilabhängigkeiten: iMates 11.2.1 Erstellen von iMates 11.2.2 Positionierung mit iMates 11.2.2 Positionierung mit iMates Teilefamilien: iParts Baugruppenfamilien: iAssemblies Nutzerdefinierte Features - iFeatures Regeln und Formulare: iLogic 11.6.1 Formular erstellen	403 403 405 406 408 408 409 409 411 415 418 419 420
11 11.1 11.2 11.3 11.4 11.5 11.6	Konstruktionsautomatisierung Normteilbibliothek - Inhaltscenter 11.1.1 Eigene Bibliotheken anlegen 11.1.2 Eigene Bauteilfamilien in Bibliotheken anlegen Vordefinierte Bauteilabhängigkeiten: iMates 11.2.1 Erstellen von iMates 11.2.2 Positionierung mit iMates 11.2.2 Positionierung mit iMates Teilefamilien: iParts Baugruppenfamilien: iAssemblies Nutzerdefinierte Features - iFeatures Regeln und Formulare: iLogic 11.6.1 Formular erstellen 11.6.2 Regel erstellen 11.6.3 iLogic-Komponente verwenden	403 405 406 408 409 409 411 415 418 419 420 422
11 11.1 11.2 11.3 11.4 11.5 11.6	Konstruktionsautomatisierung Normteilbibliothek - Inhaltscenter 11.1.1 Eigene Bibliotheken anlegen 11.1.2 Eigene Bauteilfamilien in Bibliotheken anlegen Vordefinierte Bauteilabhängigkeiten: iMates 11.2.1 Erstellen von iMates 11.2.2 Positionierung mit iMates 11.2.2 Positionierung mit iMates Teilefamilien: iParts Baugruppenfamilien: iAssemblies Nutzerdefinierte Features - iFeatures Regeln und Formulare: iLogic 11.6.1 Formular erstellen 11.6.2 Regel erstellen 11.6.3 iLogic-Komponente verwenden Intelligente Kopien - iCopies	403 403 405 406 408 409 409 411 415 418 419 420 422 423
 11 11.1 11.2 11.3 11.4 11.5 11.6 11.7 	Konstruktionsautomatisierung Normteilbibliothek - Inhaltscenter 11.1.1 Eigene Bibliotheken anlegen 11.1.2 Eigene Bauteilfamilien in Bibliotheken anlegen Vordefinierte Bauteilabhängigkeiten: iMates 11.2.1 Erstellen von iMates 11.2.2 Positionierung mit iMates 11.2.2 Positionierung mit iMates Teilefamilien: iParts Baugruppenfamilien: iAssemblies Nutzerdefinierte Features - iFeatures Regeln und Formulare: iLogic 11.6.1 Formular erstellen 11.6.2 Regel erstellen 11.6.3 iLogic-Komponente verwenden Intelligente Kopien - iCopies 11.7.1 Generieren von iCopy-Vorlagen	403 405 406 408 409 409 411 415 418 419 420 422 423 423
11 11.1 11.2 11.3 11.4 11.5 11.6	Konstruktionsautomatisierung Normteilbibliothek – Inhaltscenter 11.1.1 Eigene Bibliotheken anlegen 11.1.2 Eigene Bauteilfamilien in Bibliotheken anlegen Vordefinierte Bauteilabhängigkeiten: iMates 11.2.1 Erstellen von iMates 11.2.2 Positionierung mit iMates 11.2.2 Positionierung mit iMates Teilefamilien: iParts Baugruppenfamilien: iAssemblies Nutzerdefinierte Features – iFeatures Regeln und Formulare: iLogic 11.6.1 Formular erstellen 11.6.2 Regel erstellen 11.6.3 iLogic-Komponente verwenden 11.7.1 Generieren von iCopy-Vorlagen 11.7.2 iCopy-Komponente verwenden	403 403 405 406 408 409 409 411 415 418 419 420 422 423 423 423

12	Prüf- u	und Analysewerkzeuge	431
12.1	Messer	1	431
12.2	Oberflä	ichenanalysen	435
12.3	Dynam	ische Schnittdarstellungen	437
12.4	Dynam	ische Simulation	440
12.5	Topolog	gie-Optimierung (Formen-Generator)	446
12.6	Belastu	ingsanalyse (FEM)	454
TEIL	III – Ar	beitsbereiche und Übungen	465
13	Invent	tor-Arbeitsbereiche	467
13.1	Das Ble	echmodul	467
	13.1.1	Beispiel – Lüftergehäuse in Blechausführung	471
		13.1.1.1 Modellieren des Gehäusedeckels	471
		13.1.1.2 Erstellen des Gehäusekorpus	479
13.2	Schwei	ßumgebung	484
	13.2.1	Beispiel – Ausführung der Baugruppe "Ständer" als Schweiß- konstruktion	485
	13.2.2	Berechnungsmodule für die Schweißnahtauslegung und für	100
12.2	Formor		400
15.5	1331	Bautoil Nogativform über die Baugruppenumgebung erzeugen	490
	1332	Die Bauteilungehung für den Formenbau	491
	10.0.2	13.3.2.1. Kern und Kawität nlatzieren	495
		13.3.2.2 Firstellen einer Form innerhalb der Formenumgehung	406
		13.3.2.3 Weitere Funktionen in der Form-Umgebung	501
134	Rohren	und Rohrleitungen	502
10.1	1341	Rohr- und Leitungsverlauf	503
	13.4.2	Beispiel – Verrohrung eines Tanks mit einer Pumpe	504
	101112	13.4.2.1 Leitungsverlauf des Pumpenzulaufs erstellen	507
		13.4.2.2 Leitungsverlauf des Tankablaufs erstellen	511
		13.4.2.3 Leitungsverlauf zwischen Tank und Pumpe ergänzen	513
13.5	Kabel ı	und Kabelbäume	515
	13.5.1	Beispiel – Verdrahtung einer Kabelbaugruppe durchführen	516
		13.5.1.1 Eine Verkabelung erstellen	518
		13.5.1.2 Segment erstellen und Kabelverlauf festlegen	520
		13.5.1.3 Routen – Kabel zu einem Kabelbaum zusammenfassen	522
	13.5.2	Weitere Bearbeitungsfunktionen in der Umgebung	523

13.6	Kunsts	toffteile	524
	13.6.1	Beispiel – Aufbau eines Kunststoffteils auf Basis eines Mehrfach-	
		bauteils (Multipart)	525
		13.6.1.1 Lüftungsöffnung (bzwgitter) im Deckel erzeugen	527
		13.6.1.2 Lippen (Montageränder, Dichtungslippen) erzeugen	528
		13.6.1.3 Schnappverschlüsse erzeugen	530
	13.6.2	Überführen von Multiparts-Bauteilen in eine Baugruppe	532
13.7	3D-Dru	cken	533
14	Übung	g: Zahnstangenpresse	538
14.1	Projekt	t "Zahnstangenpresse" anlegen	539
14.2	Konstr	uktion des Grundkörpers (Gestell)	539
	14.2.1	Konstruktive Umsetzung der zu bearbeitenden Flächen am	
		Bauteil "Gestell"	544
	14.2.2	Konstruktive Umsetzung der zu bearbeitenden Flächen am	F 4 F
	1400	Pressentisch vom Gestell	547
	14.2.3	Bearbeitung der Hischnache	549
14.0	14.2.4	Mit Abrundungen und Fasen das Bauteil fertigstellen	550
14.3	Fuhrur	igsplatte	553
14.4	Kopftei	۱۱۱	554
14.5	Zahnra	d und Zahnstange	556
14.6	Welle .		559
14.7	Knebel	und Knebelknopf	562
14.8	Druckp	olatte	562
14.9	Abdeck	kblech	563
	14.9.1	Grundkörper	563
	14.9.2	Laschen anbringen	566
	14.9.3	Befestigungslöcher einbringen	567
	14.9.4	Blechabwicklung	568
14.10	Baugru	appen der Zahnstangenpresse	569
	14.10.1	Zahnstange mit Druckplatte	569
	14.10.2	Welle mit Stirnrad und verschiedenen Normteilen	571
	14.10.3	Knebelstange	572
	14.10.4	Gestell mit den Führungselementen	573
14.11	Zusami	menbau der Zahnstangenpresse	577
14.12	Beweg	ungsfunktion der Presse	580

15	Übun	g: Bügelflasche	583
15.1	Flasche	enkörper	583
	15.1.1	Prägung am unteren Flaschenrand anbringen	585
	15.1.2	Vertiefungen für den Bügelverschluss	586
	15.1.3	"Braunes Glas" erzeugen	588
15.2	Versch	luss	590
15.3	Drahtb	ügel für den Verschluss	591
15.4	Drahtb	ügel für den Schließmechanismus	593
	15.4.1	Erstes Teilstück: Halterung am Flaschenkörper	593
	15.4.2	Zweites Teilstück: Spirale	593
	15.4.3	Drittes Teilstück: Betätigungsbügel	595
15.5	Gumm	idichtung	597
15.6	Etikett		598
15.7	Zusam	menbau	599
	A I		(01
10	Annar	וד איז	001
16.1	3D-CAI	D-Begriffe	601
	16.1.1	3D-Kernel	601
	16.1.2	3D-Datenmodelle	602
	16.1.3	Geometrieelemente	602
	16.1.4	Kurvenübergänge, Stetigkeiten	603
16.2	Invento	or-Module	603
16.3	Tastatu	ırkurzbefehle/Hotkeys (Auszug)	604
	16.3.1	Funktionstasten	604
	16.3.2	Werkzeuge	604
	16.3.3	Allgemein	605
	16.3.4	Bauteilumgebung	606
	16.3.5	Baugruppenumgebung	606
	16.3.6	Zeichnungsumgebung	606
Inde	x		607

Learning by Doing

Kurze Einführung in den Aufbau des Buches, Versions- und Installationshinweise sowie eine detaillierte, in kleine Arbeitsschritte aufgeteilte und trotzdem umfassende Einstiegsübung – angefangen mit Bauteilkonstruktionen über den Zusammenbau als Baugruppe bis hin zu Zeichnungsableitungen mit Inventor.

- Einführung, Aufbau des Buches
- Installation, Systemvoraussetzungen
- Grundlegende Bedienfunktionen
- Schnelleinstieg anhand eines Praxisbeispiels (Projekt "Rollenständer")

Einführung

Das Ziel einer Entwicklung bzw. Konstruktion ist es, die Funktionsweise einer komplexen Konstruktionsaufgabe unter realistischen Bedingungen visualisieren und simulieren zu können, ohne dass dazu ein kostspieliger Prototyp gebaut werden muss. Das Stichwort hierfür heißt **Digital Prototyping**. Mit dem Einsatz dieser Technik werden die Entwicklungszeiten verkürzt, die Kosten gesenkt und die Qualität der Produkte verbessert.

Die Grundlage stellt ein virtuelles 3D-CAD-Modell dar, an dem mit rechnerischen Methoden, wie kinematische und dynamische Simulation, Finite-Elemente-Methode, Visualisierung oder Funktions- und Montagesimulation, sowohl die Werkstoff- und Festigkeitseigenschaften als auch die fertigungs- und die montageseitigen Bedingungen optimiert werden können.

Es existieren weltweit wenige Computerprogramme, die in der Lage sind, solche virtuellen Modelle zu erzeugen und die vorangehend genannten Schritte des Digital Prototyping umzusetzen. Die Software Autodesk Inventor gehört zu dieser Gruppe, und in die Arbeit mit diesem Programmpaket soll dieses Buch eine grundlegende und umfassende Einführung geben.

Inventor ist ein leistungsfähiges 3D-CAD-System. Das sollte Sie nicht verunsichern, sondern eher dazu motivieren, das Programm zu Ihrem Nutzen einsetzen zu können.

Nicht das Lesen des Buches soll im Vordergrund stehen, sondern die Kombination aus eigenständigem Arbeiten mit Inventor und dem Nachvollziehen im Buch. Dafür ist es sinnvoll, bei der Lektüre des Buches das hier behandelte CAD-Programm zur Verfügung zu haben und damit zu arbeiten.

Es ist für das grundsätzliche Kennenlernen des Programms aber nicht zwingend notwendig, die aktuellste Inventor-Version zu verwenden. Diese unterstützt aber dabei, den Funktionsumfang des Programms anhand des Buchs besser nachvollziehen zu können. Inventor wurde seit der letzten Ausgabe dieses Buchs immer weiter verbessert. Die Änderungen betrafen inhaltliche Punkte und vor allem die Benutzeroberfläche mit den jetzt einheitlich gestalteten Dialogfenstern, die auch eine angepasste Bedienung nach sich gezogen haben. Bereits bei der letzten Ausgabe dieses Buchs waren schon erste Ansätze bei wenigen Funktionen umgesetzt. Nun bestimmt dieses Layout durchgehend das Programm, und das neue Erscheinungsbild von Dialogen und Funktionen im Design und Layout machte es erforderlich, dass das Buch nun in einer komplett neu überarbeiteten Version vorliegt. Zu Beginn ist vor allem die Vielfalt der gebotenen Möglichkeiten in Inventor erschreckend groß, doch es ist hier wie so häufig der Fall, dass nach dem Pareto-Prinzip ca. 80% der zu lösenden Aufgaben mit maximal 20% der zur Verfügung stehenden Möglichkeiten gelöst werden können.

Dies zu erkennen und um mit dem Programm rationell arbeiten zu können, stand bei der Ausgestaltung des Buchs im Vordergrund, und es soll als Unterstützung und Nachschlagewerk dienen.

Ihre Autoren

1.1 Der Aufbau dieses Buches

Dieses Buch richtet sich an alle Anwendergruppen gleichermaßen. Unabhängig von Ihren Vorkenntnissen können Sie mit diesem Buch den sicheren Umgang mit Autodesk Inventor erlernen. Mit den vorgestellten Übungen können Sie Ihre Kenntnisse vertiefen und als erfahrener Anwender gezielt Anwendungsbereiche und Funktionen nachschlagen.

Das Buch gliedert sich dementsprechend in drei Teile:

Teil I – Learning by Doing: In diesem Teil wird eine kurze Einführung mit den notwendigen Grundinformationen gegeben. Dann geht es Schritt für Schritt in das Erzeugen eines Produkts, das aus verschiedenen Bauteilen (Komponenten) besteht. Die hierfür benötigten Funktionen werden über die Multi-Funktionsleiste MFL (siehe Abschnitt 2.2.3) vorgestellt.

Teil II – Anwendungsbereiche und Funktionen: Dieser Teil des Buches stellt das typische Nachschlagewerk dar. Hier wird auf die grundlegenden und möglichen Arbeitsbereiche eingegangen, wobei angemerkt werden muss, dass es aufgrund der unzähligen Möglichkeiten eines 3D-CAD-Systems nahezu unmöglich ist, detailliert auf alle Punkte einzugehen.

Teil III – Arbeitsbereiche und Übungen: Für spezielle Konstruktionsaufgaben, wie beispielsweise die Gestaltung von Schweißkonstruktionen oder Gussformen, bietet Inventor eigene Arbeitsbereiche mit angepassten Funktionen. Anhand von Beispielaufgaben werden die unterschiedlichen Arbeitsbereiche vorgestellt. Darüber hinaus bietet dieser Teil Übungen mit durchgängigen Konstruktionsaufgaben.

In jedem Buchteil werden Hinweise und Tipps mit entsprechenden Symbolen und in hinterlegten Bereichen hervorgehoben. Sie sollen den Umgang mit Inventor erleichtern. Darüber hinaus sind für die vorgestellten Funktionen und Befehle die Icon-Symbole, die in den Inventor-Menüleisten verwendet werden, in der Randspalte abgebildet.

Farbschema des Buches und Zugang zu den Beispieldateien

Für die Gestaltung des Buches wurde versucht, möglichst kontrastreiche Abbildungen für den Druck zu erstellen. Wer die gleichen Hintergrundfarben verwenden möchte, wie sie für alle Abbildungen des Buches verwendet wurden, findet unter dem Befehl **DATEI** ganz unten die Schaltfläche **OPTIONEN**. Hierunter befinden sich verschiedene Einstellungen, mit denen Inventor konfiguriert werden kann. Wer hier die Registerkarte **Farben** öffnet, kann das Farbschema **Taubengrau** auswählen, bei Hintergrund **Hintergrundbild** selektieren und als Hintergrundbild *Inventor_Blue_Hanser.png* laden. Alternativ besteht natürlich auch die Möglichkeit, eigene Kombinationen an Einstellungen vorzunehmen. Inhaltlich hat dieses keine Nachteile für das Durcharbeiten des Buchs.

Die Übungsdateien zum Buch finden Sie unter http://plus.hanser-fachbuch.de.

1.2 Installation von Inventor

Inventor wird in der Professional-Version mit allen Zusatzmodulen als Testversion (neben der käuflichen Variante) angeboten. Eine detaillierte Übersicht über den Funktionsumfang von Inventor finden Sie auf der Autodesk-Website unter:

https://www.autodesk.com/de/products/inventor/overview?term=1-YEAR&tab=subscription

Für Lehrende und Lernende bietet Autodesk kostenlose Lizenzen über die Autodesk Education Community an. Hier können auch Klassenraumlizenzen für Schulen bezogen werden. Diese Versionen sind Vollversionen, mit denen uneingeschränkt gearbeitet werden kann, die jedoch nicht für gewerbliche Zwecke verwendet werden dürfen und eine Laufzeit von einem Jahr haben.

TIPP: Inventor bietet für Schüler:innen/Studierende kostenlose Lizenzen an. Den Zugang und weitere Hinweise finden Sie unter *https://www.autodesk. com/education/home*. Ist das unterrichtende Institut dort als Schule/Hochschule eingetragen, können dessen Schüler:innen/Studierende/Lehrende kostenlos eine Inventor-Version beziehen und sich hier registrieren lassen.

Die Installation für die Übungen, die in diesem Buch enthalten sind, wurde mit der Option "vollständige Installation (inklusive der Inhaltscenter Normteilbibliotheken)" durchgeführt.

Sollten Sie Inventor mit anderen Optionen als den hier genannten installiert haben, so kann es bei verschiedenen Beispielen im Buch möglich sein, dass Sie diese auf Ihrem System nicht in jedem Detail eins zu eins nachvollziehen können. Auf die zentralen Aspekte, die mit den Beispielen vermittelt werden sollen, hat dies jedoch keinen Einfluss.

Systemvoraussetzungen

Bedingt durch ihren Aufbau benötigen CAD-Systeme Computer mit möglichst viel Arbeitsspeicher (mindestens 16 GB RAM für Baugruppen mit weniger als 500 Bauteilen, empfohlen werden 32 GB oder mehr) und einem leistungsstarken Prozessor (mindestens 3 GHz oder mehr). Lauffähig ist Inventor ausschließlich auf Windows-Betriebssystemen in der 64-Bit-Version (Windows 10 und Windows 11). Grundsätzlich gilt: Je mehr Bauteile geöffnet sind, desto mehr Rechenoperationen finden gleichzeitig statt und desto mehr Rechenleistung sollte Ihr Computer besitzen.

Für ein entspanntes Arbeiten werden ein großer Bildschirm (> 20 Zoll) sowie entsprechende Eingabegeräte empfohlen.

Mit jeder Version von Inventor gibt Autodesk Hinweise für die Systemanforderungen heraus, sowohl für Hardware als auch für die unterstützten Betriebssysteme. Informationen können schnell über die Suche auf der Autodesk-Website in Erfahrung gebracht werden.

Ĩ

Auf den Autodesk-Webseiten können Sie kostenlose Zusatz- und Serviceprogramme für die Arbeit mit Inventor bzw. mit Inventor-Dokumenten herunterladen. Weiterhin stehen hier Updates & Service-Packs zum Download bereit:

https://knowledge.autodesk.com/support/

Grundlagen der Programmbedienung

Inventor legt für jedes Objekt (Bauteil, Baugruppe etc.) separate Dateien an, die auch vom Windows Datei-Browser verwaltet werden können.

Symbol	Objekte	Dateiendung
	Bauteile Blechteile und Vorlagen	*.ipt
	Baugruppen auch Schweißbaugruppen, Rohr- und Leitungsverlegungen sowie Bewegungsdefinitionen	*.iam
	Zeichnungen Zeichnungsableitungen, Einzelteilzeichnungen, Baugruppen- zeichnungen, Explosionszeichnungen (einschließlich Stück- listen) usw.	*.idw
0	Präsentation Explosionsdarstellungen und Animationen	*.ipn

Nach dem Programmstart zeigt Inventor eine Startseite, die zur Verwaltung der existierenden Baugruppen und Bauteile dient und deshalb zu Beginn leer ist.

TIPP: Wer auf die Einblendung der Ausgangsansicht beim Programmstart verzichten möchte, kann unter der Registerkarte **Datei** den Button **OPTIONEN** auswählen und im Dialogfeld auf der Registerkarte **Allgemein** bei "Start-Aktion" den Haken setzen. Drei verschiedene Optionen stehen zur Auswahl, die beim nächsten Programmstart wirksam werden.

Im Schnellzugriff-Werkzeugkasten, gleich neben dem Inventor-Icon, befinden sich wichtige Programmfunktionen, die direkt ausgeführt werden können. Hier befindet sich beispielsweise der **RÜCKGÄNGIG**-Befehl, der die letzte Aktion widerruft. Dieser Werkzeugkasten lässt sich um häufig genutzte Funktionen erweitern. Über das Kontextmenü der verschiedenen Inventor-Funktionen werden diese dem Werkzeugkasten zugefügt. Unter dem Schnellzugriff befinden sich die Register für die verschiedenen Anwendungsbereiche, z.B. **Anwendungsoptionen**. Sie bilden die Multifunktionsleiste, in der die Inventor-Funktionen in Befehlsgruppen, z.B. **Optionen**, gruppiert sind.

Anwendung	ps- Dokument- einstellungen	→ Einstellungen migrieren	Autodesk App Manager	Neue markieren	Anpassen 영 Verknüpfungen 라 Zusatzmodule	Makros	Editor	Stapelpublizierung	C iLogic-Konstruktionskopie	Lieferanteninhalt 2 Inventor Ideas	Team Web
			Optionen	*			1	nhaltscenter	iLogic	Web	Team Web

2.1 Organisation in Projekten

Jede etwas umfangreichere Konstruktionsarbeit mit Inventor sollte innerhalb einer Projektstruktur geschehen. Die Vorteile dieser Arbeitsweise sind:

- Alle Dateien und Dokumente einer Konstruktion befinden sich in einem Arbeitsordner. Verknüpfungen zwischen Bauteildateien und Baugruppendateien werden so geschützt.
- In der Projektverwaltung behält man die Übersicht und kann schnell zwischen einzelnen Projekten wechseln.
- Zur Weitergabe der Konstruktionen ist die Zusammenfassung zu Projekten sinnvoll.

In der Teamarbeit, vor allem beim Einsatz von PLM-Systemen oder der Dokumentverwaltung Vault, ist eine Arbeit ohne Projekte nicht denkbar.

Das Anlegen bzw. das Auswählen eines Projekts kann auf verschiedenen Wegen erfolgen. Im Schnellzugriff-Werkzeugkastenbefindet sich das entsprechende Icon **PROJEKTE** gleich neben dem Icon **STARTSEITE** (Haus-Symbol).

Default	(
Öffnen	

Das Anlegen bzw. Auswählen eines Projekts erfolgt über die Registerkarte **Datei > Ver**walten > **Projekte**. Alternativ kann dieses neben dem Icon im Schnellzugriff-Werkzeugkasten sowie auch über den nebenstehend gekennzeichneten Funktionsaufruf **Projekte** und Einstellungen erfolgen.

Eingeblendet wird ein Dialogfenster mit den bisher angelegten Projekten. Darüber hinaus kann im Fenster **NEU** geklickt werden, um ein **Neues Einzelbenutzer-Projekt** zu erzeugen. Über den Inventor-Projekt-Assistenten erfolgen letztendlich die programmgeführten notwendigen Einträge, wie die Vorgabe eines Projektnamens und des Projektordners zum Speichern der zugehörigen Daten.

oiektname	Projektspeicherort	
Default		
Elascha	DulTEVTIBucharaiakt Inventor/CAD-Daten/Elaccha)	
Towaster Electrical Project	Cillicers/Disble/Deciments/Autodeck/Inventor 2025	
Pobrioit ingeschamp	C: Users Public (Documents Autobesk (Inventor 2025)	
Ronnettungsscheina	D:\TEXT\Buchprojekt_Inventor\CAD-Daten\commentung_inal_2\	
Rollenstander	D:\TEXT\puchprojekt_Inventor\CAD_Daten\	
Projekt (schreibgeschützt)		
Eingeschlossene Datei =		
Stilbibliothek verwenden = S	chreibgeschützt	
Darstellungsbibliotheke	n	-
Materialbibliotheken		
Arbeitsbereich		6
Arbeitsgruppen-Suchpfa	ade	
Bibliotheken		
Haufig verwendete Unte	erordner	
Ordneroptionen		19
(a) optionen		-

2.2 Die Arbeitsumgebung in Inventor

Wurde in der Ausgangsansicht links die Schaltfläche **NEU** (Registerkarte **Datei**) und anschließend per Bauteil-Icon bzw. Baugruppen-Icon eine entsprechende Vorlage, z. B. *Standard.ipt* oder *Standard.iam*, gewählt, erscheint die noch leere Arbeitsumgebung, in der im nächsten Schritt ein Bauteil bzw. eine Baugruppe erstellt werden kann. Anhand dieser Anzeige sollen an erster Stelle die wichtigsten Fensterbereiche der Arbeitsumgebung erläutert werden.

HINWEIS: Wird im Dialogfeld Neue Datei erstellen der Unterordner de-DE und dann Metric gewählt, "verdoppeln" sich quasi die zur Verfügung stehenden Vorlagen (Templates). Für alle Typen stehen nun Templates mit der Bezeichnung xxx (mm) sowie xxx (DIN) zur Auswahl. Bei den Vorlagen wurden unterschiedliche Normen und Einheiten zugrunde gelegt. Auswirkungen merkt der Anwender zumeist erst bei der Erstellung von Zeichnungen, da sich mit der Vorlage die (Ausführungs-)Stile steuern lassen (siehe Abschnitt 7.2.1). Inventor ist ein CAD-System mit dem Ursprung in den USA. Entsprechend kommt es in seiner Grundform auch mit amerikanischen Einstellungen daher. Die Vorlagen *Standard.ipt* bzw. *Standard.iam* (oberste Stufe unter *de-DE*) haben als Einheit jeweils mm, zugeordnet ist hier aber die Norm ASME (Industriestandard American Society of Mechanical Engineers). Im Unterverzeichnis (*de-DE* > *Metric*) stehen bereits Vorlagen, die mit DIN verknüpft sind. Bei Verwendung dieser Vorlagen werden dann Stile genutzt, bei denen Bemaßungen und Anmerkungen auch die gewünschten Einstellungen für die DIN-Normen repräsentieren.

Unterschieden wird bei den Templates auch die Ausrichtung bzw. Anordnung im Koordinatensystem. Beispielsweise bedeutet für die Vorlage

- Standard(DIN).ipt: Die XY-Ebene hat hier den ViewCube OBEN.
- Standard(mm).ipt: Die XY-Ebene hat hier den ViewCube VORNE.

Die Abbildung zeigt das Inventor-Fenster mit den Voreinstellungen nach dem Programmstart und den für die Arbeit wichtigen Bereichen für die Modellierung von Bauteilen. Diese Bildschirmdarstellung kann je nach persönlichen Einstellungen und Vorlieben konfiguriert werden und somit eventuell anders als hier abgebildet aussehen.

F

2.2.1 Strukturbaum (Modellbrowser)

Der Strukturbaum zeigt immer den vollständigen Objektaufbau an. Dieses kann ein Bauteil, aber auch eine Baugruppe mit zugeordneten Bauteilen sein. Abgebildet wird die gesamte Erstellungshistorie. Der Aufbau ähnelt der Explorer-Funktion von Windows. Die Symbole vor den Einträgen lassen sich anwählen, und damit klappt der Baum weiter auf.

HINWEIS: Der Strukturbaum ist neben der Arbeitsfläche der wichtigste Arbeitsbereich. In ihm wird die vollständige Struktur des aktiven Objekts (Bauteil, Baugruppe usw.) angezeigt, und es werden alle Schritte der Konstruktion detailliert und in der chronologisch richtigen Reihenfolge wiedergegeben. Außerdem können alle Änderungen an einem Bauteil von hier gestartet werden.

An oberster Stelle steht immer die **Bauteildefinition**, in der Regel der Name der Bauteildatei. An zweiter Stelle steht der **Volumenkörper**. In Inventor kann eine Bauteildatei mehrere Körper enthalten, z. B. einen linken und einen rechten Wellenabschnitt. Das kann für eine übersichtliche Konstruktion sinnvoll sein. Außerhalb der Bauteilumgebung sieht man nur ein Bauteil, anders als bei Baugruppen, in denen mehrere Bauteile funktionsgemäß "zusammengebaut" werden. Die Klammerzahl gibt die Anzahl der enthaltenen Körper- oder Flächendefinitionen an (siehe Kapitel 5). An dritter Stelle werden in der Struktur unter **Ansicht > Hauptansicht** die gespeicherten Ansichten verwaltet. Ansichten aus verschiedenen Richtungen oder auch Schnittansichten können hier gespeichert sein. An vierter Stelle steht immer die geometrische Definition des **Ursprungs**, der Koordinatenachsen und der grundlegenden Arbeitsebenen X, Y und Z. Danach folgen alle Arbeitsschritte in der chronologischen Reihenfolge ihrer Erstellung bis hin zum **Bauteilende**.

TIPP: Zur Analyse der Arbeitsschritte kann das Bauteilende im Strukturbaum verschoben werden. Die nach dem Bauteilende gelisteten Objekte werden dann ignoriert. Interessant ist die Funktion insbesondere zur Analyse von Bauteilstrukturen.

Über **Erweiterte Einstellungen** (siehe Markierung in der nebenstehenden Abbildung) kann die Darstellung innerhalb des Strukturbaums, wie beispielsweise der **Abhängigkeitsstatus** von Bauteilen innerhalb einer Baugruppe, angepasst werden.

Unterschieden wird hier zwischen

 einem schwarzen Punkt, der angibt, dass die Komponente vollständig mit Abhängigkeiten versehen wurde,

- einem hohlen Punkt, der angibt, dass die Komponente unterbestimmt ist und noch Freiheitsgrade vorhanden sind,
- einem Bindestrich, der anzeigt, dass der Abhängigkeitsstatus der Komponente unbekannt ist (wenn möglich, sollte dann eine Aktualisierung der Baugruppe erfolgen).

2.2.2 Die Statusleiste

Ganz unten befindet sich, eher unscheinbar, einer der wichtigen Fensterbereiche: die Statusleiste. Hier zeigt Inventor den Status in Textform an, z.B. welche Eingabe oder Auswahl das Programm erwartet.

```
Ende der Linie wählen, Startpunkt erneut wählen, um neue Linie zu beginnen
```

Der mittlere und rechte Bereich der Statusleiste ist vor allem in der Skizzenumgebung (siehe Kapitel 4) interessant. Hier werden dann die aktuellen Koordinaten des Cursors und der Status der Skizze mit Bezug auf fehlende Angaben angezeigt, z.B. sind noch vier Bemaßungen erforderlich. Darüber hinaus wird auch die Anzahl der geöffneten Dokumente angezeigt.

14,126 mm, -10,251 mm 4 Bemaßungen erforderlich 1 1

Im mittleren Bereich der Statusleiste werden in der Skizzenumgebung (siehe Kapitel 4) Funktionen und Schalter eingeblendet, die das Programmverhalten verändern.

2.2.3 Multifunktionsleiste (MFL)

Die **Multifunktionsleiste** enthält die zur jeweiligen Tätigkeit passenden Befehlsschaltflächen. Die Multifunktionsleiste verhält sich dynamisch, d. h., sie wechselt ihren Inhalt je nach Arbeitsumgebung automatisch. Die Inhalte ändern sich ständig entsprechend der durchzuführenden Konstruktionsarbeit. Hier wird in der Softwareentwicklung auch von einem kontextsensitiven Verhalten gesprochen.

im Skizziermodus	\rightarrow	Skizzenbefehle
im Bauteilmodus	\rightarrow	Bauteilbefehle
im Baugruppenmodus	\rightarrow	Baugruppenbefehle
im Zeichnungsmodus	\rightarrow	Zeichenbefehle

TIPP: Um eine kleine Hilfe zum jeweiligen Befehl zu erhalten, kann man den Cursor auf eine Befehlsschaltfläche schieben (nicht anklicken). Beim Verweilen mit dem Cursor auf dem Icon öffnet sich ein Hilfe-Fenster, und es wird in zwei Stufen zuerst ein kurzer erklärender Text und bei längerem Verweilen eine ausführlichere Erklärung, in der Regel mit Bild, angezeigt.

12

Die Darstellung von Icon und zugehöriger Textbeschreibung bzw. ausschließlich des Icons hängt von der Bildschirmgröße sowie dem zur Verfügung stehenden Platz ab. Funktionsgruppen, wie **Erstellen** und **Ändern**, können jederzeit aus der Leiste herausgelöst werden, indem diese bei gedrückter Maustaste in den Zeichnungsbereich gezogen werden.

2.3 Ansichten steuern und bearbeiten

Viele einfache "Handgriffe" werden in jedem 3D-CAD-System benötigt, die Bedienung ist aber bei oft gleicher Funktion in jedem System etwas anders. Das wichtigste Gerät zur Steuerung der aktuellen Ansicht in allen Arbeitsbereichen ist die Maus bzw. das angeschlossene Zeigegerät. Inventor unterstützt den Einsatz professioneller Zeigegeräte, wie etwa die SpaceMouse oder den SpacePilot der Firma 3Dconnection, die viele Funktionen zum Manipulieren der Anzeige in sich vereinigen.

2.3.1 Zoom und Pan

Die Standardfunktionen **ZOOM** und **PAN** werden von einer Scroll-Maus unterstützt. Befindet sich der Cursor im Arbeitsbereich, kann mit dem Drehen des Scroll-Rads gezoomt und mit gedrücktem Scroll-Rad das Objekt im Arbeitsbereich verschoben werden.

HINWEIS: Manche zusätzlich installierten Maustreiber verhindern die gerade geschilderte Funktion. Dann sollte der Maustreiber deaktiviert und durch den Standard-Maustreiber des Betriebssystems ersetzt werden.

2.3.2 Der ViewCube

Der ViewCube ist ein 3D-Navigationswerkzeug, mit dem sehr schnell zwischen verschiedenen Standardansichten und isometrischen Ansichten umgeschaltet werden kann. Ein Klick auf die jeweilige Fläche, Kante oder Ecke des Würfels erzeugt sofort die gewünschte Ansicht. Der ViewCube kann bei gedrückter Maustaste aber auch frei gedreht werden, um z.B. die Ansicht nur um einen kleinen Winkel zu drehen.

13

Mit dem kleinen Home-Button (das kleine Häuschen neben dem ViewCube) wird die Standardansicht aufgerufen, mit der das Bauteil gespeichert ist. Im Kontextmenü des View-Cube kann eine Ansicht als Ausgangsansicht festgelegt werden, die dann standardmäßig beim Öffnen verwendet wird. Zudem kann im Kontextmenü die Vorderansicht, die unter **VORNE** sichtbar ist, neu definiert werden.

2.3.3 Funktionsleiste zum Steuern der Ansicht

Alle Symbole zum Steuern der jeweiligen Ansicht befinden sich in der Symbolleiste, die sich rechts am Rand des Arbeitsbereichs befindet. Standardmäßig wird nur die kurze Variante angezeigt, die jedoch mit dem Ausklapp-Pfeil ganz unten beliebig erweitert werden kann.

-

VOLLNAVIGATIONSRAD: Ein Menü wird geöffnet, das wichtige Ansichtsfunktionen in einer anderen grafischen Ansicht aufruft.

PAN erlaubt das Verschieben der Objekte in der Arbeitsfläche (Alternative: eine Mausbewegung mit dem gedrückten Scroll-Rad).

ZOOM vergrößert oder verkleinert die Objekte in der Arbeitsfläche. Das kleine Dreieck mit der Spitze nach unten öffnet ein Untermenü mit alternativen Zoom-Funktionen.

ORBIT erlaubt es, die Objekte im Arbeitsbereich um verschiedene Achsen frei zu drehen.

AUSRICHTEN NACH: Die Ansicht wird nach einer zuvor ausgewählten Fläche ausgerichtet. Mit der aktivierten Funktion können nicht nur Bauteilelemente, sondern auch Arbeitsebenen sowie Ursprungsebenen und -achsen im Strukturbaum angeklickt werden.

Der kleine **PFEIL** ganz unten in der Symbolleiste öffnet ein Menü, mit dem weitere Funktionen in die Randleiste aufgenommen werden können.

Wer lieber mit der Multifunktionsleiste arbeitet, kann die Symbolleiste im Arbeitsbereich natürlich auch ganz ausblenden und stattdessen mit den Schaltflächen auf der Registerkarte **Ansicht** in der Befehlsgruppe **Navigieren** arbeiten.

TIPP: Falls die Funktionsleiste versehentlich geschlossen wurde, lässt sich diese jederzeit wieder anzeigen. Hierzu ist im Register **Ansicht** unter der Befehlsgruppe **Fenster** der Befehl **BENUTZEROBERFLÄCHE** aufzurufen. Hier kann die Funktionsleiste wieder aktiviert werden.

2.3.3.1 Orbit, freies Drehen einer Ansicht

Die Funktion **ORBIT** zeigt einen Kompasskreis, und je nachdem, wohin jetzt die Maus in Bezug auf den Kreis bewegt wird, zeigt sich ein anderer Maus-Cursor. Damit wird visualisiert, wie sich das angezeigte Objekt verhalten wird.

🕑 Orbit 👻

15

Symbol	Ort, an dem das Symbol erscheint	Wirkung
0	außerhalb links und rechts an den waage- rechten Strichen	exakt horizontales Drehen
0	außerhalb oben und unten an den senk- rechten Strichen	exakt vertikales Drehen
O	außerhalb sonst zwischen den Strichen	exaktes Rotieren um den Mittel- punkt
¢	innerhalb	freies Drehen um alle Achsen

Bei der Funktion **ORBIT** gibt es noch zwei weitere Varianten, die über dem Ausklapp-Pfeil unter dem Icon sichtbar werden: zum einen **ORBIT MIT ABHÄNGIGKEITEN** und zum anderen **UM GRADWERT DREHEN**. Abhängigkeit bedeutet in diesem Zusammenhang, dass das Drehzentrum in der Modellmitte bleibt, auch wenn sich das Modell selbst nicht in der Mitte des Bildschirms befindet. Wird die Funktion **UM GRADWERT DRE-HEN** verwendet, wird ein Menü eingeblendet, und hier kann die inkrementelle Drehung in Grad eingegeben werden. Das Steuern des Modells erfolgt anschließend über die neben dem Eingabefeld für die Gradzahl abgebildeten Icons.

2.3.3.2 Zoomen

Bei großen Teilen oder Arbeiten an kleinen Details muss man oft in die Gesamtansicht einer Skizze oder eines Bauteils zoomen. Ein Klick auf **ALLES ZOOMEN** holt immer wieder die gesamte Ansicht in ihren äußersten Grenzen zurück auf den Bildschirm.

ZOOM erlaubt die stufenlose Verkleinerung bzw. Vergrößerung durch das Bewegen der Maus bei gedrückter linker Maustaste.

FENSTER ZOOMEN erlaubt es, bei gedrückter linker Maustaste ein Fenster aufzuziehen. Der Inhalt des aufgezogenen Zoom-Fensters wird mit dem zweiten Klick bildschirmfüllend gezoomt.

Eine ähnliche Funktion hat der Button **AUSGEWÄHLTE OBJEKTE ZOOMEN**. Ein Klick auf **AUSGEWÄHLTE OBJEKTE ZOOMEN** zeigt am Cursor das Auswahlsymbol, und es lässt sich das Element bzw. der Bereich selektieren, der gezoomt bzw. fokussiert werden soll.

2.4 Modellansichten aktualisieren

In der Regel bemerkt Inventor jede Veränderung an beliebigen Stellen im Konstruktionsprozess automatisch und aktualisiert die betroffenen Modell- und Zeichnungssichten selbsttätig. Dies ist systemtechnisch aber nicht immer möglich und bei größeren Konstruktionsarbeiten mit sehr vielen Bauteilen unerwünscht, da das Aktualisieren die Prozessorleistung stark beanspruchen kann.

Die Funktion **AKTUALISIEREN** gehört zu einer der grundlegenden Funktionen, die in verschiedenen Inventor-Anwendungsumgebungen benötigt wird. Sie ist zum einen auf der Schnellstartleiste (siehe Abbildung) und zum anderen in der Befehlsgruppe **Aktualisieren** in der Registerkarte **Verwalten** zu finden.

In den Ausnahmefällen, in denen Inventor nicht automatisch aktualisiert, wird das sonst graue und damit inaktive Blitzsymbol die gelbe Farbe annehmen (siehe Abbildung). Ist das der Fall, sollte auch auf den Button **AKTUALISIEREN** geklickt werden, damit die aktuelle Ansicht an die durchgeführten Veränderungen angepasst wird.

Inventor unterscheidet zwischen den Befehlen LOKALE AKTUALISIERUNG und GLO-BALE AKTUALISIERUNG. Bei der lokalen Aktualisierung, die zumeist voreingestellt ist, werden das aktive Modell und seine untergeordneten Elemente aktualisiert. Die Einstellung GLOBALE AKTUALISIERUNG initiiert einen größeren Umfang an Aktualisierungen. Betroffen sind beispielsweise bei Baugruppen alle zugehörigen Bauteildateien.

Π

Verzögerungen durch andauernde Aktualisierungen bei umfangreichen Baugruppen können als störend empfunden werden. Inventor enthält hierfür in der Registerkarte **Extras** und der Befehlsgruppe **Optionen** den Befehl **ANWENDUNGSOPTIONEN**. Es öffnet sich ein Dialogfenster mit verschiedenen weiteren Registerkarten. Das Register **Baugruppe** enthält Einstellmöglichkeiten, u.a. die Option **Aktualisierung aufschieben**. Wird der Haken hier gesetzt, wird Inventor bei Baugruppen keine automatische Aktualisierung mehr vornehmen. Die Funktion **AKTUALISIEREN** wird damit natürlich häufiger zu benutzen sein.

I Anwendu	ungsoptioner	1						×
Allgemein	Speichern	Datei	Farben	Anzeige	Hardware	Meldungen	Zeichnung	Notizblock
Skizze		Bauteil		iFeature	Ba	ugruppe	Inhalts	scenter
Artualisie Musterqu Analyse o	rung aufschiel elle(n) der Kor der redundanti sind zunächst	ben mponente k en Beziehur adaptiv	ischen ngen aktivier	en				
Alle Baute	eile schneiden							
Letzte Ex	emplarausrich	tung für Pla	tzierung vor	n Komponente	en verwenden			

Die **Anwendungsoptionen** können auch über die Registerkarte **Datei** und die dort vorhandene Schaltfläche **OPTIONEN** aufgerufen werden.

Die Befehlsgruppe **Aktualisieren** in der Registerkarte **Verwalten** enthält drei weitere Befehle, die kurz vorgestellt werden sollen.

Der Befehl **ALLES NEU ERSTELLEN** bewirkt, dass Inventor die gesamte Datei, in der die aktuellen Modelldaten abgelegt sind, neu erstellt. Dieses ist unabhängig davon, ob Geometrieelemente eine Aktualisierung erfordern.

Der Befehl **MASSE AKTUALISIEREN** bezieht sich auf die unter den iProperties verwaltete Masse. Es handelt sich dabei um eine physikalische Eigenschaft des Bauteils (siehe Abschnitt 5.8). Die Masse eines Bauteils kann Inventor erst berechnen, wenn vorab eine Materialzuordnung durchgeführt wurde (siehe Abschnitt 8.4). Masseeigenschaften werden in Inventor nicht automatisch bei Modelländerungen aktualisiert. Die Daten für physikalische Eigenschaften sind also immer manuell zu aktualisieren, wenn Modelländerungen durchgeführt wurden und die korrekte Masse angezeigt werden soll.

TIPP: Um die physikalischen Eigenschaften beim Speichern einer Bauteil- bzw. Baugruppendatei immer aktuell zu halten, ist bei den **Anwendungsoptionen** die Registerkarte **Allgemein** zu wählen und der Haken im gekennzeichneten Feld zu setzen.

Physikalische Eigenschaften
Trägheitseigenschaften mit negativem Integral berechnen
Prysikalische Eigenschaften beim Speichern actualisieren
Bauteile und Baugruppen

17

🛠 Alles neu erstellen

Aasse aktualisieren

X Aktualisierung aufschieben

Ξ

Die Funktion **AKTUALISIERUNG AUFSCHIEBEN** ist nur bei ausstehender Aktualisierung sichtbar. Sie bewirkt, dass ein Modell nicht sofort aktualisiert wird. Zeichnungsansichten (siehe Kapitel 7), Kommentare (siehe Kapitel 8) und abhängige Properties (siehe Abschnitt 5.8) bleiben unangepasst. Insbesondere bei der Erstellung von Baugruppen und hier der Positionierung einzelner Bauteile ist es sehr hilfreich, wenn eine Aktualisierung nicht direkt nach dem Setzen einer Abhängigkeit oder Verbindung (siehe Abschnitt 6.3) erfolgt.

2.5 Elemente auswählen bzw. markieren

Als letzte Technik in diesem Kapitel soll das Auswählen von Elementen im Modell- und Skizzierbereich angesprochen werden. Elemente werden durch Anklicken mit der linken Maustaste selektiert. Sollen **mehrere Elemente gleichzeitig selektiert** werden, so gibt es verschiedene Möglichkeiten:

- 1. Die einfachste Variante ist, die betroffenen Elemente nacheinander anzuklicken, wobei gleichzeitig die **STRG**- oder die **SHIFT**-Taste gedrückt werden muss. Im Gegensatz zu anderen Programmen macht es bei Inventor keinen Unterschied, welche der beiden Tasten für eine Mehrfachauswahl benutzt wird.
- 2. Die zweite Variante, auch bekannt aus AutoCAD, besteht in der Möglichkeit, ein Rechteck aufzuziehen.

Fenster-Auswahl

3. Die **Fenster-Auswahl** wird von **oben links nach unten rechts** aufgezogen, und selektiert werden nur die Elemente, die sich vollständig im Fenster befinden.

Kreuzen-Auswahl

4. Die **Kreuzen-Auswahl** wird von **oben rechts nach unten links** aufgezogen, und selektiert werden alle Elemente, die sich im Fenster befinden, und zusätzlich alle Elemente, die den Fensterrand kreuzen, also ins Fenster hineinragen.

Fenster

Kreuzen

Das Selektieren-Fenster ist von links nach rechts aufgezogen.

Ergebnis: Selektierte Fenster-Elemente, alle Geometrien, die vollständig im Auswahlfenster eingeschlossen sind.

Das Kreuzen-Fenster ist von rechts nach links aufgezogen.

Ergebnis: Selektierte Kreuzen-Elemente, alle Geometrien, die vollständig im Auswahlfenster eingeschlossen sind und die vom Auswahlfenster geschnitten werden.

2.6 Das Kontextmenü (rechte Maustaste)

Die Bedienung bzw. das Aufrufen einzelner Funktionen ist bei Inventor äußerst vielschichtig, und darüber hinaus stehen umfangreiche Konfigurationsmöglichkeiten zur Verfügung. Aus vielen Windows-basierten Programmanwendungen bekannt sind beispielsweise Kontextmenüs, die auch im Inventor ein zügiges Arbeiten ermöglichen.

Wurde über die Registerkarte **Ansicht** und die Funktion **BENUTZEROBERFLÄCHE** der Haken vor dem Eintrag **Minimenü** gesetzt, gelangt man über den Klick auf die rechte Maustaste in ein erweitertes Kontextmenü mit zusätzlichen Funktionsbuttons, das sich an die jeweilige Arbeitsumgebung anpasst. Das Menü zeigt immer eine direkt zur Umgebung passende Befehlsauswahl. Die Befehle sind natürlich auch über die Multifunktionsleiste zu erreichen.

Wird der Cursor in Richtung eines Funktions-Buttons bewegt, so spannt sich ein Fächer aus, der den entsprechenden Befehl aktiviert. Der Cursor muss nur in eine Richtung bewegt werden, damit die entsprechende Funktion aktiviert wird.

Zusätzlich kann ein sogenannter **Mini-Werkzeugkasten** für verschiedene Funktionen aktiviert werden. Wird nun ein Befehl über das Kontextmenü aufgerufen, erscheint zusätzlich ein Dialogfeld als Mini-Werkzeugkasten. Diese Darstellungsform ist eher dem erfahrenen Anwender zu empfehlen, kann aber identisch zu den Dialogfeldern genutzt werden, die über die Multifunktionsleiste aufgerufen werden. Darüber hinaus erscheinen kleine Markierungsmenüs mit häufig genutzten Funktionen, sobald Elemente (z. B. Kanten) selektiert werden.

TIPP: Inventor verwendet für jeden Befehl ein einheitliches Symbol. Sie können also Befehle, die Sie aus der Multifunktionsleiste kennengelernt haben, schnell in jedem Kontextmenü identifizieren und wie gewohnt nutzen.

Ebenfalls eher an erfahrene Anwender adressiert ist die Möglichkeit, bei gedrückter rechter Maustaste mit dem Cursor Schrift-Symbole direkt in den Modellbereich zu malen, anhand derer Inventor einen Befehl erkennt und aufruft.

Das Projekt "Rollenständer"

Bücher dieser Art müssen immer auf die Herausforderung reagieren, dass sie sowohl von Anwendern, die das Programm schon kennen, als auch von absoluten Anfängern gelesen werden. Der Kompromiss in diesem Buch sieht so aus: Noch bevor wir mit detaillierten Erklärungen über die Programmbedienung und der unverzichtbaren Theorie beginnen, soll in diesem Kapitel ein komplettes Beispielprodukt mit Inventor erstellt werden. Die erfahrenen Anwender und "alten Hasen" finden im hinteren Teil des Buches detaillierte Ausführungen zu allen Funktionen.

3.1 Für wen und warum

3

Dieses Kapitel ist insbesondere für Neulinge ohne jede Inventor-Erfahrung und für Umsteiger von anderen CAD-Systemen gedacht. Es werden sehr ausführlich die ersten Schritte in Inventor 2025 beschrieben. Der Anwender wird "an die Hand genommen" und kann ein durchgängiges Beispiel selber nachvollziehen.

Die Übung ist so aufgebaut, dass mit vielen vorgefertigten Dateien bzw. Inventor-Dokumenten gearbeitet werden kann, die unter *http://plus.hanser-fachbuch.de* bereitstehen und die jeweils zu ergänzen sind. Alternativ kann das Übungsbeispiel aber auch von Grund auf selbst erstellt werden.

3.2 Das Produkt "Rollenständer"

Die Konstruktion des abgebildeten Rollenständers ist Gegenstand dieser Konstruktionsaufgabe. Vorgestellt werden dabei u.a.

- die Programmbedienung,
- das Skizzieren,
- das Vergeben von 2D-Abhängigkeiten in Skizzen,
- das Erzeugen und Bearbeiten von Bauteilen,
- das Erzeugen von Baugruppen,
- das Erzeugen von Bauteilen im Kontext einer vorhandenen Baugruppe,
- das Erstellen des Zusammenbaus aus einzelnen Bauteilen und Baugruppen, und
- das Vergeben von 3D-Abhängigkeiten.

Der Rollenständer besteht, wie man in der Abbildung des Strukturbaums erkennen kann, aus zwei Baugruppen – *Kap_3_6_Ständer.iam* und *Kap_3_13_Schiebeteil.iam*. Beide Baugruppen werden durch den Bolzen (**DIN EN 22341 ...**), der mit einem Splint (**DIN 94 – ersetzt durch DIN EN ISO 1234 ...**) gesichert ist, zusammengehalten.

Die Erstellung der Unterbaugruppe *Kap_3_6_Ständer.iam* wird im Folgenden detailliert erklärt und kann Schritt für Schritt nachvollzogen werden. Die Konstruktion der Unterbaugruppe *Kap_3_18_Schiebeteil.iam* wird dagegen nur in groben Schritten beschrieben. Es sollte nach dem Nachvollziehen der ersten Baugruppe bereits möglich sein, diese weitgehend selbstständig zu erstellen.

TEILI

3.3 Ein Projekt erstellen

Im folgenden Dialogfenster ist auf **NEU** zu klicken, um ein **Neues Einzelbenutzerprojekt** mit dem Namen *Kap_3_Rollenständer.ipj* zu erzeugen.

Als Projektordner ist der Ordner auszuwählen, in den die unter *http://plus.hanserfachbuch.de* heruntergeladenen Übungsdateien kopiert wurden.

Inventor Projekt-Assistent	X Inventor Projekt-Assistent X
Welche Art von Projekt erstellen Sie? ® Neues Einzebenutzer-Projekt O Neues Vault-Projekt	Projektalstei Name Rollenständer Projektordner (Arbeitsbereich)
	Zu erstellende Projektdatei
Zunück Weiter Peritgistellen Abbrechen	Zurück Weiter Fertig stelen Abbrechen

ojekte		
Projektname	Projektspeicherort	
Default		
Flasche	D:\TEXT\Buchprojekt Inventor\CAD-Daten\Flasche\	
Inventor Electrical Project	C:\Users\Public\Documents\Autodesk\Inventor 2025\	
Rohrleitungsschema	D:\TEXT\Buchprojekt_Inventor\CAD-Daten\Rohrleitung_final_2\	
Rollenständer	D:\TEXT\Buchprojekt_Inventor\CAD-Daten\	
Zahnstangenpresse	D:\TEXT\Buchprojekt_Inventor\CAD-Daten\Zahnstangenpresse\	
Projekt (schreibgeschützt)		
Speicherort = D:\TEXT\Buchp Eingeschlossene Datei =	projekt_Inventor\CAD-Daten\	
Stilbibliothek verwenden = So	chreibgeschützt	12
🗉 🧼 Darstellungsbibliotheken	n	
Materialbibliotheken		
Arbeitsbereich		1.10
Arbeitsgruppen-Suchpta		
C Ribliathalian	de	
Bibliotheken	de	Q
 Bibliotheken Häufig verwendete Unter Ordneroptionen 	de rordner	
 Bibliotheken Häufig verwendete Unter Ordneroptionen Optionen 	de rordner	
 Bibliotheken Häufig verwendete Unter Ordneroptionen Optionen 	de rordner	
 Bibliotheken Häufig verwendete Unter Ordneroptionen Optionen 	de rordner	
 Bibliotheken Häufig verwendete Unter Ordneroptionen Optionen 	de rordner	
 Bibliotheken Häufig verwendete Unter Ordneroptionen Optionen 	de rordner	
 Bibliotheken Häufig verwendete Unter Ordneroptionen Optionen 	de rordner	Eertic

3.4 Die Baugruppe "Ständer" erstellen

Der Ständer besteht aus drei zu konstruierenden Bauteilen, der Grundplatte, dem Ständerrohr und einer Rippe, die viermal eingefügt wird. Eine kleine Besonderheit bei dieser Konstruktion wird sein, dass nach der Erstellung der Grundplatte sofort in die Baugruppenumgebung gewechselt und alle anderen Teile adaptiv, d. h. voneinander abhängig, in der Baugruppe konstruiert werden. Näheres dazu wird an den entsprechenden Stellen beschrieben.

HINWEIS: Inventor hat hinsichtlich der Auswirkung zwei ähnliche Funktionen, die es erlauben, Elemente und Geometrien von anderen Bauteilen zu übernehmen. Zum einen ist dies die **Adaptivität** (siehe auch Abschnitt 5.9 und Abschnitt 6.12) und zum anderen die Funktion **ABLEITEN** in der Bauteilumgebung (siehe auch Abschnitt 5.4.9). Sie ermöglichen jeweils, Beziehungen zwischen verschiedenen Bauteilen herzustellen. Bei der Funktion **ABLEITEN** wird gezielt eine Datei geöffnet, und von dieser Datei werden ausgesuchte Elemente in die aktuelle Bauteildatei übernommen. Bei der **Adaptivität** ist es im Prinzip genauso. Der Unterschied besteht jedoch darin, dass permanent gerechnet und nachgesehen wird, ob sich Informationen geändert haben. Bei großen Baugruppen kann dieses zu Performanceproblemen führen, was aber bei diesem Beispiel nicht zu erwarten ist.

Vor dem Beginn einer Konstruktion sollte immer eine Planung darüber durchgeführt werden, wie ein Bauteil bzw. eine Baugruppe am einfachsten zu realisieren ist ("Konstruktionsprinzip"). Bei dieser Baugruppe bietet es sich an, mit der Grundplatte zu beginnen und dieses symmetrische Bauteil so im Konstruktionsraum auszurichten, dass der Mittelpunkt im Koordinatenursprung liegt.

3.5 Das Bauteil "Grundplatte" erstellen

Die Grundplatte soll als erstes Teil konstruiert werden. Die fertige Skizze befindet sich im Projektordner unter dem Dateinamen Kap_3_5_Grundplatte01_Skizze1. ipt. Diese Vorgabe soll aber nicht davon abhalten, die Skizze selbst zu erstellen. Deshalb werden diese Schritte nachfolgend auch detailliert erklärt.

3.5.1 Mit der Konstruktion eines Bauteils starten

Ξ

Der Start kann auf unterschiedlichen Wegen erfolgen. Über das Icon **STARTSEITE** im **Schnellzugriff-Werkzeugkasten** wird immer die Startseite von Inventor aufgerufen. Hier wird über die Auswahl der Schaltfläche **NEU...** das Dialogfenster **Neue Datei erstellen** zur Auswahl der zu verwendenden Vorlage aufgerufen. Gewählt wird *Standard(DIN).ipt* (Unterverzeichnis *de-DE* > *Metric*) für Bauteile und mit dieser Vorlage erfolgt die Modellierung der Grundplatte (*Kap_3_5_Grundplatte.ipt*). Neben der Norm sind als Einheiten **Millimeter** und als Material **Generisch** zugeordnet.

Neue Datei erstellen		×
	ventor 2025\Templates\	≣▼
 Templates de-DE English Metric Mold Design 	 Bauteil – 2D- und 3D-Objekte erstellen Sheet Sheet Metal (DIN).ipt (mm).ipt Baugruppe – 2D- und 3D-Komponenten zurappmenfuren 	
	Mold Mold Standard Standard Weldment Weldment (DIN).iam (mm).iam (DIN).iam (mm).iam	Datei: Standard (DIN).ipt Anzeigename: Bauteil Einheiten: Millimeter Material: Generisch
	Weldment Weldment Weldment (DIN).iam (GB).iam (ISO).iam (IIS).iam Zeichnung - Dokument mit Anmerkung erstellen	Diese Vorlage erstellt ein 2D- oder 3D-Objekt aus Elementen und einem oder mehreren Körpern.
	WG ANSI ANSI BSLdwg BSLidw DIN.dwg MMG MMSI ANSI BSLdwg BSLidw DIN.dwg MMG MMSI MMSI BSLdwg BSLdwg DIN.dwg MMG MMSI MMSI MMSI BSLdwg DIN.dwg MMG MMSI MMSI MMSI BSLdwg DIN.dwg MMG MMSI MMSI MMSI MMSI BSLdwg DIN.dwg MMG MMSI MMSI MMSI MMSI MMSI DIN.dwg MMG GB.dwg GST.dwg GOST.idwg ISO.dwg ISO.idwg	
	Projektdatei: Rollenständer_2025.ipj 🗸 Pr	rojekte Erstellen Abbrechen

Alternativ kann über das Icon **NEU** im Schnellzugriff-Werkzeugkasten ebenfalls das Dialogfenster **Neue Datei erstellen** aufgerufen werden. Wird der kleine Pfeil neben dem Icon gedrückt, kann direkt über den Menüpunkt **BAUTEIL** gestartet werden. Hier wird dann allerdings die Vorlage *Standard(mm).ipt* mit der Norm bzw. dem Stil **ASME** verwendet. Letztendlich kann ein neues Bauteil auch über die Registerkarte **Datei** mit der Auswahl **NEU** erzeugt werden. Ebenfalls ist hiermit aber die Verknüpfung zum Stil **ASME** als aktive Norm verbunden. Überprüft werden kann dieses über die **Dokumenteneinstellungen** (Registerkarte **Extras** > Befehlsgruppe **Optionen** > **DOKUMENTENEINSTEL-LUNGEN**).

Nach einem Doppelklick auf das Vorlagensymbol im Dialogfenster bzw. der Betätigung der Schaltfläche **ERSTELLEN** öffnet Inventor die Vorlage für ein neues Bauteil. Die Arbeitsumgebung eines neuen Bauteils besteht dabei aus einer leeren Arbeitsfläche und einer sehr rudimentären Auflistung im Strukturbaum.

Um ein neues Bauteil zu erzeugen, wird in den meisten Fällen zuerst eine 2D-Skizze erstellt, aus der im

nächsten Schritt durch Extrusion der Fläche oder Rotation (Drehung) der Fläche um eine vorgegebene Achse ein 3D-Körper erzeugt werden kann.

I □ + ▷ || ↔ + ↔ + ☆ P = Datei Extras Zusammenarbeiten (

Neu

Neu

05

Neu

Öffner

Speichern

Speichern

Exportiere

Freigeben

Verwalten

iProperties

Drucken

Schließen

.

Liste von Vorlagen

Baugruppe

Zeichnung

Bauteil

Optionen

Präsentation

Erstellung einer Datei anhand einer

Beenden Autodesk Inventor Prof...

Zunächst muss also die 2D-Skizze der Grundplatte erstellt werden.

3.5.2 Eine 2D-Skizze für die "Grundplatte" erstellen

Mit der Schaltfläche **2D-SKIZZE STARTEN** öffnen wir die Skizzenansicht. Inventor blendet an dieser Stelle zunächst die drei Ursprungsebenen (X-Y, X-Z und Y-Z) ein und verlangt die Auswahl der Ebene, auf der eine neue Skizze erstellt werden soll. Für die erste Skizze dieses Bauteils ist die **X-Y-Ursprungsebene** auszuwählen. Wenn hierfür die Maus über die dargestellten Ebenen gezogen wird, erscheint jeweils ihr Name.

 \square

Nachdem die Ebene ausgewählt wurde, dreht sich die Ebene in die Bildschirmfläche. Es erscheint ein Fadenkreuz, dessen Mittelpunkt den Ursprung der 2D-Skizze markiert. Gleichzeitig ist im Modell-Browser die Skizze hervorgehoben, und die anderen Elemente des Modells sind ausgegraut.

HINWEIS: Jede 2D-Skizze benötigt eine Ebene, auf der sie definiert werden kann. Ebenen können die Ursprungsebenen oder beliebige ebene Oberflächen von bereits existierenden Bauteilen sein, sie können aber auch als neue Arbeitsebenen frei im Koordinatensystem erzeugt werden.

3.5.2.1 Konzentrische Kreise erstellen

Um die Grundplatte erstellen zu können, werden zunächst einige Kreise benötigt, deren Mittelpunkte am besten im **Koordinatenursprung (0,0)** liegen. Insgesamt sind vier Kreise zu skizzieren, die direkt nacheinander erzeugt werden können. Die Durchmesser der Kreise sollen: **50**, **90**, **240** und **300 mm** betragen.

- 1. In der Befehlsgruppe **Erstellen** ist die Schaltfläche **KREIS** zu betätigen.
- 2. Den Kreismittelpunkt ist auf den **Koordinatenursprung (0,0)** zu setzen, indem man den Mittelpunkt vom Fadenkreuz anklickt. Befindet sich der Cursor genau über dem Fadenkreuz, verändert sich seine Farbe.
- Der Cursor ist vom Mittelpunkt nach außen zu bewegen, sodass ein Kreis erscheint. Der Kreisdurchmesser kann direkt mit 300 mm per Tastatur eingegeben werden, bevor mit der ENTER-Taste die Erstellung des Kreises bestätigt wird.
- 4. Alternativ kann zunächst ein Kreis mit nicht festgelegtem Durchmesser durch Bestätigen der ENTER-Taste erzeugt werden. Dann muss der Durchmesser mit der Schaltfläche BEMASSUNG nachträglich bemaßt werden (siehe Abschnitt 4.8).

Schritt 3 und 4 sind für die restlichen Kreise (**240**, **90** und **50 mm**) zu wiederholen. Abschließend ist die Funktion **Kreis** mit der **ESC**-Taste zu beenden. Alternativ kann auch **ABBRECHEN (ESC)** im Kontextmenü (rechte Maustaste) verwendet werden.

TIPP: Es ist bei der Skizzenerstellung häufig sinnvoll, mit dem größten Element, hier mit dem Kreis von 300 mm, zu beginnen und dieses Element in den Ansichtsbereich zu zoomen. Die Übersicht für die folgenden kleineren Skizzenelemente ist dann besser.

3.5.2.2 Linien in radialer Anordnung erzeugen

Im nächsten Schritt sind drei Linien zu erstellen. die ihren Anfangspunkt im Mittelpunkt der Kreise haben. Im Folgenden soll aus zwei der gezeichneten Kreisdurchmesser ein Ringsegment entstehen. Hierzu fehlen als Begrenzung noch zwei Linien, die jeweils durch den Mittelpunkt der Kreise führen.

- 1. In der Befehlsgruppe Erstellen ist die Schaltfläche LINIE zu betätigen.
- 2. Den Kreismittelpunkt ist auf den Koordinatenursprung (0,0) zu setzen, indem der Mittelpunkt vom Fadenkreuz angeklickt wird. Befindet sich der Cursor genau über dem Fadenkreuz, verändert sich seine Farbe.

Die beiden Linien werden nach links über den Kreisrand hinausgezogen. Auf die Länge der Linie kommt es jetzt noch nicht an. Auch der genaue Winkel zur Horizontalen kann später bestimmt werden. Der Linienzeichenmodus kann mit ESC oder im Kontextmenü mit ABBRECHEN (ESC) verlassen werden.

TIPP: Die Linienfunktion in Inventor geht grundsätzlich davon aus, dass eine aus mehreren Elementen bestehende Kontur gezeichnet werden soll, weshalb der Linienzeichenmodus nach dem Setzen eines Endpunkts aktiv bleibt. Eine Ausnahme besteht, wenn der Endpunkt auf einen anderen markanten Punkt, anderen Endpunkt, Mittelpunkt usw. fällt.

Nach den beiden Linien zeichnen wir noch eine horizontale Hilfslinie, die uns später eine Winkelbemaßung ermöglicht. Die Hilfslinie soll Gegenstand der Bauteilkontur sein, weshalb diese Linie als Konstruktionslinie definiert werden soll. Auch ihre Länge ist unerheblich, sie soll lediglich über die Kreise hinausreichen.

Um ein gezeichnetes Element nachträglich als Konstruktionslinie zu definieren, ist es zunächst durch einen Mausklick zu markieren. In der Befehlsgruppe Format kann der Button KONSTRUKTION aktiv gesetzt werden, um die Umwidmung durchzuführen. Optisch wird diese Linie dann gestrichelt dargestellt. In der Abbildung ist das schwer erkennbar, da die Konstruktionslinie auf der Linie der waagerechten Hauptachse liegt.

TIPP: Der Unterschied zwischen normal gezeichneten Elementen und Konstruktions- bzw. Mittellinien besteht darin, dass nur normal gezeichnete Elemente als Skizzenkonturen für Extrusionen usw. erkannt werden. Konstruktions- bzw. Mittellinien stellen keine Körperkanten dar.

3.5.2.3 Linien bis zum Kreisrand stutzen

Um die gewünschte Kontur für die Grundplatte zu erhalten, ist zunächst der Überstand der Linien abzuschneiden. Hierfür können mit der Funktion **STUTZEN** die Linien so gekürzt werden, dass ihre Endpunkte auf dem Kreis liegen. Mit der gleichen Funktion können auch Kreise in Kreissegmente gestutzt werden.

Die schrägen Linien und die inneren Kreise können nun so gestutzt werden, dass nur noch ein segmentförmiger Ausschnitt zwischen dem innersten und dem äußersten Kreis stehen bleibt.

- 1. In der Befehlsgruppe Ändern ist die Schaltfläche STUTZEN zu betätigen.
- Mit dem Cursor ist auf den Linien- oder Kreisabschnitt zu gehen, der entfernt werden soll. Der zu entfernende Teil erscheint gestrichelt, der verbleibende Teil als Volllinie. Mit Klick auf die rechte Maustaste wird das Stutzen bestätigt.

Die horizontale Konstruktionslinie wird nicht gestutzt.

3.5.2.4 Abhängigkeiten kontrollieren und neu vergeben

Abhängigkeiten im Zusammenhang mit einem CAD-System beziehen sich innerhalb der Skizzierumgebung auf das parametrische Zeichnen. Hierbei handelt es sich um eine Technik innerhalb einer Entwurfsskizze, bei der mit dem Setzen verschiedener Abhängigkeiten Verknüpfungen und Beschränkungen festgelegt werden, die in der 2D-Geometrie Anwendung finden. Innerhalb der Skizzierumgebung bestimmen Bemaßungsabhängigkeiten die Werte von Abständen, Längen, Winkeln oder Radien von Objekten.

Ein Problem, das beim Ändern von Elementen häufig auftritt: Durch die Veränderungen können auch bestehende Abhängigkeiten verloren gehen, die festlegen, wie Linien zueinander angeordnet sind, z. B. rechtwinklig, oder wie sie zusammengehören, z. B. als konzentrische Kreise.

TIPP: Abhängigkeiten bestimmen einerseits die Lage und andererseits die Zusammengehörigkeit der gezeichneten Elemente. Sind gezeichnete Elemente vollständig abhängig, d. h. voll bestimmt, zeigt Inventor dies mit einem Farbumschlag von Hellblau nach Dunkelblau für diese Elemente an. Die Kreise unserer Skizze sind durch ihren Mittelpunkt und die Durchmesserbemaßung vollständig festgelegt und werden deswegen in Blau dargestellt.

Die beiden Linien (siehe Abschnitt 3.5.2.2) hatten ursprünglich als Abhängigkeit, dass ihre Anfangspunkte im **Koordinatenursprung (0,0)** lagen. Diese Abhängigkeit ist jedoch durch das Stutzen wieder verloren gegangen, sodass sie nicht mehr als radiale Linien definiert sind: Wenn nun die gestutzten Linien bewegt werden, bleiben die Endpunkte zwar auf den Kreisen, zeigen in ihrer Verlängerung aber nicht mehr auf den Mittelpunkt (siehe gelbe Linie in der Abbildung).

5

29

× = 1 A > (1) = Um die beiden gestutzten Linien nun wieder in Abhängigkeit zu den Mittelpunkten zu setzen, kann die Befehlsgruppe Abhängig machen genutzt werden.

Hierzu ist die Abhängigkeit KOINZIDENT zu wählen, mit der dann festgelegt wird, dass ein Punkt und eine Linie auf einer gemeinsamen Geraden liegen.

TIPP: Wenn der Cursor einige Zeit auf den Symbolen verweilt, zeigt Inventor die Befehlsnamen im Klartext. Sehr langes Verweilen zeigt eine Kontexthilfe an.

Für jede Linie ist wie folgt vorzugehen:

- 1. Mit dem aktiven **KOINZIDENT**-Befehl ist zuerst die gewünschte Linie zu wählen.
- 2. Anschließend ist als zweites Element der Mittelpunkt des Kreises anzuklicken.
- 3. Diese beiden Schritte sind für die zweite Linie zu wiederholen.

Die Linien sind jetzt ausgerichtet. Ihre Endpunkte können nicht mehr auf dem Kreis bewegt werden. Um die Linien nun vollständig festzulegen, fehlt aber noch die Bemaßung des durch die Linien aufgespannten Winkels.

3.5.2.5 Bemaßen der aufgespannten Winkel

Um den Winkel, den die beiden Linien aufspannen, zu bemaßen, ist einfach in der Befehlsgruppe Abhängigkeit auf BEMASSUNG zu klicken. Inventor erkennt bei aktiver Bemaßungsfunktion aufgrund der angeklickten Elemente selbsttätig, welche Bemaßungsart, also ob Winkel- oder Längenbemaßung, anzuwenden ist, und fügt das entsprechende Maß automatisch ein. Ein nochmaliger Klick auf die Maßzahl ermöglicht die Eingabe eines gewünschten Werts, der dann die Geometrie auf das jeweils gewählte Maß anpasst.

Für den Winkel zwischen die beiden Linien ist der Wert 60° einzutragen und für den Winkel zwischen der horizontalen Hilfslinie und der ersten Linie 15°. Ab jetzt müssen alle Elemente der Skizze in blauer Farbe dargestellt sein, da sie vollständig festgelegt sind.

5

TIPP: Es sollte sichergestellt werden, dass alle Maße und Abhängigkeiten in einer Skizze vollständig festgelegt sind. Wenn Sie nicht sicher sind, welche Abhängigkeit fehlt, bewegen Sie das noch in Türkis (Hellblau) gefärbte Element, um seinen Freiheitsgrad zu erkennen, und ergänzen Sie die Abhängigkeit oder Bemaßung. Am Ende sollten alle Elemente in blauer Farbe dargestellt sein.

In Abschnitt 4.8 wird die Allgemeine Bemaßung noch sehr viel ausführlicher behandelt.

3.5.2.6 Segmente vervielfältigen und Muster verwenden

Die nächste Funktion erspart viel Zeichenarbeit: Mit ihr können wir die segmentförmige Kontur mehrfach kopieren und diese dabei gleichzeitig kreisförmig wie ein Muster anordnen. Dazu wird über die Funktion **POLAR** in der Befehlsgruppe **Muster** ein Dialogfeld aufgerufen. Hier ist die Funktion **GEOMETRIE** vorausgewählt, und es kann nun die segmentförmige Kontur ausgewählt werden.

- 1. Die vier Elemente der Kontur sind auszuwählen: die beiden schrägen Linien und die beiden Kreisbögen.
- 2. Im Anschluss ist die Funktion **ACHSE** durch Klicken auf den kleinen Cursor-Pfeil davor (jetzt blau hinterlegt) zu wählen. Dann wird noch der Mittelpunkt als Drehachse definiert.

Die **Anzahl** der Elemente wird mit **4** eingetragen, und der **Drehwinkel** beträgt **360°**. Hierdurch werden die Elemente gleichmäßig auf den Umfang verteilt. Mit dem **OK**-Button entsteht die fertige Skizze der Grundplatte.

31

3.5.2.7 Skizze beenden

Mit dem Befehl **BEENDEN** (Registerkarte **Skizze**, Befehlsgruppe **Beenden**) wird die Skizzenumgebung wieder verlassen und zurück in den 3D Modell Bereich verzweigt. Hier wird die Skizze so dargestellt, dass sie auf der am Anfang gewählten XY-Ebene liegt.

3.5.3 Ein 3D-Bauteil aus der Skizze durch Extrusion erzeugen

In der Befehlsgruppe **Erstellen** wird über die Funktion **EXTRUSION** ein Dialogfeld aufgerufen. Hier ist die Funktion **PROFIL** vorausgewählt. Entsprechend kann als Profil die zuvor erstellte Skizze, ausgewählt werden. Für die Auswahl bewegen Sie den Cursor auf die Fläche, die extrudiert werden soll. Inventor deutet mit einem Farbumschlag die Vorauswahl an. Durch Mausklick entsteht bereits ein räumliches Objekt. Nun kann unter der Rubrik **Größe** die Höhe der Extrusion, also in unserem Beispiel die Dicke der Grundplatte, angegeben werden. Hier ist **5 mm** einzutragen, und der Dialog wird mit dem **OK**-Button verlassen. Inventor hat nun ein 3D-Bauteil erzeugt, das im Folgenden weiterbearbeitet werden kann.

3.5.4 Abrunden und Anfasen der Bauteilkanten

Das Abrunden der Kanten erfolgt sinnvollerweise in zwei Schritten. Zuerst werden die Innenkanten der ausgesparten Segmente mit einem etwas größeren Radius (**10 mm**) versehen, danach alle anderen Kanten mit einem kleineren Radius (**2 mm**) verrundet.

sehen, danach alle anderen Kanten mit einem kleineren Radius (**2 mm**) verrundet. Für die Innenradien der Segmente können alle 16 vertikalen Eckkanten in einem Zug ausgewählt werden. In der Rubrik **Volumenkörper** kann hierfür die Checkbox **Alle Innenradien** aktiviert werden. In der kleinen Tabelle des Dialogfelds wird nun angegeben, dass insgesamt 16 Kanten ausgewählt wurden. Die Kanten werden im Bauteil jetzt farblich hervorgehoben.

> Der Radius für die Rundung kann im Dialogfeld oder auch direkt im Feld, welches auf den Radius zeigt, eingegeben werden. Eingestellt wird hier ein **Radius** von **10 mm**. Durch Klicken der Schaltfläche **OK** wird die Verrundung bestätigt und das Dialogfeld geschlossen. Da bereits mit der Eingabe visuell eine Umsetzung des Radius erfolgt ist, lassen sich in diesem Dialog weitere Radien erzeugen, ohne dass bereits **OK** gedrückt wird.

Im Dialogfeld wird hierfür auf das Feld **KANTENSATZ MIT KONSTANTEM RADIUS HINZUFÜGEN** gedrückt (siehe Kennzeichnung in der nebenstehenden Abbildung). Alternativ kann auch das +-Zeichen im Dialogfeld gedrückt werden, und damit wird eine weitere Zeile bei den **Auswahlsätzen** eingefügt. Unterhalb der drei möglichen Formen der Eckenausrundung gibt es vier Schaltflächen, mit denen die **Auswahlpriorität** festgelegt wird. Beim ersten Auswahlsatz ist die untere Schaltfläche aktiv geschaltet (**ASSOZIA-TIVE ABRUNDUNGEN AUF ALLE KANTEN**), beim Anlegen eines zweiten Auswahlsatzes wird automatisch die **AUSWAHLPRIORITÄT AUF KANTENKONTUREN festgelegt**.

Nun kann der vorgesehene Radius von **2 mm** eingestellt werden. Anschließend sind die vier Segmente auszuwählen. Durch Anklicken des **OK**-Buttons wird die Aktion abgeschlossen und das Dialogfeld verlassen.

Die obere umlaufende Außenkante der Grundplatte soll mit einer Fase von 2 mm versehen werden. Die Funktion **FASE** befindet sich ebenfalls in der Befehlsgruppe Ändern. Nach dem Anklicken erscheint ein Dialogfeld mit verschiedenen Einstellmöglichkeiten. Die obere umlaufende Kante ist mit dem Cursor auszuwählen (die Kante wird im Bauteil dann farblich hervorgehoben), und in der Rubrik **Abstand** ist für die Fase das Maß 2 mm einzugeben. Durch Anklicken des **OK**-Buttons wird die Aktion wieder abgeschlossen.

3.5.5 Nut (Langloch) für die Rippen einbringen

In Anlehnung an das Erzeugen des Ringsegments im Rahmen der ersten Skizze werden nun die vier Nuten, die die Führung für die Rippen darstellen, erzeugt. Dazu ist wieder die Schaltfläche **2D-SKIZZE STARTEN** zu wählen und die Oberfläche der Grundplatte ist als Skizzenansicht festzulegen. Skizziert wird eine Nut, die anschließend über die Funktion **RUNDE ANORDNUNG/POLAR** vervielfältigt wird.

Nach der bekannten Vorgehensweise wird eine horizontale Hilfslinie erzeugt, die der parametrischen Festlegung der Nut, bestehend aus zwei Kreisbögen und zwei horizontalen Linien, dient. Die Hilfslinie ist wiederum nicht Gegenstand der Bauteilkontur

und als **Konstruktionslinie** zu definieren. Die Konstruktionslinie ist in Abhängigkeit vom Mittelpunkt und horizontal festzulegen. Hierzu kann wieder die Befehlsgruppe **Abhängigkeit** verwendet werden.

Rechtec

Das Skizzieren des Langlochs kann auf unterschiedliche Art durchgeführt werden. Sinnvoll ist es aber, die Aufgabe mit der Erzeugung zweier **Kreisbögen** und zweier **Linien** oder auch mit dem in Inventor vorhandenen Befehl **LANGLOCH** durchzuführen. Beschrieben sind nachstehend beide Vorgehensweisen.

Nun werden die beiden Kreisbögen skizziert.

- 1. In der Befehlsgruppe **Erstellen** ist die Schaltfläche **BOGEN** zu betätigen. Hier ist anschließend das Untermenü **BOGEN + MITTELPUNKT** zu wählen.
- 2. Der Mittelpunkt des Bogens ist auf die Konstruktionslinie zu setzen.
- Der Cursor ist vom Mittelpunkt nach außen zu bewegen, und der Startpunkt des Kreisbogens ist mit der linken Maustaste festzulegen. Anschließend ist der Bogen gegen den Uhrzeigersinn aufzuziehen, und der Endpunkt ist ebenfalls mit der linken Maustaste zu bestätigen.

Der Durchmesser des Bogens und der Winkel können direkt mit **6 mm** bzw. **180°** während des Skizzierens per Tastatur eingegeben werden. Einfacher ist es aber, nach der Erzeugung der Verbindungslinien mithilfe der Abhängigkeiten die skizzierte Geometrie festzulegen. Die Funktion wird wieder mit **ESC** beendet.

Erst einmal sind aber die Verbindungslinien zu skizzieren, die jeweils von einem Punkt eines der Kreisbögen zum anderen Kreisbogen führen. Damit ist bereits eine Punktstetigkeit sichergestellt, d. h., die Abhängigkeit **Koinzident** ist gesetzt.

Über die Schaltfläche **BEMASSUNG** erfolgt die größenmäßige Festlegung der fehlenden Maße. Die Mittelpunkte der beiden Kreisbögen haben einen Abstand von **30 mm**, und der innen liegende Mittelpunkt des Langlochs liegt **100 mm** vom Mittelpunkt der Grundplatte.

HINWEIS: Die Festlegung der skizzierten Nut kann mit unterschiedlichen Abhängigkeiten und Maßabgaben erfolgen. Unverzichtbar ist allerdings die Tangentenstetigkeit zwischen den Linien und den Kreisbögen.

Das Skizzieren der Nut mit der Schaltfläche **LANGLOCH** (Mitte zu Mitte, kleiner Cursor-Pfeil unterhalb von **Rechteck**, Befehlsgruppe **Erstellen**) bietet etwas mehr Komfort, da hier bereits die meisten Abhängigkeiten vordefiniert sind. Nach dem Setzen des ersten Mittelpunkts kann direkt **30 mm** über die Tastatur eingegeben werden. Es folgen **0**° für die Neigung und **6 mm** für die Breite.

Bemaßung

 \square

Bogen Drei Punkte

Bogen

Bogen

Zum Schluss muss noch die exakte Position des Langlochs zum Mittelpunkt der Grundplatte angegeben werden. Die Schaltfläche **BEMASSUNG** wird hierzu aufgerufen, und der Mittelpunkt der Grundplatte und der innen liegende Mittelpunkt des Langlochs werden ausgewählt. Eingegeben wird wieder das Maß **100 mm**.

Nach dem Setzen der Abhängigkeit **Kollinear** zwischen der Konstruktions- und der Symmetrielinie des Langlochs sollte dieses dann komplett festgelegt sein, und die 2D-Skizze kann mit **SKIZZE FERTIGSTELLEN** verlassen werden.

In der Befehlsgruppe **Erstellen** wird nun über die Funktion **EXTRUSION** ein Dialogfeld aufgerufen. Innerhalb des Dialogfelds muss noch im Funktionsbereich **Verhalten** die **Richtung Umgekehrt** sowie bei **Ausgabe** > **Boolesch** > **Differenz** eingestellt werden. Damit wird der erzeugte Körper von der bisherigen Geometrie abgezogen ("Materialschnitt").

3.5.6 Nuten vervielfältigen (Muster verwenden)

Bisher wurde die Funktion **MUSTER** für die Grundplatte auf Ebene einer 2D-Skizze angewendet. Diese Funktion kann aber auch auf Volumenkörper angewendet werden. Im Strukturbaum ist der gezeichnete Extrusionskörper (**Extrusion2**) auszuwählen, und anschließend ist mit der Funktion **RUNDE ANORDNUNG** in der Befehlsgruppe **Muster** das Dialogfeld aufzurufen. Da vorab der Extrusionskörper im Strukturbaum ausgewählt

37

wurde, müssen jetzt keine Elemente für die Bemusterung mehr hinzugenommen werden. Es muss nur noch zur Auswahl der Drehachse gewechselt und eine zylindrische Kante gewählt werden. Dies geschieht durch Klicken auf den kleinen Cursor-Pfeil vor der Drehachse. Die Anzahl der Elemente wird auf den **Wert 4** gesetzt. Mit dem **OK**-Button entsteht das fertige Muster.

Mit den letzten Aktionen wurde die Grundplatte fertiggestellt und sollte nun der Darstellung entsprechen.

3.5.7 Auswahl eines Materials für die fertige Grundplatte

Da die Bauteildaten im Beispiel nicht für eine Fertigung der Grundplatte weiterverwendet werden, ist die Definition eines "echten" Materials nicht ganz so wichtig. In der Praxis sollte jedoch jedem Bauteil immer auch ein passendes Material zugewiesen werden, damit Stücklisten richtig erzeugt und FEM-Analysen und/oder eine dynamische Simulation durchgeführt werden können. Über die Material-Auswahlliste in der obersten Befehlsleiste (voreingestellt ist **Generisch**) können vorgegebene Materialien sehr schnell ausgewählt und zugewiesen werden. Für unsere Grundplatte wird aus der Liste als Werkstoff **Stahl, weich** ausgewählt. Mit dieser Auswahl werden dem Bauteil die Kennwerte dieses Werkstoffs als Bauteil-Eigenschaften zugewiesen.

Alternativ besteht auch die Möglichkeit, dem Bauteil ein Material über den Strukturbaum zuzuordnen. Im Strukturbaum-Kontextmenü des Bauteils lassen sich die sogenannten **iProperties** aufrufen, wo alle Bauteil-Eigenschaften aufgeführt sind. Im Register **Physikalisch** kann nun ebenfalls das Material ausgewählt werden. Mit **ÜBERNEHMEN** bzw. **SCHLIESSEN** wird der Vorgang beendet.

Das Strukturbaum-Kontextmenü des Bauteils kann auch zur Kontrolle der gesetzten Eigenschaften aufgerufen werden. Im Register **Physikalisch** ist jetzt z.B. angegeben, dass die Grundplatte mit dem gewählten Material eine Masse von 1,63 kg hat, denn durch das gewählte Material ist die Dichte und durch das Modell das Volumen der Platte definiert

Stahl, weich *Vorgabe Wiederholen Skizze beender Modella Dateispeicherort öffnen + 🚺 Volume + T- Ansicht 🔂 Kopieren Urspru Alt+0 📕 Extrusi 📜 Zeichnung öffnen Rundur 1 Nicht Verwendete bereinigen Rundur Ersatzobjekt Fasen 1 Extrusi 🗮 Messen - Runde Notiz erstellen 🛛 Bautel Alle Untergeordneten erweitern Alle Untergeordneten ausblenden Do In Fenster suchen Properties... Verfahren..

Allgemein	Übersicht Projekt	Status Benutzerdefin	iert Speichern	Physikalisch
Volumenk	örper			
Das Bau	teil		~	Aktualisieren
Material				Zwischenablage
Stahl, we	eich		~	Long to the second s
Dichte		Angeforderte Genauigk	eit	
	7,850 g/cm^3	Niedrig	~	
Ma Fla Volur	usse 1,629 kg (Rela the 94594,279 mm men 207476,874 m	tiver X -0,0	000 mm (Relative 00 mm (Relative 83 mm (Relative	
H	Hauptt.	Global	Schwerp	unkt
I1 [11019,393 kg m	I2 11019,397 kg π	13 22032,125	kg m
D	rehung nach Haupttr	ägheitsmomenten		
Rx	0,00 grd (Relati	Ry 0,00 grd (Relati	Rz 0,00 grd (R	elat

(falls die Angaben fehlen, ist erst die Schaltfläche **AKTUALISIEREN** zu betätigen). In Inventor können auch eigene Materialdaten definiert werden, deren Material-Kennwerte selbst festgelegt werden können (z.B. mit Datenblättern eines Lieferanten). Das Anlegen neuer Materialien wird in Abschnitt 8.4.3 genauer beschrieben.

Im allerletzten Schritt sollte natürlich das abschließende **Speichern** (Schnellzugriff-Werkzeugkasten) nicht vergessen werden. Hierzu ist das Bauteil unter dem Namen *Kap_3_5_Grundplatte.ipt* im Ordner des Projekts abzulegen. Gegebenenfalls kann die Bauteildatei dann geschlossen werden (Fenster schließen).

3.6 Die Baugruppe "Ständer" erstellen

Wie einleitend in Abschnitt 3.2 beschrieben, besteht die Baugruppe "Ständer" (*Kap_3_6_Ständer.iam*) aus insgesamt drei verschiedenen Bauteilen, nämlich der Grundplatte, dem Ständerrohr und den vier baugleichen Versteifungsrippen. Man kann entweder die fehlenden Bauteile einzeln erstellen und erst dann eine Baugruppe anlegen oder zunächst eine neue Baugruppe anlegen, in diese das erste erzeugte Bauteil, die Grundplatte laden und fixieren und anschließend aus der Baugruppenansicht heraus direkt die fehlenden Bauteile erzeugen. Die zweite Variante bietet einige wesentliche Vorteile, weshalb nachfolgend zunächst eine Baugruppe "Ständer" erzeugt wird, obwohl erst ein einziges Bauteil der Baugruppe existiert.

Eine neue Baugruppe anlegen

Das Anlegen einer neuen Baugruppe erfolgt analog zum Anlegen neuer Bauteile mit dem Unterschied, dass nun eine andere Vorlage gewählt und dadurch eine andere Umgebung geladen wird.

Über den Button **NEU** im **Schnellzugriff-Werkzeugkasten** öffnet sich ein Dialogfeld. Hier ist im Ordner *de-DE* > *METRIC* die Vorlage *Standard(DIN).iam* auszuwählen. Der Vorgang wird mit der Schaltfläche **ERSTELLEN** (linke Maustaste) bzw. mit einem **Doppelklick** auf die Vorlage abgeschlossen.

In die leere Arbeitsumgebung der Baugruppe wird mittels der Funktion **PLATZIEREN** nun die fertige Grundplatte eingefügt.

Da wir uns weiterhin im Projekt "Rollenständer" befinden, wurde die Grundplatte in die sem Ordner gespeichert und erscheint jetzt als in die Baugruppe einzufügendes Bauteil. Wählen Sie diese Datei aus, und bestätigen Sie die Auswahl mit **ÖFFNEN**.

Bibliotheken	Suchen in: Inventor_Beispieldatei	n 🗸 😳 🗊 🛄 🔹			
Content Center Files	Name	Änderungsdatum	Тур	Größe	
	Kapitel_2	07.07.2024 19:05	Dateiordner		
	Kapitel_3	10.08.2024 12:06	Dateiordner		í .
	Kapitel_4	05.08.2024 11:54	Dateiordner		
	Kapitel_5	17.07.2024 17:34	Dateiordner		
	Kapitel_6	01.08.2024 13:16	Dateiordner		
	Kapitel_14	09.08.2024 14:20	Dateiordner		
	Kapitel_15	03.08.2024 14:39	Dateiordner		
	7				
No. No. No. of					
Nene vorschau vert.	Dateiname: 1				
	Databasi Kanana da da da Ba				
	Nomponentendateien ();	(; Jam)			~
	Projektdatei: Kap_3_Rollenständer.ipj				Projekte.

Eingeblendet wird beim ersten Platzieren eines Bauteils ein weiteres Dialogfenster mit Optionen in Bezug auf das einzufügende Bauteil. Die Voreinstellungen sind mit **OK** zu bestätigen, und das Dialogfenster wird damit wieder geschlossen. (Dieses Fenster kann jederzeit auch über den Button **OPTIONEN...** geöffnet werden.) Nun ist im Dialogfenster **Komponente platzieren** der Button **ÖFFNEN** zu drücken. Auch das Dialogfenster wird damit geschlossen,

Datei offn	en - Optionen	^
Modellzus	tand	
[Primär]		~
Konstrukt	ionsansicht	
Zuletzt a	ktive	~
		Assoziativ
[7]	OK	Abbrechen

und das Bauteil hängt am Cursor, ist jedoch mit dem Koordinatensymbol versehen. Mit einem Klick auf die rechte Maustaste erscheint das Kontextmenü, in dem weitere Manipulationen noch vor dem eigentlichen Platzieren vorgenommen werden können. Mit der Auswahl **Am Ursprung fixiert platzieren** wird die Grundplatte als erstes Bauteil in die Baugruppe eingefügt und fixiert. Abschließend ist noch **ABBRECHEN (ESC)** zu drücken.

HINWEIS: Inventor bleibt beim Platzieren von Bauteilen im Einfügemodus und fügt eine Komponente beim Klicken so oft und so lange ein, bis über das Kontextmenü **ABBRECHEN (ESC)** gewählt wird.

Modell X + Baugruppe | Modellieren F the Kap_3_6_Ständer.iam + Modellzustände: [Primär] + Beziehungen + Darstellungen + Dusprung + Gi [e]:Kap_3_5_Grundplatte: 1

Die Baugruppe ist im Anschluss unter dem Namen Kap_3_6_Ständer.iam zu SPEICHERN, und im Strukturbaum wird jetzt der Name der Baugruppe entsprechend angepasst. Darunter befinden sich die Gliederungselemente **Modellzustände**, **Beziehungen** und **Darstellungen**. Letzteres enthält die Hauptansicht (siehe Abschnitt 6.13). Im Ordner Ursprung wird die Ursprungsdefinition aufgeführt, und zum Schluss steht das einzige der Baugruppe zugeordnete Bauteil, die Kap_3_5_Grundplatte:1. Auffallend ist am Bauteil-Icon der Grundplatte die Pin-Nadel, deren Darstellung aussagt, dass dieses Bauteil in der Baugruppe **fixiert** ist. Der **schwarze Punkt** vor dem Bauteil gibt an, dass dieses vollständig mit Abhängigkeiten versehen wurde (siehe Abschnitt 2.2.1).

HINWEIS: Ein fixiertes Bauteil, in der Regel das Basisteil, ist im Koordinatensystem fest verankert und kann nicht verschoben oder bewegt werden. Alle anderen Bauteile werden als beweglich eingefügt und können über 3D-Abhängigkeiten mit dem fixierten Bauteil verbunden werden (siehe auch Abschnitte 6.5 und 6.6). Fixierungen können im Kontextmenü des Strukturbaums aufgehoben oder neu vergeben werden.

3.7 Neue Baugruppenkomponenten im Kontext einer Baugruppe anlegen

Mit der Funktion **GEOMETRIE PROJIZIEREN** sind wesentliche Vereinfachungen im Rahmen einer Konstruktionsaufgabe möglich. Das heißt, ausgehend von vorhandenen Komponenten werden weitere Bauteile (Komponenten) erzeugt und zu einer Baugruppe zusammengefügt. Drei Schritte sind hierfür notwendig:

1. In der Befehlsgruppe Komponente ist die Funktion ERSTELLEN zu wählen.

- Der Name des neuen Bauteils ist als Neuer Komponentenname in das Dialogfenster einzutragen. In unserem Fall wird der Name Kap_3_7_Ständerrohr vergeben, unter dem dieses Bauteil gespeichert werden soll.
- 3. Die Skizzierebene ist für das neue Bauteil noch festzulegen. Hierfür muss im Dialogfenster das Auswahlfeld **Skizzierebene von gewählter Fläche oder Ebene abhängig machen** aktiviert sein.

Komponente in der Baugruppe	erstellen			×
Neuer Komponentenname		Vorlage		
Bauteil 1		Metric\Standard (DIN).ipt	~
Speicherort der neuen Datei				
D:\TEXT\Wextcloud\HanserVerlag	_Inventor\Invento	or_2025\Inventor_B	eispieldateien (K	apitel_3
Vorgabe-Stücklistenstruktur				
Normal	✓ Virtuelle	Komponente		
Skizzierebene von gewählter Fl	äche oder Ebene a	bhängig machen		
?			OK	Abbrechen

Als Ausrichtungsebene für das Bauteil "Ständerrohr" wird die obere Fläche der Grundplatte ausgewählt.

HINWEIS: Inventor startet nach diesem Vorgang die neue Bauteil-Arbeitsumgebung innerhalb der Baugruppen-Arbeitsumgebung. Anschließend kann genauso verfahren werden wie bei der Erstellung eines neuen Bauteils. Im ersten Schritt muss also eine neue Skizze für das neue Bauteil erstellt werden.

Datei	Zusammenfü
Platzie	ren Erstellen
Kom	ponente 💌

Geometrie projizieren

 \square

Über das Icon wird der Befehl **2D-SKIZZE STARTEN** aufgerufen und als Skizzenebene die Oberfläche der Grundplatte ausgewählt. Inventor schaltet jetzt automatisch in die Skizzierumgebung um, in der die Grundplatte nur noch schemenhaft zu erkennen ist. Die Skizzierebene befindet sich direkt auf der Oberfläche der Grundplatte, deren Elemente für die Konstruktion des Ständerrohrs mitverwendet werden können.

In der Befehlsgruppe **Erstellen** befindet sich die Funktion **GEOMETRIE PROJIZIEREN**, die jetzt zum Einsatz kommen soll.

Der Innendurchmesser des Rohrs entspricht dem innersten Durchmesser der Grundplatte. Dieser Durchmesser kann entsprechend von der Grundplatte auf die aktive Skizzierebene des Ständerrohrs projiziert werden. Durch dieses Verfahren müssen wir uns nicht mehr um einzelne Maße kümmern. Der Innendurchmesser des Rohrs wird damit in Abhängigkeit vom gewählten Durchmesser der Grundplatte gesetzt.

HINWEIS: Diese Abhängigkeit bewirkt, dass, wenn später der Innendurchmesser der Grundplatte geändert wird, sich der Innen- und gegebenenfalls der Außendurchmesser des Rohrs ebenfalls ändern. Sind alle Bauteile einer Baugruppe auf diese Art miteinander verbunden, genügen oft nur wenige Maßänderungen, um neue Varianten aus einer bestehenden Grundkonstruktion zu erstelen.

Alternativ kann das Projizieren von Geometrieelementen auch in Verbindung mit der **STRG**-Taste erfolgen. Hierbei wird eine Kopie des Elements angelegt, und im Strukturbaum erfolgt keine Kennzeichnung bezüglich einer Adaptivität. Änderungen an der ursprünglichen Geometrie werden jetzt auch nicht mehr übernommen.

Der Außendurchmesser des Rohrs wird konzentrisch zum Innendurchmesser mit der Funktion **KREIS DURCH MIT-TELPUNKT** gezeichnet. Die Bemaßung erfolgt nicht über den Durchmesser, sondern über die Wandstärke = 8 mm. Dies hat im Zusammenhang mit der gesetzten Abhängigkeit den Vorteil, dass die Wandstärke erhalten bleibt, auch wenn sich der Innendurchmesser ändern würde. Ist dies geschehen, dann ist die Skizze bereits fertig und wird mit **SKIZZE BEENDEN** geschlossen.

TIPP: Alternativ könnte der Außendurchmesser auch durch eine Formel mit dem Innendurchmesser verknüpft werden, etwa Da = Di × 1,2. Oder es könnte eine iLogic-Regel erstellt werden, in der tabellenartig je ein Außendurchmesser einem bestimmten Innendurchmesser zugeordnet wird. Sowohl die Formeln als auch iLogic werden in Abschnitt 4.13 und Abschnitt 11.6 näher beschrieben.

Inventor erstellt auf der Oberfläche der Grundplatte eine neue Arbeitsebene, auf der sich die Rohr-Skizze befindet. Die **Sichtbarkeit** dieser Arbeitsebene kann für eine bessere Übersichtlichkeit im Strukturbaum ausgeschaltet werden.

Nachdem die Skizze beendet wurde, erfolgt die **Extrusion** auf eine Länge von **300 mm** nach dem gleichen Schema wie bei der Grundplatte. Mithilfe der Funktionen **FASEN** und **RUNDUNG** wird anschließend die obere Innenkante des Rohrs mit einer Fase von **2 mm** und die obere Außenkante des Rohrs mit einer Abrundung von ebenfalls **2 mm** versehen. Einzustellen sind jeweils die Art der Erzeugung und natürlich die Maßangabe selbst.

Rundungen lassen sich zusätzlich noch unterscheiden zwischen Kantenansatz mit konstantem Radius, Abrundung mit variablem Radius und Eckenausführung.

