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Vorwort des Herausgebers

Die Reihe ,Erdsicht — Einblicke in Geographische und Geoinformationstech-
nische Arbeitsweisen® soll Forschungsergebnisse und Arbeiten im Bereich
der Erdsystemforschung vorstellen. Die Betrachtung der Erde als System ist
als Inhalt heutiger und zukunftiger Geowissenschaftlicher Gemeinschafts-
forschung dringend gefordert. Die Herausforderungen liegen zum einen in der
Erforschung der vielfaltigen Interaktionen zwischen den verschiedenen
Teilbereichen des Systems Erde. Hierzu zahlen Wechselwirkungen zwischen
fester Erde und Atmosphare, zwischen der Landoberflache und der Hydro-
sphare oder zwischen Biosphare, Hydrosphare und Atmosphare. Der Mensch
steht dabei mit seinen zentralen Nutzungsanspriuchen (Ernahrung — landwirt-
schaftliche Nutzung — Ressourcennutzung) im Mittelpunkt eines vielfach
vernetzten Erdsystems. Der Mensch verandert Landschaften und Atmos-
phare und greift somit in alle Skalenbereiche des Erdsystems ein. Insofern
mussen diese Veranderungen beobachtet und bewertet werden, damit
Konzepte fur ein nachhaltiges Erdsystemmanagement auf den unterschied-
lichen Raum- und Zeitskalen entwickelt werden konnen. Die neuen Geoinfor-
mationstechniken (Geostatistik; Geographische Informationssysteme — GIS;
luft- und Satellitengestutzte Fernerkundungssysteme — Remote Sensing)
helfen dabei das System Erde zu beobachten und zu begreifen. Ohne diese
Techniken ist eine ganzheitliche Betrachtung der Erde und eine flachenhafte
Bereitstellung von Informationen uber das Erdsystem nicht moglich.

Die vorliegende Dissertation beschaftigt sich mit den Moglichkeiten des Infor-
mationsgewinns aus raumlich hochaufgelosten Satellitendaten, wie sie bei-
spielsweise mit den IKONOS-Daten seit 1999 verfugbar sind. Das Unter-
suchungsgebiet ist ein Gebirgsbereich in der Dominikanischen Republik, wo
tropische Bergwalder und landwirtschaftliche Nutzung aufeinandertreffen.
Genaue raumliche Informationen sind hier wichtig, um Resourcenschutz und
Resourcennutzung sinnvoll miteinander kombinieren zu konnen.

Martin Kappas



Abstract: Exploiting the Spatial Information in High Resolution Satellite
Data and Utilising Multi-Source Data for Tropical Mountain Forest and
Land Cover Mapping

The heterogeneous, fragmented land cover pattern of the upper catchment
area of the Rio Yaque del Norte, in the Cordillera Central of the Dominican
Repubilic, is typical for many tropical mountain areas. Parts of the catchment
area have been colonised in the course of the 20" century, in spite of their
marginality for agricultural land use purposes. At the same time, there are still
several types of primary mountain forests remaining in this mountain range,
among them fragmented cloud forest areas with threatened endemic species.
Deforestation and unsustainable land use methods on the steep slopes of the
study area have led to erosion and land degradation. There are efforts to
foster more sustainable land use practices, to reforest some areas and to
protect the threatened ecosystems. Detailed spatial land cover information
would be important for improving the basis of the necessary land manage-
ment decisions.

The study area is challenging for forest and land cover mapping. The
usefulness of medium resolution (e.g. Landsat) satellite data for mapping its
vegetation types is limited, because the small-scale mix of land cover types
leads to a large proportion of mixed pixels in such data. The introduction of a
new generation of commercial high spatial resolution satellites like IKONOS
has led to new possibilities for more detailed classifications of special interest
areas, but the high resolution data also pose new challenges for automated
land cover mapping. Single pixels in these data fail to integrate the elements
of the target classes (e.g. forest types) and the increased amount of spatial
information contained in the data cannot be fully extracted by using the per-
pixel multispectral classification approaches which are common for medium
resolution satellite data. To make use of the high resolution spatial informa-
tion contained in the IKONOS panchromatic channel in automated classifi-
cations, customised texture parameters were created and used as additional
channels in the classification. At the same time, several methods for the
spatial integration of the multispectral data were tested and compared, in
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order to make the spectral signals of the image primitives more represen-
tative of the target classes. Both the spatial integration of the multispectral
data (especially low pass filtering) and the introduction of texture parameters
led to significantly increased classification accuracies. The integration of
multi-source data as input for the classifiers (combining additional Landsat
multispectral channels or DEM-derived topographic models with the IKONOS
data sets) did not lead to significantly improved results, compared to the
results which were achieved with IKONOS data alone. However, the elevation
data did show some potential to increase the separability of some classes.
They could probably have been more useful if a higher resolution DEM had
been available. The Maximum-Likelihood-Classifier produced better results
than the tested non-parametric classifiers. With the optimised methods, a
detailed land cover classification (13 classes, six of which represented forest
types) was possible using information derived from the IKONOS data. There
were some inherently problematic classes like open pine forest and agro-
forestry, but for most forest classes, good classification accuracies could be
achieved, particularly for the ecologically important cloud forest class.
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1 Introduction

Tropical ecosystems are changing rapidly as a result of human activity. Land
cover changes in the tropics include deforestation and landscape
fragmentation, often in connection with the colonisation of marginal areas.
Achard et al. (2002) state that between 1990 and 1997, 5.8 £ 1.4 million ha of
humid tropical forest were lost per year and 2.3 + 0.7 million ha were visibly
degraded. The world-wide loss and degradation of tropical forests has far-
ranging ecological and climatic consequences. Tropical mountain forests in
particular play a central role in many aspects of sustainable development.
They can be linked with soil conservation and the prevention of land
degradation, water supply and climate change, biodiversity, and tourism
development, apart from providing timber and other forest products (Price &
Butt 2000).

The Caribbean islands are a region where the population density is much
higher than in many continental tropical countries and the proportion of
forests which have survived on these islands is accordingly low (Lugo 1995).
The Dominican Republic has seen the destruction of most of its forests in the
course of the 20™ century, but due to its mountainous relief and historically
relatively low population density, some considerable parts of its rich and
varied natural vegetation are still remaining — in contrast to its disastrously
degraded neighbouring country Haiti.

The problems of deforestation, especially in the mountain areas, are
recognized in the Dominican Republic and there are efforts to protect
selected areas of natural forests and to reforest mountain areas which are
degraded or in danger of further degradation. However, as in many
developing countries, there is a lack of information on forest resources. More
information would be needed for forest management planning and for
monitoring the sustainable development of forests in agreement with Agenda
21 of the Rio Earth Summit 1992 (Lund 1996). According to Saket (2002),
most developing countries were unable to provide detailed information to the
Global Forest Resources Assessment 2000 (FRA 2000), and only 10 % could
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provide information on changes in area. None of the countries in Latin
America and the Caribbean reported information based on country-wide field
sampling, but most could provide area estimates based on remote sensing.
The "Inventario de Cobertura Forestal” (inventory of forest coverage)
published by the Dominican ministry of the environment in 2001 (SEMARENA
2001a) is based mostly on the classification of several Landsat scenes from
the 1990s.

Remote sensing is a necessary data source for mapping, spatial analysis and
geo-referenced information (Kleinn 2002). Even if remote sensing
technologies cannot provide the same information that would be the result of
a complete forest inventory based on extensive field sampling as conducted
in many developed countries, they can provide information about some core
attributes like forest area and area by forest type, among other things. Only
remote sensing can provide full-cover, spatially explicit information on the
location of forest types, changes of forest cover and forest fragmentation. The
resulting land cover maps can serve as one basis for forest management and
protection. They could also help to choose an optimized sample, reducing the
necessary intensity of field sampling if further forest inventory efforts were to
follow. Land cover maps are also needed as an input for the analysis and
modelling of interrelationships of landscape processes.

Classifications based on Landsat or similar medium-resolution satellite data
can give a first overview over the spatial distribution of the major vegetation
units, but they are often inadequate when dealing with the heterogeneous
land cover patterns that are characteristic for many tropical mountain areas
due to topographic, climatic, geologic and edaphic variations and land use
patterns including subsistence agriculture and shifting cultivation.

The recent introduction of commercially available high spatial resolution
satellite imagery has brought about new possibilities and new challenges for
the field of satellite remote sensing of the environment. Before the launch of
IKONOS-2 in 1999 imagery of a comparable spatial resolution was only
available from airborne sensors. Changing the spatial resolution of the
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measurement changes the information content and statistical properties of
image data (Marceau et al. 1994a), and digital image analysis methods used
with medium resolution satellite images are not always applicable. Increasing
the spatial resolution of an image reduces the integrating effect of larger
pixels and thus the homogeneity within land cover classes. High (and very
high) spatial resolution imagery such as aerial photographs is traditionally
interpreted by manually delineating vegetation boundaries (Coulter et al.
2000). In these cases, the human interpreter does not only use the
information of grey levels or colours, but also attributes like texture, patterns,
location, form, and size. Correspondingly, automated digital analysis of high
spatial resolution images should include methods which use not only the per-
pixel spectral information but also the spatial information present in these
images.

One way to utilise the spatial information from high resolution imagery is to
extract texture parameters which can then be included in the classification
process. Texture in digital image analysis is the variability or the spatial
relationship of grey levels in a pixel neighbourhood or window. Image texture
parameters can be derived from a variety of first- and second-order statistics.
Texture is related to the size and distribution of objects in the scene and to
the spatial resolution of the imagery. In high resolution cases, where the
pixels are smaller than the size of the objects in the image (which is the case
for IKONOS images of forest), texture information can be expected to be
especially valuable for class discrimination.

The spatial resolution of high resolution imagery may be too high for optimal
per-pixel classification results of heterogeneous land cover classes like forest,
because the different elements of a class (e.g. illuminated crowns, shaded
crown parts and understorey vegetation) are not integrated in the single
pixels. It may thus be necessary to perform some kind of spatial integration
before classification, e.g. by reducing the spatial resolution of the imagery or
using a low pass filter. Another way to incorporate the spatial context is image
segmentation, followed by object oriented image analysis. Image
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segmentation divides an image into separated, spatially continuous regions
which are homogeneous with respect to some characteristic or
characteristics. The resulting image objects are more meaningful than single
pixels and allow for object-oriented or per-parcel image classification.

Given the influence of elevation and other terrain variables on vegetation,
valuable ancillary information for forest classifications in mountainous areas
can be derived from digital elevation models (DEM). Appropriate data
integration methods are needed to be able to use multi-source data (satellite
and DEM-derived), data of different spatial resolutions, as well as spectral
and textural data in the classification process. The established maximum
likelihood classification method has some limitations as to the types of data it
is appropriate for and it is not adapted for using data of different scales.
Therefore, other (non-parametric) classification methods or ways to
incorporate ancillary data in pre- or post-classification processes have to be
considered.

Geographical entities such as forests are not only scale-dependent in their
definition, but they are also inherently fuzzy, with indeterminate boundaries
(Cheng 2002). Detailed classifications of natural and semi-natural vegetation
in particular entail fuzziness in the class definitions and the spatial delineation
of class areas. In addition, the occurrence of mixed pixels on class borders
can never be completely avoided even in high resolution imagery. Therefore,
the concept of fuzziness is important when addressing the unavoidable
uncertainties in class definition, classification and the resulting maps.

1.1 Aims and Objectives

This study aims at finding, testing and comparing methods for forest and land
cover mapping in tropical mountainous terrain using automated classifications
of recent optical satellite data, comparing the usefulness of medium and high
resolution satellite data and combining multi-source data in order to improve
classification results.
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The main objectives are
to produce a regional land cover base map using Landsat ETM+ data;

to evaluate high resolution satellite data (IKONOS) for mountain forest and
land cover mapping;

to test the usefulness of spatial information (texture) for improving the
discrimination of forest and other land cover classes;

to test the usefulness of different kinds of spatial integration of high
resolution data, including segmentation;

to produce an integrated data set as a basis for an optimised classification;
to test and compare suitable classification methods;

to generate optimised land cover maps of the study area, discriminating
forest formations and other physiognomic vegetation units.

1.2 Central Hypothesis

Digital image classification of high spatial resolution satellite data can
contribute to improved results in (localised) tropical mountain forest mapping
compared to medium resolution satellite data. The successful use of high
resolution data for automated land cover classifications requires that the
spatial characteristics of these data are taken into consideration and that the
spatial information contained in the high resolution data is extracted and used
in the classification process as well as the spectral information.

1.3 Outline

In the following chapters, | will present the theoretical framework of this study
and then describe the land cover (especially the forests) and the land use in
the study area, including the physical and historical basis for the current
situation. The next chapter describes the data that were available to me for
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this study. The first methodological chapters describe the field work and the
pre-processing methods used. Chapter 7 explores the possibilities and
limitations of a land cover classification without high resolution data. After
that, the methods used to extract additional information from high-resolution
data are described and, subsequently, the results of the analysed issues
(questions of spatial resolution and spatial integration, use of texture, multi-
source data integration, classification methods, assessment of results) are
described and discussed. The tenth chapter presents the conclusions of this
study. It is followed by a summary in German.
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2.1 Use of Remote Sensing in Forest Mapping

In many countries outside the tropics, remote sensing is an established tool
used in forest mapping and, in combination with ground sampling, in forest
inventory (Tomppo 1996, Sutter 1990, Magnussen 1997, Tickle et al. 1998)
as well as in forest damage surveys (Thomas 1990). Most of these practical
applications involve the use of high spatial resolution remote sensing data,
and aerial photographs are still the most common data source used, even
though digital air-borne data have gained in importance in recent years
(Kayitakire et al. 2002). The analysis of these high resolution images is
dominated by manual, non-automated methods (Magnussen 1997, Biggs
1996, Sutter 1990), although this is time-consuming and can lead to
inconsistent results (Green 2000). The automatic analysis of aerial imagery is
mostly still in the experimental rather than the operational stage (Pouliot et al.
2002, Kadmon & Harari-Kremer 1999, Atzberger & Schlerf 2002).

Until 1999, only airborne sensors and cameras provided high resolution data
for forestry applications, while multispectral high resolution satellite data with
a repetitive coverage were not commercially available. Since then, a number
of high resolution satellites have been put into orbit. Satellites like IKONOS-2
and QuickBird represent a new generation of remote sensing satellites,
delivering multispectral imagery with spatial resolutions of 4 m and less. The
advent of high resolution satellite data since 1999 provides new incentives to
develop automated analysis methods for digital high resolution remote
sensing data. Automated methods for forest classification and the mapping of
biophysical stand parameters with digital airborne data have been tested for
example in North America (Quackenbush et al. 2000, St-Onge & Cavayas
1995, Franklin et al. 2001a, Cosmopoulos & King 2004, Leckie et al. 2003,
Kellndorfer et al. 2003) and Europe (Baulies & Pons 1995). IKONOS high
resolution satellite data were used by Goetz et al. (2003) to map tree cover
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and by Hirata et al. (2002) and Franklin et al. (2001b) to test techniques for
the extraction of information about coniferous forest stands.

Medium resolution satellite data like Landsat are used in some large area
forest inventories for example in Finland (Tomppo 1996), but are not deemed
to be suitable information sources for practical forest management purposes
by Holmgren & Thuresson (1998) and Pitt et al. (1997). Remote sensing
cannot deliver information about all the variables which field sampling pro-
duces for a forest inventory, but on the other hand, field sampling cannot
produce geo-referenced information with complete coverage for a whole
region. Spatially explicit information about the area and distribution of forest
and land cover types can only be gained with the help of remotely sensed
data (Kleinn 2002). Consequently, Landsat TM (Thematic Mapper) and simi-
lar optical satellite data are much used in regional forest type and land cover
mapping (e.g. Franklin 1992, Koch et al. 2002). There are also efforts to
estimate parameters like forest age and crown closure from Landsat TM data
(Jakubauskas & Price 2000, Franklin et al. 2003, Xu et al. 2003). There are
many more studies using satellite data for forest mapping, but an exhaustive
review of the use of medium to low resolution optical data (e.g. Latifovic et al.
2004) and synthetic aperture radar (SAR) data (e.g. Dobson et al. 1996,
Kellndorfer et al. 1998) for regional to global forest and land cover mapping
would go beyond the scope of this overview.

Besides high spatial resolution satellite data, other new data sources for
detailed forest information are airborne lidar (light detection and ranging),
which can be used to provide measurements of the vertical canopy structure
(Means et al. 2000, Hudak et al. 2002, Dubaya & Drake 2000), and airborne
and satellite hyperspectral data (Ustin & Trabucco 2000, Martin et al. 1998).
Specialized techniques like these, aiming to provide detailed information for
forest managers, are usually developed in non-tropical countries like Canada
and Finland, but the aims and conditions of boreal and temperate forest
mapping and management are in many respects quite different from the
situation in the tropics.
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Remote sensing of tropical forests

In many tropical developing countries, there is a lack of even very basic forest
information which would be needed for effective forest protection and
management. For the Global Forest Resources Assessment 2000 (FAO
2001), none of the Latin American and Caribbean countries could provide
forest information based on country-wide field sampling, while about half of
these countries had mapped their forest resources using aerial photographs
or satellite imagery, providing area estimates for more or less detailed or
broad forest types (Saket 2002). Terrestrial surveys of tropical forests are
usually difficult and expensive due to poor accessibility and the hetero-
geneous forest structure (Kohl 1996).

Many tropical forest studies using remote sensing are focused on
deforestation. Tropical deforestation is typically studied over large areas
using medium and low resolution satellite data, most commonly of the
Landsat sensors MSS, TM and ETM+ (Skole & Tucker 1993, Sanchez-
Azofeifa et al. 2002, Ichii et al. 2003). Deforestation studies are usually
multitemporal studies where for a single date, often just the classes ‘forest’
and ‘non-forest’ are separated (Millington et al. 2003, Peralta & Mather 2000,
Alves et al. 1999). Wang et al. (2003) refine these simple forest/non-forest
classifications by trying to estimate the forest canopy cover fraction within
Landsat pixels, Herrera et al. (2004) differentiate between forest, non-forest
and trees outside forest, and Asner et al. (2003) differentiate between several
land cover types in deforested areas, but they all treat the remaining forest as
a single class. This is the case in many deforestation and tropical land cover
classification studies, despite the large variety of tropical forest types.

Several authors have classified different successional stages of tropical forest
regeneration (Thenkabail et al. 2004a, Kimes et al. 1999, Foody et al. 1996).
Efforts to differentiate between different mature forest types are rare in
comparison to forest/non-forest classifications. Tuomisto et al. (1994) and
Paradella et al. (1994) used mainly visual interpretation of Landsat images to
distinguish several tropical vegetation types. The statistical spectral separa-
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bility of ecological forest types was studied by Singh (1987) using Landsat
MSS data and by Hill & Foody (1994) and Foody & Hill (1996) using Landsat
TM data. They came to the conclusion that between three and four groups of
forest types were spectrally separable based on these multispectral data, but
not all land cover classes which were identified in the field could be
separated. Hill (1999) managed to classify six Amazonian forest types using
segmented Landsat data. Riaza et al. (1998), Garcia & Alvarez (1994) and
Behera et al. (2001) also classified several tropical forest types on three
different continents using medium resolution multispectral satellite data.
Country-wide forest type and land cover mappings were conducted for Puerto
Rico by Helmer et al. (2002) and for the Dominican Republic by Tolentino &
Pena (1998) using Landsat TM and ancillary data, and for Mexico by Mas et
al. (2002) using visual interpretations of Landsat ETM+ data. Low spatial
resolution data (AVHRR) are used by Ferreira & Huete (2004) to monitor
woodland, shrubland and grassland vegetation types in the Brazilian Cerrado.

Medium and low resolution optical satellite data are also used in the
estimation of tropical forest biophysical characteristics like leaf area index
(LAI) or biomass (Foody et al. 2003, Kalacska et al. 2004, Thenkabail et al.
2004a, Atkinson et al. 2000). Another application for these data is the
mapping of burned areas resulting from tropical forest fires (Stibig et al. 2001,
Fuller & Fulk 2001).

Newly available hyperspectral satellite data have not yet been used much in
tropical forest applications (Thenkabail et al. 2004a), while there are a few
examples for the application of the new high spatial resolution satellite data.
IKONOS data have been used for the validation of products derived from
lower resolution data (Wang et al. 2003, Morisette et al. 2003). They have
also been tested for forest land use and land cover classifications as well as
for the estimation of forest biomass and the detection of selective logging
(Clark et al. 2004, Thenkabail et al. 2004a, Hurtt et al. 2003). High resolution
remote sensing data is also needed to resolve the narrow mangrove fringes
along tropical coastlines. Wang et al. (2004b) compare IKONOS and
Quickbird images for mangrove mapping and achieve slightly better
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classification results with the IKONOS data. Davis & Jensen (1998) study the
correlation between mangrove biophysical variables and airborne high
resolution data. There are also examples of traditional aerial photograph
interpretation for the mapping of tropical forests (e.g. Hudson 1991).

SAR data is often seen as a solution to the problem of frequent cloud cover in
tropical areas which renders much of the optical satellite data unusable.
However, the information about moisture and vegetation structure that is con-
tained in radar data (Dobson et al. 1995) is not necessarily suitable for the
separation of ecological forest types. Costa (2004) and Simard et al. (2000),
using JERS-1 and Radarsat data, were successful mainly in separating diffe-
rent types of floodplain forest and aquatic vegetation in tropical river basins
but did not map more than a single dense upland forest class. In addition, the
classification of Simard et al. (2000) worked well only in the low topography
region, while the terrain induced geometric and radiometric distortions in the
radar data hampered the classification in a more mountainous area.

One of the challenges of tropical forest and land cover mapping is the
discrimination of agroforestry (Hurtt et al. 2003). Agroforestry (main land use
agriculture) is usually not included in the definition of forest (e.g. FAO 2001),
but can look very similar from a remote sensing view point, with a more or
less dense tree canopy and sometimes crops in the form of shrubs (e.g.
coffee) below. Helmer et al. (2000) could not separate coffee cultivation from
moist forest in Puerto Rico using Landsat TM data and ended up with a mixed
class. Langford & Bell (1997) also find that their ‘coffee’ and ‘woodland’
classes are often confused. Hill (1999) managed to separate six different
tropical forest types in segmented Landsat TM data but could not separate
agricultural land containing trees from other open-canopied forest classes.

When forest is mapped it needs to be defined first. For the FAQO's global
forest resources assessment (FRA 2000), forest is defined as “lands of more
than 0.5 hectares, with trees able to reach a minimum height of 5 meters
maturity in situ and with a canopy cover of more than 10 percent, which are
not primarily under agricultural or urban land use” while other wooded land
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