

 [image: Unity 2018 Cookbook]

Unity 2018 Cookbook

Third Edition

Over 160 recipes to take your 2D and 3D game development to the next level

Matt Smith

BIRMINGHAM - MUMBAI

 Unity 2018 Cookbook
Third Edition

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Contributor: Chico Queiroz

Commissioning Editor: Kunal Chaudhari

Acquisition Editor: Shweta Pant

Content Development Editor: Francis Carneiro

Technical Editor: Ralph Rosario

Copy Editor: Safis Editing

Project Coordinator: Alinka Dias

Proofreader: Safis Editing

Indexer: Aishwarya Gangawane

Graphics: Jason Monteiro

Production Coordinator: Shraddha Falebhai

First published: June 2013

Second edition: October 2015

Third edition: August 2018

Production reference: 1310818

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78847-190-9

www.packtpub.com

I would like to dedicate this book to my wife Sinéad.

– Matt Smith

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

 Why subscribe?

	
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

	
Improve your learning with Skill Plans built especially for you

	
Get a free eBook or video every month

	
Mapt is fully searchable

	
Copy and paste, print, and bookmark content

 Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

 Foreword

Not so long ago, developing professional quality games meant licensing an expensive game engine or writing your own from scratch. Then, you needed to hire a small army of developers to use it. Today, game engines like Unity have democratized game development to the point where you can simply download the tools and start making the game of your dreams right away.

Well... kinda. Having a powerful game creation tool is not the same thing as having the technical knowledge and skills to use it effectively.

I've been developing games and game tools professionally for over 15 years. When I first took the plunge into learning Unity development to create the Fungus storytelling tool, I found a huge amount of online documentation, tutorials, and forum answers available for Unity developers. This makes getting started with Unity development relatively easy, but the information can also be quite fragmented. Often, the last piece of the puzzle you need is buried 40 minutes into an hour-long tutorial video or on the 15th page of a forum thread. The hours you spend looking for these nuggets of wisdom is time that would be better spent working on your game.

The beauty of the Unity Cookbooks is that Matt and Chico have distilled this knowledge into a neat collection of easy-to-follow recipes, and they have provided the scripts and complete working projects so that you can put it to use straight away.

In this latest edition for Unity 2018, Matt has updated the recipes from the previous book and added hundreds of new pages to introduce many of the latest Unity features. These include topics such as Shader Graphs, Virtual-Reality projects, 2D and 360-degree Video Players, Cinemachine, in-game geometry building with ProBuilder, and Unity Technologies'2D and 3D GameKits.

Getting started with Unity development is free and easy. When you're ready to take your skills to the next level, this book is an effective way to do just that. It covers a great deal in its hundreds of pages, and if you can master even half of what's here, you'll be well on the way to becoming a great Unity developer!

Chris Gregan

Chief Architect, Romero Games: https://www.romerogames.ie/

Author of Fungus: http://fungusgames.com

 Contributors

 About the author

Matt Smith is a computing academic at what will soon become the Technological University of Dublin, Ireland.

Matt started computer programming on a brand new ZX80 and submitted two games for his computing O-level exam. After nearly 10 years as a full-time student on a succession of scholarships, he gained several degrees in computing, including a PhD in computational musicology.

In 1985, Matt wrote the lyrics and was in the band whose music appeared on the B-side of the audio cassette carrying the computer game Confusion. Matt is a documentation author for the open source Fungus Unity project.

With his children, he studies and teaches tae kwon do, and all three of them are beginning guitar lessons in 2018.

Many thanks to Chico for all his work on the earlier editions of this cookbook - I look forward to working with you again in the future.

Thanks to my family for all their support. Thanks also to the editors, reviewers, and readers who provided feedback and suggestions. Thanks to my students, who continue to challenge and surprise me with their enthusiasm for multimedia and game development.

Special thanks to Kris for help with the VR recipes and Justin in Limerick for keeping me sane with snooker and golf breaks over the summer.

 About the reviewer

Jate Wittayabundit is a Sr Unity developer at WGames based in Toronto, Canada. He loves puzzle games and animation movies. For many years, he has been working as a Sr/lead game developer for many titles, including children's games, such as Dora, Paw Petrol, and such. He was also an author of Unity 3 and 4 Game Development Hotshot, and a technical reviewer for Unity 4.x Cookbook, Packt Publishing. In his spare time, he loves to paint and work on 3D software, such as Zbrush or 3D Studio Max. He also loves painting and drawing.

I’d like to thank my family for supporting me. Thanks to everyone at Packt who give me the opportunity, and thanks to all the readers.

 Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

 Table of Contents

	 Title Page
 	 Copyright and Credits
	 Unity 2018 Cookbook Third Edition

 	 Dedication
 	 Packt Upsell
	 Why subscribe?
 	 Packt.com

 	 Foreword
 	 Contributors
	 About the author
 	 About the reviewer
 	 Packt is searching for authors like you

 	 Preface
	 Who this book is for
 	 What this book covers
 	 To get the most out of this book
	 Download the example code files
 	 Download the color images
 	 Conventions used

 	 Get in touch
	 Reviews

 	 Displaying Data with Core UI Elements
	 Introduction
	 The big picture

 	 Displaying a "Hello World" UI text message
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Styling substrings with Rich Text

 	 Displaying a digital clock
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 The Unity tutorial for animating an analog clock

 	 Displaying a digital countdown timer
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Creating a message that fades away
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Displaying a perspective 3D Text Mesh
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 We have to make this text crawl like it does in the movie
 	 Where to learn more

 	 Creating sophisticated text with TextMeshPro
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Rich Text substrings for colors, effects, and sprites

 	 Displaying an image
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Working with 2D Sprites and UI Image components

 	 See also

 	 Creating UIs with the Fungus open source dialog system
	 How to do it...
 	 How it works...

 	 Creating a Fungus character dialog with images
	 How to do it...
 	 How it works...
 	 There's more...
	 Data-driven conversations

 	 Responding to User Events for Interactive UIs
	 Introduction
	 The big picture

 	 Creating UI Buttons to move between scenes
	 How to do it...
 	 How it works...
 	 There's more...
	 Color tint when mouse pointer is over the button

 	 Animating button properties on mouse-over
	 How to do it...
 	 How it works...

 	 Organizing image panels and changing panel depths via buttons
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Moving up or down by just one position, using scripted methods

 	 Displaying the value of an interactive UI Slider
	 How to do it...
 	 How it works...

 	 Displaying a countdown timer graphically with a UI Slider
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Setting custom mouse cursors for 2D and 3D GameObjects
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Setting custom mouse cursors for UI controls
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Interactive text entry with an Input Field
	 How to do it...
 	 How it works...
 	 There's more...
	 Limiting the type of content that can be typed

 	 Toggles and radio buttons via Toggle Groups
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Adding more Toggles and a Toggle Group to implement mutually-exclusive radio buttons

 	 Creating text and image icon UI Dropdown menus
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Adding images to a Dropdown control

 	 Displaying a radar to indicate the relative locations of objects
	 Getting ready
 	 How to do it...
 	 How it works...
	 The Start() method
 	 The Update() method
 	 The FindAndDisplayBlipsForTag(...) method
 	 The CalculateBlipPositionAndDrawBlip (...) method
 	 The NormalisedPosition(...) method
 	 The CalculateBlipPosition(...) method
 	 The DrawBlip() method

 	 There's more...
	 Adapt for object heights and opaque obstacles

 	 Inventory UIs
	 Introduction
	 The big picture

 	 Creating a simple 2D mini-game – SpaceGirl
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Displaying single object pickups with carrying and not-carrying text
	 Getting ready
 	 How to do it...
 	 How it works...
	 The PlayerInventory script class
 	 The PlayerInventoryDisplay script class

 	 There's more...
	 Collecting multiple items and display total number carried
 	 Alternative – combining all the responsibilities into a single script

 	 Displaying single object pickups with carrying and not-carrying icons
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Displaying multiple pickups of the same object with multiple status icons
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Revealing icons for multiple object pickups by changing the size of a tiled image

 	 Using panels to visually outline the inventory UI area and individual items
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Creating a C# inventory slot UI display scripted component
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Modifying the game for a second inventory panel for keys

 	 Using UI Grid Layout Groups to automatically populate a panel
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Automatically infer number of inventory slots based on number of GameObjects tagged Star
 	 Add a horizontal scrollbar to the inventory slot display
 	 Automatically changing the grid cell size based on the number of slots in the inventory

 	 Displaying multiple pickups of different objects as a list of text via a dynamic List<> of scripted PickUp objects
	 Getting ready
 	 How to do it...
 	 How it works...k
 	 There's more...
	 Order items in the inventory list alphabetically

 	 Displaying multiple pickups of different objects as text totals via a dynamic Dictionary<> of PickUp objects and enum pickup types
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Playing and Manipulating Sounds
	 Introduction
	 The big picture
	 Future audio features

 	 Playing different one-off sound effects with a single AudioSource component
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Play a sound at a static point in 3D world space

 	 Playing and controlling different sounds each with their own AudioSource component
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Creating just-in-time AudioSource components at runtime through C# scripting
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Adding the CreateAudioSource(...) method as an extension to the MonoBehavior class

 	 Delaying before playing a sound
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Preventing an Audio Clip from restarting if it is already playing
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Waiting for the audio to finish playing before auto-destructing an object
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Creating a metronome through the precise scheduling of sounds with dspTime
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Creating just-in-time AudioSource GameObjects for the basic and accented beats
 	 Creating beat sounds through data rather than AudioClips

 	 Matching the audio pitch to the animation speed
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Changing the Animation/Sound Ratio
 	 Accessing the function from other scripts
 	 Allowing reverse animation (negative speeds!)

 	 Simulating acoustic environments with Reverb Zones
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Attaching the Audio Reverb Zone component to Audio Sources
 	 Making your own Reverb settings

 	 Adding volume control with Audio Mixers
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Playing with Audio Production

 	 See also

 	 Making a dynamic soundtrack with Snapshots
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Reducing the need for multiple audio clips
 	 Dealing with audio file formats and compression rates
 	 Applying Snapshots to background noise
 	 Getting creative with effects

 	 See also

 	 Balancing in-game audio with Ducking
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Audio visualization from sample spectral data
	 Getting ready
 	 How to do it...
 	 How it works...
	 The void Awake() method
 	 The void CreateCubes() method
 	 The void Update() method
 	 The void UpdateCubeHeights() method
 	 The float HeightFromSample(float) method

 	 There's more...
	 Adding visualizations to a second AudioSource
 	 Try out different FFT (Fast Fourier Transform) window types

 	 Synchronizing simultaneous and sequential music to create a simple 140 bpm music-loop manager
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Adding visualizations to the four playing loops

 	 Creating Textures, Maps, and Materials
	 Introduction
	 Creating and saving texture maps
 	 The big picture
	 Standard Shader (Specular workflow)
 	 Standard Shader (Metallic workflow)
 	 Other material properties
 	 Resources
	 Unity samples and documentation
 	 References
 	 Tools

 	 Additional reading

 	 Creating a basic material with Standard Shader (Specular setup)
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Setting the texture type for an image file
 	 Combining the map with color

 	 Adapting a basic material from Specular setup to Metallic
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Applying Normal maps to a Material
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Adding Transparency and Emission maps to a material
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Using texture maps with the Transparent Mode
 	 Avoiding issues with the semi-transparent objects
 	 Emitting light over other objects

 	 Highlighting materials at mouse-over
	 How to do it...
 	 How it works...
 	 There's more...
	 Collider needed for custom meshes
 	 Mouse Down/Up events – for clicking color

 	 Adding Detail maps to a material
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Fading the transparency of a material
	 How to do it...
 	 How it works...
 	 There's more...
	 Start with keypress and fade in from invisible
 	 Destroy object when fading complete
 	 Using GameObect's alpha as our starting alpha value
 	 Using a coroutine for our fading loop

 	 Shader Graphs and Video Players
	 Introduction
	 The big picture
	 The new Shader Graph tool
 	 Playing videos with the new Video Player
 	 Online references materials
	 Shader Graph online resources
 	 Video Player online resources

 	 Playing videos by manually adding a VideoPlayer component to a GameObject
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Semi-transparent video and Camera Near Plane
 	 Audio issues and AudioSource solution

 	 Using scripting to control video playback on scene textures
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Ensuring that a movie's prepared before playing it with the prepareCompleted event
 	 Outputting video playback to a Render Texture asset
 	 Ensuring that the movie is prepared before playing with coroutines
 	 Downloading an online video (rather than a clip)

 	 Using scripting to play a sequence of videos back-to-back
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Creating and using a simple Shader Graph
	 How to do it...
 	 How it works...

 	 Creating a glow effect with Shader Graph
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Toggling a Shader Graph color glow effect through C# code
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Using Sine Time to create a pulsating glow effect
 	 Using the Compile and Show Code button as another way to find exposed property IDs

 	 Using Cameras
	 Introduction
	 The big picture
	 Cinemachine

 	 Creating the basic scene for this chapter
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Creating a picture-in-picture effect
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Changing the size and location of the picture-in-picture viewport on the screen
 	 Adding further contols for depth-of-field and aspect-ratio
 	 Manually changing Camera viewport properties in the Inspector

 	 See also

 	 Switching between multiple cameras
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Using a single-enabled camera

 	 See also

 	 Making textures from screen content
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Applying your texture to a material
 	 Using your texture as a screenshot

 	 See also

 	 Zooming a telescopic camera
	 Getting ready...
 	 How to do it...
 	 How it works...
 	 There's more...
	 Adding a vignette effect when you zoom
 	 Going further with version 2 of the Unity Post Processing Stack

 	 Displaying a minimap
	 Getting ready...
 	 How to do it...
 	 How it works...
 	 There's more...
	 Using a UI Mask to make the minimap circular in shape
 	 Hiding player character image at center of minimap and showing triangle marker
 	 Rotating a compass-style image
 	 Making the range of the map larger or smaller
 	 Adapting your minimap to other styles

 	 Creating an in-game surveillance Camera
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Using Post-Processing to add a grainy, grayscale effect to the CCTV

 	 Working with Unity's multi-purpose camera rig
	 How to do it...
 	 How it works...

 	 Using Cinemachine ClearShot to switch cameras to keep the player in shot
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Unity Cinemachine tutorials
 	 Will Goldstone's ClearShot turtorial
 	 Adam Myhill's Cinemachine blog posts
 	 Read the installed Cinemachine documentation

 	 Letting the player switch to a Cinemachine FreeLook camera
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Lights and Effects
	 Introduction
	 The big picture
	 Lights
	 Environment lighting
 	 Emissive materials
 	 Projector
 	 Lightmaps
 	 Light probes
 	 The Lighting settings window

 	 The Light Explorer panel
 	 Cucoloris cookies
 	 Color space (Gamma and Linear)
 	 Further resources

 	 Directional Light with cookie Texture to simulate a cloudy day
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Creating and applying a cookie texture to a spotlight
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Adding a custom Reflection map to a scene
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Mapping coordinates
 	 Sharp reflections
 	 Maximum size

 	 Creating a laser aim with a projector
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Limiting the range of the laser with Raycast hit to limit the far clip plane
 	 Further reading

 	 Enhancing the laser aim with a Line Renderer
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Changing the beam color when the Fire key is held down

 	 Setting up an environment with Procedural Skybox and Directional Light
	 How to do it...
 	 How it works...
 	 There's more...
	 Setting and rising the sun through scripted rotation of Directional Light
 	 Adding a sun flare

 	 Reflecting surrounding objects with Reflection Probes
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...

 	 Using Material Emission to bake light from a glowing lamp onto scene objects
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Lighting a simple scene with Lightmaps and Light Probes
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...

 	 2D Animation
	 Introduction
	 The Big picture
	 Grids, Tilemaps, and Tile Palettes
 	 The 2D GameKit – bringing 2D tools together
 	 Resources

 	 Flipping a sprite horizontally – the DIY approach
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Flipping a sprite horizontally – using Animator State Chart and Transitions
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Instantaneous swapping

 	 Animating body parts for character movement events
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Creating a three-frame animation clip to make a platform continually animate
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Copy animation relative to a new parent GameObject

 	 Making a platform start falling once stepped on using a Trigger to move animation from one state to another
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Creating animation clips from sprite sheet sequences
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Creating a platform game with Tiles and Tilemaps
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Tile Palettes for objects and walls
 	 Rule Tiles for intelligent Tile selection
 	 Learning more

 	 Creating a game with the 2D Gamekit
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...

 	 3D Animation
	 Introduction
	 The big picture

 	 Configuring a character's Avatar and idle animation
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Use Controller with another 3D character Avatar

 	 See also

 	 Moving your character with root motion and Blend Trees
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...

 	 Mixing animations with Layers and Masks
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Override versus Additive blending

 	 Organizing States into Sub-state Machines
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Transforming the Character Controller via scripts
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Adding rigid props to animated characters
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Removing props with a script
 	 Setting Active if there's only one type of Prop

 	 Using Animation Events to throw an object
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Applying Ragdoll physics to a character
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Using a new player GameObject rather than deactivating and moving to a respawn point

 	 Rotating the character's torso to aim a weapon
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Generic solution for Cameras other than the Main Camera

 	 Creating geometry with Probuilder
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Creating a game with the 3D Gamekit
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Importing third-party 3D models and animations from Mixamo
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Looping the animation
 	 Scripting events to control when Animation Clips are played
 	 Information sources about importing models and animations into Unity

 	 Webserver Communication and Online Version-Control
	 Introduction
	 The Big Picture

 	 Setting up a leaderboard using PHP and a database
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 SQLite, PHP, and database servers
 	 PHPLiteAdmin

 	 Unity game communication with web-server leaderboard
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Extracting the full leaderboard data for display within Unity
 	 Using the secret game codes to secure your leaderboard scripts

 	 Creating and cloning a GitHub repository
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Learn more about DVCS
 	 Learn more about Git at the command line
 	 Using Bitbucket and SourceTree visual applications
 	 Learning about Mercurial rather than Git

 	 Adding a Unity project to a local Git repository, and pushing files up to GitHub
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Unity project version-control using GitHub for Unity
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Further reading about GitHub for Unity
 	 Pulling down updates from other developers
 	 Unity Collaborate from Unity Technologies

 	 Preventing your game from running on unknown servers
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Enabling WebGL in Google Chrome
 	 Improving security by using full URLs in your domain list

 	 Controlling and Choosing Positions
	 Introduction
	 The big picture

 	 Player control of a 2D GameObject (and limiting the movement within a rectangle)
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Drawing a gizmo yellow rectangle to visually show bounding a rectangle

 	 See also

 	 Player control of a 3D GameObject (and limiting the movement within a rectangle)
	 How to do it...
 	 How it works...
 	 There's more...
	 Drawing a gizmo yellow rectangle to visually show bounding a rectangle

 	 Choosing destinations – finding a random spawn point
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Choosing destinations – finding the nearest spawn point
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Avoiding errors due to an empty array

 	 See also

 	 Choosing destinations – respawning to the most recently passed checkpoint
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Moving objects by clicking on them
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Firing projectiles in the direction of movement
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Navigation Meshes and Agents
	 Introduction
	 The big picture
	 Run-Time Nav Mesh Obstacles
 	 Source of further information about Unity and AI navigation

 	 NPC to travel to destination while avoiding obstacles
	 Getting ready
 	 How to do it...
 	 How it works...

 	 NPC to seek or flee from a moving object
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more
	 Using a Debug Ray to show a source-to-destination line
 	 Constantly updating NavMeshAgent destination to flee from Player's current location
 	 Maintain constant distance from target ("lurking" mode!)

 	 Point-and-click move to object
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more
	 Creating a mouse-over yellow highlight

 	 Point-and-click move to tile
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more
	 Yellow debug-ray to show destination of AI-agent

 	 Point-and-click Raycast with user-defined higher-cost Navigation Areas
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more
	 More intelligent pathfinding by setting different costs for custom-defined navigation areas such as Mud and Water
 	 Improving UX by updating a "gaze" cursor each frame

 	 NPC NavMeshAgent to follow waypoints in a sequence
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Working with arrays of waypoints
 	 Increased flexibility with a WayPoint class

 	 Controlling object group movement through flocking
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Creating a movable NavMesh Obstacle
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Design Patterns
	 Introduction
	 The big picture

 	 State-driven behavior DIY states
	 How to do it...
 	 How it works...
 	 See also

 	 State-driven behavior using the State Design Pattern
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Adding the Timer event to lose the game after five seconds

 	 See also

 	 State-driven behavior with Unity Scriptable Objects
	 How to do it...
 	 How it works...
 	 There's more...
	 Extending the game to model Player health

 	 See also

 	 Publisher-Subscriber pattern C# delegates and events
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Model-View-Controller (MVC) pattern
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Editor Extensions and Immediate Mode GUI (IMGUI)
	 Introduction
	 The Big picture
	 Unity Immediate Mode GUI (IMGUI)
 	 Identifying and saving changes
 	 Memory - EditorPrefs persistent storage
 	 Conclusions and further resources

 	 Menu items to log messages and clear the console
	 How to do it...
 	 How it works...
 	 There's more
	 Keyboard shortcuts
 	 Sub-menus

 	 Displaying a panel with text data
	 How to do it...
 	 How it works...
 	 There's more
	 Vertical centering
 	 Vertical and horizontal centering (middle of an area)

 	 An interactive panel with persistent storage
	 How to do it...
 	 How it works...
 	 There's more
	 Persistent storage with EditorPrefs
 	 GUILayout versus EditorGUILayout

 	 Creating GameObjects, parenting, and registering Undo actions
	 How to do it...
 	 How it works...
 	 There's more
	 Registering object changes to allow Undo'ing of actions
 	 Creating primitive 3D GameObjects with random colors

 	 Working with selected objects and deactivating menu items
	 How to do it...
 	 How it works...

 	 Menu item to create 100 randomly positioned prefab clones
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Childing each new GameObject to a single parent, to avoid filling up the Hierarchy with 100s of new objects

 	 A progress bar to display proportion completed of Editor extension processing
	 Getting ready
 	 How to do it...
 	 How it works...

 	 An editor extension to allow pickup type (and parameters) to be changed at design time via a custom Inspector UI
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Offer the custom editing of pickup parameters via Inspector
 	 Offer a drop-down list of tags for key-pickup to fit via Inspector
 	 Logic to open doors with keys based on fitsLockTag
 	 The need to add [SerializeField] for private properties

 	 An editor extension to have an object-creator GameObject, with buttons to instantiate different pickups at cross-hair object location in scene
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Extensible class-based code architecture to manage complex IMGUIs
	 How to do it...
 	 How it works...
	 Script-class MyEditorWindow
 	 Script-class IMyGUI
 	 Script-class MyGUIFlexibleSpace
 	 Script-class MyGUITextField
 	 Script-class MyGUILabel
 	 Script-class MyGUIButton

 	 Working with External Resource Files and Devices
	 Introduction
	 The big picture

 	 Loading external resource files – using Unity Default Resources
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Loading text files with this method
 	 Loading and playing audio files with this method

 	 See also

 	 Loading external resource files by downloading files from the internet
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Converting from Texture to Sprite
 	 Downloading a text file from the web
 	 The WWW class and the resource content
 	 An example using UnityWebRequest

 	 See also

 	 Loading external resource files by manually storing files in the Unity  Resources or StreamingAssets folders
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Avoiding cross-platform problems with Path.Combine() rather than / or \
 	 SteamingAssets folder

 	 See also

 	 Saving Project files into Unity Asset Bundles
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Loading resources from Unity Asset Bundles
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Loading AssetBundles via AssetBundle.LoadFromFile()
 	 Loading AssetBundles hosted via a web server

 	 Working with Plain Text, XML, and JSON Text Files
	 Introduction
	 The Big picture
	 XML – the eXtensible markup language
 	 JSON – the JavaScript object notation

 	 Loading external text files using the TextAsset public variable
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Loading external text files using C# file streams
	 Getting ready
 	 How to do it...
 	 How it works...

 	 Saving external text files with C# file streams
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Choosing the Data or the Resources folder

 	 Loading and parsing external XML
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Retrieving XML data files from the web

 	 Creating XML text data manually using XMLWriter
	 How to do it...
 	 How it works...
 	 There's more...
	 Adding new lines to make XML strings more human readable.
 	 Making data class responsible for creating XML from list

 	 Saving and loading XML text data automatically through serialization
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Defining the XML node names
 	 Loading data objects from XML text

 	 Creating XML text files – saving XML directly to text files with XMLDocument.Save()
	 How to do it...
 	 How it works...

 	 Creating JSON strings from individual objects and lists of objects
	 How to do it...
 	 How it works...

 	 Creating individual objects and Lists of objects from JSON strings
	 How to do it...
 	 How it works...

 	 Virtual Reality and Extra Features
	 Introduction
	 The Big picture
	 Virtual reality
 	 Gizmos
 	 Saving/Loading data at runtime

 	 Saving screenshots from the game
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...

 	 Saving and loading player data – using static properties
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Hiding the score before the first attempt is completed

 	 See also

 	 Saving and loading player data – using PlayerPrefs
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Loading game data from a text file map
	 Getting ready
 	 How to do it...
 	 How it works...

 	 UI Slider to change game quality settings
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Seeing/editing the list of quality settings

 	 Pausing the game
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Learning more about quality settings
 	 Offering the user further game settings

 	 Implementing slow motion
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Customizing the slider
 	 Adding Motion Blur
 	 Creating sonic ambience

 	 Using Gizmo to show the currently selected object in a scene panel
	 How to do it...
 	 How it works...

 	 Editor snap-to grid drawn by Gizmo
	 How to do it...
 	 How it works...

 	 Creating a VR project
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Exploring free VR/XR samples/tutorials
 	 Setup with Oculus Rift
 	 Using a Single Pass if working with the Lightweight Rendering Pipeline

 	 Adding 360-degree videos to a VR project
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
	 Playing 360-degree videos on the surface of a 3D object

 	 Working with VR content inside a VR environment – the XR Editor
	 Getting ready
 	 How to do it ...
 	 How it works...

 	 Automated Testing
	 Introduction
	 The big picture
	 Unit tests
 	 Integration tests (PlayMode tests in Unity)

 	 Generating a default test script class
	 How to do it...
 	 How it works...
 	 There's more...
	 Create a default test script from the Project panel's Create menu
 	 Edit mode minimum skeleton unit test script

 	 A simple unit test
	 How to do it...
 	 How it works...
 	 There's more...
	 Shorter tests with values in the assertion
 	 Expected value followed by the actual value

 	 Parameterizing tests with a data provider method
	 How to do it...
 	 How it works...

 	 Unit testing a simple health script class
	 How to do it...
 	 How it works...
	 Script-class Health.cs
 	 Script-class TestHealth.cs

 	 Creating and executing a unit test in Play mode
	 How to do it...
 	 How it works...

 	 PlayMode testing a door animation
	 Getting ready
 	 How to do it...
 	 How it works...

 	 PlayMode and Unit Testing a player health bar with events, logging, and exceptions
	 Getting ready
 	 How to do it...
 	 How it works...
	 PlayMode testing
 	 Unit tests

 	 See also

 	 Bonus Chapters
	 Working with External Resource Files and Devices
 	 Working with Plain Text, XML, and JSON Text Files
 	 Virtual Reality and Extra Features
 	 Automated Testing

 	 Other Books You May Enjoy
	 Leave a review - let other readers know what you think

 Preface

Game development is a broad and complex task. It is an interdisciplinary field, covering subjects as diverse as artificial intelligence, character animation, digital painting, and sound editing. All these areas of knowledge can materialize as the production of hundreds (or thousands!) of multimedia and data assets. A special software application—the game engine—is required to consolidate all these assets into a single product. Game engines are specialized pieces of software, which used to belong to an esoteric domain. They were expensive, inflexible, and extremely complicated to use. They were for big studios or hardcore programmers only. Then, along came Unity.

Unity represents the true democratization of game development. It is an engine and multimedia editing environment that is user-friendly and versatile. It has free and Pro versions; the latter includes even more features. Unity offers deployment to many platforms, including the following:

	Mobile: Android, iOS, Windows Phone, and BlackBerry

	Web: WebGL

	Desktop: PC, Mac, and Linux platforms

	Console: PS4, PS3, Xbox One, XBox 360, PlayStation Mobile, PlayStation Vita, and Wii U

	Virtual Reality (VR)/Augmented Reality (AR): Oculus Rift, Gear VR, Google Daydream, and Microsoft Hololens

Today, Unity is used by a diverse community of developers all around the world. Some are students and hobbyists, but many are commercial organizations, ranging from garage developers to international studios, who use Unity to make a huge number of games—you might have already played some on one platform or another.

This book provides over 170 Unity game development recipes. Some recipes demonstrate Unity application techniques for multimedia features, including working with animations and using preinstalled package systems. Other recipes develop game components with C# scripts, ranging from working with data structures and data file manipulation to artificial intelligence algorithms for computer-controlled characters.

If you want to develop quality games in an organized and straightforward way, and you want to learn how to create useful game components and solve common problems, then both Unity and this book are for you.

 Who this book is for

This book is for anyone who wants to explore a wide range of Unity scripting and multimedia features and find ready-to-use solutions for many game features. Programmers can explore multimedia features, and multimedia developers can try their hand at scripting. From intermediate to advanced users, from artists to coders, this book is for you, and everyone in your team! It is intended for everyone who has the basics of using Unity and a little programming knowledge in C#.

 What this book covers

Chapter 1, Displaying Data with Core UI Elements, is filled with User Interface (UI) recipes to help you increase the entertainment and enjoyment value of your games through the quality of the visual elements displaying text and data. You'll learn a wide range of UI techniques, including displaying text and images, 3D text effects, and an introduction to displaying text and image dialogues with the free Fungus package.

Chapter 2, Responding to User Events for Interactive UIs, teaches you about updating displays (for example basic on timers), and detecting and responding to user input actions, such as mouseovers, while the first chapter introduced code UI for displaying values to the user. Among other things, there are recipes for panels in visual layers, radio buttons and toggle groups, interactive text entry, directional radars, countdown timers, and custom mouse cursors.

Chapter 3, Inventory UIs, relates to the many games that involve the player collecting items, such as keys to open doors, ammo for weapons, or choosing from a selection of items, such as from a collection of spells to cast. The recipes in this chapter offer a range of text and graphical solutions for displaying inventory status to the player, including whether they are carrying an item or not, or the maximum number of items they are able to collect.

Chapter 4, Playing and Manipulating Sounds, suggests ways to use sound effects and soundtrack music to make your game more interesting. The chapter demonstrates how to manipulate sound during runtime through the use of scripts, Reverb Zones, and the Audio Mixer. It also includes recipes for real-time graphics visualizations of playing sounds and ends with a recipe to create a simple 140 bpm loop manager, with visualizations of each playing loop.

Chapter 5, Creating Textures, Maps and Materials, contains recipes that will give you a better understanding of how to use maps and materials with the Physically-Based Shaders, whether you are a game artist or not. It's a great resource for exercising your image editing skills.

Chapter 6, Shader Graphs and Video Players, covers two recent visual components that Unity has added: Shader Graphs and the Video Player. Both make it easy to add impressive visuals to your games with little or no programming. Several recipes are presented for each of these features in this chapter.

Chapter 7, Using Cameras, presents recipes covering techniques for controlling and enhancing your game's camera(s). It offers solutions to work with both single and multiple cameras, illustrates how to apply Post-Processing effects, such as vignettes and grainy gray-scale CCTVs. The chapter concludes by introducing ways to work with Unity's powerful Cinemachine components.

Chapter 8, Lights and Effects, offers a hands-on approach to several of Unity's lighting system features, such as cookie textures, Reflection maps, Lightmaps, Light and Reflection probes, and Procedural Skyboxes. Also, it demonstrates the use of Projectors.

Chapter 9, 2D Animation, introduces some of Unity's powerful 2D animation and physics features. In this chapter, we will present recipes to help you understand the relationships between the different animation elements in Unity, exploring both the movement of different parts of the body and the use of sprite-sheet image files that contain sequences of sprite frames pictures. In this chapter core, Unity Animation concepts, including Animation State Charts, Transitions, and Trigger events, are also introduced. Finally, 2D games often make use of Tiles and Tilemaps (now features that are part of Unity), and these features, as well as the Unity 3D Gamekit, are all introduced in the recipes of this chapter.

Chapter 10, 3D Animation, focuses on character animation and demonstrates how to take advantage of Unity's animation system—Mecanim. It covers a range of subjects, from basic character setup to procedural animation and ragdoll physics. It also offers introductions to some of the newer Unity 3D features, such as Probuilder and the Unity 3D Gamekit.

Chapter 11, Webserver Communication, and Online Version Control, explores how games running on devices can benefit from communication with other networked applications. In this chapter, a range of recipes are presented, which illustrate how to set up an online, database-driven leaderboard, how to write Unity games that can communicate with such online systems, and ways to protect your games from running on unauthorized servers (to prevent your WebGL games being illegally copied and published on other people's servers. In addition, the recipes illustrate how to structure your projects so that they can be easily backed up using online version control systems such as GitHub, and also how to download projects from online sites to edit and run on our own machine.

Chapter 12, Controlling and Choosing Positions, presents a range of recipes for 2D and 3D users and computer-controlled objects and characters, which can lead to games with a richer and more exciting user experience. Examples of these recipes include spawn points, checkpoints, and physics-based approaches, such as applying forces when clicking on objects and firing projectiles into the scene.

Chapter 13, Navigation Meshes and Agents, explores ways that Unity's Nav Meshes and Nav Mesh Agents offer for the automation of object and character movement and pathfinding in your games. Objects can follow predefined sequences of waypoints, or be controlled by mouse clicks for point-and-click control. Objects can be made to flock together based on the average location and movement of all members of their flock. Additional recipes illustrate how the "cost" of navigation areas can be defined, simulating hard-to-travel areas such as mud and water. Finally, although much navigation behavior is pre-calculated at Design Time (the "baking" process), a recipe is presented illustrating how movable objects can influence path-finding at runtime through the use of the NavMesh Obstacle component.

Chapter 14, Design Patterns, illustrates software design patterns that are reusable, and computer-language independent templates for how to solve common problems. It teaches to avoid reinventing the wheel, learn about tried-and-tested approaches to solving common features for game projects. This chapter introduces several design patterns relevant to games, including the State pattern, the publisher-subscriber pattern, and the model-view-controller pattern.

Chapter 15, Editor Extensions and Immediate Mode GUI (IMGUI), provides several recipes for enhancing design-time work in the Unity Editor. Editor Extensions are scripting and multimedia components, which allow working with custom text, UI presentation of the game parameters, data in the Inspector and Scene panels, and custom menus and menu items. These can facilitate workflow improvements, allowing game developers to achieve their goals quicker and easier. Some of the recipes in this chapter include menu items, interactive panels with persistent storage, registering actions for the Undo system, deactivating menu items, progress bars, and ways to create new GameObjects based on prefabs.

 To get the most out of this book

All you need is a copy of Unity 2018, which can be downloaded for free from http://www.unity3d.com.

If you wish to create your own image files, for the recipes in the Creating Maps and Materials, for example, you will also need an image editor, such as Adobe Photoshop, which can be found at http://www.photoshop.com, or GIMP, which is free and can be found at http://www.gimp.org.

 Download the example code files

You'll find the recipes assets and completed Unity projects for each chapter at: https://github.com/PacktPublishing/Unity-2018-Cookbook-Third-Edition.

 You can either download these files as Zip archives or use free Git software to download (clone) these files. These GitHub repositories will be updated with any improvements.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://www.packtpub.com/sites/default/files/downloads/Unity2018CookbookThirdEdition_ColorImages.pdf.

 Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "Import file arrowCursor.png into your Unity project."

A block of code is set as follows:

using UnityEngine;
using UnityEngine.UI;

[RequireComponent(typeof(PlayerInventoryTotal))]
public class PlayerInventoryDisplay : MonoBehaviour {
 public Text starText;
 public void OnChangeStarTotal(int numStars) {
 string starMessage = "total stars = " + numStars;
 starText.text = starMessage;
 }
}

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

 Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

 Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 Displaying Data with Core UI Elements

In this chapter, we will cover:

	Displaying a "Hello World" UI text message

	Displaying a digital clock

	Displaying a digital countdown timer

	Creating a message that fades away

	Displaying a perspective 3D Text Mesh

	Creating sophisticated text with TextMeshPro

	Displaying an image

	Creating UIs with the Fungus open source dialog system

	Creating a Fungus character dialog with images

 Introduction

A key element contributing to the entertainment and enjoyment of most games is the quality of the visual experience, and an important part of this is the User Interface (UI). UI elements involve ways for the user to interact with the game (such as buttons, cursors, and text boxes), as well as ways for the game to present up-to-date information to the user (such as the time remaining, current health, score, lives left, or location of enemies). This chapter is filled with UI recipes to give you a range of examples and ideas for creating game UIs.

 The big picture

Every game is different, and so this chapter attempts to fulfill two key roles. The first aim is to provide step-by-step instructions on how to create a range of the Unity 2018 basic UI elements and, where appropriate, associate them with game variables in code. The second aim is to provide a rich illustration of how UI elements can be used for a variety of purposes so that you can get good ideas about how to make the Unity UI set of controls deliver the particular visual experience and interactions for the games that you are developing.

The basic UI elements can provide static images and text to just make the screen look more interesting. By using scripts, we can change the content of these images and text objects, so that the players' numeric scores can be updated, or we can show stickmen images to indicate how many lives the player has left. Other UI elements are interactive, allowing users to click on buttons, choose options, enter text, and so on. More sophisticated kinds of UI can involve collecting and calculating data about the game (such as percentage time remaining or enemy hit damage; or the positions and types of key GameObjects in the scene, and their relationship to the location and orientation of the player), and then displaying these values in a natural, graphical way (such as progress bars or radar screens).

Core GameObjects, components, and concepts relating to Unity UI development include:

	Canvas: Every UI element is a child to a Canvas. There can be multiple Canvas GameObjects in a single scene. If a Canvas is not already present, then one will automatically be created when a new UI GameObject is created, with that UI object as the child to the new Canvas GameObject.

	EventSystem: An EventSystem GameObject is required to manage the interaction events for UI controls. One will automatically be created with the first UI element. Unity generally only allows one EventSystem in any Scene (some proposed code for multiple event systems can be found at https://bitbucket.org/Unity-Technologies/ui/pull-requests/18/support-for-multiple-concurrent-event/diff)

	Visual UI controls: The visible UI controls themselves include Button, Image, Text, and Toggle.

	The Rect Transform component: UI GameObjects can exist in a different space from that of the 2D and 3D scenes, which cameras render. Therefore, UI GameObjects all have the special Rect Transform component, which has some different properties to the scene's GameObject Transform component (with its straightforward X/Y/Z position, rotation, and scale properties). Associated with Rect Transforms are pivot points (reference points for scaling, resizing, and rotations) and anchor points.

The following diagram shows the four main categories of UI controls, each in a Canvas GameObject and interacting via an EventSystem GameObject. UI Controls can have their own Canvas, or several UI controls can be in the same Canvas. The four categories are: static (display-only) and interactive UI controls, non-visible components (such as ones to group a set of mutually exclusive radio buttons), and C# script classes to manage UI-control behavior through logic written in the program code. Note that UI controls that are not a child or descendant of a Canvas will not work properly, and interactive UI controls will not work properly if the EventSystem is missing. Both the Canvas and EventSystem GameObjects are automatically added to the Hierarchy as soon as the first UI GameObject is added to a scene:

Rect Transforms for UI GameObjects represent a rectangular area rather than a single point, which is the case for scene GameObject Transforms. Rect Transforms describe how a UI element should be positioned and sized relative to its parent. Rect Transforms have a width and height that can be changed without affecting the local scale of the component. When the scale is changed for the Rect Transform of a UI element, this will also scale font sizes and borders on sliced images, and so on. If all four anchors are at the same point, resizing the Canvas will not stretch the Rect Transform. It will only affect its position. In this case, we'll see the Pos X and Pos Y properties, and the Width and Height of the rectangle. However, if the anchors are not all at the same point, Canvas resizing will result in stretching the element's rectangle. So instead of the Width, we'll see the values for Left and Right—the position of the horizontal sides of the rectangle to the sides of the Canvas, where the Width will depend on the actual Canvas width (and the same for Top/Bottom/Height).

Unity provides a set of preset values for pivots and anchors, making the most common values very quick and easy to assign to an element's Rect Transform. The following screenshot shows the 3 x 3 grid that allows you quick choices about the left, right, top, bottom, middle, horizontal, and vertical values. Also, the extra column on the right offers horizontal stretch presets, and the extra row at the bottom offers vertical stretch presets. Using the Shift+Alt keys sets the pivot and anchors when a preset is clicked:

The Unity manual provides a very good introduction to the Rect Transform. In addition, Ray Wenderlich's two-part Unity UI web tutorial also presents a helpful overview of the Rect Transform, pivots, and anchors. Both parts of Wenderlich's tutorial make great use of animated GIFs to illustrate the effect of different values for pivots and anchors:

	http://docs.unity3d.com/Manual/UIBasicLayout.html

	http://www.raywenderlich.com/78675/unity-new-gui-part-1

There are three Canvas render modes:

	Screen Space: Overlay: In this mode, the UI elements are displayed without any reference to any camera (there is no need for any Camera in the scene). The UI elements are presented in front of (overlaying) any sort of camera display of the scene contents.

	Screen Space: Camera: In this mode, the Canvas is treated as a flat plane in the frustum (viewing space) of a Camera scene – where this plane is always facing the camera. So, any scene objects in front of this plane will be rendered in front of the UI elements on the Canvas. The Canvas is automatically resized if the screen size, resolution, or camera settings are changed.

	World Space: In this mode, the Canvas acts as a flat plane in the frustum (viewing space) of a Camera scene – but the plane is not made to always face the Camera. How the Canvas appears is just as with any other objects in the scene, relative to where (if anywhere) in the camera's viewing frustum the Canvas plane is located and oriented.

In this chapter, we have focused on the Screen Space:Overlay mode. But all these recipes can be used with the other two modes as well.

Be creative! This chapter aims to act as a launching pad of ideas, techniques, and reusable C# scripts for your own projects. Get to know the range of Unity UI elements, and try to work smart. Often, a UI element exists with most of the components that you may need for something in your game, but you may need to adapt it somehow. An example of this can be seen in the recipe that makes a UI Slider non-interactive, instead using it to display a red-green progress bar for the status of a countdown timer. See this in the Displaying a countdown timer graphically with a UI Slider recipe.

Many of these recipes involve C# script classes that make use of the Unity scene-start event sequence of Awake() to all game objects, Start() to all GameObjects, then Update() every frame to every GameObject. Therefore, you'll see many recipes in this chapter (and the whole book) where we cache references to GameObject components in the Awake() method, and then make use of these components in Start() and other methods, once the scene is up and running.

 Displaying a "Hello World" UI text message

The first traditional problem to be solved with a new computing technology is to display the Hello World message. In this recipe, you'll learn to create a simple UI Text object with this message, in large white text with a selected font, in the center of the screen:

 Getting ready

For this recipe, we have prepared the font that you need in a folder named Fonts in the 01_01 folder.

 How to do it...

To display a Hello World text message, follow these steps:

	Create a new Unity 2D project.

	Import the provided Fonts folder.

	In the Hierarchy panel, add a UI | Text GameObject to the scene—choose menu: GameObject | UI | Text. Name this GameObject Text-hello.

Using the Create menu : Alternatively, use the Create menu immediately below the Hierarchy tab, choosing menu: Create | UI | Text.

	Ensure that your new Text-hello GameObject is selected in the Hierarchy panel.

Now, in the Inspector, ensure the following properties are set:

	Text set to read Hello World

	Font set to Xolonium-Bold

	Font size as per your requirements (large—this depends on your screen—try 50 or 100)

	Alignment set to horizontal and vertical center

	Horizontal and Vertical Overflow set to Overflow

	Color set to white

The following screenshot shows the Inspector panel with these settings:

	In the Rect Transform, click on the Anchor Presets square icon, which should result in several rows and columns of preset position squares appearing. Hold down Shift+Alt and click on the center one (middlerow and center column).

The screenshot of the Rect Transform in the Introduction highlights the middle-center preset needed for this recipe.

	Your Hello World text will now appear, centered nicely in the Game panel.

 How it works...

You have added a new Text-hello GameObject to a scene. A parent Canvas and UI EventSystem will also have been automatically created.

You set the text content and presentation properties and used the Rect Transform anchor presets to ensure that whatever way the screen is resized, the text will stay horizontally and vertically centered.

 There's more...

Here are some more details you don't want to miss.

 Styling substrings with Rich Text

Each separate UI Text component can have its own color, size, boldness styling, and so on. However, if you wish to quickly add some highlighting style to part of a string to be displayed to the user, the following are examples of some of the HTML-style markups that are available without the need to create separate UI Text objects:

	Embolden text with the "b" markup: I am bold

	Italicize text with the "i" markup: I am <i>italic</i>

	Set the text color with hex values or a color name: I am <color=green>green text </color>, but I am <color=#FF0000>red</color>

Learn more from the Unity online manual's Rich Text page at http://docs.unity3d.com/Manual/StyledText.html.

 Displaying a digital clock

Whether it is the real-world time, or an in-game countdown clock, many games are enhanced by some form of clock or timer display. The most straightforward type of clock to display is a string composed of the integers for hours, minutes, and seconds, which is what we'll create in this recipe.

The following screenshot shows the kind of clock we will be creating in this recipe:

 Getting ready

For this recipe, we have prepared the font that you need in a folder named Fonts in the 01_01 folder.

 How to do it...

To create a digital clock, follow these steps:

	Create a new Unity 2D project.

	Import the provided Fonts folder.

	In the Hierarchy panel, add a UI | Text game object to the scene named Text-clock.

	Ensure that the Text-clock GameObject is selected in the Hierarchy panel. Now, in Inspector, ensure that the following properties are set:

	

	Text set to read as time goes here (this placeholder text will be replaced by the time when the scene is running)

	Font type set to Xolonium Bold

	Font Size set to 20

	Alignment set to horizontal and vertical center

	Horizontal and Vertical Overflow settings set to Overflow

	Color set to white

	In the Rect Transform, click on the Anchor Presets square icon, which will result in the appearance of several rows and columns of preset position squares. Hold down Shift+Alt and click on the top and center column rows.

	Create a folder named _Scripts and create a C# script class called ClockDigital in this new folder:

using UnityEngine;
using System.Collections;
using UnityEngine.UI;
using System;

public class ClockDigital : MonoBehaviour {
 private Text textClock;

 void Awake (){
 textClock = GetComponent<Text>();
 }

 void Update (){
 DateTime time = DateTime.Now;
 string hour = LeadingZero(time.Hour);
 string minute = LeadingZero(time.Minute);
 string second = LeadingZero(time.Second);

 textClock.text = hour + ":" + minute + ":" +
 second;
 }

 string LeadingZero (int n){
 return n.ToString().PadLeft(2, '0');
 }
}

Underscore prefix so items appear first in sequence

 Since scripts and scenes are things that are most often accessed, prefixing their folder names with an underscore character, _as _Scenes and _Scripts, means they are always at the top in the Project panel.

Although the preceding code is useful for illustrating how to access the time component of a DateTime object individually, the Format(...) method of the String class can be used to format a DateTime object all in a single statement, for example, the preceding could be written more succinctly in a single statement:

String.Format("HH:mm:ss", DateTime.Now)

For more examples, see http://www.csharp-examples.net/string-format-datetime/.

	Ensure the Text-clock GameObject is selected in the Hierarchy panel.

	In the Inspector panel, add an instance of the ClockDigital script class as a component by clicking the Add Component button, selecting Scripts, and choosing the Clock Digital script class:

Add script components through drag and drop

 Script components can also be added to GameObjects via drag and drop. For example, with the Text-clock GameObject selected in the Hierarchy panel, drag your ClockDigital script onto it to add an instance of this script class as a component to the Text-clock GameObject.

	When you run the scene, you will now see a digital clock that shows hours, minutes, and seconds at the top-center part of the screen.

 How it works...

You added a Text GameObject to a scene. You added an instance of the ClockDigital C# script class to that GameObject.

Notice that as well as the standard two C# packages (UnityEngine and System.Collections) that are written by default for every new script, you have added the using statements for two more C# script packages, UnityEngine.UI and System. The UI package is needed, since our code uses the UI Text object; and the System package is needed, since it contains the DateTime class that we need to access the clock on the computer where our game is running.

There is one variable, textClock, which will be a reference to the Text component, whose text content we wish to update in each frame with the current time in hours, minutes, and seconds.

The Awake() method (executed when the scene begins) sets the textClock variable to be a reference to the Text component in the GameObject, to which our scripted object has been added. Storing a reference to a component in this way is referred to as caching—it means that code executed later does not need to repeat the computationally-expensive task of searching the GameObject hierarchy for a component of a particular type.

Note that an alternative approach would be to make textClock a public variable. This will allow us to assign it via drag and drop in the Inspector panel.

The Update() method is executed in every frame. The current time is stored in the time variable, and strings are created by adding leading zeros to the number values for the hours, minutes, and seconds properties of variable time.

This method finally updates the text property (that is, the letters and numbers that the user sees) to be a string, concatenating the hours, minutes, and seconds with colon

separator characters.

The LeadingZero(...) method takes as input an integer and returns a string of this number with leading zeros added to the left, if the value was less than 10.

 There's more...

There are some details you don't want to miss.

 The Unity tutorial for animating an analog clock

Unity has published a nice tutorial on how to create 3D objects, and animate them through a C# script to display an analog clock, at https://unity3d.com/learn/tutorials/modules/beginner/scripting/simple-clock.

 Displaying a digital countdown timer

This recipe will show you how to display a digital countdown clock, as shown here:

 Getting ready

This recipe adapts the previous one. So, make a copy of the project for the previous recipe, and work on this copy.

For this recipe, we have prepared the script that you need in a folder named _Scripts in the 01_03 folder.

 How to do it...

To create a digital countdown timer, follow these steps:

	Import the provided _Scripts folder.

	In the Inspector panel, remove the scripted component, ClockDigital, from the Text-clock GameObject.

	In the Inspector panel, add an instance of the CountdownTimer script class as a component by clicking the Add Component button, selecting Scripts, and choosing the CountdownTimer script class.

	Create a DigitalCountdown C# script class that contains the following code, and add an instance as a scripted component to the Text-clock GameObject:

using UnityEngine;
using UnityEngine.UI;

public class DigitalCountdown : MonoBehaviour {
 private Text textClock;
 private CountdownTimer countdownTimer;

 void Awake() {
 textClock = GetComponent<Text>();
 countdownTimer = GetComponent<CountdownTimer>();
 }
 void Start() {
 countdownTimer.ResetTimer(30);
 }

 void Update () {
 int timeRemaining = countdownTimer.GetSecondsRemaining();
 string message = TimerMessage(timeRemaining);
 textClock.text = message;
 }

 private string TimerMessage(int secondsLeft) {
 if (secondsLeft <= 0){
 return "countdown has finished";
 } else {
 return "Countdown seconds remaining = " + secondsLeft;
 }
 }
}

	When you run the Scene, you will now see a digital clock counting down from 30. When the countdown reaches zero, the message countdown has finished will be displayed.

Automatically add components with [RequireComponent(...)]

 The DigitalCountdown script class requires the same GameObject to also have an instance of the CountdownTimer script class. Rather than having to manually attach an instance of a require script, you can use the [RequireComponent(...)] C# attribute immediately before the class declaration statement. This will result in Unity automatically attaching an instance of the required script class.

For example, by writing the following, Unity will add an instance of CountdownTimer as soon as an instance of the DigitalCountdown script class has been added as a component of a GameObject:

using UnityEngine;
using UnityEngine.UI;

[RequireComponent (typeof (CountdownTimer))]
public class DigitalCountdown : MonoBehaviour {

Learn more from the Unity documentation at https://docs.unity3d.com/ScriptReference/RequireComponent.html.

 How it works...

You have added instances of the DigitalCountdown and CountdownTimer C# script classes to your scene's UI Text GameObject.

The Awake() method caches references to the Text and CountdownTimer components in the countdownTimer and textClock variables. The textClock variable will be a reference to the UI Text component, whose text content we wish to update in each frame with a time-remaining message (or a timer-complete message).

The Start() method calls the countdown timer object's CountdownTimerReset(...) method, passing an initial value of 30 seconds.

The Update() method is executed in every frame. This method retrieves the countdown timer seconds remaining and stores this value as an integer (whole number) in the timeRemaining variable. This value is passed as a parameter to the TimerMessage() method, and the resulting message is stored in the string (text) variable message. This method finally updates the text property (that is, the letters and numbers that the user sees) of the textClock UI Text GameObject to equal to the string message about the remaining seconds.

The TimerMessage() method takes an integer as input, and if the value is zero or less, a message stating the timer has finished is returned. Otherwise (if greater than zero seconds remain) a message stating the number of remaining seconds is returned.

 Creating a message that fades away

Sometimes, we want a message to display just for a certain time, and then fade away and disappear.

 Getting ready

This recipe adapts the previous one. So, make a copy of the project for the that recipe, and work on this copy.

 How to do it...

To display a text message that fades away, follow these steps:

	In the Inspector panel, remove the scripted component, DigitalCountdown, from the Text-clock GameObject.

	Create a C# script class, FadeAway, that contains the following code, and add an instance as a scripted component to the Text-hello GameObject:

using UnityEngine;
using UnityEngine.UI;

[RequireComponent (typeof (CountdownTimer))]
public class FadeAway : MonoBehaviour {
 private CountdownTimer countdownTimer;
 private Text textUI;

 void Awake () {
 textUI = GetComponent<Text>();
 countdownTimer = GetComponent<CountdownTimer>();
 }

 void Start(){
 countdownTimer.ResetTimer(5);
 }

 void Update () {
 float alphaRemaining =
 countdownTimer.GetProportionTimeRemaining();
 print (alphaRemaining);
 Color c = textUI.color;
 c.a = alphaRemaining;
 textUI.color = c;
 }
}

	When you run the Scene, you will now see that the message on the screen slowly fades away, disappearing after five seconds.

 How it works...

You added an instance of the FadeAway scripted class to the Text-hello GameObject. Due to the RequireComponent(...) attribute, an instance of the CountdownTimer script class was also automatically added.

The Awake() method caches references to the Text and CountdownTimer components in the countdownTimer and textUI variables.

The Start() method reset the countdown timer to start counting down from five seconds.

The Update() method (executed every frame) retrieves the proportion of time remaining in our timer by calling the GetProportionTimeRemaining() method. This method returns a value between 0.0 and 1.0, which also happens to be the range of values for the alpha (transparency) property of the color property of a UI Text game object.

Flexible range of 0.0–1.0

 It is often a good idea to represent proportions as values between 0.0 and 1.0. Either this will be just the value we want for something, or we can multiply the maximum value by our decimal proportion, and we get the appropriate value. For example, if we wanted the number of degrees of a circle for a given 0.0–0.1 proportion, we just multiply by the maximum of 360, and so on.

The Update() method then retrieves the current color of the text being displayed (via textUI.color), updates its alpha property, and resets the text object to have this updated color value. The result is that each frame in the text object's transparency represents the current value of the proportion of the timer remaining until it fades to fully transparent when the timer gets to zero.

 Displaying a perspective 3D Text Mesh

Unity provides an alternative way to display text in 3D via the Text Mesh component. While this is really suitable for a text-in-the-scene kind of situation (such as billboards, road signs, and generally wording on the side of 3D objects that might be seen close up), it is quick to create and is another way of creating interesting menus or instruction scenes.

In this recipe, you'll learn how to create a scrolling 3D text, simulating the famous opening credits of the movie Star Wars, which looks something like this:

 Getting ready

For this recipe, we have prepared the fonts that you need in a folder named Fonts, and the text file that you need in a folder named Text, in the 01_07 folder.

 How to do it...

To display perspective 3D text, follow these steps:

	Create a new Unity 3D project (this ensures that we start off with a Perspective camera, suitable for the 3D effect we want to create).

If you need to mix 2D and 3D scenes in your project, you can always manually set any camera's Camera Projection property to Perspective or Orthographic via the Inspector panel.

	In the Hierarchy panel, select the Main Camera item, and, in the Inspector panel, set its properties as follows: Camera Clear Flags to solid color, Field of View to 150, and Background color to black.

	Import the provided Fonts and Text folders.

	In the Hierarchy panel, add a UI | Text game object to the scene—choose menu: GameObject | UI | Text. Name this GameObject as Text-star-wars.

	Set UI Text Text-star-wars Text Content to Star Wars (with each word on a new line). Then, set its Font to Xolonium Bold, its Font Size to 50, and its Color to White. Use the anchor presets in Rect Transform to position this UI Text object at the top-center of the screen. Set Vertical Overflow to Overflow. Set Alignment Horizontal to center (leaving Alignment Vertical as top).

	In the Hierarchy panel, add a 3D Text game object to the scene – choose menu: GameObject | 3D Object | 3D Text. Name this GameObject Text-crawler.

	In the Inspector panel, set the Transform properties for the Text-crawler GameObject as follows: Position (100, -250, 0), Rotation (15, 0, 0).

	In the Inspector panel, set the Text Mesh properties for the Text-crawler GameObject as follows:

	Paste the content of the provided text file, star_wars.txt, into Text.

	Set Offset Z = -20, Line Spacing = 1, and Anchor = Middle center

	Set Font Size = 200, Font = SourceSansPro-BoldIt

	When the Scene is made to run, the Star Wars story text will now appear nicely squashed in 3D perspective on the screen.

 How it works...

You have simulated the opening screen of Star Wars, with a flat UI Text object title at the top of the screen, and 3D Text Mesh with settings that appear to be disappearing into the horizon with 3D perspective "squashing."

 There's more...

There are some details you don't want to miss.

 We have to make this text crawl like it does in the movie

With a few lines of code, we can make this text scroll in the horizon just as it does in the movie. Add the following C# script class, ScrollZ, as a component to the Text-crawler GameObject:

using UnityEngine; using System.Collections; public class ScrollZ : MonoBehaviour { public float scrollSpeed = 20; void Update () { Vector3 pos = transform.position; Vector3 localVectorUp = transform.TransformDirection(0,1,0); pos += localVectorUp * scrollSpeed * Time.deltaTime; transform.position = pos; } }

In each frame via the Update() method, the position of the 3D text object is moved in the direction of this GameObject's local up-direction.

 Where to learn more

Learn more about 3D Text and Text Meshes in the Unity online manual at http://docs.unity3d.com/Manual/class-TextMesh.html.

An alternative way of achieving perspective text like this would be to use a Canvas with the World Space render mode.

 Creating sophisticated text with TextMeshPro

In 2017, Unity purchased the TextMeshPro Asset Store product, with a view to integrate it into Unity as a free core feature. TextMeshPro uses a Signed Distance Field (SDF) rendering method, resulting in clear and sharply-drawn characters at any point size and resolution. Therefore, you will need SDF fonts to work with this resource.

 Getting ready

At the time of writing, TextMeshpro is a free Asset Store download and Unity Essentials Beta, so the first step is still to import it via the asset store. By the time you read this, you'll probably find TextMeshPro as a standard GameObject type that you can create in the Scene panel, with no downloading required. So, if required, open the Asset Store panel, search for TextMeshPro, and import this free asset package.

For this recipe, we have prepared the fonts that you need in a folder named Fonts & Materials in the 01_08 folder.

 How to do it...

To display a text message with sophisticated TextMeshPro visual styling, follow these steps:

	Create a new Unity 3D project.

	Add a new UI TextMeshPro Text GameObject in the scene – choose menu:

GameObject | UI | TextMeshPro – text. Name this GameObject Text-sophisticated.

TextMeshPro GameObjects do not have to be part of the UI Canvas. You can add a TextMeshPro GameObject to the Scene directly by choosing the Scene panel menu Create | 3D Object | TextMeshPro – text.

	Ensure that your new Text-sophisticated GameObject is selected in the Hierarchy panel. In the Inspector for the Rect Transform, click on the Anchor Presets square icon, hold down Shift + Alt, and click on the top and stretch rows.

	Ensure the following properties are set:

Font Settings:

	Font Asset set to Anton SDF

	Material Preset set to Anton SDF - Outline

	Font size 200

	Alignment set to horizontal center

	Face:

	Color set to white

	Dilate set to 0

	Outline:

	Color set to Red

	Thickness set to 0.1

	Underlay (shadow):

	Offset X set to 1

	Offset Y set to -1

	Dilate set to 1

The following screenshot shows the Inspector panel with these settings:

	The Text-sophisticated GameObject will now appear as very large, with a white inner, red outline, and a drop shadow to the lower right.

 How it works...

You have added a new UI TextMeshPro Text GameObject to a scene. You chose one of the SDF fonts, and an outline material preset. You then adjusted settings for the face (inner part of each character), outline, and drop shadow (Underlay).

There are hundreds of settings for a TextMeshPro component, and therefore much experimentation may be required to achieve a particular effect.

 There's more...

Here are some more details you don't want to miss.

 Rich Text substrings for colors, effects, and sprites

TextMeshPro offers over 30 HTML-style markups to substrings. The following code illustrates some, including the following:

<sprite=5> inline sprite graphics

<smallcaps>...</smallcaps> small-caps and colors

<#ffa000>...</color> substring colors

One powerful markup is the <page> tag, this allows a single set of text to be made interactive and presented to the user as a sequence of pages.

Learn more from the online manual Rich Text page at http://digitalnativestudios.com/textmeshpro/docs/rich-text/.

 Displaying an image

There are many cases where we wish to display an image onscreen, including logos, maps, icons, and splash graphics. In this recipe, we will display an image centered at the top of the screen.

The following screenshot shows Unity displaying an image:

 Getting ready

For this recipe, we have prepared the image that you need in a folder named Images in the 01_07 folder.

 How to do it...

To display an image, follow these steps:

	Create a new Unity 2D project.

	Set the Game panel to a 400 x 300 size. Do this by first displaying the Game panel, and then creating a new Resolution in the drop-down menu at the top of the panel. Click the plus symbol at the bottom of this menu, setting Label = Chapter 2, Width = 400, and Height = 300. Click OK and the Game panel should be set to this new resolution:

Alternatively, you can set the default Game panel resolution through menu Edit | Project Settings | Player and then the Resolution and Presentation width and height in the Inspector (having turned off the Full Screen option).

	Import the provided Images folder. In the Inspector tab, ensure that the unity_logo image has the Texture Type set to Default. If it has some other type, then choose Default from the drop-down list, and click on the Apply button.

	In the Hierarchy panel, add a UI | RawImage GameObject named RawImage-logo to the scene.

	Ensure that the RawImage-logo GameObject is selected in the Hierarchy panel. In the Inspector for the RawImage (Script) component, click the file viewer circle icon at the right side of the Texture property, and select image unity_logo, as shown in the following screenshot:

An alternative way of assigning this Texture is to drag the unity_logo image from your Project folder (Images) into the Raw Image (Script) public property Texture.

	Click on the Set Native Size button to resize the image so it is no longer stretched and distorted.

	In Rect Transform, click on the Anchor Presets square icon, which will result in several rows and columns of preset position squares appearing. Hold down Shift + Alt and click on the top row and the center column.

	The image will now be positioned neatly at the top of the Game panel, and will be horizontally centered.

How it works...

You have ensured that an image has the Texture Type set to Default. You added a UI RawImage control to the scene. The RawImage control has been made to display the unity_logo image file.

The image has been positioned at the top-center of the Game panel.

 There's more...

There are some details you don't want to miss:

 Working with 2D Sprites and UI Image components

If you simply wish to display non-animated images, then Texture images and UI RawImage controls are the way to go. However, if you want more options on how an image should be displayed (such as tiling, and animation), the UI Image control should be used instead. This control needs image files to be imported as the Sprite (2D and UI) type.

Once an image file has been dragged into the UI Image control's Sprite property, additional properties will be available, such as Image Type, and options to preserve the aspect ratio.

If you wish to prevent the distortion and stretching of a UI Sprite GameObject, then in the Inspector panel, check the Preserve Aspect option, in its Image (Script) component.

 See also

An example of tiling a Sprite image can be found in the Revealing icons for multiple object pickups by changing the size of a tiled image recipe in Chapter 3, Inventory UIs.

 Creating UIs with the Fungus open source dialog system

Rather than constructing your own UI and interactions from scratch each time, there are plenty of UI and dialogue systems available for Unity. One powerful, free, and open source dialog system is called Fungus, which uses a visual flowcharting approach to dialog design.

In this recipe, we'll create a very simple, one-sentence dialogue, to illustrate the basics of Fungus. The following screenshot shows the Fungus-generated dialog for the sentence How are you today?:

 How to do it...

To create a one-sentence dialog using Fungus, follow these steps:

	Create a new Unity 2D project.

	Open the Asset Store panel, search for Fungus, and Import this free asset package (search for Fungus and free).

	Create a new Fungus Flowchart GameObject by choosing menu: Tools | Fungus | Create | Flowchart.

	Display and dock the Fungus Flowchart window panel by choosing menu: Tools | Fungus | Flowchart Window.

	There will be one block in the Flowchart Window. Click on this block to select it (a green border appears around the block to indicate that it is selected). In the Inspector panel, change the Block Name of this block to Start:

	Each Block in a Flowchart follows a sequence of commands. So in the Inspector, we are now going to create a sequence of (Say) commands to display two sentences to the user when the game runs.

	Ensure that the Start block is still selected in the Flowchart panel. Click on the plus (+) button at the bottom section of the Inspector panel to display the menu of Commands, and select the Narrative | Say command:

	Since we only have one command for this block, that command will automatically be selected (highlighted green) in the top part of the Inspector. The bottom half of the Inspector presents the properties for the currently-selected Command, as shown in the following screenshot. In the bottom half of the Inspector, for the Story Text property, enter the text of the question that you wish to be presented to the user, which is How are you today?:

	Create another Say Command, and type the following for its Story Text property: Very well thank you.

	When you run the game, the user will first be presented with the How are you today? text (hearing a clicking noise as each letter is typed on screen). After the user clicks on the continue triangle button (at the bottom-right part of the dialog window), they will be presented with the second sentence: Very well thank you.

 How it works...

You have created a new Unity project, and imported the Fungus asset package, which contains the Fungus Unity menus, windows, and commands, and also the example projects.

You have added a Fungus Flowchart to your scene with a single Block that you have named Start. Your block starts to execute when the game begins (since the default for the first block is to be executed upon receiving the Game Started event).

In the Start block, you added a sequence of two Say Commands. Each command presents a sentence to the user, and then waits for the continue button to be clicked before proceeding to the next Command.

As can be seen, the Fungus system handles the work of creating a nicely-presented panel to the user, displaying the desired text and continue button. Fungus offers many more features, including menus, animations, and control of sounds and music, the details of which can be found in the next recipe, and by exploring their provided example projects, and their websites:

	http://fungusgames.com/

	https://github.com/FungusGames/Fungus

 Creating a Fungus character dialog with images

The Fungus dialog system introduced in the previous recipe supports multiple characters, whose dialogs can be highlighted through their names, colors, sound effects, and even portrait images. In this recipe, we'll create a two-character dialog between Sherlock Holmes and Watson to illustrate the system:

 How to do it...

To create a character dialog with portrait images using Fungus, follow these steps:

	Create a new Unity 2D project.

	Open the Asset Store panel, and Import the Fungus dialogue asset package (this includes the Fungus Examples, whose images we’ll use for the two characters).

	Create a new Fungus Flowchart GameObject by choosing menu: Tools | Fungus | Create | Flowchart.

	Display and dock the Fungus Flowchart window panel by choosing menu: Tools | Fungus | Flowchart Window.

	Change the name of the only Block in the Flowchart to The case of the missing violin.

	Create a new Character by choosing menu: Tools | Fungus | Create | Character.

	You should now see a new Character GameObject in the Hierarchy.

	With GameObject Character 1 – Sherlock selected in the Project panel, edit its properties in the Inspector:

	Rename this GameObject Character 1 – Sherlock.

	In its Character(Script) component, set the Name Text to Sherlock and the Name Color to green.

	In the Inspector, click the Add Portrait button (the plus sign "+"), to get a "slot" into which to add a portrait image.

	Drag the appropriate image into your new portrait image slot (in this screenshot, we used the "confident" image from the Sherlock example project: Fungus Examples | Sherlock | Portraits | Sherlock):

	Repeat steps 6-8 above to create a second character, John, using Name Color = blue, and Portrait Image = annoyed.

	Select your Block in the Fungus Flowchart, so you can add some Commands to be executed.

	Create a Say command, for Character 1 - Sherlock, saying Watson, have you seen my violin? and choose the confident portrait (since this is the only one we added to the character):

	Add a second Say command, this time for Character 2 – John, saying No, why don't you find it yourself using your amazing powers of deduction.. and choose the annoyed portrait:

	Run the scene you should see a sequence of statements, clearly showing who is saying both with (colored) name text AND the portrait image you selected for each Say command (after Sherlock’s text has finished appearing, click the box to start John’s sentence).

 How it works...

You have created a new Unity project with the Fungus asset package.

You have added a Fungus Flowchart to your scene, and also added two characters (each with a text color and a portrait image).

For the Block in the Flowchart, you added to Say commands, stating which character was saying each sentence, and which portrait to use (if you had added more portrait images, you could select different images to indicate the emotion of the character speaking).

 There's more...

There are some details you don't want to miss.

 Data-driven conversations

Fungus offers a data-driven approach to conversations. The character and portrait (and facing direction, and movement onto-off the stage, and so on) can be defined through text in a simple format, using the Say command’s Narrative | Conversation option. This recipe’s conversation with portrait images can be declared with just two lines of text in a Conversation:

Sherlock confident: Watson, have you seen my violin?
John annoyed: No, why don't you find it yourself using your amazing powers of deduction...

Learn more about the Fungus conversation system on their documentation pages: http://fungusdocs.snozbot.com/conversation_system.html.

 Responding to User Events for Interactive UIs

In this chapter, we will cover the following:

	Creating UI Buttons to move between scenes

	Animating button properties on mouse-over

	Organizing image panels and changing panel depths via buttons

	Displaying the value of an interactive UI Slider

	Displaying a countdown timer graphically with a UI Slider

	Setting custom mouse cursors for 2D and 3D GameObjects

	Setting custom mouse cursors for UI controls

	Interactive text entry with an Input Field

	Toggles and radio buttons via Toggle Groups

	Creating text and image icon UI Dropdown menus

	Displaying a radar to indicate the relative locations of objects

 Introduction

Almost all the recipes in this chapter involve different interactive UI controls. Although there are different kinds of interactive UI controls, the basic way to work with them, and have scripted actions respond to user actions, is all based on the same idea: events triggering the execution of object method functions.

Then, for fun, and an example of a very different kind of UI, the final recipe demonstrates how to add to your game a sophisticated real-time communication of the relative positions of objects in the scene (that is, a radar!).

 The big picture

The UI can be used for three main purposes:

	To display static (unchanging) values, such as the name or logo image of the game, or word labels such as Level and Score, that tell us what the numbers next to them indicate (recipes for these can be found in the Chapter 1, Displaying Data with Core UI Elements).

	To display values that change due to our scripts, such as timers, scores, or the distance from our Player character to some other object (an example of this is the radar recipe at the end of this chapter).

	Interactive UI controls, whose purpose is to allow the Player to communicate with the game scripts via their mouse or touchscreen. These are the ones we'll look at in detail in this chapter.

The core concept for working with Unity Interactive UI controls is the registration of an object's public method to be informed when a particular event occurs. For example, we can add a UI Dropdown to a scene named DropDown 1, and then write a MyScript script class containing a NewValueAction() public method to do some action. But nothing will happen until we do two things:

	We need to add an instance of the script class as a component on a GameObject in the scene (which we'll name go1 for our example – although we can also add the script instance to the UI GameObject itself if we choose to).

	In the UI Dropdown's properties, we need to register the GameObject's public method of its script component to respond to the On Value Changed event messages:

The NewValueAction() public method of the MyScript script will typically retrieve the value selected by the user in the Dropdown and do something with it – for example, confirm it to the user, change the music volume, or change the game difficulty. The NewValueAction() method will be invoked (executed) each time GameObject go1 receives the NewValueAction() message. In the DropDown 1's properties, we need to register GameObject go1's scripted component MyScript's NewValueAction() public method as an event listener for On Value Changed events. We need to do all this at Design-Time (that is, in the Unity editor before running the scene):

At runtime (when the scene in the built application is running), if the user changes the value in the drop-down menu of UI Dropdown GameObject DropDown 1 (step 1 in the diagram), this will generate an On Value Changed event. DropDown 1 will update its display on screen, to show the user the newly-selected value (step 2a). It will also send messages to all the GameObject components registered as listeners to On Value Changed events (step 2b). In our example, this will lead to the NewValueAction() method in GameObject go1's scripted component being executed (step 3).

Registering public object methods is a very common way to handle events such as user interaction or web communications, which may occur in different orders, may never occur, or may happen several times in a short period. Several software Design Patterns describe ways to work with these event setups, such as the Observer Pattern and the Publisher-Subscriber pattern (we'll learn more about this pattern in Chapter 16, Design Patterns).

Core GameObjects, components, and concepts relating to interactive Unity UI development include:

	 Visual UI controls: The visible UI controls themselves include Button, Image, Text, and Toggle. These are the UI controls the user sees on the screen, and uses their mouse/touchscreen to interact with. These are the GameObjects that maintain a list of object-methods that have subscribed to user-interaction events.

	Interaction UI controls: These are non-visible components that are added to GameObjects; examples include Input Field and Toggle Group.

	Panel: UI objects can be grouped together (logically and physically) with UI Panels. Panels can play several roles, including providing a GameObject parent in the Hierarchy for a related group of controls. They can provide a visual background image to graphically relate controls on the screen, and they can also have scripted resize and drag interactions added, if desired.

	Sibling Depth: The bottom-to-top display order (what appears on the top of what) for a UI element is determined initially by their sequence in the Hierarchy. At Design-Time, this can be manually set by dragging GameObjects into the desired sequence in the Hierarchy. At Run-Time, we can send messages to the Rect Transforms of GameObjects to dynamically change their Hierarchy position (and therefore, the display order), as the game or user interaction demands. This is illustrated in the Organizing images inside panels and changing panel depths via buttons recipe.

Often, a UI element exists with most of the components that you may need for something in your game, but you may need to adapt it somehow. An example of this can be seen in the recipe that makes a UI Slider non-interactive, instead using it to display a red-green progress bar for the status of a countdown timer. See this in the Displaying a countdown timer graphically with a UI Slider recipe.

 Creating UI Buttons to move between scenes

As well as scenes where the player plays the game, most games will have menu screens, which display to the user messages about instructions, high scores, the level they have reached so far, and so on. Unity provides UI Buttons to offer users a simple way to indicate their choices.

In this recipe, we'll create a very simple game consisting of two screens, each with a button to load the other one, as illustrated in the screenshot:

 How to do it...

To create a button-navigable multi-scene game, follow these steps:

	Create a new Unity 2D project.

	Save the current (empty) scene, in a new folder, _Scenes, naming the scene page1.

	Add a UI Text object positioned at the top center of the scene, containing large white text that says Main Menu (page 1).

	Add a UI Button to the scene positioned in the middle-center of the screen. In the Hierarchy, click on the show children triangle to display the Text child of this GameObject button. Select the Text GameObject, and in the Inspector for the Text property of the Text (Script) component, enter the text goto page 2:

	Create a second scene, named page2, with UI Text = Instructions (page 2), and a UI Button with the goto page 1 text. You can either repeat the preceding steps, or you can duplicate the page1 scene file, naming the duplicate page2, and edit the UI Text and UI Button Text appropriately

	Add both scenes to the Build, which is the set of scenes that will end up in the actual application built by Unity. To add the scene1 to the Build, open scene page1, then choose menu: File | Build Settings... then click on the Add Current button so that the page1 scene becomes the first scene on the list of Scenes in the Build. Now open scene page2 and repeat the process, so both scenes have been added to the Build.

We cannot tell Unity to load a scene that has not been added to the list of scenes in the build. This makes sense since when an application is built we should never try to open a scene that isn't included as part of that application.

	Ensure you have scene page1 open.

	Create a C# script class, SceneLoader, in a new folder, _Scripts, containing the following code, and add an instance as a scripted component to the Main Camera:

using UnityEngine;
using UnityEngine.SceneManagement;

public class SceneLoader : MonoBehaviour {
 public void LoadOnClick(int sceneIndex) {
 SceneManager.LoadScene(sceneIndex);
 }
}

	Select the Button in the Hierarchy and click on the plus sign (+) button at the bottom of the Button (Script) component, in the Inspector view, to create a new OnClick event handler for this button (that is, an action to perform when the button is clicked).

	Drag the Main Camera from the Hierarchy over the Object slot immediately below the menu saying Runtime Only. This means that when the Button receives an OnClick event, we can call a public method from a scripted object inside the Main Camera.

	Select the LoadOnClick method from the SceneLoader drop-down list (initially showing No Function). Type 1 (the index of the scene we want to be loaded when this button is clicked) in the text box, below the method's drop-down menu. This integer, 1, will be passed to the method when the button receives an OnClick event message, as shown here:

	Save the current scene (page1).

	Open page2 and follow the same steps to make the page2 button load page1. That is, add an instance of the SceneLoader script class to the main camera, then add an OnClick event action to the button, which calls LoadOnClick, and passes the integer 0, so scene page1 is loaded.

	Save scene page2.

	When you run the page1 scene, you will be presented with your Main Menu text and a button, which when clicked, makes the game load the page2 scene. On scene page2, you'll have a button to take you back to page1.

 How it works...

You have created two scenes, and added both of these scenes to the game's build. You added a UI Button, and some UI Text to each scene.

Note, the Build sequence of scenes is actually a scripted array, which count from 0, then 1, and so on, so page1 has index 0, and page2 has index 1.

When a UI Button is added to the Hierarchy panel, a child UI Text object is also automatically created, and the content of the Text property of this UI Text child is the text that the user sees on the button.

You created a script class, and added an instance as a component to the Main Camera. In fact, it didn't really matter where this script instance was added, as long as it was in one of the GameObjects of the scene. This is necessary since the OnClick event action of a button can only execute a method (function) of a component in a GameObject in the scene.

For the button of each scene, you then added a new OnClick event action, which invokes (executes) the LoadOnClick method of the SceneLoader scripted component in the Main Camera. This method inputs the integer index of the scene in the project's Build settings, so that the button on the page1 scene gives integer 1 as the scene to be loaded, and the button for page2 gives integer 0.

 There's more...

There are some details you don't want to miss.

 Color tint when mouse pointer is over the button

There are several ways in which we can visually inform the user that the button is interactive when they move their mouse cursor over it. The simplest is to add a Color Tint that will appear when the mouse is over the button – this is the default Transition. With the Button selected in the Hierarchy, choose a tint color (for example, red), for the Highlighted Color property of the Button (Script) component, in the Inspector tab:

Another form of visual Transition to inform the user of an active button is Sprite Swap. In this case, properties for different images for Targeted/Highlighted/Pressed/Disabled are available in the Inspector panel. The default Targeted Graphic is the built-in Unity Button (Image) – this is the grey rounded rectangle default when GameObject buttons are created. Dragging in a very different-looking image for the Highlighted Sprite is an effective alternative to set a Color Tint. We have provided a rainbow.png image with the project for this recipe that can be used for the Button mouse over Highlighted Sprite. The screenshot shows the button with this rainbow background image:

 Animating button properties on mouse-over

At the end of the previous recipe, we illustrated two ways to visually communicate buttons to users. The Animation of button properties can be a highly effective, and visually interesting, way to reinforce to the user that the item their mouse is currently over is a clickable, active button. One common animation effect is for a button to get larger when the mouse is over it, and then it shrinks back to its original size when the mouse pointer is moved away. Animation effects are achieved by choosing the Animation option for the Transition property of a Button GameObject, and by creating an animation controller with triggers for the Normal, Highlighted, Pressed, and Disabled states.

 How to do it...

To animate a button for enlargement when the mouse is over it (the Highlighted state), do the following:

	Create a new Unity 2D project.

	Create a UI Button.

	In the Inspector Button (Script) component, set the Transition property to Animation.

	Click the Auto Generate Animation button (just below the Disabled Trigger property) for the Button (Script) component:

	Save the new controller (in new folder Animations), naming it button-animation-controller.

	Ensure that the Button GameObject is selected in the Hierarchy. In the Animation panel, select the Highlighted clip from the drop-down menu:

	In the Animation panel, click on the red record circle button, and then click on the Add Property button, choosing to record changes to the Rect Transform | Scale property.

	Two keyframes will have been created. Delete the second one at 1:00 (since we don't want a "bouncing" button):

	Select the frame at 1:00 by clicking one of the diamonds (both turn blue when selected), then press the Backspace/Delete key.

	Select the first keyframe at 0:00 (the only one now!). In the Inspector, set the X and Y scale properties of the Rect Transform component to (1.2, 1.2).

	Click on the red record circle button for the second time to end the recording of the animation changes.

	Save and run your scene, and you will see that the button smoothly animates to get larger when the mouse is over it, and then smoothly returns to its original size when the mouse has moved away.

 How it works...

You have created a button, and set its Transition mode to Animation. This makes Unity require an Animation Controller with four states: Normal, Highlighted, Pressed, and Disabled. You then made Unity automatically create an Animation Controller with these four states.

Then, you edited the Animation for the Highlighted (mouse-over) state, deleting the second keyframe, and making the only keyframe a version of the Button made larger to a scale of 1.2.

When the mouse is not over the Button, it's unchanged and Normal state settings are used. When the mouse moves over the Button, the Animation Controller smoothly in-betweens the settings of the Button to become those of its Highlighted state (that is, bigger). When the mouse is moved away from the Button, the Animation Controller smoothly in-betweens the settings of the Button to become those of its Normal state (that is, its original size).

The following web pages offer video and web-based tutorials on UI animations:

The Unity button transitions tutorial is available at http://unity3d.com/learn/tutorials/modules/beginner/ui/ui-transitions.

 Ray Wenderlich's great tutorial (part 2), including the button animations, is available at http://www.raywenderlich.com/79031/unity-new-gui-tutorial-part-2.

 Organizing image panels and changing panel depths via buttons

UI Panels are provided by Unity to allow UI controls to be grouped and moved together, and also to visually group elements with an Image background (if desired). The sibling depth is what determines which UI elements will appear above or below others. We can see the sibling depth explicitly in the Hierarchy, since the top-to-bottom sequence of UI GameObjects in the Hierarchy sets the sibling depth. So, the first item has a depth of 1, the second has a depth of 2, and so on. The UI GameObjects with larger sibling depths (further down the Hierarchy and so drawn later) appear above the UI GameObjects with lower sibling depths.

In this recipe, we'll create three UI Panels, each showing a different playing card image. We'll also add four triangle arrangement buttons to change the display order (move to bottom, move to top, move up one, and move down one):

 Getting ready

For this recipe, we have prepared the images that you need in a folder named Images in the 02_03 folder.

 How to do it...

To create the UI Panels whose layering can be changed by clicking buttons, follow these steps:

	Create a new Unity 2D project.

	Create a new UI Panel GameObject named Panel-jack-diamonds. Do the following to this Panel:

	For the Image (Script) component, drag the jack_of_diamonds playing card image asset file from the Project panel into the Source Image property. Select the Color property and increase the Alpha value to 255 (so this background image of the panel is no longer partly transparent).

	For the Rect Transform property, position it in the middle-center part of the screen, and size it with Width = 200 and Height = 300.

	Create a UI Button named Button-move-to-front. In the Hierarchy, child this button to Panel-jack-diamonds. Delete the Text child GameObject of this button (since we'll use an icon to indicate what this button does).

	With the Button-move-to-front GameObject selected in the Hierarchy, do the following in the Inspector:

	In the Rect Transform, position the button top-center of the player card image so that it can be seen at the top of the playing card. Size the image to Width = 16 and Height = 16. Move the icon image down slightly, by setting Pos Y = -5 (to ensure we can see the horizontal bar above the triangle).

	For the Source Image property of the Image (Script) component, select the arrangement triangle icon image: icon_move_to_front.

	Add an OnClick event handler by clicking on the plus sign (+) at the bottom of the Button (Script) component.

	Drag Panel-jack-diamonds from the Hierarchy over to the Object slot (immediately below the menu saying Runtime Only).

	Select the RectTransform.SetAsLastSibling method from the drop-down function list (initially showing No Function):

	Repeat step 2; create a second Panel named Panel-2-diamonds with its own move-to-front button, and Source Image of 2_of_diamonds. Move and position this new panel slightly to the right of Panel-jack-diamonds, allowing both the move-to-front buttons to be seen.

	Save your Scene and run the game. You will be able to click the move-to-front button on either of the cards to move that card's panel to the front. If you run the game with the Game panel not maximized, you'll actually see the panels changing order in the list of the children of the Canvas in the Hierarchy.

 How it works...

You have created two UI Panels, each panel contains a background Image of a playing card and a UI Button whose action will make its parent panel move to the front. You set the Alpha (transparency) setting of the background image's Color to 255 (no transparency).

You added an OnClick event action to the button of each UI Panel. The action sends a SetAsLastSibling message to the Button's Panel parent. When the OnClick message is received, the clicked Panel is moved to the bottom (end) of the sequence of GameObjects in the Canvas, and therefore this Panel is drawn last of the Canvas objects, and so appears visually in front of all other GameObjects.

The button's action illustrates how the OnClick function does not have to be the calling of a public method of a scripted component of an object, but it can be sending a message to one of the non-scripted components of the targeted GameObject. In this recipe, we send the SetAsLastSibling message to the Rect Transform of the Panel where the Button is located.

 There's more...

There are some details you don't want to miss.

 Moving up or down by just one position, using scripted methods

While the Rect Transform offers a useful SetAsLastSibling (move to front) and SetAsFirstSibling (move to back), and even SetSiblingIndex (if we knew exactly what position in the sequence to type in), there isn't a built-in way to make an element move up or down just one position in the sequence of GameObjects in the Hierarchy. However, we can write two straightforward methods in C# to do this, and we can add buttons to call these methods, providing full control of the top-to-bottom arrangement of the UI controls on the screen. To implement four buttons (move-to-front/move-to-back/up one/down one), do the following:

	Create a C# script class called ArrangeActions, containing the following code, and add an instance as a scripted component to each of your Panels:

using UnityEngine;

public class ArrangeActions : MonoBehaviour {
 private RectTransform panelRectTransform;

 void Awake() {
 panelRectTransform = GetComponent<RectTransform>();
 }

 public void MoveDownOne() {
 int currentSiblingIndex = panelRectTransform.GetSiblingIndex();
 panelRectTransform.SetSiblingIndex(currentSiblingIndex - 1);
 }

 public void MoveUpOne() {
 int currentSiblingIndex = panelRectTransform.GetSiblingIndex();
 panelRectTransform.SetSiblingIndex(currentSiblingIndex + 1);
 }
}

	Add a second UI Button to each card panel, this time using the arrangement triangle icon image called icon_move_to_front, and set the OnClick event function for these buttons to SetAsFirstSibling.

	Add two further UI Buttons to each card panel with the up and down triangle icon images: icon_down_one and icon_up_one. Set the OnClick event-handler function for the down-one buttons to call the MoveDownOne() method, and set the functions for the up-one buttons to call the MoveUpOne() method.

	Copy one of the UI Panels to create a third card (this time showing the Ace of diamonds). Arrange the three cards so that you can see all four buttons for at least two of the cards, even when those cards are at the bottom (see the screenshot at the beginning of this recipe).

	Save the Scene and run your game. You will now have full control over the layering of the three card panels.

Note, we should avoid negative sibling depths, so we should probably test for the currentSiblingIndex value before subtracting 1:

if(currentSiblingIndex > 0)
 panelRectTransform.SetSiblingIndex(currentSiblingIndex - 1);

 Displaying the value of an interactive UI Slider

This recipe illustrates how to create an interactive UI Slider, and execute a C# method each time the user changes the UI Slider value:

 How to do it...

To create a UI Slider and display its value on the screen, follow these steps:

	Create a new 2D project.

	Add a UI Text GameObject to the scene with a Font size of 30 and placeholder text, such as slider value here (this text will be replaced with the slider value when the scene starts). Set Horizontal- and Vertical- Overflow to Overflow.

	In the Hierarchy add a UI Slider GameObject to the scene – choose menu: GameObject | UI | Slider.

	In the Inspector, modify the settings for the position of the UI Slider GameObject's Rect Transform to the top-middle part of the screen.

	In the Inspector, modify settings for Position of the UI Text's Rect Transform to just below the slider (top, middle, then Pos Y = -30).

	In the Inspector, set the UI Slider's Min Value to 0, the Max Value to 20, and check the Whole Numbers checkbox:

	Create a C# script class called SliderValueToText, containing the following code, and add an instance as a scripted component to the Text GameObject:

using UnityEngine;
using UnityEngine.UI;

public class SliderValueToText : MonoBehaviour {
 public Slider sliderUI;
 private Text textSliderValue;

 void Awake() {
 textSliderValue = GetComponent<Text>();
 }

 void Start() {
 ShowSliderValue();
 }

 public void ShowSliderValue () {
 string sliderMessage = "Slider value = " + sliderUI.value;
 textSliderValue.text = sliderMessage;
 }
}

	Ensure that the Text GameObject is selected in the Hierarchy. Then, in the Inspector, drag the Slider GameObject into the public Slider UI variable slot for the Slider Value To Text (Script) scripted component:

	Ensure that the Slider GameObject is selected in the Hierarchy. Then, in the Inspector, drag the Text GameObject into the public None (Object) slot for the Slider (Script) scripted component, in the section for On Value Changed (Single) - as shown in the screenshot:

Registering an object to receive UI event messages

 You have now told Unity to which object a message should be sent each time the slider is changed.

	From the drop-down menu, select SliderValueToText and the ShowSliderValue() method, as shown in the following screenshot. This means that each time the slider is updated, the ShowSliderValue() method, in the scripted object, in the Text GameObject will be executed:

	When you run the Scene, you will now see a UI Slider. Below it, you will see a text message in the form Slider value = <n>.

	Each time the UI Slider is moved, the text value shown will be (almost) instantly updated. The values should range from 0 (the leftmost of the slider) to 20 (the rightmost of the slider).

 How it works...

You created a UI Slider GameObject, and set it to be whole numbers in the range of 0 ... 20.

You have added an instance of the SliderValueToText C# script class to the UI Text GameObject.

The Awake() method caches references to the Text component in the textSliderValue variable.

The Start() method invokes the ShowSliderValue() method, so that the display is correct when the scene begins (that is, the initial slider value is displayed).

The ShowSliderValue() method gets the value of the slider and then updates the text displayed to be a message in the form of Slider value = <n>.

You added the ShowSliderValue() method of the SliderValueToText scripted component to the Slider GameObject's list of On Value Changed event listeners. So, each time the slider value changes, it sends a message to call the ShowSliderValue() method, and so the new value is updated on the screen.

 Displaying a countdown timer graphically with a UI Slider

There are many cases where we wish to inform the player of the proportion of time remaining, or at the completion of some value at a point in time, for example, a loading progress bar, the time or health remaining compared to the starting maximum, or how much the player has filled up their water bottle from the fountain of youth. In this recipe, we'll illustrate how to remove the interactive "handle" of a UI Slider, and change the size and color of its components to provide us with an easy-to-use, general purpose progress/proportion bar. In this recipe, we'll use our modified UI Slider to graphically present to the user how much time remains for a countdown timer:

 Getting ready

For this recipe, we have prepared the script and images that you need in the folders named _Scripts and Images in the 02_05 folder.

 How to do it...

To create a digital countdown timer with a graphical display, follow these steps:

	Create a new 2D project.

	Import the CountdownTimer script and the red_square and green_square images to this project.

	Add a UI Text GameObject to the scene with a Font size of 30 and placeholder text such as UI Slider value here (this text will be replaced with the slider value when the scene starts). Set Horizontal- and Vertical- Overflow to Overflow.

	In the Hierarchy, add a Slider GameObject to the scene – choose menu: GameObject | UI | Slider.

	In the Inspector, modify the settings for the Position of the Slider GameObject's Rect Transform to the top-middle part of the screen.

	Ensure that the Slider GameObject is selected in the Hierarchy.

	Deactivate the Handle Slide Area child GameObject (by unchecking it)

	You'll see the "drag circle" disappear in the Game panel (the user will not be dragging the slider, since we want this slider to be display-only):

	Select the Background child:

	Drag the red_square image into the Source Image property of the Image (Script) component in the Inspector

	Select the Fill child of the Fill Area child:

	Drag the green_square image into the Source Image property of the Image (Script) component in the Inspector

	Select the Fill Area child:

	In the Rect Transform component, use the Anchors preset position of left-middle

	Set Width to 155 and Height to 12:

	Create a C# script class called SliderTimerDisplay that contains the following code, and add an instance as a scripted component to the Slider GameObject:

using UnityEngine;
using UnityEngine.UI;

[RequireComponent(typeof(CountdownTimer))]
public class SliderTimerDisplay : MonoBehaviour {
 private CountdownTimer countdownTimer;
 private Slider sliderUI;

 void Awake() {
 countdownTimer = GetComponent<CountdownTimer>();
 sliderUI = GetComponent<Slider>();
 }

 void Start() {
 SetupSlider();
 countdownTimer.ResetTimer(30);
 }

 void Update () {
 sliderUI.value = countdownTimer.GetProportionTimeRemaining();
 print (countdownTimer.GetProportionTimeRemaining());
 }

 private void SetupSlider () {
 sliderUI.minValue = 0;
 sliderUI.maxValue = 1;
 sliderUI.wholeNumbers = false;
 }
}

Run your game and you will see the slider move with each second, revealing more and more of the red background to indicate the time remaining.

 How it works...

You hid the Handle Slide Area child so that the UI Slider is for display only, and cannot be interacted with by the user. The Background color of the UI Slider was set to red, so that, as the counter goes down, more and more red is revealed – warning the user that the time is running out.

The Fill of the UI Slider was set to green, so that the proportion remaining is displayed in green – the more green displayed, the greater the value of the slider/timer.

An instance of the provided CountdownTimer script class was automatically added as a component to the Slider via [RequireComponent(...)].

The Awake() method caches references to the CountdownTimer and Slider components in the countdownTimer and sliderUI variables.

The Start() method calls the SetupSlider() method and then resets the countdown timer to start counting down from 30 seconds.

The SetupSlider() method sets up this slider for float (decimal) values between 0.0 and 1.0.

In each frame, the Update() method sets the slider value to the float returned by calling the GetProportionRemaining() method from the running timer. At runtime, Unity adjusts the proportion of red/green displayed in the Slider to match the slider's value.

 Setting custom mouse cursors for 2D and 3D GameObjects

Cursor icons are often used to indicate the nature of the interaction that can be done with the mouse. Zooming, for instance, might be illustrated by a magnifying glass; shooting, on the other hand, is usually represented by a stylized target. In this recipe, we will learn how to implement custom mouse cursor icons to better illustrate your gameplay – or just to escape the Windows, macOS, and Linux default UI:

 Getting ready

For this recipe, we have prepared the folders that you'll need in the 02_06 folder.

 How to do it...

To make a custom cursor appear when the mouse is over a GameObject, follow these steps:

	Create a new Unity 2D project.

	Import the provided folder, called Images. Select the unity_logo image in the Project panel, and in the Inspector change the Texture Type to Sprite (2D and UI). This is because we'll use this image for a 2D Sprite GameObject, and it requires this Texture Type (it won't work with the Default type).

	Add a 2D Object | Sprite GameObject to the scene. Name this New Sprite, if this wasn't the default name when created.

	In the Inspector, set the Sprite property of the Sprite Renderer component to the unity_logo image. In the GameObjects Transform component, set the scaling to (3,3,3), and if necessary, reposition the Sprite to be centered in the Game panel when the Scene runs.

	Add to the Sprite GameObject a Physics 2D | Box Collider. This is needed for this GameObject to receive OnMouseEnter and OnMouseExit event messages.

	Import the provided folder called IconsCursors. Select all three images in the Project panel, and in the Inspector, change the Texture Type to Cursor. This will allow us to use these images as mouse cursors without any errors occurring.

	Create a C# script class called CustomCursorPointer, containing the following code, and add an instance as a scripted component to the New Sprite GameObject:

using UnityEngine;
using System.Collections;

public class CustomCursorPointer : MonoBehaviour {
 public Texture2D cursorTexture2D;
 private CursorMode cursorMode = CursorMode.Auto;
 private Vector2 hotSpot = Vector2.zero;

 public void OnMouseEnter() {
 SetCustomCursor(cursorTexture2D);
 }

 public void OnMouseExit() {
 SetCustomCursor(null);
 }

 private void SetCustomCursor(Texture2D curText){
 Cursor.SetCursor(curText, hotSpot, cursorMode);
 }
}

Event methods OnMouseEnter() and OnMouseExit() have been deliberately declared as public. This will allow these methods to also be called from UI GameObjects when they receive the OnPointerEnterExit events.

OEBPS/assets/1c677aba-f531-433a-9d1b-6b0df593bc21.png

OEBPS/assets/d9b77b0f-a641-4f4a-a20e-4f9a63ab968b.png
Watson, have you seen my violin?

No, why don't you find it yourself using your amazing
powers of deduction

Iy

OEBPS/assets/e06acc58-c7da-40a5-aea4-42725c00ddfe.png
| creste +| AT
v € scene1®

¥ Canvas

mera
Eventsystem

© Canvas Renderer

Scrip
Slider Ul

o [Text (U static v
Tag(Unagged <) Layer (00

Rect Transform

¥ Text (Scripy

Slider Value To Text (Script)
SliderValueToText

k= Siider (Siide)

OEBPS/assets/fde4a896-a33a-4d1e-a0f2-29e964ec9a34.png
O Animation ESSSSIIR
TN

Hognea

S—

Main Camera

‘Add Property.

Button

OEBPS/assets/c24362c0-a292-4e65-8b9c-952697a07e82.png
= Hierarchy || © Inspector |

Create +| (@A o [STaer
Main Camera Tag[Unagoed] Layer[ul
¥ Canvas

Rect Transtorm
v = stider scripy
Interactable ™

[Color Tint

Text

Eventsystem
Transition

Min Value
Max Value
Whole Numbers

OEBPS/assets/399c705e-0666-47fa-9b50-99d5cfbe396b.png
Comment
Animation
Audio

>
>
Clear Menu Camer >
Control Stage. Flow >
Conversation iTween >
Menu
Menu Timer Scripting >
Portrait Sprite >
>

ul

OEBPS/assets/de5d0fac-6aaf-4bf3-ad4a-73364da2f1ab.png
Commands

Sy Howae ooty
[+]lv] [+][@&]

Character <None> .
[None (Characten) | ©
StoryTaus

{THoware you today?
"

OEBPS/assets/0d4de1c2-3df9-4fde-a244-410a751602e7.png
Countdown seconds remaining = 25

OEBPS/assets/01301f05-5a91-4ed1-bbc6-28b3a4922d95.png

OEBPS/assets/f72f0e8f-6278-460c-ae85-0aa4c1af8ae5.png
How are you today?

OEBPS/assets/bdcd076d-da06-409b-b879-5602ae5adb4c.jpg
Unity 2018

Third Edition

Over 160 recipes to take your 2D and 3D game development to the
next level

By Matt Smith

OEBPS/assets/dd86535c-4ace-447d-9d88-835b54167f09.png
© Animation

Highiighted

OEBPS/assets/4f1ae827-ed6c-4d5b-a530-d603a3ecc5a0.png
© Inspector &=
@ [Text () static ~
‘Tag Untagged) Layer(u

> RectTransform

© Canvas Renderer

¥ Text (scripy
Default Ul Material 2,
> Shader [ui/Defauit .

Add Component

< Scripts

UnityEngine EventSystems

lock Digit

OEBPS/assets/9858d847-95e5-4875-97e6-675ac47d9894.png
= Hierarchy | @ ==| ©Inspector | 'Services -
Agsacl e WFet stc~
& sconel Tag (Unagoed_¢) Layer (¥
> RectTransform
Main Camera © Canvas Renderer
Eventsystem Py

Font
Font

Font
Tine
Rich

= Xolonum-Bold | ©
Style

Size 89

Spacing T
Text 4

OEBPS/assets/2ece3c61-1197-4299-9e57-82aa47be3795.png
15:09:06

OEBPS/assets/3e2ebc59-b702-4b80-aec7-143f8f20b371.jpg
2 3

DropDown 1 updates s dispey. GameObject got executes the actions
1 inside metnod NewValueAction() of
MyScript component
User changes selection to Option B. GameObject go1
(On Value Changed even)
MySorpt
OMIOH A 2b void Awake()

Option A public NewValueAction() {

Option B <<<< ropboun 1 sends massage o al acion 1
e0sered On alus Changed iseners sction
)

OEBPS/assets/2e7f83bb-dd87-4eca-bb4a-f20e054e3632.jpg
GameObject got

EEE—
e
void Awake()

public NewValueAction() |+

[component 2

IEEE—

GameObject DropDown 1

\

NewvalueAction {4 901->MyScript.NewValueAction()

Ul Dropdown

Option A
Option B

i oot Transiom

On Value Changed
event isteners:

I —

OEBPS/assets/36d8b75b-f8d6-4edb-96bd-51bd87260d48.png
v " ¥ Raw Image (Script)

Texture - unity_Iogo
Color g
Material None (Material)
Raycast Target v
UV Rect
xo vl B Default-Particle

OEBPS/assets/17ced000-edba-4800-9630-5d537802d356.png
B Console

OEBPS/assets/8666f436-e0d5-4ef4-84c5-61d9b833df10.png
© Rect Transform

REles left Pos X Pos Y PosZ.
o =
DR
Handle e
o i Alsosetphot_Alt Ao set posidon
EGENE

(O] [o] @] [g] [=
= e

o

middie

OEBPS/assets/84439d36-92e0-45ef-82a8-734c5ee91987.png
¥ 20V Button (Script) LA
Interactable o
Transition Aoimaion :
Normal Trigger Normal |
Highighted TriggelFighiighted
Pressed Trigger Pressed
Disabled Trigger D)

_—

OEBPS/assets/1c2d5b99-fa37-4e6a-935d-bfe90904ea40.png
= Hierarchy

© Inspector TR e
Mt (satic~ 5

Create -

v Qpagel -
Main Camera Tag (Unagaed 3] Layer (Ul
e Rect Transform
Text

¥ Text (Scripy

[goto page 2

OEBPS/assets/dcb90848-9116-442a-9e6a-5f90667af272.png
800x600 2| scate

¥Low Resolution Aspect Ratios.

Free Aspect

Standalone (1024x768)

7 800x600
Add

Label Chapter 2
Type (Fixed Resoluton

Width & Height | 900 |

Chapter 2 (400x300)

Cancel oK

OEBPS/assets/795e3202-2613-408a-a5ba-4416af545e10.png
Mapt

OEBPS/assets/39ecda34-c9c7-4b93-acb5-2eddb5501710.png
<Game Started>

Sherlock: "Watson, have you see
The case of the missing violin | |2 oo LA MK SRS
Character Name: "No, why don't

OEBPS/assets/724fabd6-99c5-493c-b156-1666187f7c89.png

OEBPS/assets/77109497-bde4-46a5-bcc2-d7ca372aa435.png
lierarchy
Greste +| AT

PR SARtON (acrpty) LAl
Interactable 4

Transition :}w.ﬂm .
Target Graphic FuButton (image)

¥ Canvas Normal Color

I:I/

Text Highiighted Color | —

_Buton pressed Color | —
Ted

Eventsystem

choose function-method
Sceneloader.LoadOnClick

On Click

Runime Only ScenetoaderLoadonClck
Wain Camera (SceneL oader)

o

OEBPS/assets/df6f6ee2-6ec6-43d7-912c-9615e7586bbb.png
¥ ¥/ Character (cript) [P

Name Text Sherlock
Name Color

Sound Effect None (Audio Clip) _ ©
Set Say Dialog [None (Say Dialog) | ©

Description

OEBPS/assets/a8d1df96-386a-406b-a0ab-a7146417ef98.png
Hello World

OEBPS/assets/9981c824-8fc4-4580-a839-b68e7f8de475.png
Packb

OEBPS/assets/cbaa1b6c-bf56-45bd-914c-5690af28518e.png
© Inspector

9, Block Name
Flowchart Sl T3
<Game Started>

L Cusf
| s ey

OEBPS/assets/cd18eb19-ba49-4761-bc8b-2059bbd0e4f2.png
Hierarchy =

Creater| @A)

v &) scene1* ol s~
¥ Canvas
¥ Slider 3 Rect Transform o
Background

Add Component

EventSystem

OEBPS/assets/52ff1c10-af95-4396-94aa-eef952d24413.png
Hierarchy

O Inspector I ——

e —)
C—T=TTE
v Q@ scenet” 9e o

Tag Layer(U &
> RectTransform E

v <> W Slider (scripy E
Interactable 4
Transition Golor i :

¥ Canvas
Text

Main Camera
Eventsystem

On Value Changed (Single)

OEBPS/assets/d5109162-7213-412d-acd9-38ce3ff1a38b.png
IF Game O lospector
Display 1/ | Free Aspect < sl O 2 Ma v (¥ Text Mesh Pro UGUI (Sci

I e —
romisoje DDOEEaE
L I —

Color Gradient (] Override Tags

Font Size 200 Autosize [
Spacing Options Char [0 Word [0 Line [0
Alignment

Wrapping & Overflow
UV Mapping Options [Character

Enable Kerning? ¥ ExtraPadding?
Anton SOF - Outline [

Shader [Textheshpro/Mobile/Distance Fieid

Face - Settings -

Color

Softness —

Dilate —_—0
(outline - Settings - Enable > ¥/

Color

Thickness ————————o1_
([underlay - Settings - Enable > ¥/

UnderayTyoe o o
Cobr —
Offsetx ——

offsery e =
Dilate —_— T

OEBPS/assets/873bd5cc-73d8-4132-94e1-db89a8f3c865.png
Main Menu (page 1)

OEBPS/assets/5ac06adc-4300-464b-aaf5-d2b0b97b43b3.png
E

Character
Character 1-51| ©

portrait K confident :

Story Text
'Watson, have you seen my violin?

OEBPS/assets/4254ab98-f133-4652-b80e-46b7decce6cb.png

OEBPS/assets/d559845b-f490-409a-aa12-45c260f0f5dc.png
Ten fght sueih

5] @) [0

OEBPS/assets/d23e51c5-6e25-4999-91db-d9d8079f5233.png
= Hierarchy | @ Inspector [e
[e —)
1 [Button [static
v € page2 (] T
L Tag (Untagged +] Layer[ud
v Canvas > ReatTransform
Text v ¥ Button (scripy
Bution Interactable 2
Eventsystem Tansiton @ Lcoor i]
Target Graphic o o
choose red Normal Color []*

Highiighted Color MM 2

OEBPS/assets/5b3df604-b62e-435b-b6a2-9b10347a1f6c.png
On Value Changed (Single)

(Runime ony s (SidsrvalusTaTexShovsigervaue <)
[Text G o]

OEBPS/assets/7deed535-6c0f-47e9-88d0-03d9adb41118.png
Star
Wars

gy e 70, in @ gatany e
Pt A

2475 zperiod of civil wax.
At/ spaceships, striking

Loy 7 frdden base, hone W
A/ 75t victory against

el Galactic Empie.

OEBPS/assets/05acc1b3-9377-40c3-a4a7-ba89420cb03a.png
—
Slider value = 20

OEBPS/assets/1b4ac2db-ba46-4d00-ab55-88fc75d4f8e0.png

OEBPS/assets/4d81c94e-7e3e-4490-8aa6-5f39ee7e8660.png
static controls

—— Hello -Pane, Text
“Image, Raw Image

Interactive

Canvas I -

+Button, Toggle
& »slider, Scrollbar

EventSystem non-visble interaction

components

~Toggle Group
~Input Field

() St
behaviors

