

[image: images]


 

 

 


TensorFlow 2.0

Pocket Primer




LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and disc (the “Work”), you agree that this license grants permission to use the contents contained herein, including the disc, but does not give you the right of ownership to any of the textual content in the book / disc or ownership to any of the information or products contained in it. This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone involved in the creation, writing, or production of the companion disc, accompanying algorithms, code, or computer programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to insure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs. The Work is sold “as is” without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book and/or disc, and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” vary from state to state, and might not apply to the purchaser of this product.

Companion files for this title are available by writing to the publisher at info@merclearning.com.




[image: image]












Copyright ©2020 by Mercury Learning and Information LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

Mercury Learning and Information 

22841 Quicksilver Drive

Dulles, VA 20166

info@merclearning.com

www.merclearning.com

800-232-0223

O. Campesato. TensorFlow 2.0. Pocket Primer.

ISBN: 978-1-68392-460-9

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2019941748

192021321 This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For additional information, please contact the Customer Service Dept. at 
800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors. Companion files (figures and code listings) for this title are available by contacting info@merclearning.com. The sole obligation of Mercury Learning And Information to the purchaser is to replace the disc, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.


 

 

I’d like to dedicate this book to my parents – 
may this bring joy and happiness into their lives.



CONTENTS



Preface

What Is the Goal?

What Will I Learn from This Book?

The TF 1.x and TF 2.0 Books: How Are They Different?

Why Isn’t Keras in Its Own Chapter in This Book?

How Much Keras Knowledge Is Needed for This Book?

Do I Need to Learn the Theory Portions of This Book?

How Were the Code Samples Created?

What Are the Technical Prerequisites for This Book?

What Are the Nontechnical Prerequisites for This Book?

Which Topics Are Excluded?

How Do I Set Up a Command Shell?

Companion Files

What Are the “Next Steps” after Finishing This Book?

Chapter 1: Introduction to TensorFlow 2

What Is TF 2?

TF 2 Use Cases

TF 2 Architecture: The Short Version

TF 2 Installation

TF 2 and the Python REPL

Other TF 2-Based Toolkits

TF 2 Eager Execution

TF 2 Tensors, Data Types, and Primitive Types

TF 2 Data Types

TF 2 Primitive Types

Constants in TF 2

Variables in TF 2

The tf.rank() API

The tf.shape() API

Variables in TF 2 (Revisited)

TF 2 Variables versus Tensors

What Is @tf.function in TF 2?

How Does @tf.function Work?

A Caveat about @tf.function in TF 2

The tf.print() Function and Standard Error

Working with @tf.function in TF 2

An Example without @tf.function

An Example with @tf.function

Overloading Functions with @tf.function

What Is AutoGraph in TF 2?

Arithmetic Operations in TF 2

Caveats for Arithmetic Operations in TF 2

TF 2 and Built-In Functions

Calculating Trigonometric Values in TF

Calculating Exponential Values in TF 2

Working with Strings in TF 2

Working with Tensors and Operations in TF 2

Second-Order Tensors in TF 2 (1)

Second-Order Tensors in TF 2 (2)

Multiplying Two Second-Order Tensors in TF

Convert Python Arrays to TF Tensors

Conflicting Types in TF 2

Differentiation and tf.GradientTape in TF 2

Examples of tf.GradientTape

Using the watch() Method of tf.GradientTape

Using Nested Loops with tf.GradientTape

Other Tensors with tf.GradientTape

A Persistent Gradient Tape

Migrating TF 1.x Code to TF 2 Code (optional)

Two Conversion Techniques from TF 1.x to TF 2

Converting to Pure TF 2 Functionality

Converting Sessions to Functions

Combine tf.data.Dataset and @tf.function

Use Keras Layers and Models to Manage Variables

The TensorFlow Upgrade Script (optional)

Summary

Chapter 2: Useful TF 2 APIs

TF 2 Tensor Operations

Using for Loops in TF 2

Using while Loops in TF 2

TF 2 Operations with Random Numbers

TF 2 Tensors and Maximum Values

The TF 2 range() API

Operations with Nodes

The tf.size(), tf.shape(), and tf.rank() APIs

The tf.reduce_prod() and tf.reduce_sum() APIs

The tf.reduce_mean() API

The tf.random_normal() API (1)

The TF 2 random_normal() API (2)

The tf.truncated_normal() API

The tf.reshape() API

The tf.range() API

The tf.equal() API (1)

The tf.equal() API (2)

The tf.argmax() API (1)

The tf.argmax() API (2)

The tf.argmax() API (3)

Combining tf.argmax() and tf.equal() APIs

Combining tf.argmax() and tf.equal() APIs (2)

The tf.map_fn() API

What Is a One-Hot Encoding? 

The TF one_hot() API

Other Useful TF 2 APIs

Save and Restore TF 2 Variables

TensorFlow Ragged Constants and Tensors

What Is a TFRecord?

A Simple TFRecord

What Are tf.layers?

What Is TensorBoard?

TF 2 with TensorBoard

TensorBoard Dashboards

The tf.summary API

Google Colaboratory

Other Cloud Platforms

Gcp Sdk

Summary

Chapter 3: TF2 Datasets

The TF 2 tf.data.Datasets

Creating a Pipeline

Basic Steps for TF 2 Datasets

A Simple TF 2 tf.data.Dataset

What Are Lambda Expressions? 

Working with Generators in TF 2 

What Are Iterators? (optional)

TF 1.x Iterators (optional)

Concatenating TF 2 tf.Data.Datasets

The TF 2 reduce() Operator

Working with Generators in TF 2

The TF 2 filter() Operator (1)

The TF 2 filter() Operator (2)

The TF 2 batch() Operator (1)

The TF 2 batch() Operator (2)

The TF 2 map() Operator (1)

The TF 2 map() Operator (2)

The TF 2 flatmap() Operator (1)

The TF 2 flatmap() Operator (2) 

The TF 2 flat_map() and filter() Operators 

The TF 2 repeat() Operator

The TF 2 take() Operator 

Combining the TF 2 map() and take() Operators

Combining the TF 2 zip() and batch() Operators

Combining the TF 2 zip() and take() Operators

TF 2 tf.data.Datasets and Random Numbers

TF 2, MNIST, and tf.data.Dataset

Working with the TFDS Package in TF 2

The CIFAR10 Dataset and TFDS in TF 2

Working with tf.estimator

What Are TF 2 Estimators?

Other TF 2 Namespaces

Summary

Chapter 4: Linear Regression

What Is Linear Regression? 

Linear Regression versus Curve-Fitting

What Is Multivariate Analysis?

When Are Solutions Exact in Machine Learning?

Challenges with Linear Regression

Nonlinear Data

Nonconstant Variance of Error Terms

Correlation of Error Terms

Collinearity

Outliers and Anomalies

Other Types of Regression

Working with Lines in the Plane

Scatter Plots with NumPy and Matplotlib (1)

Why the “Perturbation Technique” Is Useful 

Scatter Plots with NumPy and Matplotlib (2)

A Quadratic Scatter Plot with NumPy and Matplotlib

The Mean Squared Error (MSE) Formula

A List of Error Types

Nonlinear Least Squares

What Is Regularization?

Machine Learning and Feature Scaling

Data Normalization vs. Standardization

The Bias-Variance Trade-off

Metrics for Measuring Models

Limitations of R-Squared

Confusion Matrix

Accuracy vs. Precision vs. Recall

Other Useful Statistical Terms

What Is an F1 Score?

What Is a p-value?

Working with Datasets

Training Data Versus Test Data

What Is Cross-Validation?

Calculating the MSE Manually

Simple 2D Data Points in TF 2

TF2, tf.GradientTape(), and Linear Regression

Working with Keras

Working with Keras Namespaces in TF 2

Working with the tf.keras.layers Namespace

Working with the tf.keras.activations Namespace

Working with the tf.keras.datasets Namespace

Working with the tf.keras.experimental Namespace

Working with Other tf.keras Namespaces

TF 2 Keras versus “Standalone” Keras

Creating a Keras-Based Model

Keras and Linear Regression

Working with tf.estimator 

Summary

Chapter 5: Working with Classifiers

What Is Classification?

What Are Classifiers?

Common Classifiers

What Are Linear Classifiers?

What Is KNN?

How to Handle a Tie in kNN

What Are Decision Trees?

What Are Random Forests?

What Are SVMS?

Trade-offs of SVMs

What Is Bayesian Inference?

Bayes’s Theorem

Some Bayesian Terminology

What Is MAP?

Why Use Bayes’s Theorem?

What Is a Bayesian Classifier?

Types of Naive Bayes Classifiers

Training Classifiers

Evaluating Classifiers

What Are Activation Functions?

Why Do We Need Activation Functions?

How Do Activation Functions Work?

Common Activation Functions

Activation Functions in Python

The ReLU and ELU Activation Functions

The Advantages and Disadvantages of ReLU

ELU

Sigmoid, Softmax, and Hardmax Similarities

Softmax

Softplus

Tanh

Sigmoid, Softmax, and Hardmax Differences

TF 2 and the Sigmoid Activation Function

What Is Logistic Regression?

Setting a Threshold Value

Logistic Regression: Assumptions

Linearly Separable Data

TensorFlow and Logistic Regression

Keras and Early Stopping (1)

Keras and Early Stopping (2)

Keras and Metrics

Distributed Training in TF 2 (Optional)

Using tf.distribute.Strategy with Keras

Summary

APPENDIX: TF 2, Keras, and Advanced Topics

What Is Deep Learning?

What Are Hyperparameters?

Deep Learning Architectures

Problems That Deep Learning Can Solve

Challenges in Deep Learning

What Are Perceptrons?

Definition of the Perceptron Function

A Detailed View of a Perceptron

The Anatomy of an Artificial Neural Network (ANN)

The Model Initialization Hyperparameters

The Activation Hyperparameter

The Cost Function Hyperparameter

The Optimizer Hyperparameter

The Learning Rate Hyperparameter

The Dropout Rate Hyperparameter

What Is Backward Error Propagation?

What Is a Multilayer Perceptron (MLP)?

Activation Functions

How Are Data Points Correctly Classified?

Keras and the XOR Function

A High-Level View of CNNs

A Minimalistic CNN

The Convolutional Layer (Conv2D)

The ReLU Activation Function

The Max Pooling Layer

CNNs with Audio Signals

CNNs and NLPs

Displaying an Image in the MNIST Dataset

Keras and the MNIST Dataset

Keras, CNNs, and the MNIST Dataset

What Is an RNN?

Anatomy of an RNN

What Is BPTT?

Working with RNNs and TF 2

What Is an LSTM?

Anatomy of an LSTM

Bidirectional LSTMs

LSTM Formulas

LSTM Hyperparameter Tuning

What Are GRUs?

What Are Autoencoders?

Autoencoders and PCA

What Are Variational Autoencoders?

What Are GANs?

The VAE-GAN Model

Working with NLP (Natural Language Processing)

NLP Techniques

The Transformer Architecture and NLP

Transformer-XL Architecture

NLP and Deep Learning

NLP and Reinforcement Learning

Data Preprocessing Tasks

Popular NLP Algorithms

What Is an n-Gram?

What Is a Skip-Gram?

What Is BoW?

What Is Term Frequency?

What Is Inverse Document Frequency (idf)?

What Is tf-idf?

What Are Word Embeddings?

ELMo, ULMFit, OpenAI, and BERT

What Is Translatotron?

What Is Reinforcement Learning (RL)?

What Are NFAs?

What Are Markov Chains?

Markov Decision Processes (MDPs)

The Epsilon-Greedy Algorithm

The Bellman Equation

Other Important Concepts in RL

RL Toolkits and Frameworks

TF-Agents

What Is Deep Reinforcement Learning (DRL)?

Miscellaneous Topics

TFX (TensorFlow Extended)

TensorFlow Probability 

TensorFlow Graphics

TF Privacy

Summary




PREFACE




WHAT IS THE GOAL?

The goal of this book is to introduce TensorFlow 2 fundamentals for basic machine learning algorithms in TensorFlow. It is intended to be a fast-paced introduction to various “core” features of TensorFlow, with code samples that cover deep learning and TensorFlow. The material in the chapters illustrates how to solve a variety of tasks using TensorFlow, after which you can do further reading to deepen your knowledge.

This book provides more detailed code samples than those that are found in intermediate and advanced TensorFlow books. Although it contains some basic code samples in TensorFlow, some familiarity with the software will be helpful.

The book will also save you the time required to search for code samples, which is a potentially time-consuming process. In any case, if you’re not sure whether or not you can absorb the material in this book, glance through the code samples to get a feel for the level of complexity. At the risk of stating the obvious, please keep in mind the following point: you will not become an expert in TensorFlow by reading this book.



WHAT WILL I LEARN FROM THIS BOOK?

The first chapter contains TensorFlow code samples that illustrate very simple TensorFlow functionality, followed by a chapter whose code samples illustrate an assortment of built-in APIs. The third chapter delves into the TensorFlow Dataset, with a plethora of code samples that illustrate how to use “lazy” operators in conjunction with datasets. The fourth chapter discusses linear regression and the fifth chapter covers logistic regression. If you think that you’ll struggle significantly with the code in the first two chapters, then an “absolute beginners” type of book is recommended to prepare you for this one.

Another point: although Jupyter is popular, all the code samples in this book are Python scripts. However, you can quickly learn about the useful features of Jupyter through various online tutorials. In addition, it’s worth looking at Google Colaboratory, which is entirely online and is based on Jupyter notebooks, along with free GPU usage.



WHY DOES THIS BOOK INCLUDE TF 1.X MATERIAL?

If you are new to TensorFlow, then feel free to skip the TF 1.x content, particularly if you are starting with a new project involving TensorFlow and you don’t have any TF 1.x. However, as this book goes to print, the vast majority of existing TensorFlow code is TF 1.x code, which is massive when you consider all the companies that are using TensorFlow. Hence, many people who are working with TF 1.x also need to learn how to convert TF 1.x to TF 2.

Almost all the TF 1.x material (including the section regarding the upgrade script from TF 1.x to TF 2) is limited to the second half of Chapter 1. Keep in mind another detail: even if you plan to learn only TF 2, you might be faced with a task that involves upgrading from TF 1.x to TF 2, and now you’ll have some potentially useful information regarding TF 1.x in this book.



THE TF 1.X AND TF 2.0 BOOKS: HOW ARE THEY DIFFERENT?

TensorFlow 2 uses eager execution whereas TensorFlow 1.x uses deferred execution, which means that the coding styles are significantly different. TF 2.0 also introduces new features, such as generators (which are decorated Python functions), that are discussed in that book.

In some cases, TF 1.x and TF 2 contain the same functionality that is implemented using different APIs. For example, tf.data.Dataset in TF 1.x uses iterators (there are four main types) to iterate through datasets, whereas tf.data.Dataset in TF 2 uses generators. The TF 2.0 book contains both types of code samples for tf.data.Dataset code samples (with the primary focus on TF 2.0 coding style).



WHY ISN’T KERAS IN ITS OWN CHAPTER IN THIS BOOK?

The answer is straightforward: this book introduces TensorFlow 2 from the perspective of people who are interested in machine learning. Consequently, Keras is introduced on an “as-needed” topic. For example, Chapter 4 contains a section about Keras in the context of linear regression. Chapter 5 contains a Keras-based code sample in the context of classifiers (specifically for logistic regression). The appendix also contains some Keras-based code samples for advanced topics.

For the same reason, Chapter 5 is devoted to classifiers in machine learning, and the Keras and TF 2 material is discussed in the second half of the chapter. The extent to which this mixture appeals to you depends on your objectives regarding TensorFlow 2 and machine learning.



HOW MUCH KERAS KNOWLEDGE IS NEEDED FOR THIS BOOK?

The answer depends on the extent to which you become involved in machine learning: there are essentially four options available, which are discussed as follows.

Option #1: if you are not interested in Keras, you can skip the last example in Chapter 4 and Chapter 5, as well as the appendix: even so, there is still plenty of TF 2 content in this book.

Option #2: if you only want to learn enough details about Keras to work with linear regression, there is a very simple example in Chapter 4 that follows a “bare bones” section regarding Keras.

Option #3: if you also want to learn about Keras and logistic regression, there is an example in Chapter 5. This example requires some theoretical knowledge involving activation functions, optimizers, and cost functions, all of which are discussed in the first half of Chapter 5.

Option #4: if you want to go even further and also learn about Keras and deep learning, the appendix discusses some of the underpinnings of MLPs, CNNs, RNNs, and LSTMs.

Please keep in mind that Keras is well-integrated into TensorFlow 2 (in the tf.keras namespace), and it provides a layer of abstraction over “pure” TensorFlow that will enable you to develop prototypes more quickly.

If you have never worked with Keras, you’ll probably enjoy the experience, and if need be, you can read some introductory online tutorials in preparation for the Keras-based content in this book. Regardless of your knowledge level, if you decide to skip the Keras-related content for now, eventually you do need to learn Keras in order to fully master TensorFlow 2.



DO I NEED TO LEARN THE THEORY PORTIONS OF THIS BOOK?

Once again, the answer depends on the extent to which you plan to become involved in machine learning. In addition to creating a model, you will use various algorithms to see which ones provide the level of accuracy (or some other metric) that you need for your project. If you fall short, the theoretical aspects of machine learning can help you perform a “forensic” analysis of your model and your data, and ideally assist in determining how to improve your model.

You can acquire a cursory understanding of TensorFlow 2 from the material in this book; delving further into TF 2 depends on your tasks and career goals.



HOW WERE THE CODE SAMPLES CREATED?

The code samples in this book were created and tested using the TensorFlow tf-nightly-2.0-preview (from 4/7/2019) on a MacBook Pro with OS X 10.12.6 (macOS Sierra). Regarding their content: the code samples are derived primarily from the author for his deep learning and TensorFlow graduate course. In some cases there are code samples that incorporate short sections of code from discussions in online forums. The key point to remember is that the code samples follow the “Four Cs”: they must be Clear, Concise, Complete, and Correct to the extent that it’s possible to do so, given the size of this book.



WHAT ARE THE TECHNICAL PREREQUISITES FOR THIS BOOK?

You need some familiarity with Python, and also need to know how to launch Python code from the command line (in a Unix-like environment for Mac users). In addition, a mixture of basic linear algebra (vectors and matrices), probability/statistics (mean, median, standard deviation), and basic concepts in calculus (such as derivatives) will help you learn the material in this book.

Some knowledge of NumPy and Matplotlib is also helpful, and the assumption is that you are familiar with basic functionality (such as NumPy arrays). For example, Chapter 2 contains a code sample that invokes the tf.range() API, which is similar to the NumPy linspace() API; however, the NumPy linspace() API is not explained in the code (so you need to look up the details of this API if it’s unfamiliar). As another example, in Chapter 3 a TF 2 Dataset is described as being analogous to a Pandas DataFrame; however, Pandas APIs are not explained in this book.

One other prerequisite is important for understanding the code samples in the appendix: some familiarity with neural networks, which includes the concept of hidden layers and activation functions (even if you don’t fully understand them). Knowledge of cross entropy is also helpful for some of the code samples.

Also keep in mind that TensorFlow provides a vast assortment of APIs, some of which are discussed in the code samples in the book chapters. While it’s possible for you to “pick up” the purpose of the more intuitive APIs by reading the online documentation, that’s only true for the basic TensorFlow APIs. Consequently, you probably won’t really understand how to “tweak” the values of their parameters and why they are needed until you work with them in TensorFlow code samples. In other words, if you read TensorFlow code samples containing APIs that you do not understand, in many cases it’s not enough to repeatedly read the code samples. 

A more efficient approach is to learn about the purpose of the TensorFlow APIs by reading small code samples that clearly illustrate the purpose of those APIs, after which you can read more complex TensorFlow code samples.



WHAT ARE THE NONTECHNICAL PREREQUISITES FOR THIS BOOK?

Although the answer to this question is more difficult to quantify, it’s very important to have a strong desire to learn TensorFlow and machine learning, along with the motivation and discipline to read and understand the code samples.

Even the non-trivial TensorFlow APIs can be a challenge to understand the first time you encounter them, so be prepared to read the code samples several times. The latter requires persistence when learning TensorFlow, and whether or not you have enough persistence is something that you need to decide for yourself.



WHICH TOPICS ARE EXCLUDED?

The chapters in this book do not cover CNNs (Convolutional Neural Networks), RNNs (Recurrent Neural Networks), or LSTMs (Long Short Term Memory). However, these topics are introduced in the appendix, in a somewhat cursory fashion, which is to say that the appendix is not a substitute for taking a deep learning course.

You will not find in-depth details about TensorFlow layers and estimators (but they are lightly discussed). Keep in mind that online searches on Stackoverflow will often involve solutions employing TF 1.x, whereas solutions for TF 2 will be less common.



HOW DO I SET UP A COMMAND SHELL?

If you are a Mac user, there are three ways to do so. The first method is to use Finder to navigate to Applications > Utilities and then double-click on the Utilities application. Next, if you already have a command shell available, you can launch a new command shell by typing the following command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on a MacBook from a command shell that is already visible simply by clicking command+n in that command shell, and your Mac will launch another command shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.com/), which simulates bash commands, or use another toolkit such as MKS (a commercial product). Please read the online documentation that describes the download and installation process. Note that custom aliases are not automatically set if they are defined in a file other than the main start-up file (such as .bash_login).



COMPANION FILES

All the code samples and figures in this book may be obtained by writing to the publisher at info@merclearning.com.



WHAT ARE THE “NEXT STEPS” AFTER FINISHING THIS BOOK?

The answer to this question varies widely, mainly because the answer depends heavily on your objectives. The best answer is to try out a new tool or technique from the book on a problem or task you care about, professionally or personally. Precisely what that might be depends on who you are, as the needs of a data scientist, manager, student, or developer are all different. In addition, keep what you learned in mind as you tackle new challenges.

If you have reached the limits of what you have learned here and want to get further technical depth regarding TensorFlow, there are various online resources and literature describing more complex features of TensorFlow.





CHAPTER 1

INTRODUCTION TO TENSORFLOW 2



Welcome to TensorFlow 2! This chapter introduces you to various features of TensorFlow 2 (abbreviated as TF 2), as well as some of the TF 2 tools and projects that are covered under the TF 2 “umbrella.” You will see TF 2 code samples that illustrate new TF 2 features (such as tf.GradientTape and the @tf.function decorator), plus an assortment of code samples that illustrate how to write code “the TF 2 way.”

Despite the simplicity of many topics in this chapter, they provide you with a foundation for TF 2. This chapter also prepares you for Chapter 2, which delves into frequently used TF 2 APIs that you will encounter in other chapters of this book.

Keep in mind that the TensorFlow 1.x releases are considered legacy code after the production release of TF 2. Google will provide only security-related updates for TF 1.x (i.e., no new code development) and support TensorFlow 1.x for at least another year beyond the initial production release of TF 2. For your convenience, TensorFlow provides a conversion script to facilitate the automatic conversion of TensorFlow 1.x code to TF 2 code in many cases (details provided later in this chapter).

As you saw in the Preface, this chapter contains several sections regarding TF 1.x, all of which are placed near the end of this chapter. If you do not have TF 1.x code, obviously these sections are optional (and they are labeled as such).

The first part of this chapter briefly discusses some TF 2 features and some of the tools that are included under the TF 2 “umbrella.” The second section of this chapter shows you how to write TF 2 code involving TF constants and TF variables.

The third section digresses a bit: you will learn about the new TF 2 Python function decorator @tf.function that is used in many code samples in this chapter. Although this decorator is not always required, it’s important to become comfortable with this feature, and there are some nonintuitive caveats regarding its use that are discussed in this section.

The fourth section of this chapter shows you how to perform typical arithmetic operations in TF 2, how to use some of the built-in TF 2 functions, and how to calculate trigonometric values. If you need to perform scientific calculations, see the code samples that pertain to the type of precision that you can achieve with floating point numbers in TF 2. This section also shows you how to use for loops and how to calculate exponential values.

The fifth section contains TF 2 code samples involving arrays, such as creating an identity matrix, a constant matrix, a random uniform matrix, and a truncated normal matrix, along with an explanation about the difference between a truncated matrix and a random matrix. This section also shows you how to multiply second-order tensors in TF 2 and how to convert Python arrays to second-order tensors in TF 2. The sixth section contains code samples that illustrate how to use some of the new features of TF 2, such as tf.GradientTape.

Although the TF 2 code samples in this book use Python 3.x, it’s possible to modify the code samples in order to run under Python 2.7. Also make note of the following convention in this book (and only this book): TF 1.x files have a “tf_” prefix and TF 2 files have a “tf2_” prefix.

With all that in mind, the next section discusses a few details of TF 2, its architecture, and some of its features.


WHAT IS TF 2?

TF 2 is an open source framework from Google that is the newest version of TensorFlow. The TF 2 framework is a modern framework that’s well-suited for machine learning and deep learning, and it’s available through an Apache license. Interestingly, TensorFlow surprised many people, perhaps even members of the TF team, in terms of the creativity and plethora of use cases for TF in areas such as art, music, and medicine. For a variety of reasons, the TensorFlow team created TF 2 with the goal of consolidating the TF APIs, eliminating duplication of APIs, enabling rapid prototyping, and making debugging an easier experience.

There is good news if you are a fan of Keras: improvements in TF 2 are partially due to the adoption of Keras as part of the core functionality of TF 2. In fact, TF 2 extends and optimizes Keras so that it can take advantage of all the advanced features in TF 2.

If you work primarily with deep learning models (CNNs, RNNs, LSTMs, and so forth), you’ll probably use some of the classes in the tf.keras namespace, which is the implementation of Keras in TF 2. Moreover, tf.keras.layers provides many standard layers for neural networks. As you’ll see later, there are several ways to define Keras-based models, via the tf.keras.Sequential class, a functional style definition, and via a subclassing technique. Alternatively, you can still use lower-level operations and automatic differentiation if you wish to do so.

Furthermore, TF 2 removes duplicate functionality, provides a more intuitive syntax across APIs, and also compatibility throughout the TF 2 ecosystem. TF 2 even provides a backward compatibility module called tf.compat.v1 (which does not include tf.contrib), and a conversion script tf_upgrade_v2 to help users migrate from TF 1.x to TF 2.

Another significant change in TF 2 is eager execution as the default mode (not deferred execution), with new features such as the @tf.function decorator and TF 2 privacy-related features. Here is a condensed list of some TF 2 features and related technologies:

•	support for tf.keras: a specification for high-level code for ML and DL

•	tensorflow.js v1.0: TF in modern browsers

•	TensorFlow Federated: an open source framework for ML and decentralized data

•	ragged tensors: nested variable-length (“uneven”) lists

•	TensorFlow Probability: probabilistic models combined with deep learning

•	Tensor2Tensor: a library of DL models and datasets

TF 2 also supports a variety of programming languages and hardware platforms, including:

•	Support for Python, Java, C++

•	Desktop, server, mobile device (TF Lite)

•	CPU/GPU/TPU support

•	Linux and Mac OS X support

•	VM for Windows

Navigate to the TF 2 home page, where you will find links to many resources for TF 2: https://www.tensorflow.org


TF 2 Use Cases

TF 2 is designed to solve tasks that arise in a plethora of use cases, some of which are listed here:

•	Image recognition

•	Computer vision

•	Voice/sound recognition

•	Time series analysis

•	Language detection

•	Language translation

•	Text-based processing

•	Handwriting recognition

The preceding list of use cases can be solved in TF 1.x as well as TF 2, and in the latter case, the code tends to be simpler and cleaner compared to its TF 1.x counterpart.


TF 2 Architecture: The Short Version

TF 2 is written in C++ and supports operations involving primitive values and tensors (discussed later). The default execution mode for TF 1.x is deferred execution whereas TF 2 uses eager execution (think “immediate mode”). Although TF 1.4 introduced eager execution, the vast majority of TF 1.x code samples that you will find online use deferred execution.

TF 2 supports arithmetic operations on tensors (i.e., multidimensional arrays with enhancements) as well as conditional logic, “for” loops, and “while” loops. Although it’s possible to switch between eager execution mode and deferred mode in TF 2, all the code samples in this book use eager execution mode. 

Data visualization is handled via TensorBoard (discussed in Chapter 2) that is included as part of TF 2. As you will see in the code samples in this book, TF 2 APIs are available in Python and can therefore be embedded in Python scripts.

So, enough already with the high-level introduction: let’s learn how to install TF 2, which is the topic of the next section.


TF 2 Installation

Install TensorFlow by issuing the following command from the command line:

pip install tensorflow==2.0.0-beta0

When a production release of TF 2 is available, you can issue the following command from the command line (which will be the most current version of TF 2):

pip install --upgrade tensorflow

If you want to install a specific version (let’s say version 1.13.1) of TensorFlow, type the following command:

pip install --upgrade tensorflow==1.13.1

You can also downgrade the installed version of TensorFlow. For example, if you have installed version 1.13.1 and you want to install version 1.10, specify the value 1.10 in the preceding code snippet. TensorFlow will uninstall your current version and install the version that you specified (i.e., 1.10).

As a sanity check, create a Python script with the following three lines of code to determine the version number of TF that is installed on your machine:

import tensorflow as tf

print("TF Version:",tf.__version__)

print("eager execution:",tf.executing_eagerly())

Launch the preceding code and you ought to see something similar to the following output:

TF version: 2.0.0-beta0

eager execution: True

As a simple example of TF 2 code, place this code snippet in a text file:

import tensorflow as tf

print("1 + 2 + 3 + 4 =", tf.reduce_sum([1, 2, 3, 4]))

Launch the preceding code from the command line and you should see the following output:

1 + 2 + 3 + 4 = tf.Tensor(10, shape=(), dtype=int32)


TF 2 and the Python REPL

In case you aren’t already familiar with the Python REPL (read-eval-print-loop), it’s accessible by opening a command shell and then typing the following command:

python

As a simple illustration, access TF 2-related functionality in the REPL by importing the TF 2 library as follows:

>>> import tensorflow as tf

Now check the version of TF 2 that is installed on your machine with this command:

>>> print('TF version:',tf.__version__)

The output of the preceding code snippet is shown here (the number that you see depends on which version of TF 2 that you installed):

TF version: 2.0.0-beta0

Although the REPL is useful for short code blocks, the TF 2 code samples in this book are Python scripts that you can launch with the Python executable.



OTHER TF 2-BASED TOOLKITS

In addition to providing support for TF 2-based code on multiple devices, TF 2 provides the following toolkits:

•	TensorBoard for visualization (included as part of TensorFlow)

•	TensorFlow Serving (hosting on a server)

•	TensorFlow Hub

•	TensorFlow Lite (for mobile applications)

•	Tensorflow.js (for Web pages and NodeJS)

TensorBoard is a graph visualization tool that runs in a browser. Launch TensorBoard from the command line as follows: open a command shell and type the following command to access a saved TF graph in the subdirectory /tmp/abc (or a directory of your choice):

tensorboard –logdir /tmp/abc

Note that there are two consecutive dashes (“-”) that precede the logdir parameter in the preceding command. Now launch a browser session and navigate to this URL: localhost:6006

After a few moments you will see a visualization of the TF 2 graph that was created in your code and then saved in the directory /tmp/abc.

TensorFlow Serving is a cloud-based, flexible, high-performance serving system for ML models that is designed for production environments. TensorFlow Serving makes it easy to deploy new algorithms and experiments, while keeping the same server architecture and APIs. More information is here:

https://www.TF2.org/serving/

TensorFlow Lite was specifically created for mobile development (both Android and iOS). Please keep in mind that TensorFlow Lite supersedes TF 2 Mobile, which was an earlier SDK for developing mobile applications. TensorFlow Lite (which also exists for TF 1.x) supports on-device ML inference with low latency and a small binary size. Moreover, TensorFlow Lite supports hardware acceleration with the Android Neural Networks API. More information about TensorFlow Lite is here:

https://www.tensorflow.org/lite/

A more recent addition is tensorflow.js, which provides JavaScript APIs to access TensorFlow in a Web page. The tensorflow.js toolkit was previously called deeplearning.js. You can also use tensorflow.js with NodeJS. More information about tensorflow.js is here:

https://js.tensorflow.org/

















































































OEBPS/images/9781683924609_img01.jpg
TensorFLow 2.0

Pocket Primer

Oswald Campesato

'//
MERCURY LEARNING AND INFORMATION

ulles, Virginia
Boston, Massachusetts





OEBPS/nav.xhtml


Contents



		Cover


		Title


		Copyright


		Dedication


		Contents


		Preface



		What Is the Goal?


		What Will I Learn from This Book?


		The TF 1.x and TF 2.0 Books: How Are They Different?


		Why Isn’t Keras in Its Own Chapter in This Book?


		How Much Keras Knowledge Is Needed for This Book?


		Do I Need to Learn the Theory Portions of This Book?


		How Were the Code Samples Created


		What Are the Technical Prerequisites for This Book?


		What Are the Nontechnical Prerequisites for This Book?


		Which Topics Are Excluded?


		How Do I Set Up a Command Shell?


		Companion Files


		What Are the “Next Steps” after Finishing This Book?



		Chapter 1: Introduction to TensorFlow 2



		What Is TF 2?



		TF 2 Use Cases


		TF 2 Architecture: The Short Version


		TF 2 Installation


		TF 2 and the Python REPL



		Other TF 2-Based Toolkits


		TF 2 Eager Execution


		TF 2 Tensors, Data Types, and Primitive Types



		TF 2 Data Types


		TF 2 Primitive Types



		Constants in TF 2


		Variables in TF 2


		The tf.rank() API


		The tf.shape() API


		Variables in TF 2 (Revisited)



		TF 2 Variables versus Tensors



		What Is @tf.function in TF 2?



		How Does @tf.function Work?


		A Caveat about @tf.function in TF 2


		The tf.print() Function and Standard Error



		Working with @tf.function in TF 2



		An Example without @tf.function


		An Example with @tf.function


		Overloading Functions with @tf.function


		What Is AutoGraph in TF 2?



		Arithmetic Operations in TF 2


		Caveats for Arithmetic Operations in TF 2


		TF 2 and Built-In Functions


		Calculating Trigonometric Values in TF


		Calculating Exponential Values in TF 2


		Working with Strings in TF 2


		Working with Tensors and Operations in TF 2


		Second-Order Tensors in TF 2 (1)


		Second-Order Tensors in TF 2 (2)


		Multiplying Two Second-Order Tensors in TF


		Convert Python Arrays to TF Tensors



		Conflicting Types in TF 2



		Differentiation and tf.GradientTape in TF 2


		Examples of tf.GradientTape



		Using the watch() Method of tf.GradientTape


		Using Nested Loops with tf.GradientTape


		Other Tensors with tf.GradientTape


		A Persistent Gradient Tape



		Migrating TF 1.x Code to TF 2 Code (optional)



		Two Conversion Techniques from TF 1.x to TF 2



		Converting to Pure TF 2 Functionality



		Converting Sessions to Functions


		Combine tf.data.Dataset and @tf.function


		Use Keras Layers and Models to Manage Variables



		The TensorFlow Upgrade Script (optional)


		Summary



		Chapter 2: Useful TF 2 APIs



		TF 2 Tensor Operations


		Using for Loops in TF 2


		Using while Loops in TF 2


		TF 2 Operations with Random Numbers


		TF 2 Tensors and Maximum Values


		The TF 2 range() API


		Operations with Nodes


		The tf.size(), tf.shape(), and tf.rank() APIs


		The tf.reduce_prod() and tf.reduce_sum() APIs


		The tf.reduce_mean() API


		The tf.random_normal() API (1)


		The TF 2 random_normal() API (2)


		The tf.truncated_normal() API


		The tf.reshape() API


		The tf.range() API


		The tf.equal() API (1)


		The tf.equal() API (2)


		The tf.argmax() API (1)


		The tf.argmax() API (2)


		The tf.argmax() API (3)


		Combining tf.argmax() and tf.equal() APIs


		Combining tf.argmax() and tf.equal() APIs (2)


		The tf.map_fn() API


		What Is a One-Hot Encoding? 


		The TF one_hot() API


		Other Useful TF 2 APIs


		Save and Restore TF 2 Variables


		TensorFlow Ragged Constants and Tensors


		What Is a TFRecord?



		A Simple TFRecord



		What Are tf.layers?


		What Is TensorBoard?



		TF 2 with TensorBoard


		TensorBoard Dashboards


		The tf.summary API



		Google Colaboratory


		Other Cloud Platforms



		Gcp Sdk



		Summary



		Chapter 3: TF2 Datasets



		The TF 2 tf.data.Datasets



		Creating a Pipeline


		Basic Steps for TF 2 Datasets


		A Simple TF 2 tf.data.Dataset



		What Are Lambda Expressions? 


		Working with Generators in TF 2


		What Are Iterators? (optional)



		TF 1.x Iterators (optional)



		Concatenating TF 2 tf.Data.Datasets


		The TF 2 reduce() Operator


		Working with Generators in TF 2


		The TF 2 filter() Operator (1)


		The TF 2 filter() Operator (2)


		The TF 2 batch() Operator (1)


		The TF 2 batch() Operator (2)


		The TF 2 map() Operator (1)


		The TF 2 map() Operator (2)


		The TF 2 flatmap() Operator (1)


		The TF 2 flatmap() Operator (2) 


		The TF 2 flat_map() and filter() Operators


		The TF 2 repeat() Operator


		The TF 2 take() Operator 


		Combining the TF 2 map() and take() Operators


		Combining the TF 2 zip() and batch() Operators


		Combining the TF 2 zip() and take() Operators


		TF 2 tf.data.Datasets and Random Numbers


		TF 2, MNIST, and tf.data.Dataset


		Working with the TFDS Package in TF 2



		The CIFAR10 Dataset and TFDS in TF 2



		Working with tf.estimator



		What Are TF 2 Estimators?



		Other TF 2 Namespaces


		Summary



		Chapter 4: Linear Regression



		What Is Linear Regression? 



		Linear Regression versus Curve-Fitting


		What Is Multivariate Analysis?



		When Are Solutions Exact in Machine Learning?


		Challenges with Linear Regression



		Nonlinear Data


		Nonconstant Variance of Error Terms


		Correlation of Error Terms


		Collinearity


		Outliers and Anomalies



		Other Types of Regression


		Working with Lines in the Plane


		Scatter Plots with NumPy and Matplotlib (1)



		Why the “Perturbation Technique” Is Useful 



		Scatter Plots with NumPy and Matplotlib (2)


		A Quadratic Scatter Plot with NumPy and Matplotlib


		The Mean Squared Error (MSE) Formula



		A List of Error Types


		Nonlinear Least Squares



		What Is Regularization?



		Machine Learning and Feature Scaling


		Data Normalization vs. Standardization



		The Bias-Variance Trade-off


		Metrics for Measuring Models



		Limitations of R-Squared


		Confusion Matrix


		Accuracy vs. Precision vs. Recall



		Other Useful Statistical Terms



		What Is an F1 Score?


		What Is a p-value?



		Working with Datasets



		Training Data Versus Test Data


		What Is Cross-Validation?



		Calculating the MSE Manually


		Simple 2D Data Points in TF 2


		TF2, tf.GradientTape(), and Linear Regression


		Working with Keras



		Working with Keras Namespaces in TF 2


		Working with the tf.keras.layers Namespace


		Working with the tf.keras.activations Namespace


		Working with the tf.keras.datasets Namespace


		Working with the tf.keras.experimental Namespace


		Working with Other tf.keras Namespaces


		TF 2 Keras versus “Standalone” Keras



		Creating a Keras-Based Model


		Keras and Linear Regression


		Working with tf.estimator 


		Summary



		Chapter 5: Working with Classifiers



		What Is Classification?



		What Are Classifiers?


		Common Classifiers



		What Are Linear Classifiers?


		What Is KNN?



		How to Handle a Tie in kNN



		What Are Decision Trees?


		What Are Random Forests?


		What Are SVMS?



		Trade-offs of SVMs



		What Is Bayesian Inference?



		Bayes’s Theorem


		Some Bayesian Terminology


		What Is MAP?


		Why Use Bayes’s Theorem?



		What Is a Bayesian Classifier?



		Types of Naive Bayes Classifiers



		Training Classifiers


		Evaluating Classifiers


		What Are Activation Functions?



		Why Do We Need Activation Functions?


		How Do Activation Functions Work?



		Common Activation Functions



		Activation Functions in Python



		The ReLU and ELU Activation Functions



		The Advantages and Disadvantages of ReLU


		ELU



		Sigmoid, Softmax, and Hardmax Similarities



		Softmax


		Softplus


		Tanh



		Sigmoid, Softmax, and Hardmax Differences


		TF 2 and the Sigmoid Activation Function


		What Is Logistic Regression?



		Setting a Threshold Value


		Logistic Regression: Assumptions


		Linearly Separable Data



		TensorFlow and Logistic Regression


		Keras and Early Stopping (1)


		Keras and Early Stopping (2)


		Keras and Metrics


		Distributed Training in TF 2 (Optional)



		Using tf.distribute.Strategy with Keras



		Summary



		Appendix: TF 2, Keras, and Advanced Topics



		What Is Deep Learning?



		What Are Hyperparameters?


		Deep Learning Architectures


		Problems That Deep Learning Can Solve


		Challenges in Deep Learning



		What Are Perceptrons?



		Definition of the Perceptron Function


		A Detailed View of a Perceptron



		The Anatomy of an Artificial Neural Network (ANN)



		The Model Initialization Hyperparameters


		The Activation Hyperparameter


		The Cost Function Hyperparameter


		The Optimizer Hyperparameter


		The Learning Rate Hyperparameter


		The Dropout Rate Hyperparameter


		What Is Backward Error Propagation?



		What Is a Multilayer Perceptron (MLP)?



		Activation Functions



		How Are Data Points Correctly Classified?


		Keras and the XOR Function


		A High-Level View of CNNs



		A Minimalistic CNN


		The Convolutional Layer (Conv2D)


		The ReLU Activation Function


		The Max Pooling Layer



		CNNs with Audio Signals


		CNNs and NLPs


		Displaying an Image in the MNIST Dataset


		Keras and the MNIST Dataset


		Keras, CNNs, and the MNIST Dataset


		What Is an RNN?



		Anatomy of an RNN


		What Is BPTT?



		Working with RNNs and TF 2


		What Is an LSTM?



		Anatomy of an LSTM


		Bidirectional LSTMs


		LSTM Formulas


		LSTM Hyperparameter Tuning



		What Are GRUs?


		What Are Autoencoders?



		Autoencoders and PCA


		What Are Variational Autoencoders?



		What Are GANs?



		The VAE-GAN Model



		Working with NLP (Natural Language Processing)



		NLP Techniques


		The Transformer Architecture and NLP


		Transformer-XL Architecture


		NLP and Deep Learning


		NLP and Reinforcement Learning


		Data Preprocessing Tasks



		Popular NLP Algorithms



		What Is an n-Gram?


		What Is a Skip-Gram?


		What Is BoW?


		What Is Term Frequency?


		What Is Inverse Document Frequency (idf)?


		What Is tf-idf?



		What Are Word Embeddings?



		ELMo, ULMFit, OpenAI, and BERT



		What Is Translatotron?


		What Is Reinforcement Learning (RL)?



		What Are NFAs?


		What Are Markov Chains?


		Markov Decision Processes (MDPs)



		The Epsilon-Greedy Algorithm


		The Bellman Equation



		Other Important Concepts in RL



		RL Toolkits and Frameworks



		TF-Agents



		What Is Deep Reinforcement Learning (DRL)?


		Miscellaneous Topics



		TFX (TensorFlow Extended)


		TensorFlow Probability 


		TensorFlow Graphics


		TF Privacy



		Summary









OEBPS/images/9781683924609_cover.jpg
TENSORFLOW 2





