
		
			[image: Cover.jpg]
		

	
		
			Django in Production

			Expert tips, strategies, and essential frameworks for writing scalable and maintainable code in Django

			Arghya Saha

			

			[image:]

			Django in Production

			Copyright © 2024 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Rohit Rajkumar

			Publishing Product Manager: Jane Dsouza

			Book Project Manager: Aishwarya Mohan

			Senior Editor: Rashi Dubey

			Technical Editor: K Bimala Singha

			Copy Editor: Safis Editing

			Indexer: Hemangini Bari

			Production Designer: Alishon Mendonca

			DevRel Marketing Coordinators: Nivedita Pandey and Anamika Singh

			First published: April 2024

			Production reference: 1070324

			Published by Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB, UK

			ISBN 978-1-80461-048-0

			www.packtpub.com

			To my “Maa,” Anima Saha, and to the memory of my “Baba,” for their constant support in helping me reach where I am today. To my partner, Parul, for being a constant inspiration and motivation.

			– Arghya Saha

			Contributors

			About the author

			Arghya (argo) Saha, is a software developer with 8+ years of experience and has been working with Django since 2015. Apart from Django, he is proficient in JavaScript, ReactJS, Node.js, Postgres, AWS, and several other technologies. He has worked with multiple start-ups, such as Postman and HealthifyMe, among others, to build applications at scale. He currently works at Abnormal Security as a senior Site Reliability Engineer to explore his passion in the infrastructure domain.

			In his spare time, he writes tech blogs. He is also an adventurous person who has done multiple Himalayan treks and is an endurance athlete with multiple marathons and triathlons under his belt.

			This book is dedicated to my Maa and memories of my Baba. I would like to thank my partner, Parul, and all my friends who supported me throughout this journey. I am grateful to Ganesh, Rahul, and everyone who helped me with my book.

			About the reviewers

			Abdul-Rahman Mustafa Saber Abdul-Aziz is an Egyptian Python backend developer, senior AI instructor, capstone projects lead, and IBM consultant. He graduated from Assiut University in Upper Egypt. He believes that to be great, you must take great responsibility.

			I want to thank my family, my friends, and my future wife, who I haven’t met yet. I love you so much. I want to thank my father once again; everything I am now is thanks to him. This is the second time that my name has appeared on the Contributors’ list of a book. I want to thank Dr. Rania Hafez, Dr. Huda Goda, Dr. Abdul-Rahman Eliwa, and Mr. Ehab, who always pushed me toward progress, and my close friends, Muhammad Adly, Ahmed Fouad, and many others. Thank you all for everything you gave me; you are my family.

			Ruben Atinho, a software engineer specializing in backend engineering, explores the vast realms of technology. Proficient in Python, Django, and PostgreSQL, and experienced with Golang, he combines technical expertise with a passion for reading open source code. Beyond the code base, Ruben finds fulfillment in the harmonies of music, insightful articles, captivating books, and the imaginative narratives of anime.

			Md Enamul Hasan is a seasoned full stack Python developer with over a decade of professional experience in software and web application development. Based in New York, United States, Enamul is renowned for his expertise in Python, Django, React, and AWS. He has successfully led the development of various software products, including ERP, e-commerce, and data-driven applications.

			In addition to his technical proficiency, Enamul has excelled in leadership roles, contributing significantly to project success. He actively shares his knowledge, participating in forums and conferences and showcasing a passion for problem-solving in the ever-evolving software development landscape.

			Enamul extends gratitude to the author for the opportunity to review Django in Production. His extensive experience in Python Django development adds depth to the review, highlighting the book’s value in bridging theory and practice in the dynamic tech industry.

		

	
		
			Table of Contents

			Preface

			Part 1 – Using Django and DRF to Build Modern Web Application

			1

			Setting Up Django with DRF

			Technical requirements

			Why Django?

			What is available with Django?

			What is the MVT framework?

			Creating a “Hello World” web app with Django and DRF

			Creating our Django hello_world project

			Creating our first app in Django

			Linking app views using urls.py

			Integrating DRF

			Creating RESTful API endpoints with DRF

			Best practices for defining RESTful APIs

			Best practices to create a REST API with DRF

			Working with views using DRF

			Functional views

			Class-based views

			Introducing API development tools

			Summary

			2

			Exploring Django ORM, Models, and Migrations

			Technical requirements

			Setting up PostgreSQL with a Django project

			Creating a PostgreSQL server

			Configuring Django with PostgreSQL

			Using models and Django ORM

			Adding Django models

			Basic ORM concepts

			How to get raw queries from ORM

			Normalization using Django ORM

			Exploring on_delete options

			Using model inheritance

			Understanding the crux of Django migrations

			Demystifying migration management commands

			Performing database migrations like a pro

			Exploring best practices for working with models and ORM

			Use base models

			Use timezone.now() for any DateTime-related data

			How to avoid circular dependency in models

			Define __str__ for all models

			Use custom model methods

			Keep the default primary key

			Use transactions

			Avoid generic foreign keys

			Use finite state machines (FSMs)

			Break the model into packages

			Learning about performance optimization

			Demystifying performance using explain and analyze

			Using index

			Using Django ORM like a pro

			Database connection configuration

			Exploring Django Async ORM

			Summary

			3

			Serializing Data with DRF

			Technical requirements

			Understanding the basics of DRF Serializers

			Using Model Serializers

			Creating a new model object

			Updating existing model Objects

			Retrieving data from the Model object instance

			Exploring the Meta class

			Implementing Serializer relations

			Working with nested Serializers

			Exploring source

			Exploring SerializerMethodField

			Validating data with serializers

			Customizing field-level validation

			Defining a custom field-level validator

			Performing object-level validation

			Defining custom object-level validators

			The order of the evaluation of validators

			Remove default validators from the DRF Serializer class

			Mastering DRF Serializers

			Using source

			Embracing SerializerMethodField

			Using validators

			Using to_internal_value

			Using to_representation

			Use a context argument to pass information

			Customizing fields

			Passing a custom QuerySet to PrimaryKeyField

			Building DynamicFieldsSerializer

			Avoiding the N+1 query problem

			Using Serializers with DRF views

			Working with generic views

			Filtering with SearchFilter and OrderingFilter

			Summary

			4

			Exploring Django Admin and Management Commands

			Technical requirements

			Exploring Django Admin

			Creating a superuser in Django

			Understanding the Django Admin interface

			Customizing Django Admin

			Adding custom fields

			Using filter_horizontal

			Using get_queryset

			Using third-party packages and themes

			Using Django Admin logs

			Optimizing Django Admin for production

			Renaming admin URLs

			Using two-factor authentication (2FA) for admin users

			Using Custom Admin Paginator

			Disabling ForeignKey drop-down options

			Using list_select_related

			Overriding get_queryset for performance

			Adding django-json-widget

			Using custom actions

			Using permissions for Django Admin

			Creating custom management commands

			Summary

			5

			Mastering Django Authentication and Authorization

			Technical requirements

			Learning the basics of Django authentication

			Customizing the User model

			Using a OneToOneField relationship with the User model

			Using Django permissions and groups

			Using permissions and groups in Django Admin

			Creating custom permissions

			Using Django permissions and groups for an API

			Caveats of using permissions

			Using DRF token-based authentication

			Integrating token-based authentication into DRF

			Adding DRF token-based authentication to a Django project

			Understanding the limitations of token-based authentication of DRF

			Learning about third-party token-based authentication packages

			Integrating social login into Django and DRF

			Summary

			Part 2 – Using the Advanced Concepts of Django

			6

			Caching, Logging, and Throttling

			Technical requirements

			Caching with Django

			Using django-cacheops

			Best practices for caching in production

			Throttling with Django

			Best practices for throttling in production

			Logging with Django

			Setting up logging

			Best practices for logging in production

			Summary

			7

			Using Pagination, Django Signals, and Custom Middleware

			Technical requirements

			Paginating responses in Django and DRF

			Understanding pagination

			Using pagination in DRF

			Demystifying Django signals

			Creating custom signals

			Working with signals in production

			Working with Django middleware

			Creating custom middleware

			Summary

			8

			Using Celery with Django

			Technical requirements

			Asynchronous programming in Django

			Using Celery with Django

			Integrating Celery and Django

			Interfaces of Celery

			Best practices for using Celery

			Using celery beat with Django

			Summary

			9

			Writing Tests in Django

			Technical requirements

			Introducing the different types of tests in software development

			Unit testing

			Integration testing

			E2E testing

			Setting up tests for Django and DRF

			Structuring and naming our test cases

			Setting up a database for tests

			Writing basic tests in DRF

			Writing tests for advanced use cases

			Using Django runners

			Learning best practices to write tests

			Using unit tests more often

			Avoiding time bomb test failures

			Avoiding brittle tests

			Using a reverse function for URL path in tests

			Using authentication tests

			Using test tags to group tests

			Using Postman to create an integration test suite

			Creating different types of tests

			Avoiding tests

			Exploring Test-Driven Development

			Summary

			10

			Exploring Conventions in Django

			Technical requirements

			Code structuring for Django projects

			Creating files as per functionalities

			Avoiding circular dependencies

			Creating a “common” app

			Working with a settings file for production

			Working with exceptions and errors

			Using feature flags

			Configuring Django for production

			Setting up CORS

			Exploring WSGI

			Summary

			Part 3 – Dockerizing and Setting Up a CI Pipeline for Django Application

			11

			Dockerizing Django Applications

			Technical requirements

			Learning the basics of Docker

			Installing Docker

			Testing Docker on your local system

			Important commands for Docker

			Working with the requirements.txt file

			Creating a Dockerfile for a Django project

			Composing services using docker-compose.yaml

			Creating a .env file

			Accessing environment variables in Django

			Starting a Django application using Docker

			Summary

			12

			Working with Git and CI Pipelines Using Django

			Technical requirements

			Using Git efficiently

			Branching strategy for Git

			Following good practices while using git commit

			Tools with Git

			Integrating Git hooks into a Django project

			Using lefthook

			Using git merge versus git rebase

			Performing code release

			Performing hot-fixing on code

			Working with GitHub and GitHub Actions

			Working with GitHub Actions for the CI pipeline

			Setting up a CI pipeline for Django using GitHub Actions

			Recommended GitHub Actions resources

			Setting up code review guidelines

			Context and description

			Short code changes to review

			Review when the code is ready

			Good code reviewer

			Summary

			Part 4 – Deploying and Monitoring Django Applications in Production

			13

			Deploying Django in AWS

			Technical requirements

			Learning the basics of AWS

			Creating an account in AWS

			Identity and Access Management

			EC2

			Elastic Load Balancer (ELB)

			Elastic Beanstalk

			RDS for Postgres

			ElastiCache for Redis

			Security groups and network components

			AWS Secrets Manager

			Route 53

			The AWS Billing console

			CloudWatch

			Integrating AWS Elastic Beanstalk to deploy Django

			Integrating Beanstalk with a basic Django app

			Deploying a Django application using GitHub Actions in Elastic Beanstalk

			Following the best practices for the AWS infrastructure

			Best practices for RDS

			Best practices for ElastiCache

			Best practices for Elastic Beanstalk

			Best practices for IAM and security

			Summary

			14

			Monitoring Django Application

			Technical requirements

			Integrating error monitoring tools

			Integrating Rollbar into a Django project

			Integrating Rollbar with Slack

			Best practices while working with error monitoring tools

			Integrating uptime monitoring

			Adding a health check endpoint

			Using BetterStack for uptime monitoring

			Integrating APM tools

			Integrating New Relic into the Django project

			Exploring the New Relic dashboard

			Creating New Relic alert conditions

			Monitoring AWS EC2 instances with New Relic

			Sending logs from Django to New Relic

			Working with metrics and events using NRQL

			Integrating messaging tools using Slack

			Handling production incidents better

			Blameless RCA for incidents

			Summary

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			Hey there! As the name suggests, Django in Production is a book to help developers put their application code into production. In today’s world, coding has become a profession that people get into after joining a 3–6 month boot camp. With the start-up boom, most of these developers are able to land a job after their boot camp course, since they are able to write code and hack any product together. However, a couple of months into the job, they want to learn about the best practices and understand all the aspects that senior developers in the industry know and perform, but most start-ups don’t have many senior developers due to budget and talent scarcity. This book is going to give them a too long; didn’t read (TLDR) version of software development best practices, which they need to know to get to the next level.

			Who this book is for

			This book is for any software developer who understands the basic concepts of Django but now needs some help putting their code to production using the right tools, or someone who does not have enough guidance to know how to do the work the right way. We are assuming you have a basic understanding of how to write code in Django and now want to improve your skills.

			What this book covers

			Chapter 1, Setting Up Django with DRF, covers the basic project setup of Django and Django Rest Framework (DRF). It will also help you to understand the fundamentals of APIs and how to design a REST API.

			Chapter 2, Exploring Django ORM, Models, and Migrations, covers how to integrate Django with a database. Django ORM and migrations are powerful features; we learn about the core concepts and how to use them efficiently in this chapter.

			Chapter 3, Serializing Data with DRF, explores the concept of serialization and how developers can use DRF serializers to write better application code.

			Chapter 4, Exploring Django Admin and Management Commands, covers the core concepts of Django admin. This chapter covers all the best practices on how to use Django admin and create custom Django management commands.

			Chapter 5, Mastering Django Authentication and Authorization, covers the key concepts of authentication and authorization. Django provides authentication and authorization out of the box, and we will explain in detail how developers can use the built-in features of Django and DRF for authentication.

			Chapter 6, Caching, Logging, and Throttling, covers all the concepts of caching and how to integrate Redis with Django for caching. Logging is a crucial component of any web application in production and, in this chapter, we will learn how to integrate logging into a Django application.

			Chapter 7, Using Pagination, Django Signals, and Custom Middleware, covers all the advanced concepts of Django. Developers can use Django signals to write decoupled code. Django also gives the flexibility to create custom middleware that can help developers to improve features.

			Chapter 8, Using Celery with Django, shows how to process asynchronous tasks for web applications. In this chapter, developers will get an understanding of how to integrate Celery into a Django project.

			Chapter 9, Writing Tests in Django, covers the core concepts of writing test cases for Django. In this chapter, you will learn the best practices to follow while writing test cases and understand the importance of writing test cases for a project.

			Chapter 10, Exploring Conventions in Django, shows all the best practices and conventions that are used while working with Django. This chapter covers a lot of concepts that are opinionated, and you are expected to read this chapter as an outline and pick/learn about concepts by using your own judgment.

			Chapter 11, Dockerizing Django Applications, covers how to integrate Docker with a Django application.

			Chapter 12, Working with Git and CI Pipelines Using Django, covers the concepts of version control and how to efficiently use Git in a Django project. In this chapter, you will learn how to integrate GitHub Actions to create a CI pipeline.

			Chapter 13, Deploying Django in AWS, covers how to deploy Django applications in production using different AWS services. In this chapter, you will learn how to deploy and scale the Django application in production.

			Chapter 14, Monitoring Django Applications, covers how to monitor Django applications in production. There are different types of monitoring needed in production, such as error monitoring, application performance monitoring, uptime monitoring, and so on. In this chapter, you will learn how to integrate different tools available on the market to monitor Django applications.

			To get the most out of this book

			You will need to have a basic understanding of Django and should be comfortable in writing basic Django application code. In this book, we will learn about many of the core concepts of Django and you need to be able to follow those code examples. We will introduce a lot of third-party tools/platforms that may be paid/free, and you are expected to create an account on these platforms and integrate them into the Django project.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							Python 3.10 and above

						
							
							Windows, macOS, or Linux

						
					

					
							
							Django 4.x, Django 5.0 and above

						
							
					

					
							
							Python packages such as celery, django-fsm, factory-boy, freezetime, django-json-widget, rest_framework

						
							
					

					
							
							Docker

						
							
					

					
							
							Amazon Web Services (AWS), ElephantSQL, Neon (https://neon.tech), Redis

						
							
					

					
							
							Tools such as Rollbar, NewRelic, Better Uptime.

						
							
					

				
			

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Django-in-Production. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Since we have specified the DemoViewVersion class, this view would only allow the v1, v2, and v3 versions in the URL path; any other version in the path would get a 404 response.”

			A block of code is set as follows:

			
urlpatterns = [
 ...
 path('apiview-class/', views.DemoAPIView.as_view())
]
			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
urlpatterns = [
 path('hello-world/', views.hello_world),
 path('demo-version/', views.demo_version),
 path('custom-version/', views.DemoView.as_view()),
 path('another-custom-version/', views.AnotherView.as_view())
]
			Any command-line input or output is written as follows:

			
celery –-app=config beat -–loglevel=INFO
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Click on the Create New Instance button.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Django in Production, we’d love to hear your thoughts! Please visit https://packt.link/r/1804610488 for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below[image:]

			

			

			https://packt.link/free-ebook/9781804610480

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

		
			
			

		

		
			
			

		

	

		
			Part 1 – Using Django and DRF to Build Modern Web Application

			In the first part of the book, we will get an overview of how to use Django and Django Rest Framework (DRF) to create a modern web application. We can expect to learn all the concepts related to Django ORM and DRF serializers, which are crucial to building any modern web application. Django Admin and Authentication are one of the most widely appreciated features of Django. We will learn all the best practices that a developer should know about before using Django and DRF in production.

			This part has the following chapters:

			
					Chapter 1, Setting Up Django with DRF

					Chapter 2, Exploring Django ORM, Models, and Migrations

					Chapter 3, Serializing Data with DRF

					Chapter 4, Exploring Django Admin and Management Commands

					Chapter 5, Mastering Django Authentication and Authorization

			

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

	

		
			1

			Setting Up Django with DRF

			In 2003, the Django project was started by developers Adrian Holovaty and Simon Willison from World Online, a newspaper web operation company, and was open sourced and first released in the summer of 2005. When Django was first built, the world was still using dial-up modem internet connections, mobile devices were still not popular, smartphones didn’t see the daylight, and people would access web pages through their desktops and laptops. Django was the perfect framework that had all the features needed to build a web application for that age.

			Over the last two decades, technology has evolved drastically:

			
					We have moved from dial-up internet connections to 4G/5G internet connections

					55% of the world’s internet traffic came from mobile devices in 2022 (https://radar.cloudflare.com/)

			

			In this book, we shall see how to build a modern web application using Django and deep dive into the core concepts that a developer should know to create a scalable web application for startups. A developer building a product for a startup is expected to be more than just a regular developer writing code in Django; they are expected to develop their code, write tests for the business logic, deploy their applications to the web, and finally keep monitoring the service they have deployed. Here, we will learn how easy it is to develop web applications with Django and the best practices that developers in the industry follow, especially in startups, to make their development cycle easier and faster.

			In this first chapter, we shall learn the basics of Django and how to set up a Django project and structure the project folders. Since we shall mostly work with RESTful APIs throughout this book, we will learn about the conventions of the REST API and the crux of setting up a Django project with Django Rest Framework (DRF) for creating RESTful APIs. We shall also focus on versioning APIs and how we can implement versioning using DRF. DRF gives us the flexibility to create both functional and class-based views; we shall learn about them in this chapter, along with their pros and cons.

			We will cover the following topics:

			
					Why Django?

					Creating a “Hello World” web app using Django and DRF

					Creating RESTful endpoints with DRF

					Working with views using DRF

					Introducing API development tools

			

			Technical requirements

			In this chapter, we shall do the basic project setup and also write our first Hello World app. Though this book is for developers who already know how to write a basic web application, anyone with decent programming skills can pick up this book and learn how to create a scalable Django web application. The following are the skill sets that you should possess to follow this chapter:

			
					Good Python programming knowledge and familiarity with packages and writing loops, conditional statements, functions, and classes in Python.

					A basic understanding of how web applications work and have written some form of API or web app before.

					Even though we shall try to cover most of the concepts from scratch, having basic knowledge of Django would be great. The Django Girls tutorial is a good resource to learn the basics: https://tutorial.djangogirls.org/en/.

			

			You can find the code for this chapter in this book’s GitHub repository: https://github.com/PacktPublishing/Django-in-Production/tree/main/Chapter01.

			Important note

			If you have any doubts about any of the topics mentioned in this or other chapters, feel free to create GitHub issues that specify all the relevant information (https://github.com/PacktPublishing/Django-in-Production/issues) or join our Django in Production Discord channel and ask us. Here is the invite link for the Discord server, where you can reach me directly: https://discord.gg/FCrGUfmDyP.

			Why Django?

			Django is a web framework based around Python, one of the most popular and easy-to-learn coding languages out there. Since Python is the go-to language for data science and artificial intelligence/machine learning, developers can easily learn Django without having to learn an additional language for building web applications.

			Django’s tagline, “Django – The web framework for perfectionists with deadlines,” proves its commitment to faster and more efficient development, further emphasized by its batteries-included principle that all the basic and widely used functionalities come out of the box with the framework rather than us having to install additional packages. This gives Django an additional advantage over other frameworks, such as Flask.

			What is available with Django?

			Django has evolved in the last decade and is currently in version 5.x, which has some promising new features, such as asynchronous support. However, the core modules of Django are still the same, with the same principles. When a new developer wants to learn Django, an organization wants to pick Django for their new project, or a startup with limited resources is looking to pick the perfect framework for their tech stack, they want to know why they should learn about Django. To answer this question, we shall learn more about the features of Django.

			Let’s look at the salient features of Django that the framework provides out of the box:

			
					In any organization, speed of execution is very important for the success of a product. Django was designed to help developers take applications from the concept phase to the product phase at blazing speed.

					Django takes care of user authentication, content administration, site maps, RSS feeds, and many more fundamental web tasks that developers look for in any framework.

					Security is a serious concern for any organization and Django helps developers avoid common security pitfalls.

					Websites such as Mozilla, Instagram, Disqus, and Pinterest all are built using Django, which makes Django a battle-tested framework that scales.

					Django’s versatile framework can be used for different purposes, from content management systems to social networks to scientific computing platforms.

			

			But the question of Django still being relevant is very subjective. Ultimately, it depends upon the use case. We know Django is a good web development framework, however, because more than 55% of the world’s internet traffic comes from mobile devices using Android or IOS apps, you may be wondering whether Django is relevant for building features for mobile users? Django as a standalone framework might not be sufficient for today’s modern web development where more and more organizations are moving towards API first development, but when integrated with frameworks like Django Rest Framework (DRF), Tastypie, etc, Django becomes the go-to framework for developers.

			For start-ups with limited time and resources, it becomes even more crucial to choose a framework where they don’t have to build every feature from the ground up, but rather leverage the framework to do most of the heavy lifting.

			Let’s quickly look a little more at the framework principle that Django uses: the MVT framework.

			What is the MVT framework?

			Most of us have heard of MVC frameworks (Model-View-Controller), which represent a paradigm of modern web frameworks where we have the following:

			
					Model represents the data and business logic layer

					View represents how the data is presented to the user in the UI/design layout

					Controller updates the model and/or view based on the user’s input

			

			Django considers the standard names debatable, hence why it has its own interpretation of MVC. Here, we have the following:

			
					View represents which data is shown to the end user and not how the data is represented

					Template represents how the data is represented to the end user

					Model represents the data layer

			

			That’s why Django follows the MVT framework (Model-View-Template). But now, the question is, what is the controller in Django? The framework itself is the controller since it handles the whole routing logic using its built-in features.

			Important note

			You don’t need to deep dive into MVT concepts since this concept becomes muscle memory as you write more code in Django.

			MVT is a concept where we use templates, but in today’s world, most of the products are built for multiple domains such as mobile, IoT, and SaaS platforms. To build products for all these domains, the developer ecosystem has also evolved; now, organizations are moving toward an API-first development approach (https://blog.postman.com/what-is-an-api-first-company/). This means that APIs are “first-class citizens”; every feature in the product is built with an API-first model, which helps in creating a better client (mobile apps, frontend applications, and so on) and server integration. It involves establishing a contract between the client and the server so that each team can work in parallel without much dependency. Once both teams finish their work, the integration and development cycle of a product becomes much faster with a better developer experience.

			The growing use case of mobile device means it is important to build platform-agnostic backend APIs that can be consumed by any client, Android app, iOS app, browser frameworks, and so on. Is Django, as an individual MVT framework, able to serve all these needs? No. The amount of additional effort required to use the out-of-the-box features of Django for creating APIs is similar to reinventing the wheel. That’s why most organizations use Django’s REST framework, along with Django, to create APIs.

			Important note

			In this book, instead of focusing on templates and standalone web applications built with Django, we shall focus on creating APIs using Django with DRF. For information on getting started with just Django, one of my favorite resources is the Django Girls tutorial: https://tutorial.djangogirls.org/en/.

			Now that we have seen what the MVT framework is and how Django is an MVT framework, let’s create a basic Hello World web application using Django and set up our project structure and development environment.

			Creating a “Hello World” web app with Django and DRF

			As mentioned previously, Django is a Python-based web framework, so we need to write the code using the Python programming language. If you are already using Linux or macOS-based systems, then Python comes preinstalled. However, for Windows systems, you have to install it by following the instructions on the official Python website: https://www.python.org/downloads/.

			We shall also use virtualenv as our preferred tool to manage different environments for multiple projects, allowing us to create isolated Python environments.

			Important note

			We are not going to deep dive into virtualenv since we expect you to know how and why we use virtualenv for different projects. You can find details about virtualenv on its official website: https://virtualenv.pypa.io/en/latest/index.html.

			First, let’s create a virtual environment with the latest Python version (preferably >3.12.0). The following commands will work for Linux/Unix/macOS; for Windows, please check the next section:

			
pip install virtualenv
virtualenv -p python3 v_env
source /path to v_env/v_env/bin/activate
			Now, we will break down what the code means:

			
					pip install virtualenv installs virtualenv on the system. pip is the built-in package manager that comes with Python and is already preinstalled on Mac and most Linux environments.

					virtualenv -p python3 v_env creates a new virtual environment with the name v_env (this is just the name we have given to our virtual environment; you can give another relevant name). The -p python3 flag is used to tell us which interpreter should be used to create the virtual environment.

					source /path to v_env/v_env/bin/activate executes the activate script, which loads the virtual Python interpreter as our default Python interpreter in the shell.

			

			Now that the Python virtual environment has been set up, we shall focus on managing the package dependency. To install the latest release of Django, run the following command:

			
pip install Django==5.0.2
			For Windows systems, download Python 3.12 or higher from https://www.python.org/downloads/windows/ and install it by following the wizard. Remember to click the Add python.exe to PATH checkbox in the installation step.

			To verify your Python installation, use the following command in the terminal:

			
C:\Users\argo\> python --version
Python 3.12.0
			Once Python has been installed successfully, you can use the following command to set up a virtual environment and install Django:

			
py -m pip install --user virtualenv
py -m venv venv
.\<path to venv created>\venv\Scripts\activate
// to install Django
pip install Django==5.0.2
			The explanation for the Windows-specific commands is the same as what we explained for Linux/MacOS systems.

			Important note

			We are not using poetry, PDM, pipenv, or any other dependency and package management tools to avoid overcomplicating the initial setup.

			Furthermore, we prefer to use a Docker environment to create more isolation and provide a better developer experience. We shall learn more about Docker in Chapter 10.

			With the previous command, our local Python and Django development environments are ready. Now, it’s time to create our basic Django project.

			Creating our Django hello_world project

			We all love the django-admin command and all the boilerplate code it gives us when we create a new project or application. However, when working on a larger project, the default project structure is not so helpful. This is because when we work with Django in production, we have many other moving parts that need to be incorporated into the project. Project structure and other utilities that are used with a project are always opinionated; what might work for you in your current project might not work in the next project you create a year down the line.

			Important note

			There are plenty of resources available on the internet that will suggest different project structures. One of my favorites is django-cookiecutter. It gives you a lot of tools integrated into the project and gives you a structure that you can follow, but it can be daunting for any new beginner to start since it integrates a lot of third-party tools that you might not use, along with a few configurations that you might not understand. But instead of worrying about that, you can just follow along with this book!

			We shall create our own minimalistic project structure and have other tools integrated with our project in incremental steps. First, let’s create our hello_world project with Django:

			
mkdir hello_world && cd hello_world
mkdir backend && cd backend
django-admin startproject config .
			Here, we have created our project folder, hello_world, and then created a subfolder called backend inside of it. We are using the backend folder to keep all the Django-related code; we shall create more folders at the same level as the backend subfolder as we learn more about the CI/CD features and incorporate more tools into the project. Finally, we used the Django management command to create our project.

			Important note

			Note the . (dot), which we have appended to the startproject command; this tells the Django management command to create the project in the current folder rather than create a separate folder config with the project. By default, if you don’t add ., then Django will create an additional folder called config in which the following project structure will be created. For better understanding, you can test the command with and without . to get a clear idea of how it impacts the structure.

			After executing these commands, we should be able to see the project structure shown here:

			
				
					[image: Figure 1.1: Expected project structure after executing the commands]
				

			

			Figure 1.1: Expected project structure after executing the commands

			Now that our project structure is ready, let’s run python manage.py runserver to verify our Django project. We should see the following output in our shell:

			
				
					[image: Figure 1.2: The python manage.py runserver command’s output in the shell]
				

			

			Figure 1.2: The python manage.py runserver command’s output in the shell

			Please ignore the unapplied migrations warning stating You have 18 unapplied migrations(s) displayed in red in the console; we shall discuss this in detail in the next chapter when we learn more about the database, models, and migrations.

			Now, go to your browser and open http://localhost:8000 or http://127.0.0.1:8000 (if the former fails to load). We shall see the following screen as shown in Figure 1.3, which verifies

			 that our server is running successfully:

			Please note

			You can use http://localhost:8000 or http://127.0.0.1:8000 to open the Django project in your browser. If you face any error for http://localhost:8000, then please try using http://127.0.0.1:8000 for all the URLs mentioned in this book.

			
				
					[image: Figure 1.3: Our Django server running successfully with port 8000]
				

			

			Figure 1.3: Our Django server running successfully with port 8000

			Now, let’s create our first hello_world view. To do this, follow these steps:

			
					Open the config/urls.py file.

					Add a new view function in hello_world.

					Link the hello_world view function to the hello-world path.Our config/urls.py file should look like the following code snippet:

from django.contrib import admin
from django.http import HttpResponse
from django.urls import path
def hello_world(request):
 return HttpResponse('hello world')
urlpatterns = [
 path('admin/', admin.site.urls),
 path('hello-world/', hello_world)
]

					Open http://127.0.0.1:8000/hello-world/ to get the result shown in Figure 1.4:

			

			
				
					[image: Figure 1.4: http://127.0.0.1:8000/hello-world/ browser response]
				

			

			Figure 1.4: http://127.0.0.1:8000/hello-world/ browser response

			So far, we have seen how to create the project folder structure and create our first view in Django. The example we have used is one of the smallest Django project examples that doesn’t involve an app. So, let’s see how we can create apps in Django that can help us manage our project better.

			Creating our first app in Django

			A Django app can be considered a small package performing one individual functionality in a large project. Django provides management commands to create a new app in a project; these are built-in commands that are used to perform repetitive and complex tasks. The Django community loves management commands since they take away a lot of manual effort and encapsulate a lot of complicated tasks, such as migrations and more. We shall learn more about Django management commands in the following chapters, where we will create a custom management command. However, whenever you see a command followed by manage.py, that is a Django management command.

			So, let’s create a new demo_app using the Django management command interface:

			
python manage.py startapp demo_app
			Running this command will create the folder structure shown here:

			
				
					[image: Figure 1.5: Project structure with demo_app added]
				

			

			Figure 1.5: Project structure with demo_app added

			We can see that a demo_app folder has been created that contains the boilerplate code generated by Django for a new app.

			Important note

			One important step we must do whenever we create a new app is to tell Django about the new app. Unfortunately, this doesn’t happen automatically when you create a new app using the Django management command. It is a manual process where you need to add the details of the new app in the INSTALLED_APPS list in the settings.py file. Django uses this to identify all the dependency apps added to the project and check for any database-related changes or even register for signals and receivers.

			Though adding a new app to the INSTALLED_APPS list is not required for us currently, since we are not using models for Django to automatically identify any database-related changes, it is still good practice to do so. Our INSTALLED_APPS list should look like this:

			
INSTALLED_APPS = [
 ...
 'django.contrib.staticfiles',
 'demo_app',
]
			Remember to put a comma (,) after every entry of a new app; this is one of the most common mistakes developers make and it causes Django to append two app names into one and generate a syntax error before finally correcting it.

			Important note

			In Django, third-party app integrations are also done via INSTALLED_APPS, so we shall see best practices around how to maintain INSTALLED_APPS in the following sections.

			Now that we have created a new Django app with the boilerplate code, we can link the app view with urls.py.

			Linking app views using urls.py

			In this section, we shall link views.py, which was created by the Django management command. views.py is used to add business logic to the application endpoints. Just like we added the hello_world functional view in the previous section, we can add different functional or class-based views in the views.py file.

			Let’s create a simple hello_world functional view in our demo_app/views.py file:

			
from django.http import HttpResponse
def hello_world(request, *args, **kwargs):
 return HttpResponse('hello world')
			As our project grows and the number of apps increases, our main urls.py file will become more and more cluttered, with hundreds of URL patterns in a single file. So, it is favorable to break down the main config/urls.py file into smaller urls.py files for each app, which improves the maintainability of the project.

			Now, we will create a new file called backend/demo_app/urls.py where we shall add all the routes related to demo_app. Subsequently, when we add more apps to the project, we shall create individual urls.py files for each app.

			Important note

			The urls.py filename can be anything, but we are keeping this as-is to be consistent with the Django convention.

			Add the following code inside the backend/demo_app/urls.py file:

			
from django.urls import path
from demo_app import views
urlpatterns = [
 path('hello-world/', views.hello_world)
]
			Here, we are defining the URL pattern for the hello-world path, which links to the basic functional view we created earlier.

			Opinionated note

			We are using absolute import to import our demo_app views. This is a convention we shall follow throughout this book and we also recommend it for other projects. The advantage of using absolute import over relative import is that it is straightforward and clear to read. With just a glance, someone can easily tell what resource has been imported. Also, PEP-8 explicitly recommends using absolute imports.

			Now, let’s connect the demo_app/urls.py file to the main project config/urls.py file:

			
from django.contrib import admin
from django.urls import include
from django.urls import path
urlpatterns = [
 path('admin/', admin.site.urls),
 path('demo-app/', include('demo_app.urls'))
]
			Next, open http://127.0.0.1:8000/demo-app/hello-world/ in your browser to make sure our demo-app view is linked with Django. You should be able to see hello world displayed on the screen, just as we saw earlier in Figure 1.4.

			So far, we have worked with plain vanilla Django, but now, we’ll see how we can integrate DRF into our project.

			Integrating DRF

			In the API-first world of development, where developers create APIs day in, day out for every feature they build, DRF is a powerful and flexible toolkit for building APIs using Django.

			Important note

			If you are not familiar with the basics of DRF, we will be going through the basics in this book. However, you can find more information here: https://www.django-rest-framework.org/tutorial/quickstart/.

			Now, let’s integrate DRF into our hello_world project. First, we need to install DRF in the virtual environment:

			
pip install djangorestframework
			Now, go to settings.py and add rest_framework to INSTALLED_APPS. As you may recall, when we were integrating demo_app into the project, we mentioned that as the project grows, the INSTALLED_APPS list will also grow. To manage this better, we shall split our INSTALLED_APPS list into three sections:

			
					DJANGO_APPS: This will contain a list of all the default Django apps and any new Django built-in apps we shall add to the project

					THIRD_PARTY_APPS: Here, we shall maintain all the third-party apps we are integrating into the project, such as rest_framework

					CUSTOM_APPS: We shall add all the apps we are creating for the project to this list – in our case, demo_app

			

			Here is an example of how your INSTALLED_APPS list will look in the settings.py file:

			
DJANGO_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
]
THIRD_PARTY_APPS = [
 'rest_framework',
]
CUSTOM_APPS = [
 'demo_app',
]
INSTALLED_APPS = DJANGO_APPS + CUSTOM_APPS + THIRD_PARTY_APPS
			So far, we have been using Django HttpResponse. Now, we shall integrate the DRF response into our view. So, go to the demo_app/views.py file and add the following code:

			
from rest_framework.decorators import api_view
from rest_framework.response import Response
@api_view(['GET'])
def hello_world_drf(request, *args, **kwargs):
 return Response(data={'msg':'hello world'})
			The integration of the DRF function-based view will change the UI completely for our endpoint. If you open http://127.0.0.1:8000/demo-app/hello-world-drf/, it will have a much more verbose UI, giving us a lot more information than before. This is particularly helpful when we start working with HTTP requests other than GET requests.

			Here is our basic Django project integrated with DRF:

			
				
					[image: Figure 1.6: Using the DRF response in our hello-world-drf view]
				

			

			Figure 1.6: Using the DRF response in our hello-world-drf view

			Now that we have a working project in Django, let’s learn some good practices that can help you go the extra mile without making mistakes yourself, rather than learning from the ones you have made earlier. DRF is the most popular Django package as it helps developers create REST endpoints. Now, let’s see what some good practices are for creating REST APIs.

			Creating RESTful API endpoints with DRF

			The most popular and widely used API is the REST API. Throughout this book, we shall be working with the REST API. REST has been around for more than two decades, and every company has its interpretation and implementation. In the following section, we shall try to put all the best practices used in the industry into practice.

			Opinionated note

			The RESTful API is not a protocol; instead, it is a standard convention that developers follow. There is no right or wrong while designing RESTful APIs. Since there is no enforced standard, the details we will provide are purely opinionated and come from my past experiences. You are free to pick the points you like and leave out the things that you feel are not relevant to your implementations.

			Best practices for defining RESTful APIs

			Let’s look at a few generic good practices that developers use in the industry while defining RESTful endpoints:

			
					Using nouns instead of verbs in endpoint paths using appropriate HTTP request methods. Here are some examples (please note that the URL example used here is just an outline of how we should define our REST URLs and that we are not defining the exact code):
				
				
				
				
				
				
			

			
			
			
			
			
			
			
			
			
						
			
			
			
						
						
						
			
			
			
			
			
						
			
			
						
			
			
						
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
						
			
			
			
			
			
			
			
						
						
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/toc.xhtml

		

		Contents

			

						Django in Production

						Contributors

						About the author

						About the reviewers

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Part 1 – Using Django and DRF to Build Modern Web Application

						Chapter 1: Setting Up Django with DRF

					

								Technical requirements

								Why Django?

							

										What is available with Django?

										What is the MVT framework?

							

						

								Creating a “Hello World” web app with Django and DRF

							

										Creating our Django hello_world project

										Creating our first app in Django

										Linking app views using urls.py

										Integrating DRF

							

						

								Creating RESTful API endpoints with DRF

							

										Best practices for defining RESTful APIs

										Best practices to create a REST API with DRF

							

						

								Working with views using DRF

							

										Functional views

										Class-based views

							

						

								Introducing API development tools

								Summary

					

				

						Chapter 2: Exploring Django ORM, Models, and Migrations

					

								Technical requirements

								Setting up PostgreSQL with a Django project

							

										Creating a PostgreSQL server

										Configuring Django with PostgreSQL

							

						

								Using models and Django ORM

							

										Adding Django models

										Basic ORM concepts

										How to get raw queries from ORM

										Normalization using Django ORM

										Exploring on_delete options

										Using model inheritance

							

						

								Understanding the crux of Django migrations

							

										Demystifying migration management commands

										Performing database migrations like a pro

							

						

								Exploring best practices for working with models and ORM

							

										Use base models

										Use timezone.now() for any DateTime-related data

										How to avoid circular dependency in models

										Define __str__ for all models

										Use custom model methods

										Keep the default primary key

										Use transactions

										Avoid generic foreign keys

										Use finite state machines (FSMs)

										Break the model into packages

							

						

								Learning about performance optimization

							

										Demystifying performance using explain and analyze

										Using index

										Using Django ORM like a pro

										Database connection configuration

							

						

								Exploring Django Async ORM

								Summary

					

				

						Chapter 3: Serializing Data with DRF

					

								Technical requirements

								Understanding the basics of DRF Serializers

								Using Model Serializers

							

										Creating a new model object

										Updating existing model Objects

										Retrieving data from the Model object instance

										Exploring the Meta class

							

						

								Implementing Serializer relations

							

										Working with nested Serializers

										Exploring source

										Exploring SerializerMethodField

							

						

								Validating data with serializers

							

										Customizing field-level validation

										Defining a custom field-level validator

										Performing object-level validation

										Defining custom object-level validators

										The order of the evaluation of validators

										Remove default validators from the DRF Serializer class

							

						

								Mastering DRF Serializers

							

										Using source

										Embracing SerializerMethodField

										Using validators

										Using to_internal_value

										Using to_representation

										Use a context argument to pass information

										Customizing fields

										Passing a custom QuerySet to PrimaryKeyField

										Building DynamicFieldsSerializer

										Avoiding the N+1 query problem

							

						

								Using Serializers with DRF views

							

										Working with generic views

										Filtering with SearchFilter and OrderingFilter

							

						

								Summary

					

				

						Chapter 4: Exploring Django Admin and Management Commands

					

								Technical requirements

								Exploring Django Admin

							

										Creating a superuser in Django

										Understanding the Django Admin interface

							

						

								Customizing Django Admin

							

										Adding custom fields

										Using filter_horizontal

										Using get_queryset

										Using third-party packages and themes

										Using Django Admin logs

							

						

								Optimizing Django Admin for production

							

										Renaming admin URLs

										Using two-factor authentication (2FA) for admin users

										Using Custom Admin Paginator

										Disabling ForeignKey drop-down options

										Using list_select_related

										Overriding get_queryset for performance

										Adding django-json-widget

										Using custom actions

										Using permissions for Django Admin

							

						

								Creating custom management commands

								Summary

					

				

						Chapter 5: Mastering Django Authentication and Authorization

					

								Technical requirements

								Learning the basics of Django authentication

								Customizing the User model

								Using a OneToOneField relationship with the User model

								Using Django permissions and groups

							

										Using permissions and groups in Django Admin

										Creating custom permissions

										Using Django permissions and groups for an API

										Caveats of using permissions

							

						

								Using DRF token-based authentication

							

										Integrating token-based authentication into DRF

										Adding DRF token-based authentication to a Django project

										Understanding the limitations of token-based authentication of DRF

							

						

								Learning about third-party token-based authentication packages

								Integrating social login into Django and DRF

								Summary

					

				

						Part 2 – Using the Advanced Concepts of Django

						Chapter 6: Caching, Logging, and Throttling

					

								Technical requirements

								Caching with Django

							

										Using django-cacheops

										Best practices for caching in production

							

						

								Throttling with Django

							

										Best practices for throttling in production

							

						

								Logging with Django

							

										Setting up logging

										Best practices for logging in production

							

						

								Summary

					

				

						Chapter 7: Using Pagination, Django Signals, and Custom Middleware

					

								Technical requirements

								Paginating responses in Django and DRF

							

										Understanding pagination

										Using pagination in DRF

							

						

								Demystifying Django signals

							

										Creating custom signals

										Working with signals in production

							

						

								Working with Django middleware

								Creating custom middleware

								Summary

					

				

						Chapter 8: Using Celery with Django

					

								Technical requirements

								Asynchronous programming in Django

								Using Celery with Django

							

										Integrating Celery and Django

										Interfaces of Celery

										Best practices for using Celery

							

						

								Using celery beat with Django

								Summary

					

				

						Chapter 9: Writing Tests in Django

					

								Technical requirements

								Introducing the different types of tests in software development

							

										Unit testing

										Integration testing

										E2E testing

							

						

								Setting up tests for Django and DRF

							

										Structuring and naming our test cases

										Setting up a database for tests

							

						

								Writing basic tests in DRF

							

										Writing tests for advanced use cases

										Using Django runners

							

						

								Learning best practices to write tests

							

										Using unit tests more often

										Avoiding time bomb test failures

										Avoiding brittle tests

										Using a reverse function for URL path in tests

										Using authentication tests

										Using test tags to group tests

										Using Postman to create an integration test suite

										Creating different types of tests

										Avoiding tests

							

						

								Exploring Test-Driven Development

								Summary

					

				

						Chapter 10: Exploring Conventions in Django

					

								Technical requirements

								Code structuring for Django projects

							

										Creating files as per functionalities

										Avoiding circular dependencies

										Creating a “common” app

										Working with a settings file for production

							

						

								Working with exceptions and errors

								Using feature flags

								Configuring Django for production

							

										Setting up CORS

										Exploring WSGI

							

						

								Summary

					

				

						Part 3 – Dockerizing and Setting Up a CI Pipeline for Django Application

						Chapter 11: Dockerizing Django Applications

					

								Technical requirements

								Learning the basics of Docker

							

										Installing Docker

										Testing Docker on your local system

										Important commands for Docker

							

						

								Working with the requirements.txt file

								Creating a Dockerfile for a Django project

								Composing services using docker-compose.yaml

							

										Creating a .env file

										Accessing environment variables in Django

										Starting a Django application using Docker

							

						

								Summary

					

				

						Chapter 12: Working with Git and CI Pipelines Using Django

					

								Technical requirements

								Using Git efficiently

							

										Branching strategy for Git

										Following good practices while using git commit

										Tools with Git

										Integrating Git hooks into a Django project

										Using lefthook

										Using git merge versus git rebase

										Performing code release

										Performing hot-fixing on code

							

						

								Working with GitHub and GitHub Actions

							

										Working with GitHub Actions for the CI pipeline

										Setting up a CI pipeline for Django using GitHub Actions

										Recommended GitHub Actions resources

							

						

								Setting up code review guidelines

							

										Context and description

										Short code changes to review

										Review when the code is ready

										Good code reviewer

							

						

								Summary

					

				

						Part 4 – Deploying and Monitoring Django Applications in Production

						Chapter 13: Deploying Django in AWS

					

								Technical requirements

								Learning the basics of AWS

							

										Creating an account in AWS

										Identity and Access Management

										EC2

										Elastic Load Balancer (ELB)

										Elastic Beanstalk

										RDS for Postgres

										ElastiCache for Redis

										Security groups and network components

										AWS Secrets Manager

										Route 53

										The AWS Billing console

										CloudWatch

							

						

								Integrating AWS Elastic Beanstalk to deploy Django

							

										Integrating Beanstalk with a basic Django app

										Deploying a Django application using GitHub Actions in Elastic Beanstalk

							

						

								Following the best practices for the AWS infrastructure

							

										Best practices for RDS

										Best practices for ElastiCache

										Best practices for Elastic Beanstalk

										Best practices for IAM and security

							

						

								Summary

					

				

						Chapter 14: Monitoring Django Application

					

								Technical requirements

								Integrating error monitoring tools

							

										Integrating Rollbar into a Django project

										Integrating Rollbar with Slack

										Best practices while working with error monitoring tools

							

						

								Integrating uptime monitoring

							

										Adding a health check endpoint

										Using BetterStack for uptime monitoring

							

						

								Integrating APM tools

							

										Integrating New Relic into the Django project

										Exploring the New Relic dashboard

										Creating New Relic alert conditions

										Monitoring AWS EC2 instances with New Relic

										Sending logs from Django to New Relic

										Working with metrics and events using NRQL

							

						

								Integrating messaging tools using Slack

								Handling production incidents better

								Blameless RCA for incidents

								Summary

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

	

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/image/B18867_01_05.jpg
tree hello_world/
hello_world/

L— backend

— config

__init__.py
asgi.py
settings.py
urls.py
wsgi.py

— demo_app

__init__.py
admin.py
apps.py
migrations

L— __init__.py
models.py
tests.py
views.py

L— manage.py

5 directories, 13 files

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/image/B18867_01_06.jpg
Hello Worid Drf

Hello World Drf

GET /demo-app/hello-world-drf/

HTTP 200 0K
Allow: OPTIONS, GET
Content-Type: application/json
Vary: Accept

{
b

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/image/B18867_01_01.jpg
tree hello_world/

hello_world/
L— backend
config
__init__.py
asgi.py
settings.py
urls.py
wsgi.py
manage.py

3 directories, 6 files

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

OEBPS/image/B18867_01_02.jpg
python manage.py runserver

Watching for file changes with StatReloader
Performing system checks...

System check identified no issues (0 silenced).

You have 18 unapplied migration(s). Your project may not work properly until you
apply the migrations for app(s): admin, auth, contenttypes, sessions.

Run 'python manage.py migrate' to apply them.

November 04, 2023 - 18:00:26

Django version 4.2, using settings 'config.settings'

Starting development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

OEBPS/image/Packt_Logo_New.png
packm

OEBPS/image/B18867_QR_Free_PDF.jpg

OEBPS/image/Cover.jpg
Django in Production

Expert tips, strategies, and essential frameworks
for writing scalable and maintainable code in Django

ARGHYA SAHA

OEBPS/Fonts/CourierStd.otf

OEBPS/image/B18867_01_03.jpg
django View release notes for Django 4.2

The install worked successfully! Congratulations!

You are seeing this page because DEBUG=True s in your
settings file and you have not configured any URLs.

Q Django Documentation <> Tutorial: A Polling App 22, Django Community
~ Topics, references, & how-to's Get started with Diango Connect, get help, or contribute

OEBPS/image/B18867_01_04.jpg
D 127.0.0.1

hello world

