

 [image: Cover of Learning Angular_Fifth Edition by Aristeidis Bampakos]

 Learning Angular

 Fifth Edition

 A practical guide to building web applications with modern Angular

 Aristeidis Bampakos

 [image:]

 Learning Angular

 Fifth Edition

 Copyright © 2024 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Publishing Product Manager: Lucy Wan

 Acquisition Editor – Peer Reviews: Jane D’Souza

 Project Editor: Janice Gonsalves

 Development Editor: Rebecca Youé

 Copy Editor: Safis Editing

 Technical Editor: Gaurav Gavas

 Proofreader: Safis Editing

 Indexer: Hemangini Bari

 Presentation Designer: Ajay Patule

 Developer Relations Marketing Executive: Deepak Kumar

 First published: April 2016

 Second edition: December 2017

 Third edition: September 2020

 Fourth edition: February 2023

 Fifth edition: December 2024

 Production reference: 1271224

 Published by Packt Publishing Ltd.

 Grosvenor House

 11 St Paul’s Square

 Birmingham

 B3 1RB, UK.

 ISBN 978-1-83508-748-0

 www.packt.com

 Contributors

 About the author

 Aristeidis Bampakos has over 20 years of experience in the software development industry. He currently works as a web development team leader at Plex-Earth, specializing in the development of web applications using Angular. His career started as a C# .NET developer, but he saw the potential of web development and moved toward it in early 2011. He began working with AngularJS and in 2020 he was officially recognized as a Google Developer Expert (GDE) for Angular.

 Aristeidis is passionate about helping the developer community learn and grow. His love for teaching has led him to become an award-winning author of the successful book titles Learning Angular and Angular Projects. He enjoys being speaking about Angular in meetups, conferences, and podcasts. He is also currently leading the effort to make Angular accessible to the Greek development community by maintaining the open-source Greek translation of the official Angular documentation.

 This book is dedicated to all people around the globe that strive with mental health issues.

 About the reviewers

 Thomas Laforge is a married father living in the French Alps. He is an Angular freelancer with more than 8 years of experience in the frontend world, particularly in Angular. He has been a Google Developer Expert (GDE) for over a year and is well known for his open-source project, Angular Challenges. This project features more than 50 challenges designed to help developers improve their Angular skills. He is passionate about frontend technology and open-source projects. Outside of work, he enjoys sports and board games.

 Martina Kraus has been active in the world of web development since her early years and, over time, has become an expert in the field of web security. As an Application Security Engineer, she focuses on integrating security best practices into all phases of software development. In her role as an Angular Google Developer Expert (GDE), she loves to spread knowledge about Angular and web security at national and international conferences, regularly organizes ngGirls events (free Angular workshops for women) and the German Angular conference NG-DE. She is currently working on a book titled Authorization and Authentication for Web Developers: A Practical Guide, where she aims to share her knowledge.

 Forewords

 Dear Reader,

 The book you’re holding continues a journey of knowledge and discovery that began nearly a decade ago. The origins of Learning Angular date back to the summer of 2015. During that time, Packt Publishing, with whom I’d had several discussions over the years, approached me to write a book on any topic of my choosing that would appeal to the frontend web developer community.

 In the summer of 2015, it was already well known that the Angular team at Google was working on a new version of its framework. This was not merely a continuation of what AngularJS had been up to that point, but a complete rewrite from scratch. AngularJS was showing signs of aging and facing criticism regarding its operability and performance. In contrast, libraries like React and Vue were gaining more acceptance, and their future appeared bright and promising. Angular faced the significant challenge of winning back developers’ hearts in a race it was late to enter—perhaps too late already.

 With only that idea in mind, the task of writing a book seemed daunting, aggravated by the fact that there was no documentation available. In the summer of 2015, Angular was still in the alpha stage, and the only way to familiarize oneself with the framework’s mechanics was to read the team’s official blog, which dribbled out its posts, or to reverse-engineer code that changed radically every week with each new release.

 Doubts abounded: Would the resulting book be accurate enough? Would it be embraced by the public given the expectations created? Would it stand the test of time? Despite these concerns, this was the crucial moment to author a book on an entirely new frontend technology. Ultimately, the first edition of Learning Angular 2 (which later dropped the version number in favor of just Learning Angular) was released in May 2016, after much effort and over two dozen rewrites. I honestly thought that journey would end there: perhaps a couple of dozen books would be sold at most, it would receive some positive reviews, and probably many negative ones.

 I doubted Angular itself would last much longer either; despite its beautifully crafted architecture, the framework had arrived late to the party and relied on principles the community intended to bury in favor of functional programming paradigms.

 Nearly ten years later, I’m delighted to say my judgment was wrong. The collective effort put into this book has enabled thousands of developers worldwide to create wonderful projects, contributing to a better, more accessible world for everyone. Learning Angular 2 became a success, and its subsequent editions have been no less successful.

 Meanwhile, Angular has continued to evolve and has broken paradigms in its continuous pursuit of evolution. From signals to deferrable views, native server-side rendering, improved lightning-fast compilation tools, a revamped syntax, and an enhanced transition API, along with hundreds of major and minor additions, Angular has demonstrated an unparalleled commitment to the community and influenced the future path of our industry. Right after its inception, Angular was considered an ugly duckling in the industry. Now, it is the new white swan that once again sets the pace for the rest.

 However, this poses a huge challenge: Can a book capture the greatness of Angular, help readers confidently initiate themselves in it, and remain accessible and engaging, all while competing with the comprehensive information on angular.dev, its official website? The answer is yes, as long as Aristeidis Bampakos is leading this endeavor.

 Aristeidis has been the driving force behind this franchise’s success and I owe him an infinite debt of gratitude. His perseverance in meeting the community’s expectations, his enormous technical skill in deconstructing complex concepts, and his excellent narrative ability are the reasons why I consider the book you are now holding a powerful key that will open doors to a fascinating future for you and many others.

 It is an honor to write this foreword and a privilege to have shared this journey with Aristeidis Bampakos and the Packt team over nearly a decade. The journey doesn’t end here. It is now up to you, dear reader, to take the next steps, and this book will be your best guide.

 Bon voyage.

 Pablo Deeleman

 Frontend Architect at GitKraken, and previous author of Learning Angular

 Hello friends,

 I am honored to introduce an exceptional book written by one of my all-time favorite Angular experts, Aristeidis Bampakos. He is an established bestselling author, a well-respected Angular Google Developer Expert, a principal enterprise architect, and an open-source author. Over the years, Aris has become a trusted figure in the Angular community, having not only mastered the framework, but also contributed directly to translations and other improvements. His dedication to the Angular ecosystem is reflected not only in his contributions, but also in his passion for helping others grow their knowledge and skills.

 For those looking to level up their Angular expertise, this book offers a comprehensive yet approachable overview of the framework. Aris has a unique ability to break down complex concepts into digestible content, making learning Angular accessible and enjoyable for developers of all levels. Whether you’re just beginning your journey or architecting a production app, this guide will undoubtedly help you advance your understanding of Angular.

 Beyond his Angular contributions, Aris has been a beloved and influential leader in our Tech Stack Nation community from the very start. His contributions go beyond just code; he brings wisdom, humility, and a genuine passion for sharing knowledge. I encourage you to visit one of our live events, where Aris can often be found sharing his insights—not only as a brilliant teacher and author who never stops asking questions and learning new things, but also as a caring and supportive friend to us all.

 In the constantly evolving world of open-source tech, resources we can trust are increasingly valuable, and it’s even more valuable to have someone like Aris to guide us through the ever-changing landscape of Angular. I have no doubt that you’ll find this book priceless, as I have found Aris’ contributions to our community over the years.

 Enjoy your journey through Angular! If you have questions or comments after reading, I encourage you to reach out to Aris, as he’s super friendly. You can also stop by Tech Stack Nation and ask for him, I bet he’d love to meet you!

 Miles of smiles,

 Bonnie Brennan

 Founder of TechStackNation.com, Enterprise Architect, and Angular GDE

 Join us on Discord

 Join our community’s Discord space for discussions with the author and other readers:

 https://packt.link/LearningAngular5e

 [image:]

 Preface

 As Angular continues to reign as one of the top JavaScript frameworks, more developers are seeking out the best way to get started with this extraordinarily flexible and secure framework. Learning Angular, now in its fifth edition, will show you how you can use Angular to achieve cross-platform high performance with the latest web techniques, extensive integration with modern web standards, and integrated development environments (IDEs).

 This book is especially useful for those new to Angular and will help you to get to grips with the bare bones of the framework needed to start developing Angular apps. You’ll learn how to develop apps by harnessing the power of the Angular command-line interface (CLI), write unit tests, style your apps by following the Material Design guidelines, and finally, build them for production.

 Updated for Angular 19, this new edition covers lots of new features and practices that address the current frontend web development challenges. You’ll find new dedicated chapters on signals and optimization, as well as more on error handling and debugging in Angular, and new real-life examples. By the end of this book, you’ll not only be able to create Angular applications with TypeScript from scratch, but also enhance your coding skills with best practices.

 Who this book is for

 This book is for web developers that want to get started with frontend development, and frontend developers that want to expand their knowledge of JavaScript frameworks. You’ll need prior exposure to JavaScript, basic knowledge of the command line, and to be comfortable with using IDEs to get started with this book.

 What this book covers

 Chapter 1, Building Your First Angular Application

 In this chapter, we set up the development environment by installing the Angular CLI and learn how to use schematics (commands) to automate tasks such as code generation and application building. We create a new simple application using the Angular CLI and build it. We also learn about some of the most useful Angular tools that are available in Visual Studio Code.

 Chapter 2, Introduction to TypeScript

 In this chapter, we learn what TypeScript is, the language that is used when creating Angular applications, and what the most basic building blocks are, such as types and classes. We take a look at some of the advanced types available and the latest features of the language.

 Chapter 3, Structuring User Interfaces with Components

 In this chapter, we learn how a component is connected to its template and use a decorator to configure it. We take a look at how components communicate with each other by passing data from one component to another using input and output bindings and learn about the different strategies to detect changes in a component. We also learn how to execute custom logic during the component lifecycle.

 Chapter 4, Enriching Applications Using Pipes and Directives

 In this chapter, we take a look at Angular’s built-in pipes and we build our own custom pipe. We learn how to create directives and leverage them through an Angular application that demonstrates their use.

 Chapter 5, Managing Complex Tasks with Services

 In this chapter, we learn how the dependency injection mechanism works, create and use services in components into components, and how to create providers in an Angular application.

 Chapter 6, Reactive Patterns in Angular

 In this chapter, we learn what reactive programming is and how we can use observables in the context of an Angular application through the RxJS library. We also take a tour of all the common RxJS operators that are used in an Angular application.

 Chapter 7, Tracking Application State with Signals

 In this chapter, we learn the basic concepts of the Signals API and the rationale behind its use. We explore how to use signals for tracking the state of an Angular application. We also take a look at signals interoperability with RxJS and how they can play nicely together in a sample application.

 Chapter 8, Communicating with Data Services over HTTP

 In this chapter, we learn how to interact with a remote backend API and perform CRUD operations with data in Angular. We also investigate how to set additional headers to an HTTP request and intercept it before sending the request or upon completion.

 Chapter 9, Navigating through Applications with Routing

 In this chapter, we learn how to use the Angular router in order to activate different parts of an Angular application. We find out how to pass parameters through the URL and how to break an application into child routes that can be lazy loaded. We then learn how to guard against our components and how to prepare data prior to initialization of the component.

 Chapter 10, Collecting User Data with Forms

 In this chapter, we learn how to use Angular forms in order to integrate HTML forms into an application and how to set them up using FormGroup and FormControl. We track the interaction of the user in the form and validate input fields.

 Chapter 11, Handling Application Errors

 In this chapter, we learn how to handle different types of errors in an Angular application and learn about errors that come from the framework itself.

 Chapter 12, Introduction to Angular Material

 In this chapter, we learn how to integrate Google Material Design guidelines in to an Angular application using a library called Angular Material, developed by the Angular team. We take a look at some of the core components of the library and how to use them. We discuss the themes that are bundled with the library and how to install them.

 Chapter 13, Unit Testing Angular Applications

 In this chapter, we learn how to test Angular artifacts and override them in a test, what the different parts of a test are, and which parts of a component should be tested.

 Chapter 14, Bringing Applications to Production

 In this chapter, we learn how to use the Angular CLI to build and deploy an Angular application. We take a look at how to pass environment variables during the build and how to perform build optimizations prior to deployment.

 Chapter 15, Optimizing Application Performance

 In this chapter, we learn what Core Web Vitals (CWV) are and how they affect the performance of an Angular application. We explore three different ways to improve CWV metrics: how to render an application server-side, how to benefit from hydration, and how to optimize our images.

 To get the most out of this book

 You will need a version of Angular 19 installed on your computer, preferably the latest one. All code examples have been tested using Angular 19.0.0 on Windows, but they should work with any future release of Angular 19 as well.

 We advise you to type the code for this book yourself or access the code via the GitHub repository (the link is in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

 Download the example code files

 You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files emailed directly to you.

 You can download the code files by following these steps:

 	Log in or register at http://www.packtpub.com.

 	Select the SUPPORT tab.

 	Click on Code Downloads & Errata.

 	Enter the name of the book in the Search box and follow the on-screen instructions.

 Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

 	WinRAR/7-Zip for Windows

 	Zipeg/iZip/UnRarX for Mac

 	7-Zip/PeaZip for Linux

 The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Learning-Angular-Fifth-Edition. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Download the color images

 We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/gbp/9781835087480.

 Conventions used

 There are a number of text conventions used throughout this book.

 CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and social media handles. For example; “Mount the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

 A block of code is set as follows:

 [default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

 When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

 [default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

 Any command-line input or output is written as follows:

 # cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample
 /etc/asterisk/cdr_mysql.conf

 Bold: Indicates a new term, an important word, or words that you see on the screen, for example, in menus or dialog boxes. For example: “Select System info from the Administration panel.”

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: Email feedback@packtpub.com, and mention the book’s title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book we would be grateful if you would report this to us. Please visit, http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

 Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

 Reviews

 Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

 For more information about Packt, please visit packtpub.com.

 Share your thoughts

 Once you’ve read Learning Angular, Fifth Edition, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

 Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

 Download a free PDF copy of this book

 Thanks for purchasing this book!

 Do you like to read on the go but are unable to carry your print books everywhere?

 Is your eBook purchase not compatible with the device of your choice?

 Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

 Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

 The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily.

 Follow these simple steps to get the benefits:

 	Scan the QR code or visit the link below:

 [image:]
 https://packt.link/free-ebook/9781835087480

 	Submit your proof of purchase.

 	That’s it! We’ll send your free PDF and other benefits to your email directly.

 1

 Building Your First Angular Application

 Web development has undergone huge growth during the last decade. Frameworks, libraries, and tools have emerged that enable developers to build great web applications. Angular has paved the way by creating a framework focusing on application performance, development ergonomics, and modern web techniques.

 Before developing Angular applications, we need to learn some basic but essential things to have a great experience with the Angular framework. One of the primary things we should know is what Angular is and why we should use it for web development. We will also take a tour in this chapter of Angular history to understand how the framework has evolved.

 Another important but sometimes challenging introductory topic is setting up our development environment. It must be done at the beginning of a project and getting this right early can reduce friction as our application grows. Therefore, a large part of this chapter is dedicated to the Angular CLI, a tool developed by the Angular team that provides scaffolding and automation tasks in an Angular application, eliminating configuration boilerplate and enabling developers to focus on the coding process. We will use the Angular CLI to create our first application from scratch, get a feel for the anatomy of an Angular application, and take a sneak peek at how Angular works under the hood.

 Working on an Angular project without help from development tools, such as an Integrated Development Environment (IDE), can be painful. Our favorite code editor can provide an agile development workflow that includes compilation at runtime, static type checking, introspection, code completion, and visual assistance to debug and build our application. We will highlight some of the most popular tools in the Angular ecosystem in this chapter, such as Angular DevTools and Visual Studio Code (VSCode).

 To sum up, here are the main topics that we will explore in this chapter:

 	What is Angular?

 	Why choose Angular?

 	Setting up the Angular CLI workspace

 	The structure of an Angular application

 	Angular tooling

 Technical requirements

 	GitHub: https://github.com/PacktPublishing/Learning-Angular-Fifth-Edition/tree/main/ch01

 	Node.js: https://nodejs.org

 	Git: https://git-scm.com

 	VSCode: https://code.visualstudio.com

 	Angular DevTools: https://angular.dev/tools/devtools

 What is Angular?

 Angular is a web framework written in the TypeScript language and includes a CLI, a language service, a debugging tool, and a rich collection of first-party libraries.

 Libraries included in the Angular framework provided out of the box are called first-party libraries.

 Angular enables developers to build scalable web applications with TypeScript, a strict syntactic superset of JavaScript, which we will learn about in Chapter 2, Introduction to TypeScript.

 The official Angular documentation can be found at https://angular.dev.

 The official Angular documentation is the most up-to-date resource for Angular development. It’s preferable to use it over other external resources while developing with Angular.

 Google created Angular. The first version, 1.0, was released in 2012 and was called AngularJS. AngularJS was a JavaScript framework, and web applications built with it were written in JavaScript.

 In 2016, the Angular team decided to make a revolutionary change in AngularJS. They collaborated with the TypeScript team at Microsoft and introduced the TypeScript language into the framework. The next version of the framework, 2.0, was written in TypeScript and rebranded as Angular with a different logo than AngularJS.

 In 2022, Angular entered a new era of evolutionary advancements known as the Angular Renaissance. During that period, the framework picked up momentum in web development by introducing major innovations focused on enhancing the Developer Experience (DX) and optimizing application performance, such as:

 	A simple and modern approach to authoring Angular applications

 	Improved reactivity patterns to manage application state efficiently

 	The integration of Server-Side Rendering (SSR) techniques to improve performance

 A major milestone in the Angular Renaissance era was Angular 17, when the Angular team decided to rebrand the framework with a new logo and colors, reflecting the recent changes and setting the vision for future advancements.

 In this book, we will cover Angular 19, the latest major stable version of the Angular framework. AngularJS reached the end of its life in 2022, and it is no longer supported and maintained by the Angular team.

 Angular is based on the most modern web standards and supports all the evergreen browsers. You can find more details about the specific version support of each browser at https://angular.dev/reference/versions#browser-support.

 In the following section, we will learn the benefits of choosing Angular for web development.

 Why choose Angular?

 The power of the Angular framework is based on the combination of the following characteristics:

 	The main pillars of the framework:
 	Cross-platform

 	Incredible tooling

 	Easy onboarding

 	The usage of Angular worldwide:
 	An amazing community

 	Battle-tested against Google products

 In the following sections, we will examine each characteristic in more detail.

 Cross-platform

 Angular applications can run on different platforms: web, server, desktop, and mobile. Angular can run natively only on the web because it is a web framework; however, it is open-source and is backed by incredible tooling that enables the framework to run on the remaining three using the following tools:

 	Angular SSR: Renders Angular applications server-side

 	Angular service worker: Enables Angular applications to run as Progressive Web Applications (PWAs) that can execute in desktop and native mobile environments

 	Ionic/NativeScript: Allows us to build mobile applications using Angular

 The next pillar of the framework describes the tooling available in the Angular ecosystem.

 Tooling

 The Angular team has built two great tools that make Angular development easy and fun:

 	Angular CLI: A command-line interface that allows us to work with Angular projects, from scaffolding to testing and deployment

 	Angular DevTools: A browser extension that enables us to inspect and profile Angular applications from the comfort of our browser

 The Angular CLI is the de facto solution to work with Angular applications. It allows the developer to focus on writing application code, eliminating the boilerplate of configuration tasks such as scaffolding, building, testing, and deploying an Angular application.

 Onboarding

 It is simple and easy to start with Angular development because when we install Angular, we also get a rich collection of first-party libraries out of the box, including:

 	An Angular HTTP client to communicate with external resources over HTTP

 	Angular forms to create HTML forms to collect input and data from users

 	An Angular router to perform in-app navigations

 The preceding libraries are installed by default when we create a new Angular application using the Angular CLI. However, they are only used in our application if we import them explicitly into our project.

 The usage of Angular worldwide

 Many companies use Angular for their websites and web applications. The website https://www.madewithangular.com contains an extensive list of those companies, including some popular ones.

 Additionally, Angular is used in thousands of projects by Google and by millions of developers worldwide. The fact that Angular is already used internally at Google is a crucial factor in the reliability of the framework. Every new version of Angular is thoroughly tested in those projects before becoming available to the public. The testing process helps the Angular team catch bugs early and delivers a top-quality framework to the rest of the developer community.

 Angular is backed and supported by a thriving developer community. Developers can access many available communities worldwide, online or locally, to get help and guidance with the Angular framework. On the other hand, communities help the Angular framework progress by sharing feedback on new features, testing new ideas, and reporting issues. Some of the most popular online communities are:

 	Tech Stack Nation: The world’s friendliest Angular study group that brings together Angular developers who are passionate about improving their confidence in building amazing Angular applications. Tech Stack Nation is a community where Angular developers can collaborate, learn from each other’s expertise, and push the boundaries of what Angular can achieve. You can join Tech Stack Nation at https://techstacknation.com.

 	Angular Community Discord: Angular’s official Discord server that brings the incredible Angular community together. Everyone is welcome to join the community with the click of a button. It is the central location to connect Angular team members, Google Developer Experts (GDEs), library authors, meetup groups, and anyone interested in learning the framework. You can join the Angular Community Discord server at https://discord.gg/angular.

 	Angular.love: A community platform for Angular enthusiasts, supported by House of Angular, to facilitate the growth of Angular developers through knowledge-sharing initiatives. It started as a blog where experts published articles about Angular news, features, and best practices. Now, Angular.love also organizes in-person and online meetups, frequently featuring GDEs. You can join Angular.love at https://angular.love.

 Now that we have seen what Angular is and why someone should choose it for web development, we will learn how to use it and build great web applications.

 Setting up the Angular CLI workspace

 Setting up a project with Angular can be tricky. You need to know what libraries to import and ensure that files are processed in the correct order, which leads us to the topic of scaffolding. Scaffolding is a tool to automate tasks, such as generating a project from scratch, and it becomes necessary as complexity grows and where every hour counts toward producing business value, rather than being spent fighting configuration problems.

 The primary motivation behind creating the Angular CLI was to help developers focus on application building, eliminating the configuration boilerplate. Essentially, with a simple command, you should be able to initialize an application, add new artifacts, run tests, update applications, and create a production-grade bundle. The Angular CLI supports all of this using special commands called schematics.

 Prerequisites

 Before we begin, we must ensure that our development environment includes software tools essential to the Angular development workflow.

 Node.js

 Node.js is a JavaScript runtime built on top of Chrome’s v8 JavaScript engine. Angular requires an active or maintenance Long-Time Support (LTS) version. If you have already installed it, you can run node -v on the command line to check which version you are running.

 If you need to work with applications that use different Node.js versions or can’t install the runtime due to restricted permissions, use nvm, a version manager for Node.js designed to be installed per user. You can learn more at https://github.com/nvm-sh/nvm.

 npm

 npm is a software package manager that is included by default in Node.js. You can check this out by running npm -v in the command line. An Angular application consists of various libraries, called packages, that exist in a central place called the npm registry. The npm client downloads and installs the libraries needed to run your application from the npm registry to your local computer.

 Git

 Git is a client that allows us to connect to distributed version-control systems, such as GitHub, Bitbucket, and GitLab. It is optional from the perspective of the Angular CLI. You should install it if you want to upload your Angular project to a Git repository, which you might want to do.

 Installing the Angular CLI

 The Angular CLI is part of the Angular ecosystem and can be downloaded from the npm package registry. Since it is used to create Angular projects, we must install it globally in our system. Open a terminal window and run the following command:

 npm install -g @angular/cli

 You may need elevated permissions on some Windows systems, so you should run your terminal as an administrator. Run the preceding command in Linux/macOS systems by adding the sudo keyword as a prefix to execute with administrative privileges.

 The command that we used to install the Angular CLI uses the npm client, followed by a set of runtime arguments:

 	install or i: Denotes the installation of a package

 	-g or --global: Indicates that the package will be installed on the system globally

 	@angular/cli: The name of the package to install

 The Angular CLI follows the same version as the Angular framework, which in this book is 19. The preceding command will install the latest stable version of the Angular CLI. You can check which version you have installed by running ng version or ng v in the command line. If you have a different version than 19 after installing it, you can run the following command:

 npm install -g @angular/cli@19

 The preceding command will fetch and install the latest version of Angular CLI 19.

 CLI commands

 The Angular CLI is a command-line interface tool that automates specific tasks during development, such as serving, building, bundling, updating, and testing an Angular project. As the name implies, it uses the command line to invoke the ng executable file and run commands using the following syntax:

 ng [command] [options]

 Here, [command] is the name of the command to be executed, and [options] denotes additional parameters that can be passed to each command. To view all available commands, you can run the following:

 ng help

 Some commands can be invoked using an alias instead of the name. In this book, we cover the most common ones (the alias of each command is shown inside parentheses):

 	new (n): Creates a new Angular CLI workspace from scratch

 	build (b): Compiles an Angular application and outputs generated files in a predefined folder

 	generate (g): Creates new files that comprise an Angular application

 	serve (dev): Builds an Angular application and serves it using a pre-configured web server

 	test (t): Runs the unit tests of an Angular application

 	add: Installs an Angular library in an Angular application

 	update: Updates an Angular application to the latest Angular version

 You can find more Angular CLI commands at https://angular.dev/cli.

 Updating an Angular application is one of the most critical tasks from the preceding list. It helps us stay up to date by upgrading our Angular applications to the latest version.

 Try to keep your Angular projects up to date because each new version of Angular comes packed with many exciting new features, performance improvements, and bug fixes.

 Additionally, you can use the Angular upgrade guide, which contains tips and step-by-step instructions on updating your applications, at https://angular.dev/update-guide.

 Creating a new project

 Now that we have prepared our development environment, we can start creating our first Angular application. We will use the ng new command of the Angular CLI and pass the name of the application that we want to create as an option:

 	Open a terminal window, navigate to a folder of your choice, and run the command ng new my-app. Creating a new Angular application is a straightforward process. The Angular CLI will ask for details about the application we want to create so that it can scaffold the Angular project as best as possible.

 	Initially, it will ask if we want to enable Angular analytics:
 Would you like to share pseudonymous usage data about this project with the Angular Team at Google under Google's Privacy Policy at https://policies.google.com/privacy. For more details and how to change this setting, see https://angular.dev/cli/analytics. (y/N)

 The Angular CLI will ask this question once when we create the first Angular project and apply it globally in our system. However, we can change the setting later in a specific Angular workspace.

 	The next question is related to the styling of our application:
 Which stylesheet format would you like to use?

 It is common to use CSS to style Angular applications. However, we can use preprocessors like SCSS or Less to add value to our development workflow. In this book, we work with CSS directly, so accept the default choice, CSS, and press Enter.

 	Finally, the Angular CLI will prompt us if we want to enable SSR and Static Site Generation (SSG) in our application:
 Do you want to enable Server-Side Rendering (SSR) and Static Site Generation (SSG/Prerendering)? (y/N)

 SSR and SSG are concerned with improving the startup and load performance of an Angular application. We will learn more about them in Chapter 15, Optimizing Application Performance. For now, accept the default choice, No, by pressing Enter.

 The process may take some time, depending on your internet connection. During this time, the Angular CLI downloads and installs all necessary packages and creates default files for your Angular application. When finished, it will have created a folder called my-app. The folder represents an Angular CLI workspace that contains a single Angular application called my-app at the root level.

 The workspace contains various folders and configuration files that the Angular CLI needs to build and test the Angular application:

 	.vscode: Includes VSCode configuration files

 	node_modules: Includes installed npm packages that are needed to develop and run the Angular application

 	public: Contains static assets such as fonts, images, and icons

 	src: Contains the source files of the application

 	.editorconfig: Defines coding styles for the default editor

 	.gitignore: Specifies the files and folders that Git should not track

 	angular.json: The main configuration file of the Angular CLI workspace

 	package.json and package-lock.json: Provide definitions of npm packages, along with their exact versions, which are needed to develop, test, and run the Angular application

 	README.md: A README file that is automatically generated from the Angular CLI

 	tsconfig.app.json: A TypeScript configuration that is specific to the Angular application

 	tsconfig.json: A TypeScript configuration that is specific to the Angular CLI workspace

 	tsconfig.spec.json: A TypeScript configuration that is specific to unit tests of the Angular application

 As developers, we should only care about writing the source code that implements features for our application. Nevertheless, having basic knowledge of how the application is orchestrated and configured helps us better understand the mechanics and ways to intervene if necessary.

 Navigate to the newly created folder and start your application with the following command:

 ng serve

 Remember that any Angular CLI command must be run inside an Angular CLI workspace folder.

 The Angular CLI compiles the Angular project and starts a web server that watches for changes in project files. This way, whenever you change your application code, the web server rebuilds the project to reflect the new changes.

 After compilation has been completed successfully, you can preview the application by opening your browser and navigating to http://localhost:4200:

 [image: Εικόνα που περιέχει κείμενο, στιγμιότυπο οθόνης, γραμματοσειρά Περιγραφή που δημιουργήθηκε αυτόματα]
 Figure 1.1: Angular application landing page

 Congratulations! You have created your first Angular CLI workspace. The Angular CLI created a sample web page that we can use as a reference to build our project. In the next section, we will explore the main parts of our application and learn how to modify this page.

 The structure of an Angular application

 We will take the first intrepid steps in examining our Angular application. The Angular CLI has already scaffolded our project and done much of the heavy lifting for us. All we need to do is fire up our favorite IDE and start working with the Angular project. We will use VSCode in this book, but feel free to choose any editor you are comfortable with:

 	Open VSCode and select File | Open Folder… from the main menu.

 	Navigate to the my-app folder and select it. VSCode will load the associated Angular CLI workspace.

 	Expand the src folder.

 When we develop an Angular application, we’ll likely interact with the src folder. It is where we write the code and tests of our application. It contains the following:

 	app: All the Angular-related files of the application. You interact with this folder most of the time during development.

 	index.html: The main HTML page of the Angular application.

 	main.ts: The main entry point of the Angular application.

 	styles.css: CSS styles that apply globally to the Angular application. The extension of this file depends on the stylesheet format you choose when creating the application.

 The app folder contains the actual source code we write for our application. Developers spend most of their time inside that folder. The Angular application that was created automatically from the Angular CLI contains the following files:

 	app.component.css: Contains CSS styles specific to the sample page. The extension of this file depends on the stylesheet format you choose when creating the application.

 	app.component.html: Contains the HTML content of the sample page.

 	app.component.spec.ts: Contains unit tests for the sample page.

 	app.component.ts: Defines the presentational logic of the sample page.

 	app.config.ts: Defines the configuration of the Angular application.

 	app.routes.ts: Defines the routing configuration of the Angular application.

 The filename extension .ts refers to TypeScript files.

 In the following sections, we will learn how Angular orchestrates some of those files to display the sample page of the application.

 Components

 The files whose names start with app.component constitute an Angular component. A component in Angular controls part of a web page by orchestrating the interaction of the presentational logic with the HTML content of the page, called a template.

 Each Angular application has a main HTML file, named index.html, that exists inside the src folder and contains the following <body> HTML element:

 <body>
 <app-root></app-root>
</body>

 The <app-root> tag is used to identify the main component of the application and acts as a container to display its HTML content. It instructs Angular to render the template of the main component inside that tag. We will learn how it works in Chapter 3, Structuring User Interfaces with Components.

 When the Angular CLI builds an Angular application, it parses the index.html file and identifies HTML tags inside the <body> element. An Angular application is always rendered inside the <body> element and comprises a tree of components. When the Angular CLI finds a tag that is not a known HTML element, such as <app-root>, it starts searching through the components of the application tree. But how does it know where to start?

 Bootstrapping

 The startup method of an Angular application is called bootstrapping, and it is defined in the main.ts file inside the src folder:

 import { bootstrapApplication } from '@angular/platform-browser';
import { appConfig } from './app/app.config';
import { AppComponent } from './app/app.component';

bootstrapApplication(AppComponent, appConfig)
 .catch((err) => console.error(err));

 The main task of the bootstrapping file is to define the component that will be loaded at application startup. It calls the bootstrapApplication method, passing AppComponent as a parameter to specify the starting component of the application. It also passes the appConfig object as a second parameter to specify the configuration that will be used in the application startup. The application configuration is described in the app.config.ts file:

 import { ApplicationConfig, provideZoneChangeDetection } from '@angular/core';
import { provideRouter } from '@angular/router';
import { routes } from './app.routes';
export const appConfig: ApplicationConfig = {
 providers: [provideZoneChangeDetection({ eventCoalescing: true }), provideRouter(routes)]
};

 The appConfig object contains a providers property to define services provided throughout the Angular application. We will learn more about services in Chapter 5, Managing Complex Tasks with Services.

 A new Angular CLI application provides routing services by default. Routing is related to in-app navigation between different components using the browser URL. It is activated using the provideRouter method, passing a routes object, called route configuration, as a parameter. The route configuration of the application is defined in the app.routes.ts file:

 import { Routes } from '@angular/router';
export const routes: Routes = [];

 Our application does not have a route configuration yet, as indicated by the empty routes array. We will learn how to set up routing and configure it in Chapter 9, Navigating through Applications with Routing.

 Template syntax

 Now that we have taken a brief overview of our sample application, it’s time to start interacting with the source code:

 	Run the following command in a terminal window to start the application if it is not running already:
 ng serve

 If you are working with VSCode, it is preferable to use its integrated terminal, which is accessible from the Terminal | New Terminal option in the main menu.

 	Open the application with your browser at http://localhost:4200, and notice the text below the Angular logo that reads Hello, my-app. The word my-app, which corresponds to the application name, comes from a variable declared in the TypeScript file of the main component. Open the app.component.ts file and locate the title variable:
 import { Component } from '@angular/core';
import { RouterOutlet } from '@angular/router';
@Component({
 selector: 'app-root',
 imports: [RouterOutlet],
 templateUrl: './app.component.html',
 styleUrl: './app.component.css'
})
export class AppComponent {
 title = 'my-app';
}

 The title variable is a component property that is used in the component template.

 	Open the app.component.html file and go to line 228:
 <h1>Hello, {{ title }}</h1>

 The title property is surrounded by double curly braces syntax called interpolation, which is part of the Angular template syntax. In a nutshell, interpolation converts the value of the title property to text and prints it on the page.

 Angular uses specific template syntax to extend and enrich the standard HTML syntax in the application template. We will learn more about the Angular template syntax in Chapter 3, Structuring User Interfaces with Components.

 	Change the value of the title property in the AppComponent class to World, save the changes, wait for the application to reload, and examine the output in the browser:

 [image: Εικόνα που περιέχει κείμενο, γραμματοσειρά, γραφικά, λογότυπο Περιγραφή που δημιουργήθηκε αυτόματα]
 Figure 1.2: Landing page title

 Congratulations! You have successfully interacted with the source code of your application.

 By now, you should have a basic understanding of how Angular works and what the basic parts of an Angular application are. As a reader, you have had to absorb a lot of information so far. However, you will get a chance to get more acquainted with the components in the upcoming chapters. For now, the focus is to get you up and running, by giving you a powerful tool like the Angular CLI and showing you how only a few steps are needed to display an application on the screen.

 Angular tooling

 One of the reasons that the Angular framework is popular among developers is the rich ecosystem of available tools. The Angular community has built amazing tools to complete and automate various tasks, such as debugging, inspecting, and authoring Angular applications:

 	Angular DevTools

 	VSCode Debugger

 	VSCode Profiles

 We will learn how to use each in the following sections, starting with Angular DevTools.

 Angular DevTools

 Angular DevTools is a browser extension created and maintained by the Angular team. It allows us to inspect and profile Angular applications directly in the browser. It is currently supported by Google Chrome and Mozilla Firefox and can be downloaded from the following browser stores:

 	Google Chrome: https://chrome.google.com/webstore/detail/angular-developer-tools/ienfalfjdbdpebioblfackkekamfmbnh

 	Mozilla Firefox: https://addons.mozilla.org/firefox/addon/angular-devtools

 To open the extension, open the browser developer tools and select the Angular tab. It contains three additional tabs:

 	Components: Displays the component tree of the Angular application

 	Profiler: Allows us to profile and inspect the Angular application

 	Injector Tree: Displays the services provided by the Angular application

 In this chapter, we will explore how to use the Components tab. We will learn how to use the Profiler tab in Chapter 3, Structuring User Interfaces with Components, and the Injector Tree tab in Chapter 5, Managing Complex Tasks with Services.

 The Components tab allows us to preview the components and directives of an Angular application and interact with them. If we select a component from the tree representation, we can view its properties and metadata:

 [image: Εικόνα που περιέχει κείμενο, στιγμιότυπο οθόνης, γραμματοσειρά, αριθμός Περιγραφή που δημιουργήθηκε αυτόματα]
 Figure 1.3: Component preview

 From the Components tab, we can also look up the respective HTML element in the DOM or navigate to the actual source code of the component or directive. Clicking the < > button will take us to the TypeScript file of the current component:

 [image:]
 Figure 1.4: TypeScript source file

 Double-clicking a selector from the tree representation of the Components tab will navigate us to the DOM of the main page and highlight the individual HTML element:

 [image: Εικόνα που περιέχει κείμενο, στιγμιότυπο οθόνης, γραμματοσειρά, αριθμός Περιγραφή που δημιουργήθηκε αυτόματα]
 Figure 1.5: Main page DOM

 Finally, one of the most useful features of the component tree is that we can alter the value of a component property and inspect how the component template behaves:

 [image: Εικόνα που περιέχει κείμενο, στιγμιότυπο οθόνης, γραμματοσειρά, γραμμή Περιγραφή που δημιουργήθηκε αυτόματα]
 Figure 1.6: Change component state

 In the preceding image, you can see that when we changed the value of the title property to Angular World, the change was also reflected in the component template.

 VSCode Debugger

 We can debug an Angular application using standard debugging techniques for web applications or the tooling that VSCode provides out of the box.

 The console object is the most commonly used web API for debugging. It is a very fast way to print data and inspect values in the browser console. To inspect the value of an object in an Angular component, we can use the debug or log method, passing the object we want to inspect as a parameter. However, it is considered an old-fashioned approach, and a codebase with many console.log methods is difficult to read. An alternate way is to use breakpoints inside the source code using the VSCode debug menu.

 VSCode is an open-source code editor backed by Microsoft. It is very popular in the Angular community, primarily because of its robust support for TypeScript. TypeScript has been, to a great extent, a project driven by Microsoft, so it makes sense that one of its popular editors was conceived with built-in support for this language. It contains a rich collection of useful features, including syntax, error highlighting, automatic builds, and debugging.

 VSCode contains a built-in debugging tool that uses breakpoints to debug Angular applications. We can add breakpoints inside the source code from VSCode and inspect the state of an Angular application. When an Angular application runs and hits a breakpoint, it will pause and wait. During that time, we can investigate and inspect several values involved in the current execution context.

 Let’s see how to add breakpoints to our sample application:

 	Open the app.component.ts file and click on the left of line 11 to add a breakpoint. A red dot denotes breakpoints:

 [image: Εικόνα που περιέχει κείμενο, στιγμιότυπο οθόνης, γραμματοσειρά, αριθμός Περιγραφή που δημιουργήθηκε αυτόματα]
 Figure 1.7: Adding a breakpoint

 	Click on the Run and Debug button in the left sidebar of VSCode.

 	Click on the play button to start the application using the ng serve command:

 [image:]
 Figure 1.8: Run and debug menu

 VSCode will build our application, open the default web browser, and hit the breakpoint inside the editor:

 [image:]
 Figure 1.9: Hitting a breakpoint

 We can now inspect various aspects of our component and use the buttons in the debugger toolbar to control the debugging session.

 Another powerful feature of VSCode is VSCode Profiles, which help developers customize VSCode according to their development needs.

 VSCode Profiles

 VSCode Profiles allows us to customize the following aspects of the VSCode editor:

 	Settings: The configuration settings of VSCode

 	Keyboard shortcuts: Shortcuts to execute VSCode commands with the keyboard

 	Snippets: Reusable template code snippets

 	Tasks: Tasks that automate the execution of scripts and tools directly from VSCode

 	Extensions: Tools that enable us to add new capabilities in VSCode, such as languages, debuggers, and linters

 Profiles can also be shared, which helps us maintain a consistent development setup and workflow across our team. VSCode contains a set of built-in profiles, including one for Angular, that we can further customize according to our development needs. To install the Angular profile:

 	Click the Manage button represented by the gear icon at the bottom of the left sidebar in VSCode and select the Profiles option.

 	Click on the arrow of the New Profile button and select the From Template | Angular option.

 	Click the gear button if you want to select a custom icon for your profile.

 	Click the Create button to create your profile.

 VSCode will automatically apply the new profile after it has been created successfully.

 In the following sections, we will explore some of the extensions in the VSCode Angular profile.

 Angular Language Service

 The Angular Language Service extension is developed and maintained by the Angular team and provides code completion, navigation, and error detection inside Angular templates. It enriches VSCode with the following features:

 	Code completion

 	A go-to definition

 	Quick info

 	Diagnostic messages

 To get a glimpse of its powerful capabilities, let’s look at the code completion feature. Suppose we want to display a new property called description in the template of the main component. We can set this up by going through the following steps:

 	Define the new property in the app.component.ts file:
 export class AppComponent {
 title = 'my-app';
 description = 'Hello World';
}

 	Open the app.component.html file and add the property name in the template using Angular interpolation syntax. The Angular Language Service will find it and suggest it for us automatically:

 [image:]
 Figure 1.10: Angular Language Service

 The description property is a public property. We can omit the keyword public when using public properties and methods. Code completion does not work for private properties and methods. If the property had been declared private, then the Angular Language Service and the template would not have been able to recognize it.

 You may have noticed that a red line appeared instantly underneath the HTML element as you typed. The Angular Language Service did not recognize the property until you typed it correctly and gave you a proper indication of this lack of recognition. If you hover over the red indication, it displays a complete information message about what went wrong:

 [image: Εικόνα που περιέχει κείμενο, γραμματοσειρά, γραμμή, στιγμιότυπο οθόνης Περιγραφή που δημιουργήθηκε αυτόματα]
 Figure 1.11: Error handling in the template

 The preceding information message comes from the diagnostic messages feature. The Angular Language Service supports various messages according to the use case. You will encounter more of these messages as you work more with Angular.

 Material Icon Theme

 VSCode has a built-in set of icons to display different types of files in a project. The Material Icon Theme extension provides additional icons that conform to the Material Design guidelines by Google; a subset of this collection targets Angular-based artifacts:

 [image: Εικόνα που περιέχει κείμενο, στιγμιότυπο οθόνης, γραμματοσειρά Περιγραφή που δημιουργήθηκε αυτόματα]
 Figure 1.12: Material Icon Theme

 Using this extension, you can easily spot the type of Angular files in a project, such as components, and increase developer productivity, especially in large projects with many files.

 EditorConfig

 VSCode editor settings, such as indentation or spacing, can be set at a user or project level. EditorConfig can override these settings using the .editorconfig configuration file, which can be found in the root folder of an Angular CLI project:

 # Editor configuration, see https://editorconfig.org
root = true
[*]
charset = utf-8
indent_style = space
indent_size = 2
insert_final_newline = true
trim_trailing_whitespace = true
[*.ts]
quote_type = single
ij_typescript_use_double_quotes = false
[*.md]
max_line_length = off
trim_trailing_whitespace = false

 You can define unique settings in this file to ensure the consistency of the coding style across your team.

 Summary

 That’s it! Your journey into the world of Angular has just begun. Let’s recap the features that you have learned so far. We learned what Angular is, looked over the brief history of the framework, and examined the benefits of using it for web development.

 We saw how to set up our development workspace and find the tools to bring TypeScript into the game. We introduced the Angular CLI tool, the Swiss army knife for Angular, which automates specific development tasks. We used some of the most common commands to scaffold our first Angular application. We also examined the structure of our application and learned how to interact with it.

 Our first application gave us a basic understanding of how Angular works internally to render our application on a web page. We embarked on our journey, starting with the main HTML file of an Angular application. We saw how Angular parses that file and starts searching the component tree to load the main component. We learned the process of Angular bootstrapping and how it is used to load the application configuration.

 Finally, we met some of the most important Angular tools that could empower you as a software developer. We explored how to use Angular DevTools to inspect Angular applications and VSCode Debugger for debugging. We also examined VSCode Profiles and how it can help us maintain a consistent development environment across our team.

 In the next chapter, you will learn some of the basics of the TypeScript language. The chapter will cover what problems can be solved by introducing types and the language itself. TypeScript, as a superset of JavaScript, contains a lot of powerful concepts and marries well with the Angular framework, as you are about to discover.

 Join us on Discord

 Join our community’s Discord space for discussions with the author and other readers:

 https://packt.link/LearningAngular5e

 [image:]

 2

 Introduction to TypeScript

 As we learned in the previous chapter, when we built our very first Angular application, the code of an Angular project is written in TypeScript. Writing in TypeScript and leveraging its static typing gives us a remarkable advantage over other scripting languages. This chapter is not a thorough overview of the TypeScript language. Instead, we’ll focus on the core elements that will be useful for this book. As we will see very soon, having sound knowledge of these mechanisms is paramount to understanding how dependency injection works in Angular.

 In this chapter, we’re going to cover the following main topics:

 	JavaScript essentials

 	What is TypeScript?

 	Getting started with TypeScript

 We will first refresh our knowledge of JavaScript by revisiting some essential features related to TypeScript, such as functions and classes. We will then investigate the background of TypeScript and the rationale behind its creation. We will also learn how to code and execute TypeScript code. We will emphasize the typing system, which is the main advantage of TypeScript, and learn how to use it to create basic types and interfaces.

 Technical requirements

 	GitHub: https://github.com/PacktPublishing/Learning-Angular-Fifth-Edition/tree/main/ch02

 	Node.js: https://nodejs.org

 	Git: https://git-scm.com

 	VSCode: https://code.visualstudio.com

 JavaScript essentials

 JavaScript is a programming language that contains many features for building web applications. In this section, we will revisit and refresh our knowledge of some of the most basic ones as they are directly correlated with TypeScript and Angular development. TypeScript is a syntactic superset of JavaScript, meaning that it adds features such as types, interfaces, and generics. We will look at the following JavaScript features in more detail:

 	Variable declaration

 	Function parameters

 	Arrow functions

 	Optional chaining

 	Nullish coalescing

 	Classes

 	Modules

 You can run all the code samples in this section in the following ways:

 	Enter the code in a browser console window

 	Type the code in a JavaScript file and use Node.js to execute it

 If you are comfortable with these features, you can skip directly to the What is TypeScript? section.

 Variable declaration

 Traditionally, JavaScript developers have used the keyword var to declare objects, variables, and other artifacts. The reason was that the old semantics of the language only had a function scope where variables were unique within its context:

 function myFunc() {
 var x = 0;
}

 In the preceding function, no other variable can be declared as x inside its body. If you do declare one, then you effectively redefine it. However, there are cases in which scoping is not applied, such as in loops:

 var x = 20;
for (var x = 0; x < 10; x++) {
}

 In the preceding snippet, the x variable outside the loop will not affect the x variable inside because they have a different scope. To overcome the scope limitation, JavaScript introduced the let keyword:

 function myFunc() {
 let x = 0;
 x = 10;
}

 The let keyword allows us to change the reference of a variable multiple times in the code.

 Another way to define variables in JavaScript is the const keyword, which indicates that a variable should never change. As a code base grows, changes may happen by mistake, which can be costly. The const keyword can prevent these types of mistakes. Consider the following code snippet:

 const price = 100;
price = 50;

 If we try to execute it, it will throw the following error message:

 TypeError: Assignment to constant variable.

 The preceding error will come up only at the top level. You need to be aware of this if you declare objects as constants, like so:

 const product = { price: 100 };
product.price = 50;

 Declaring the product variable as a constant does not prevent the entire object but rather its reference from being edited. So, the preceding code is valid. If we try to change the reference of the variable, we will get the same type of error as before:

 const product = { price: 100 };
product = { price: 50 };

 It is preferable to use the const keyword when we are sure that the properties of an object will not change during its lifetime because it prevents the object from accidentally changing.

 When we want to combine variables, we can use the spread parameter syntax. A spread parameter uses the ellipsis (…) to expand the values of a variable:

 const category = 'Computing';
const categories = ['Gaming', 'Multimedia'];
const productCategories = [...categories, category];

 In the preceding snippet, we combine the categories array and the category item to create a new array. The categories array still contains two items, whereas the new array contains three. The current behavior is called immutability, which means not changing a variable but creating a new one that comes from the original.

 An object is not immutable if its properties can be changed or its properties are an object whose properties can be changed.

 We can also use a spread parameter on objects:

 const product = {
 name: 'Keyboard',
 price: 75
};
const newProduct = {
 ...product,
 price: 100,
 category: 'Computing'
};

 In the preceding snippet, we didn’t change the original product object but created a merge between the two. The value of the newProduct object will be:

 {
 name: 'Keyboard',
 price: 100,
 category: 'Computing'
}

 The newProduct object takes the properties from the product object, adds new values on top of it, and replaces the existing ones.

 Function parameters

 Functions in JavaScript are the processing machines we use to analyze input, digest information, and apply the necessary transformations to data. They use parameters to provide data for transforming the state of our application or returning an output that will be used to shape our application’s business logic or user interactivity.

 We can declare a function to accept default parameters so that the function assumes a default value when it’s not explicitly passed upon execution:

 function addtoCart(productId, quantity = 1) {
 const product = {
 id: productId,
 qty: quantity
 };
}

 If we do not pass a value for the quantity parameter while calling the function, we will get a product object with qty set to 1.

 Default parameters must be defined after all required parameters in the function signature.

 One significant advantage of JavaScript flexibility when defining functions is accepting an unlimited, non-declared array of parameters called rest parameters. Essentially, we can define an additional parameter at the end of the arguments list prefixed by an ellipsis (…):

 function addProduct(name, ...categories) {
 const product = {
 name,
 categories: categories.join(',')
 };
}

 In the preceding function, we use the join method to create a comma-separated string from the categories parameter. We pass each parameter separately when calling the function:

 addProduct('Keyboard', 'Computing', 'Peripherals');

 Rest parameters are beneficial when we don’t know how many arguments will be passed as parameters. The name property is also set using another useful feature of the JavaScript language. Instead of setting the property in the product object explicitly, we used the property name directly. The following snippet is equivalent to the initial declaration of the addProduct function:

 function addProduct(name, ...categories) {
 const product = {
 name: name,
 categories: categories.join(',')
 };
}

 The shorthand syntax for assigning property values can be used only when the parameter name matches the property name of an object.

 Arrow functions

 In JavaScript, we can create functions in an alternate way called arrow functions. The purpose of an arrow function is to simplify the general function syntax and provide a bulletproof way to handle the function scope, which is traditionally handled by the this object. Consider the following example, which calculates a product discount given its price:

 const discount = (price) => {
 return (price / 100) * 10 ;
};

 The preceding code does not have a function keyword, and the function body is defined by an arrow (=>). Arrow functions can be simplified further using the following best practices:

 	Omit the parentheses in the function parameters when the signature contains one parameter only.

 	Omit the curly braces in the function body and the return keyword if the function has only one statement.

 The resulting function will look much simpler and easier to read:

 const discount = price => (price / 100) * 10;

 Let’s explain now how arrow functions are related to scope handling. The value of the this object can point to a different context, depending on where we execute a function. When we use it inside a callback, we lose track of the upper context, which usually leads us to use conventions such as assigning its value to an external variable. Consider the following function, which logs a product name using the native setTimeout function:

 function createProduct(name) {
 this.name = name;
 this.getName = function() {
 setTimeout(function() {
 console.log('Product name is:', this.name);
 });
 }
}

 Execute the getName function using the following snippet and observe the console output:

 const product = new createProduct('Monitor');
product.getName();

 The preceding snippet will not print the Monitor product name as expected because our code modifies the scope of the this object when evaluating the function inside the setTimeout callback. To fix it, convert the setTimeout function to use an arrow function instead:

 setTimeout(() => {
 console.log('Product name is:', this.name);
});

 Our code is now simpler and we can use the function scope safely.

 Optional chaining

 Optional chaining is a powerful feature that can help us with refactoring and simplifying our code. In a nutshell, it can guide our code to ignore the execution of a statement unless a value has been provided somewhere in that statement. Let’s look at optional chaining with an example:

 const getOrder = () => {
 return {
 product: {
 name: 'Keyboard'
 }
 };
};

 In the preceding snippet, we define a getOrder function that returns the product of a particular order. Next, let’s fetch the value of the product property, making sure that an order exists before reading it:

 const order = getOrder();
if (order !== undefined) {
 const product = order.product;
}

 The previous snippet is a precautionary step in case our object has been modified. If we do not check the object and it has become undefined, JavaScript will throw an error. However, we can use optional chaining to improve the previous statement:

 const order = getOrder();
const product = order?.product;

 The character ? after the order object ensures that the product property will be accessed only if the object has a value. Optional chaining also works in more complicated scenarios, such as:

 const name = order?.product?.name;

 In the preceding snippet, we also check if the product object has a value before accessing its name property.

 Nullish coalescing

 Nullish coalescing is related to providing a default value when a variable is not set. Consider the following example, which assigns a value to the quantity variable only if the qty variable exists:

 const quantity = qty ? qty : 1;

 The previous statement is called a ternary operator and operates like a conditional statement. If the qty variable does not have a value, the quantity variable will be initialized to the default value of 1. We can rewrite the previous expression using nullish coalescing as:

 const quantity = qty ?? 1;

 Nullish coalescing helps us make our code readable and smaller.

 Classes

 JavaScript classes allow us to structure our application code and create instances of each class. A class can have property members, a constructor, methods, and property accessors. The following code snippet illustrates what a class looks like:

 class User {
 firstName = '';
 lastName = '';
 #isActive = false;
 constructor(firstName, lastName, isActive = true) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.#isActive = isActive;
 }
 getFullname() {
 return `${this.firstName} ${this.lastName}`;
 }

 get active() {
 return this.#isActive;
 }
}

 The class statement wraps several elements that we can break down:

 	Member: The User class contains the firstName, lastName, and #isActive members. Class members will only be accessible from within the class itself. Instances of the User class will have access only to the public properties firstName and lastName. The #isActive property will not be available because it is private, as denoted by the # character in front of the property name.

 	Constructor: The constructor is executed when we create an instance of the class. It is usually used to initialize the class members inside it with the parameters provided in the signature. We can also provide default values for parameters such as the isActive parameter.

 	Method: A method represents a function and may return a value, such as the getFullname method, which constructs the full name of a user. It can also be defined as private, similar to class members.

 	Property accessor: A property accessor is defined by prefixing a method with the set keyword to make it writable and the get keyword to make it readable, followed by the property name we want to expose. The active method is a property accessor that returns the value of the #isActive member.

 A class can also extend members and functionality of other classes. We can make a class inherit from another by appending the extends keyword to the class definition followed by the class we want to inherit:

 class Customer extends User {
 taxNumber = '';

 constructor(firstName, lastName) {
 super(firstName, lastName);
 }
}

 In the preceding snippet, the Customer class extends the User class, which exposes firstName and lastName properties. Any instance of the Customer class can use those properties by default. We can also override methods from the User class by appending a method with the same name. The constructor is required to call the super method, which points to the constructor of the User class.

 Modules

 As our applications scale and grow, there will be a time when we need to organize our code better and make it sustainable and reusable. Modules are a great way to accomplish these tasks, so let’s look at how they work and how we can implement them in our application.

 In the preceding section, we learned how to work with classes. Having both classes in the same file is not scalable, and maintaining it won’t be easy. Imagine how much code you must process to make a simple change in one of the classes. Modules allow us to separate our application code into single files, enforcing the Single Responsibility Pattern (SRP). Each file is a different module concerned with a specific feature or functionality.

 A good indication to split a module into multiple files is when the module starts to occupy different domains. For example, a products module cannot contain logic for customers.

 Let’s refactor the code described in the previous section so that the User and Customer classes belong to separate modules:

 	Open VSCode and create a new JavaScript file named user.js.

 	Enter the contents of the User class and add the export keyword in the class definition. The export keyword makes the module available to other modules and forms the public API of the module.

 	Create a new JavaScript file named customer.js and add the contents of the Customer class. The Customer class cannot recognize the User class because they are in different files.

 	Import the User class into the customer.js file by adding the following statement at the top of the file:
 import { User } from './user';

 We use the import keyword and the relative path of the module file without the extension to import the User class. If a module exports more than one artifact, we place them inside curly braces separated by a comma, such as:

 import { User, UserPreferences } from './user';

 Exploring modules concludes our journey of the JavaScript essentials. In the following section, we will learn about TypeScript and how it helps us build web applications.

 What is TypeScript?

 Transforming small web applications into thick monolithic clients was impossible due to the limitations of earlier JavaScript versions. In a nutshell, large-scale JavaScript applications suffered from serious maintainability and scalability problems as soon as they grew in size and complexity. This issue became more relevant as new libraries and modules required seamless integration into our applications. The lack of proper mechanisms for interoperability led to cumbersome solutions.

 To overcome those difficulties, Microsoft built a superset of the JavaScript language that would help build enterprise applications with a lower error footprint using static type checking, better tooling, and code analysis. TypeScript 1.0 was introduced in 2014. It ran ahead of JavaScript, implemented the same features, and provided a stable environment for building large-scale applications. It introduced optional static typing through type annotations, thereby ensuring type checking at compile time and catching errors early in the development process. Its support for declaration files also enabled developers to describe the interface of their modules so that other developers could better integrate them into their code workflow and tooling.

 The official TypeScript website can be reached at https://www.typescriptlang.org. It contains extensive language documentation and a playground that gives us access to a quick tutorial to get up to speed with the language in no time. It includes some ready-made code examples that cover some of the most common traits of the language.

 As a superset of JavaScript, one of the main advantages of embracing TypeScript in your next project is the low entry barrier. If you know JavaScript, you are pretty much all set since all the additional features in TypeScript are optional. You can pick and introduce any of them to achieve your goal. Overall, there is a long list of solid arguments for using TypeScript in your next project, and all apply to Angular.

 Here is a short rundown of some of the advantages:

 	Annotating your code with types ensures the consistent integration of your different code units and improves code readability and comprehension.

 	The built-in type-checker analyzes your code at compile time and helps you prevent errors before executing your code.

 	The use of types ensures consistency across your application. Combined with the previous two, the overall code error footprint is minimized in the long run.

 	Interfaces ensure the smooth and seamless integration of your libraries in other systems and code bases.

 	Language support across different IDEs is amazing, and you can benefit from features such as highlighting code, real-time type checking, and automatic compilation at no cost.

 	The syntax is familiar to developers from other OOP-based backgrounds, such as Java, C#, and C++.

 In the following section, we will learn how to develop and execute a TypeScript application. In Angular applications, we do not need to execute TypeScript code manually because it is automatically handled by the Angular CLI; however, it is good to know how it works under the hood.

 Getting started with TypeScript

 The TypeScript language is an npm package that can be installed from the npm registry using the following command:

 npm install -g typescript

 In the preceding command, we chose to install TypeScript globally in our system so that we can use it from any path in our development environment. Let’s see how we can use TypeScript through a simple example:

 	Open VSCode and select File | New File… from the main menu options.

 	Enter app.ts in the New File… dialog and press Enter.

 [image: Εικόνα που περιέχει κείμενο, στιγμιότυπο οθόνης, γραμματοσειρά, γραμμή Περιγραφή που δημιουργήθηκε αυτόματα]
 Figure 2.1: New File… dialog

 As we have already learned, TypeScript files have a .ts extension.

 	Select the path where you want to create the new file. VSCode will then open that file inside the editor.

 	Type the following snippet into the app.ts file:
 const title = 'Hello TypeScript!';

 Although we have created a TypeScript file, the preceding snippet is valid JavaScript code. Recall that TypeScript is a superset of JavaScript that provides syntactic sugar through its typing system. However, writing plain JavaScript code with TypeScript does not give us any clear benefit.

 	Open a terminal window and run the following command to compile the TypeScript file into JavaScript:
 tsc app.ts

 The preceding command initiates a process called transpilation performed by the tsc executable, a compiler that is at the core of the TypeScript language. We need to compile TypeScript code into JavaScript because browsers do not currently support TypeScript out of the box.

 Angular uses a compiler that utilizes the TypeScript compiler under the hood to build Angular applications.

 The TypeScript compiler supports extra configuration options that we can pass to the tsc executable through the terminal window or a configuration file. The complete list of available compiler options can be found at https://www.typescriptlang.org/docs/handbook/compiler-options.html.

 	The transpilation process will create an app.js file in the same folder as the TypeScript file. The new file will contain the following code:
 var title = 'Hello TypeScript!';

 Since we have not used any specific TypeScript feature yet, the preceding snippet looks almost identical to the original except for the variable declaration.

 	The transpilation process replaced the const keyword with the var keyword because the TypeScript compiler uses an old JavaScript version by default. We can change that by specifying a target in the tsc command:
 tsc app.ts --target es2022

 In the preceding command, we specified es2022, which represents the most recent version of the JavaScript language at the time of writing. Angular applications that we will build throughout this book also target the same JavaScript version by default.

 	Since we will use the latest JavaScript version in the rest of this chapter, let’s define the target option using a TypeScript configuration file. Create a file named tsconfig.json in the current folder and add the following contents:
 {
 "compilerOptions": {
 "target": "ES2022"
 }
}

 You can find more options for the TypeScript configuration file at https://www.typescriptlang.org/tsconfig.

 Run the command tsc in a terminal window to verify that the output JavaScript file remains unchanged.

 When we run the tsc command without options, it will compile all TypeScript files in the current folder using the options from the configuration file.

 The TypeScript code we have written so far does not use TypeScript-specific features. In the following section, we will learn how to use the typing system, which is the most powerful and essential feature of the TypeScript language.

 Types

 Working with TypeScript or any other coding language means working with data, and this data can represent different sorts of content, called types. Types are used to represent the fact that data can be text, an integer value, or an array of these value types, among others.

 Types disappear during transpilation and are not included in the final JavaScript code.

 You may have already encountered types in JavaScript since we have always worked implicitly with them. In JavaScript, any given variable could assume (or return, in the case of functions) any value. Sometimes, this leads to errors and exceptions in our code because of type collisions between what our code returned and what we expected to return type-wise. However, statically typing our variables gives our IDE and us a good picture of what kind of data we should find in each code instance. It becomes an invaluable way to help debug our applications at compile time before the code is executed.

 String

 One of the most widely used primitive types is the string, which populates a variable with text:

 const product: string = 'Keyboard';

 The type is defined by adding a colon and the type name next to the variable.

 Boolean

 The boolean type defines a variable that can have a value of either true or false:

 const isActive: boolean = true;

 The result of a boolean variable represents the fulfillment of a conditional statement.

 Number

 The number type is probably the other most widely used primitive data type, along with string and boolean:

 const price: number = 100;

 We can use the number type to define a floating-point number and hexadecimal, decimal, binary, and octal literals.

 Array

 The array type defines a list of items that contain a certain type only. Handling exceptions that arise from errors, such as assigning wrong member types in a list, can now be easily avoided with this type. We can define arrays using the square bracket syntax or the Array keyword:

 const categories: string[] = ['Computing', 'Multimedia'];
const categories: Array<string> = ['Computing', 'Multimedia'];

 Agreeing with your team on either syntax and sticking with it during application development is advisable.

 If we try to add a new item to the categories array with a type other than string, TypeScript will throw an error, ensuring our typed members remain consistent and that our code is error-free.

 any

 In all preceding cases, typing is optional because TypeScript is smart enough to infer the data types of variables from their values with a certain level of accuracy.

 Letting the typing system infer the types is very important, instead of typing it manually. The type system is never wrong, but the developer can be.

 However, if it is not possible, the typing system will automatically assign the dynamic any type to the loosely typed data at the cost of reducing type checking to a bare minimum. Additionally, we can add the any type in our code manually when it is hard to infer the data type from the information we have at any given point. The any type includes all the other existing types, so we can type any data value with it and assign any value to it later:

 let order: any;
function setOrderNo() {
 order = '0001';
}

 TypeScript contains another type, similar to the any type, called unknown. A variable of the unknown type can have a value of any type. The main difference is that TypeScript will not let us apply arbitrary operations to unknown values, such as calling a method, unless we perform type checking first.

 However, with great power comes great responsibility. If we bypass the convenience of static type checking, we open the door to type errors when piping data through our application. It is up to us to ensure type safety throughout our application.

 Custom types

 In TypeScript, you can come up with your own type if you need to by using the type keyword in the following way:

 type Categories = 'computing' | 'multimedia';

 We can then create a variable of a specific type as follows:

 const category: Categories = 'computing';

 The preceding code is perfectly valid as computing is one of the allowed values and works as intended. Custom types are an excellent way to add types with a finite number of allowed values.

 When we want to create a custom type from an object, we can use the keyof operator. The keyof operator enables us to iterate over the properties of an object and extract them into a new type:

 type Category = {
 computing: string;
 multimedia: string;
};
type CategoryType = keyof Category;

 In the preceding snippet, the CategoryType produced the same result as the Categories type. We will learn how we can use the keyof operator to iterate over object properties dynamically in Chapter 4, Enriching Applications Using Pipes and Directives.

 The typing system of TypeScript is mainly used to annotate JavaScript code with types. It improves the developer experience by providing intelliSense and preventing bugs early in development. In the following section, we will learn more about adding type annotations in functions.

 Functions

 Functions in TypeScript are not that different from regular JavaScript, except that, like everything else in TypeScript, they can be annotated with static types. Thus, they improve the compiler by providing the information it expects in their signature and the data type it aims to return, if any.

 The following example showcases how a regular function is annotated in TypeScript:

 function getProduct(): string {
 return 'Keyboard';
}

 In the preceding snippet, we annotated the returned value of the function by adding the string type to the function declaration. We can also add types in function parameters, such as:

 function getFullname(firstName: string, lastName: string): string {
 return `${this.firstName} ${this.lastName}`;
}

 In the preceding snippet, we annotated the parameters declared in the function signature, which makes sense since the compiler will want to check whether the data provided holds the correct type.

 As mentioned in the previous section, the TypeScript compiler is smart enough to infer types when no annotation is provided. In both preceding functions, we could omit the type because the compiler could infer it from the arguments provided and the returned statements.

 When a function does not return a type, we can annotate it using the void type:

 function printFullname(firstName: string, lastName: string): void {
 console.log(`${this.firstName} ${this.lastName}`);
}

 We have already learned how to use default and rest parameters in JavaScript functions. TypeScript extends functions’ capabilities by introducing optional parameters. Parameters are defined as optional by adding the character ? after the parameter name:

 function addtoCart(productId: number, quantity?: number) {
 const product = {
 id: productId,
 qty: quantity ?? 1
 };
}

 In the preceding function, we have defined quantity as an optional parameter. We have also used the nullish coalescing syntax to set the qty property of the product object if quantity is not passed.

 We can invoke the addToCart function by passing only the productId parameter or both.

 Optional parameters should be placed last in a function signature.

 We have already learned how JavaScript classes can help us structure our application code. In the following section, we will see how to use them in TypeScript to improve our application further.

 Classes

 Consider the User class that we defined in the user.js file:

 export class User {
 firstName = '';
 lastName = '';
 #isActive = false;
 constructor(firstName, lastName, isActive = true) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.#isActive = isActive;
 }
 getFullname() {
 return `${this.firstName} ${this.lastName}`;
 }

 get active() {
 return this.#isActive;
 }
}

 We will take simple, small steps to add types throughout the class:

 	Convert the file to TypeScript by renaming it user.ts.

 	Add the following types to all class properties:
 firstName: string = '';
lastName: string = '';
private isActive: boolean = false;

 In the preceding snippet, we also used the private modifier to define the isActive property as private.

 	Modify the constructor by adding types to parameters:
 constructor(firstName: string, lastName: string, isActive: boolean = true) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.isActive = isActive;
}

 Alternatively, we could omit class properties and have the constructor create them automatically by declaring parameters as private:

 constructor(private firstName: string, private lastName: string, private isActive: boolean = true) {}

 	Finally, add types in the active property accessor and the getFullname method:

OEBPS/Images/B21418_01_11.png
Property 'descr' does not exist on type 'AppComponent’. ngtsc(2339)

app. component.ts(1, 23): Error occurs in the template of component AppComponent.

any
View Problem (Alt+F8) Quick Fix... (Ctrl+.)

OEBPS/Images/QR_Code1314413148229661500.png

OEBPS/Images/B21418_01_06_A.png
7Y Angular

Hello, Angular World

Congratulations! Your app is running. &

Explore the Docs &

Learn with Tutorials &

CLI Docs @

Angular Language Service &

Angular Devools &3

0O X

~ [0 Elements Recorder Console Angular >> @& X
R & @ o v Components Profiler Injector Tree

Q_ Search components

¥ app-root == $ng6
router-outlet[_RouterOutlet]

app-root
app-root
app-root <>
~

Properties [}

title: Angular World

OEBPS/Text/toc.xhtml

 Contents

 		Preface

 		Who this book is for

 		What this book covers

 		To get the most out of this book

 		Get in touch

 		Building Your First Angular Application

 		Technical requirements

 		What is Angular?

 		Why choose Angular?

 		Cross-platform

 		Tooling

 		Onboarding

 		The usage of Angular worldwide

 		Setting up the Angular CLI workspace

 		Prerequisites

 		Node.js

 		npm

 		Git

 		Installing the Angular CLI

 		CLI commands

 		Creating a new project

 		The structure of an Angular application

 		Components

 		Bootstrapping

 		Template syntax

 		Angular tooling

 		Angular DevTools

 		VSCode Debugger

 		VSCode Profiles

 		Angular Language Service

 		Material Icon Theme

 		EditorConfig

 		Summary

 		Join us on Discord

 		Introduction to TypeScript

 		Technical requirements

 		JavaScript essentials

 		Variable declaration

 		Function parameters

 		Arrow functions

 		Optional chaining

 		Nullish coalescing

 		Classes

 		Modules

 		What is TypeScript?

 		Getting started with TypeScript

 		Types

 		String

 		Boolean

 		Number

 		Array

 		any

 		Custom types

 		Functions

 		Classes

 		Interfaces

 		Generics

 		Utility types

 		Summary

 		Structuring User Interfaces with Components

 		Technical requirements

 		Creating our first component

 		The structure of an Angular component

 		Creating components with the Angular CLI

 		Interacting with the template

 		Loading the component template

 		Displaying data from the component class

 		Controlling data representation

 		Class binding

 		Style binding

 		Getting data from the template

 		Component inter-communication

 		Passing data using an input binding

 		Listening for events using an output binding

 		Emitting data through custom events

 		Local reference variables in templates

 		Encapsulating CSS styling

 		Deciding on a change detection strategy

 		Introducing the component lifecycle

 		Performing component initialization

 		Cleaning up component resources

 		Detecting input binding changes

 		Accessing child components

 		Summary

 		Enriching Applications Using Pipes and Directives

 		Technical requirements

 		Manipulating data with pipes

 		Building pipes

 		Sorting data using pipes

 		Passing parameters to pipes

 		Change detection with pipes

 		Building directives

 		Displaying dynamic data

 		Property binding and responding to events

 		Summary

 		Managing Complex Tasks with Services

 		Technical requirements

 		Introducing Angular DI

 		Creating our first Angular service

 		Injecting services in the constructor

 		The inject keyword

 		Providing dependencies across the application

 		Injecting services in the component tree

 		Sharing dependencies through components

 		Root and component injectors

 		Sandboxing components with multiple instances

 		Restricting provider lookup

 		Overriding providers in the injector hierarchy

 		Overriding service implementation

 		Providing services conditionally

 		Transforming objects in Angular services

 		Summary

 		Reactive Patterns in Angular

 		Technical requirements

 		Strategies for handling asynchronous information

 		Shifting from callback hell to promises

 		Observables in a nutshell

 		Reactive programming in Angular

 		The RxJS library

 		Creating observables

 		Transforming observables

 		Subscribing to observables

 		Unsubscribing from observables

 		Destroying a component

 		Using the async pipe

 		Summary

 		Tracking Application State with Signals

 		Technical requirements

 		Understanding signals

 		Reading and writing signals

 		Computed signals

 		Cooperating with RxJS

 		Summary

 		Communicating with Data Services over HTTP

 		Technical requirements

 		Communicating data over HTTP

 		Introducing the Angular HTTP client

 		Setting up a backend API

 		Handling CRUD data in Angular

 		Fetching data through HTTP

 		Modifying data through HTTP

 		Adding new products

 		Updating product price

 		Removing a product

 		Authentication and authorization with HTTP

 		Authenticating with a backend API

 		Authorizing user access

 		Authorizing HTTP requests

 		Summary

 		Navigating through Applications with Routing

 		Technical requirements

 		Introducing the Angular router

 		Specifying a base path

 		Enabling routing in Angular applications

 		Configuring the router

 		Rendering components

 		Configuring the main routes

 		Organizing application routes

 		Navigating imperatively to a route

 		Using built-in route paths

 		Styling router links

 		Passing parameters to routes

 		Building a detail page using route parameters

 		Reusing components using child routes

 		Taking a snapshot of route parameters

 		Filtering data using query parameters

 		Binding input properties to routes

 		Enhancing navigation with advanced features

 		Controlling route access

 		Preventing navigation away from a route

 		Prefetching route data

 		Lazy-loading parts of the application

 		Protecting a lazy-loaded route

 		Summary

 		Collecting User Data with Forms

 		Technical requirements

 		Introducing web forms

 		Building template-driven forms

 		Building reactive forms

 		Interacting with reactive forms

 		Creating nesting form hierarchies

 		Modifying forms dynamically

 		Using a form builder

 		Validating input in forms

 		Global validation with CSS

 		Validation in template-driven forms

 		Validation in reactive forms

 		Building custom validators

 		Manipulating form state

 		Updating form state

 		Reacting to state changes

 		Summary

 		Handling Application Errors

 		Technical requirements

 		Handling runtime errors

 		Catching HTTP request errors

 		Creating a global error handler

 		Responding to the 401 Unauthorized error

 		Demystifying framework errors

 		Summary

 		Introduction to Angular Material

 		Technical requirements

 		Introducing Material Design

 		Introducing Angular Material

 		Installing Angular Material

 		Adding UI components

 		Theming UI components

 		Integrating UI components

 		Form controls

 		Input

 		Select

 		Chips

 		Navigation

 		Layout

 		Card

 		Data table

 		Popups and overlays

 		Creating a confirmation dialog

 		Configuring dialogs

 		Getting data from dialogs

 		Displaying user notifications

 		Summary

 		Unit Testing Angular Applications

 		Technical requirements

 		Why do we need unit tests?

 		The anatomy of a unit test

 		Introducing unit tests in Angular

 		Testing components

 		Testing with dependencies

 		Replacing the dependency with a stub

 		Spying on the dependency method

 		Testing asynchronous services

 		Testing with inputs and outputs

 		Testing with a component harness

 		Testing services

 		Testing synchronous/asynchronous methods

 		Testing services with dependencies

 		Testing pipes

 		Testing directives

 		Testing forms

 		Testing the router

 		Routed and routing components

 		Guards

 		Resolvers

 		Summary

 		Bringing Applications to Production

 		Technical requirements

 		Building an Angular application

 		Building for different environments

 		Building for the window object

 		Limiting the application bundle size

 		Optimizing the application bundle

 		Deploying an Angular application

 		Summary

 		Optimizing Application Performance

 		Technical requirements

 		Introducing Core Web Vitals

 		Rendering SSR applications

 		Overriding SSR in Angular applications

 		Optimizing image loading

 		Deferring components

 		Introducing deferrable views

 		Using deferrable blocks

 		Loading patterns in @defer blocks

 		Prerendering SSG applications

 		Summary

 		Index

 Landmarks

 		

 Cover

 		

 Index

OEBPS/Images/blockquote-top.png

OEBPS/Images/B21418_01_03.png
F & @ Components

Q Search components

Y app-root == $ng@
router-outlet[_RouterOutlet]

Profiler

Injector Tree

app-root
app-root
app-root <>
Properties [/} A

title: World

OEBPS/Images/B21418_01_07.png
TS app.component.ts M X

src > app > TS app.component.ts > ...

1

VW N U A WwN

L]
S
N R ©

import { Component } from '@angular/core';
import { RouteroOutlet } from '@angular/router’;

@Component ({
selector: ‘'app-root’,
imports: [RouteroOutlet],
templateUrl: './app.component.html’,
styleUrl: './app.component.css'

H

export class AppComponent {
title = 'World';

s

OEBPS/Images/B21418_02_01.png
New File...

app.ts

Create New File (app.ts) Built-In File £23

OEBPS/Images/B21418_01_10.png
{{descr}}

lescription

OEBPS/Images/tip.png

OEBPS/Images/B21418_01_02.png
rN Angular
Hello, World

OEBPS/Images/cover.png
EXPERT INSIGHT

Learning
Angular

A practical guide to building web applications
with modern Angular

Forewords by:
Bonnie Brennan Pablo Deeleman
Founder of TechStackNation.com Frontend Architect at GitKraken

Fifth Edition

Aristeidis Bampakos (pCICk‘l')

OEBPS/Images/info.png

OEBPS/Images/B21418_01_05.png
LG CElements Console Sources Network > & X
<IDOCTYPE html>

<html lang="en">
» <head> - </head>
¥ <body>

¥ <app-root _nghost-ng-c245922056 ng-version="19.0.0"> == $0
> <main _ngcontent-ng-c245922056 class="main"> = </main> flex
<router-outlet _ngcontent-ng-c245922056></router-outlet>
<1--container-->
</app-root>
<script sr

“polyfills.js" type="module"></script>

<script src="main.js" type="module"></script>
»<div class="ng-devtools-overlay" i ngDevToolsHighlight™

style="background-color: rgba(104, 182, 255, 0.35); position: fi
xed; z-index: 2147483647; pointer-events: none; display: flex; b
order-radius: 3px; width: 866px; height: 384px; top: 8px; left:
8px; "> s </div> | flex
</body>
html body ~app-root

OEBPS/Images/blockquote-bottom.png

OEBPS/Images/B21418_01_01.png
7Y Angular Expor the s 7

He"ol my-a pp Learn with Tutorials &

Congratulations! Your app is running. &

CLI Docs &

Angular Language Service &

Angular DevTools &

OXo

OEBPS/Images/B21418_01_09.png
export class AppComponent {
Dtitle = 'World';
}

OEBPS/Images/B21418_01_04.png
Page Workspace > ¢ [[@ app.componentts X

v [src = 1 import { Component } from '@angular/core’;
v e z import { RouterOutlet } from ‘@angular/router;
) app.component htmt 4 @Component({
[) app.component.ts 5 selector: 'app-root’,
D) app.configts 6 imports: [RouterOutlet],
7 templateUrl: './app.component.html’,
D) approutests 8 styleUrl: './app.component.css’
O maints)
D (Gndex) 10 export class AppComponent {
11| title = 'World';

) mainjs oo

OEBPS/Images/B21418_Free_PDF_QR.png

OEBPS/Images/New_Packt_Logo.png
<packn

OEBPS/Images/B21418_01_12.png
> WA .angular

> B= .vscode

> I node_modules

> BE public

v @ src

v @ app
T app.component.css
& app.component.html
£ app.component.spec.ts
72\ app.component.ts
app.config.ts
<+ app.routes.ts
B index.html
main.ts

I styles.css

OEBPS/Images/B21418_01_08.png
RUNANDDEBUG D ngserve v | &% -+

