
		
			[image: Cover.png]
		

	
		
			Hands-On Application Development with PyCharm

			Build applications like a pro with the ultimate python development tool

			Bruce M. Van Horn II

			Quan Nguyen

			[image:]

			BIRMINGHAM—MUMBAI

			Hands-On Application Development with PyCharm

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Kunal Sawant

			Publishing Product Manager: Akash Sharma

			Senior Editor: Kinnari Chohan

			Technical Editor: Jubit Pincy

			Copy Editor: Safis Editing

			Project Coordinator: Manisha Singh

			Proofreader: Safis Editing

			Indexer: Rekha Nair

			Production Designer: Ponraj Dhandapani

			Development Relations Marketing Executive: Sonia Chauhan

			First published: October 2019

			Second edition: October 2023

			Production reference: 1290923

			Published by Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB

			ISBN 978-1-83763-235-0

			www.packtpub.com

			For my daughters, Kitty and Phoebe, and my wife Karina. For my team at Visual Storage Intelligence. For my Lord and Savior, Jesus Christ. “As each has received a gift, use it to serve one another, as good stewards of God’s varied grace.” — 1 Peter 4:10.

			– Bruce M. Van Horn II

			To my two great teachers in life: my mother Chi Lan, and my father, Bang. In memory of my grandmother and my two dear grandfathers.

			– Quan Nguyen

			Contributors

			About the authors

			Bruce M. Van Horn II is the Lead Principal Software Engineer for Visual Storage Intelligence. He specializes in software engineering and web development in Python, C# and JavaScript. He’s also in charge of DevOps, and is an Advanced Certified Scrum Master(A-CSM). With over 30 years of experience creating and shipping successful software, he also has 25 years of teaching experience gained by teaching evening classes at colleges and universities near his home in Dallas, Texas. Van Horn is the author of several books and video series published by Packt, Skillsoft, Lynda.com and LinkedIn Learning including LinkedIn’s original video course on PyCharm. His projects over the years have won many auspicious awards, but his proudest achievement to date was his team’s achievement winning the U.S. Navy’s IS&T award. You can reach him at LinkedIn at https://www.linkedin.com/in/brucevanhorn2/

			Quan Nguyen, the author of the first edition of this book, is a Python programmer with a strong passion for machine learning. He holds a dual degree in mathematics and computer science, with a minor in philosophy, earned from DePauw University. Quan is deeply involved in the Python community and has authored multiple Python books, contributing to the Python Software Foundation and regularly sharing insights on DataScience.com. Currently pursuing a Ph.D. in computer science at Washington University in St. Louis, you can find him on LinkedIn at https://www.linkedin.com/in/quan-m-nguyen/.

			About the reviewers

			Dr. Gowrishankar S Nath is a professor and dean of the Department of Computer Science and Engineering at Dr. Ambedkar Institute of Technology in Bengaluru, India. He earned a Ph.D. in engineering for Jadavpur University, Kolkata India in 2010, and an MTech in software engineering along with a BE in computer science and engineering from Visvesvaraya Technological University (VTU) in 2005 and 2003 respectively. His research interests include the applications of machine learning, data mining, and big data analytics in health care. You’ll find him on LinkedIn at https://www.linkedin.com/in/gowrishankarnath/.

			Walker Crystal is a creative tinkerer at heart who loves to listen and solve problems. Walker has a Bachelor’s degree in Automotive Engineering Technology from Brigham Young University, Idaho and has worked as a system integration tester for an automotive manufacturer, software developer at a fortune 500 company, and DevOps Engineer/Software Developer for a large trucking company among jobs in other career fields. His keen attention to detail and natural curiosity help him to ask the right questions and develop innovative and creative solutions to problems. He believes that technology is a force multiplier that can amplify your efforts to do good and extend your positive impact to customers all across the globe. In his spare time he makes 3D CAD models and prints them on a 3D printer, plays with Legos, fixes old and new cars, explores new technologies and spends time with his family. You can find him on LinkedIn at https://www.linkedin.com/in/nitrospaz/.

			Karina Van Horn has a dual degree in Political Science and Creative Writing from Southern Methodist University, as well as a Juris doctorate from Texas Wesleyan University. Despite disliking anything related to technology, she has a talent for taking good writing and making it great.

		

	
		
			Table of Contents

			Preface

			Part 1: The Basics of PyCharm

			1

			Introduction to PyCharm – the Most Popular IDE for Python

			Technical requirements

			The continued success of Python

			The philosophy of IDEs

			PyCharm as a Python IDE

			Intelligent coding assistance

			Streamlined programming tools

			Web development options

			Scientific computing support

			Understanding the Professional, Community, and Educational editions

			Summary

			Questions

			Further reading

			2

			Installing and Configuring PyCharm

			Technical requirements

			Downloading PyCharm the traditional way

			JetBrains Toolbox

			Installing Toolbox in Windows

			Installing Toolbox in macOS

			Installing PyCharm with Toolbox

			Launching PyCharm using Toolbox

			Installing an alternate version or uninstalling

			Updating PyCharm using Toolbox

			Launching and registering PyCharm

			Setting up PyCharm

			Appearance and behavior

			Working with projects

			Creating a new project

			Running a PyCharm project

			Cloning this book’s code from GitHub

			Setting up your GitHub account

			Cloning the book’s repository

			Summary

			Questions

			Further reading

			Part 2: Improving Your Productivity

			3

			Customizing Interpreters and Virtual Environments

			Technical requirements

			Virtual environments

			Creating a virtual environment by hand

			Creating a project in PyCharm (revisited)

			Using an existing virtual environment

			Changing the interpreter for a project

			Activating virtualenv

			Using the integrated terminal

			Working with the REPL in the console window

			Working with third-party package libraries

			Adding third-party libraries in PyCharm

			Removing third-party libraries in PyCharm

			Using a requirements.txt file

			The new Python Packages window

			Professional features important to virtual environments

			Importing projects into PyCharm

			Importing a project cloned from a repository

			Dealing with invalid interpreters

			Working with run configurations

			PyCharm’s project files

			Summary

			Questions

			Further reading

			4

			Editing and Formatting with Ease in PyCharm

			Technical requirements

			Code analysis, inspection, and suggestion

			It duzunt assewm yew cna spel

			It understands your code

			Postfix code completion

			Hippie completion

			Indexing

			Power Save Mode

			Customizing code completion

			Match case

			Sorting suggestions alphabetically

			Machine learning assisted completions

			Showing the documentation popup in [...] ms

			Parameter info

			Code analysis and automated fixes

			Problem detection

			Syntax errors

			Duplicated code

			PEP-8 problems

			Dead code

			Method signature mismatches

			The road to good code is paved with PyCharm’s intentions

			Refactoring

			What is refactoring?

			Refactoring tools in PyCharm

			Documentation

			Working with docstrings

			Summary

			Questions

			Further reading

			5

			Version Control with Git in PyCharm

			Technical requirements

			Version control and Git essentials

			Setting up Git on your computer

			Setting your default username and email address

			Generating an SSH key

			Adding your SSH key to your GitHub account

			Setting up a repository manually

			Master versus main branches in GitHub

			Manually initializing the repository

			Working with remotes

			Adding a remote on GitHub

			The first push

			Making, committing, and pushing a change

			Working with Git in the IDE

			Version control in PyCharm

			Creating a new project from scratch using VCS tooling in PyCharm

			Initializing the local Git repository

			Adding a remote on GitHub

			Adding project files

			Adding a .gitignore file

			Pulling and pushing

			Branching and merging

			Creating a branch

			Switching between branches

			Merging

			Viewing the branch diagram

			Diffs and conflict resolution

			Viewing diffs

			Summary

			Questions

			Further reading

			6

			Seamless Testing, Debugging, and Profiling

			Technical requirements

			Testing, testing, 1-2-3

			Unit testing in Python using PyCharm

			Choosing a test library

			Adding a bank account class

			Testing the bank account class

			Running the tests

			Fixing the failing tests

			Testing the fault paths

			Generating tests automatically

			Generating the transaction test

			Working with PyCharm’s debugger

			Using the debugger to find and fix our test problem

			Checking test coverage

			Test coverage output

			Profiling performance

			Profiling in PyCharm

			Comparing performance versus the built-in sum() function

			Viewing the call graph

			Navigating using the performance profile

			Performance cProfile snapshots

			Summary

			Questions

			Further reading

			Part 3: Web Development in PyCharm

			7

			Web Development with JavaScript, HTML, and CSS

			Technical requirements

			Introduction to HTML, JavaScript, and CSS

			Writing code with HTML

			Creating HTML in PyCharm

			Creating an empty project

			Previewing web pages

			Reloading the browser view on save

			Using the PyCharm HTML preview

			Configuring the available browsers

			Navigating structure code with the structure window

			Adding the CSS

			Using color selectors

			Adding JavaScript

			Adding some JavaScript code

			Adding the elements to the HTML file

			Debugging client-side JavaScript

			Working with Emmet templating

			HTML project types in PyCharm Professional

			HTML 5 Boilerplate

			Previewing and editing graphics with external tools

			Uploading your site to a server

			Creating a Bootstrap project

			Working with modern JavaScript and NodeJS

			Creating a NodeJS project

			Creating a React project

			Other frontend frameworks

			Summary

			Questions

			8

			Building a Dynamic Web Application with Flask

			Technical requirements

			Web basics – client-server architecture

			Exploring the request-response mechanism in HTTP – how clients and servers communicate

			What is Flask?

			Request-response handling and routing with Werkzeug

			Templating with Jinja2

			A note on naming files and folders

			Creating a Flask application in PyCharm Professional

			Creating a dynamic web application

			Setting up the static parts

			Running the Flask app

			Let’s make it look a little better

			Adding some CSS

			Making the page dynamic

			Editor enhancements for working with Flask and Jinja2

			Summary

			Further reading

			9

			Creating a RESTful API with FastAPI

			Technical requirements

			There is no REST in a wicked stateless world

			Creating a FastAPI project in PyCharm Professional

			Running the FastAPI project

			Working with PyCharm’s HTTP Requests

			Examining the details of the return

			We just generated a new run configuration

			Using Before launch actions in run configurations

			Working with HTTP Request environments

			Let’s get CRUDdier and then get testier!

			Getting testier

			Creating the tests

			Editing and debugging a full stack app by attaching projects

			Creating a React app in a separate project

			Attaching the project to the FastAPI project we created earlier

			Summary

			Questions

			Further reading

			10

			More Full Stack Frameworks – Django and Pyramid

			Technical requirements

			What’s all this fuss about Django?

			Django framework components

			Creating a Django project

			Structure of a Django project

			Initial configuration

			Running the Django project

			Creating Django models

			Performing migrations using manage.py

			The Django admin interface

			Creating a superuser and logging in

			Adding the Author and Book models to the admin interface

			Creating Django views

			What’s with the weird Python icon in the template gutter?

			Run it!

			Building Pyramid applications with PyCharm

			Creating a Pyramid project

			Summary

			Questions

			Further reading

			11

			Understanding Database Management in PyCharm

			Technical requirements

			Relational databases in a nutshell

			Structured Query Language

			The two halves of SQL

			Relationships

			More relational structures

			Database terminology uses simple English plurals

			Database tooling in PyCharm

			Setting up a MySQL database server with Docker

			Installing and running the MySQL container

			Stopping and starting the container

			Connecting to data sources using PyCharm

			Creating a new database

			Setting the SQL dialect (this is crucial)

			Grouping and color coding data sources

			Database design and manipulation

			Creating a table

			Altering existing structures

			Generating scripts

			Querying the data source using SQL

			Ad hoc queries

			Generating SQL statements

			Running the query

			Exporting query results

			Working with SQL files

			Summary

			Further reading

			Part 4: Data Science with PyCharm

			12

			Turning On Scientific Mode

			Technical requirements

			Creating a scientific project in PyCharm

			Additional configuration for science projects in PyCharm

			Markdown plugins

			Adding images

			Installing the CSV plugin

			Installing the cell mode plugin

			Installing packages

			Backfill your requirements.txt file

			Adding some sciency code

			Toggling scientific mode

			Understanding the advanced features of PyCharm’s scientific projects

			The documentation viewer

			Using code cells in PyCharm

			Using PyCharm code cells

			The cell mode plugin

			Summary

			Questions

			13

			Dynamic Data Viewing with SciView and Jupyter

			Technical requirements

			Data viewing made easy with PyCharm’s SciView panel

			Viewing and working with plots

			Heatmaps and correlational data

			Viewing and working with data

			Filtering in the Data tab

			Understanding IPython and magic commands

			Installing and setting up IPython

			Introducing IPython magic commands

			Leveraging Jupyter notebooks

			Understanding Jupyter basics

			The idea of iterative development

			Jupyter notebooks in PyCharm

			Creating a notebook and adding our code

			Documenting with Markdown and LaTeX

			Adding our plots

			Executing the cells

			Odds and ends

			Summary

			Questions

			14

			Building a Data Pipeline in PyCharm

			Technical requirements

			Working with datasets

			Starting with a question

			Archived user data

			Tappy data

			Data collection

			Downloading from an external source

			Manually collecting/web scraping

			Collecting data via third parties

			Database exports

			Version control for datasets

			Using Git Large File Support

			Data cleansing and preprocessing

			A toxic data example peripherally involving ninjas

			Exploratory analysis in PyCharm

			Data cleansing

			Exploring the second dataset

			Refactoring for scale

			Data analysis and insights

			Starting the notebook and reading in our processed data

			Using charts and graphs

			Machine learning-based insights

			Scripts versus notebooks in data science

			Summary

			Questions

			Further reading

			Part 5: Plugins and Conclusion

			15

			More Possibilities with Plugins

			Technical requirements

			Bundled plugins and JetBrains Marketplace

			The plugins window

			Bundled plugins

			JetBrains Marketplace

			Making your own plugins

			Requiring plugins for your projects

			Useful miscellaneous plugins

			Code with me (and never be lonely again)

			Remote development

			Configuring remote development in PyCharm

			Creating a remote project

			Let’s try that again

			Creating a virtual environment on the remote

			Other considerations

			Working with Docker

			The bundled Docker plugin

			Create the project

			Add a Docker run configuration

			Summary

			16

			Your Next Steps with PyCharm

			Miscellaneous topics in PyCharm

			Remote virtual environments

			Working with HashiCorp Vagrant

			Tracking your time

			TODO list

			Macros

			Notifications

			New features in 2023.2

			Black integration

			GitLab integration

			Run anywhere

			AI Assistant

			Jupyter Notebook support for Polars

			Summary and closing remarks

			Further reading

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			Welcome to the world of Python programming with PyCharm! In this book, we embark on a journey through the versatile and dynamic realm of Python development, empowered by the PyCharm integrated development environment. Whether you are a novice programmer just starting your coding adventure or an experienced developer looking to enhance your Python skills, this book is designed to be your trusted companion.

			Python has emerged as one of the most popular and versatile programming languages, known for its simplicity and readability. With its rich ecosystem of libraries and frameworks, Python is used in a wide range of applications, from web development and data analysis to artificial intelligence and scientific computing. PyCharm, developed by JetBrains, is a leading Python IDE that empowers programmers with a robust set of tools and features for efficient code development, debugging, and collaboration.

			In the following chapters, we will explore PyCharm’s fundamentals, dive into advanced configuration capabilities, and leverage PyCharm’s professional edition to streamline your coding workflow. Whether you aspire to build web applications, automate tasks, analyze data, or develop machine learning models, this book will equip you with the knowledge and skills to turn your ideas into reality.

			Our aim is to make your Python programming journey not only educational but also enjoyable. Throughout the book, we provide practical examples, hands-on exercises, and real-world projects to reinforce your understanding and ignite your creativity. By the time you reach the final page, you will have the confidence and expertise to tackle Python projects of all scales and complexities using PyCharm as your single go-to tool.

			So, let’s embark on this exciting adventure together, as we unravel the beauty of Python programming and harness the power of PyCharm to transform your coding aspirations into tangible achievements. Happy coding!

			Who this book is for

			This book is designed for a diverse audience of individuals who are interested in Python programming and wish to leverage the PyCharm integrated development environment (IDE) to enhance their coding experience. Here are the primary groups of people for whom this book is tailored:

			
					Beginner Programmers: If you are new to programming or have limited coding experience, this book provides a gentle introduction to Python and PyCharm. By its very nature, PyCharm makes Python easier to learn by providing a great deal of help in setting up project templates, providing auto-completion, and automatic PEP-8 formatting for your code.

					Intermediate Python Developers: If you already have some experience with Python but want to deepen your knowledge and proficiency, this book along with PyCharm can help. PyCharm’s configurable linter and code analysis technology will hold your work to the highest standards. Refactoring, a practice that is too often neglected, becomes trivial owing to PyCharm’s indexing and refactoring tools. You’ll learn to use integrated testing, coverage, and profiling tools to ensure your code runs swiftly and reliably.

					Experienced Developers from Other Languages: If you are an experienced programmer in another language and want to transition to Python or incorporate Python into your skillset, this book will help you bridge the gap and master Python programming using PyCharm. This is especially true if you’ve used other PyCharm IDEs. If you normally use IntelliJ Idea, WebStorm, Rider, or PHP Storm, you’ll be right at home since you’ll be using the same keyboard shortcuts. If you use Visual Studio, you can easily configure PyCharm to use the keyboard shortcuts you are used to, and we think you’ll find common workflows, like working with Git, to be superior and more intuitive in PyCharm.

					Students and Educators: Python is a popular language for teaching and learning programming. This book can serve as a valuable resource for students studying Python as part of their coursework and educators looking for a comprehensive guide to teaching Python with PyCharm effectively.

					Data Scientists and Analysts: Python is widely used in the field of data analysis and machine learning. This book covers advanced libraries and tools for data exploration, manipulation, cleansing, and analysis, making it valuable for data professionals seeking to improve their Python skills within the context of PyCharm. PyCharm contains a powerful set of tools for working with relational and non-relational databases which are fully covered.

					Web Developers: If you are interested in web development using Python, this book covers web frameworks and tools, enabling you to create dynamic web applications with PyCharm as your development tool. You’ll learn to create projects in popular web development frameworks like Flask, FastAPI, and Django. Most people don’t realize it, by PyCharm professional contains a full IDE geared towards JavaScript and HTML development. This book covers this in great detail.

					Anyone Interested in Python and PyCharm: If you have a general interest in programming, technology, or Python in particular, this book offers an engaging exploration of Python’s capabilities and PyCharm’s features, making it accessible and informative for a wide range of readers.

			

			No matter your background or level of expertise, this book is intended to be a valuable resource for anyone eager to learn Python programming and harness the power of PyCharm to write efficient, readable, and maintainable code.

			What this book covers

			Chapter 1, Introduction to PyCharm, the most popular IDE for Python: In this initial chapter, we discuss the road ahead.

			Chapter 2, Installation and Configuration: This chapter presents the installation process along with instructions on customizing PyCharm to your particular development style.

			Chapter 3, Customizing Interpreters and Virtual Environments: One very useful feature of the Python ecosystem is the ability to sandbox your projects. PyCharm provides a project-centered graphical tool to manage your projects and the related interpreters and virtual environments.

			Chapter 4, Editing and Formatting with Ease in PyCharm: The heart of any great IDE its editor. This chapter provides a solid orientation.

			Chapter 5, Version Control with Git in PyCharm: Everything you would normally do on the command line can be done graphically within the IDE. This chapter shows you how it’s done.

			Chapter 6, Seamless Testing, Debugging and Profiling: PyCharm supports a variety of unit testing frameworks directly within the IDE. You’ll learn to write tests and visualize the results in PyCharm.

			Chapter 7, Web Development with JavaScript, HTML, and CSS: PyCharm is a complete development environment for full-stack development. As such, you’ll learn to develop HTML, JavaScript, and CSS in PyCharm. We’ll briefly cover a few front-end frameworks like HTML Boilerplate, Bootstrap, and React.

			Chapter 8, Building a Dynamic Web Application with Flask: Flask is an un-opinionated framework for building web applications capable of serving dynamic content. PyCharm makes this very easy.

			Chapter 9, Creating a RESTful API with FastAPI: In this chapter you’ll learn to create a RESTful API with FastAPI. You’ll also learn to test the API using PyCharm’s built-in HTTP request and testing framework.

			Chapter 10, More full stack frameworks: Django and Pyramid: PyCharm contains specialized tooling for Django, one of the most popular web frameworks in Python. We’ll also touch on Pyramid, a framework that aims to be less complex than Django, but more complete than Flask.

			Chapter 11, Understanding Database Management in PyCharm: PyCharm contains a fully featured database IDE facilitating your work with dozens of relational and non-relational (NoSQL) data platforms.

			Chapter 12, Turning on Scientific Mode: You’ll learn the fundamentals of PyCharm’s scientific mode which is the heart of its data science tooling.

			Chapter 13, Dynamic Data Viewing with SciView and Jupyter: You’ll learn to leverage the ability to see the data at each step during a multi-phase data pipeline is invaluable. PyCharm supports an advanced viewer that renders NumPy and Pandas data structures.

			Chapter 14, Building a Data Pipeline in PyCharm: PyCharm has everything you need to perform advanced scientific data analysis. In this chapter, we analyze a scientific study designed to predict early-onset Alzheimer’s disease.

			Chapter 15, More Possibilities with PyCharm Plugins: A great deal of the features in JetBrains IDEs are implemented using plugins. The JetBrains marketplace allows you to soup up your PyCharm installation with even more specialized features.

			Chapter 16, Future Developments: JetBrains isn’t sitting still. PyCharm evolves rapidly. This chapter shows you some of the features that are in active development at the time of writing.

			To get the most out of this book

			I assume you understand basic Python programming along with basic command line skills for your favorite operating system. One thing to remember throughout is that we are covering PyCharm rather than deep development tutorials of frameworks mentioned in various chapters. For example, Chapter 8 covers the PyCharm features designed for Flask development. It isn’t meant to be a full tutorial on Flask.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							Python 3

						
							
							Windows, macOS, or Linux

						
					

					
							
							PyCharm Professional

						
							
							Windows, macOS, or Linux

						
					

					
							
							Docker Desktop

						
							
							Windows, macOS, or Linux

						
					

					
							
							Git

						
							
							Windows, macOS, or Linux

						
					

				
			

			Most of the book requires the professional edition of PyCharm. The first six chapters will work with the Community edition, but after that, you must have the professional edition.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Hands-On-Application-Development-with-PyCharm---Second-Edition. If there’s an update to the code, it will be updated in the GitHub repository. Chapter 2 covers cloning the repository using PyCharm’s integrated Git client.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “We compute the correlation matrix of this dataset using the corr() method.”

			A block of code is set as follows:

			
Compute and show correlation matrix
corr_mat = df.corr()
plt.matshow(corr_mat)
plt.show()
			Any command-line input or output is written as follows:

			
$ mkdir css
$ cd css
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “If you click on the View as Array link, which can also be activated by right-clicking the variable, you can see a spreadsheet-like table in the Data panel.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Hands-On Application Development with PyCharm, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781837632350

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

		
			
			

		

		
			
			

		

	

		
			Part 1: The Basics of PyCharm

			This part introduces the readers to PyCharm and offers a detailed walkthrough on how to download, install, and get started on using PyCharm for their Python projects.

			This part has the following chapters:

			
					Chapter 1, Introduction to PyCharm, the most popular IDE for Python

					Chapter 2, Installation and Configuration

			

		

		
			
			

		

		
			
			

		

	
		
			1

			Introduction to PyCharm – the Most Popular IDE for Python

			Welcome to the second edition of Hands-On Application Development with PyCharm! Most programmers have the objective to build robust, high-quality software that can stand the test of time. The most important step to reach this goal is choosing the correct language. With so many languages out there, which is the best one to choose? A stellar programmer will take many things about the language into consideration. One of the most important aspects of the programming language to consider is the support tools that are necessary for the development stages. The Python programming language is rumored to enable great productivity compared to many other languages. Python’s famous batteries included philosophy embodies this idea by bundling a powerful standard library, a code editor, and a debugger. Everything is built into the language’s normal installer, which is available from https://www.python.org. There’s just one small problem, at least for me – Microsoft.

			I know what you’re thinking. You’ve just mentally prepared yourself for a protracted rant from one of those Unix/Linux guys complaining about the big, bad evil that is Microsoft. I’m not going to do that because I’m not sure I’m a Linux guy. I mean, I do have an awful lot of cargo pants in my closet. I can’t help it. They’re just so roomy and you can carry all of your stuff without dragging a bag around with you. I’ll also admit to having a great many T-shirts with emblems, logos, or statements that maybe only 5% of the people I encounter will understand. These T-shirts are very funny, but the only grins I get are from my colleagues. The more I think about it, I’m not a Linux guy. To me, Linux is a tool. Sometimes, it’s the right one, but sometimes, it isn’t. Since I’m not a Linux fanboy, that can’t be the reason for my statement that Microsoft is the problem. The real reason is quite the opposite. About 30 or so years ago, Microsoft did something massively right. They created the first really good commercially available integrated development environment (IDE).

			In truth, it may have been more than 30 years ago, and there may have been others before it. However, many “senior developers” in the software business today got their start with a Microsoft product called Visual Basic (VB). OK; this is the part where the language snobs sneer and hold their noses as though they were just presented with a plate of Brussels sprouts, or maybe a dirty diaper, but let’s reel it back in. 30 years ago, most people rocking home computers only had a handful of options. Beginners All-Purpose Symbolic Instruction Code (BASIC) shipped with just about every computer made from 1978 forward. It was an age when not even Apple had a graphical user interface (GUI) on their operating system (OS). That didn’t happen until 1983 when Apple released Lisa. We had mice, and we could create programs capable of working with pointing devices, but the OS didn’t have a windowing system. They didn’t need a windowing system because back then, computers could only run one program at a time.

			Writing desktop software for computers that lacked OS-level support for Windows was hard. There were no software development kits (SDKs) or application programming interfaces (APIs) to handle any of the heavy lifting. Writing software was mostly an exercise in tedium. You had to write hundreds of lines of box-drawing boilerplate code in a tool that was barely better than Notepad. Then, one day in 1991, the year I graduated from the University of Oklahoma, it all changed.

			Microsoft released a version of BASIC that included the ability to create desktop GUIs right there in the development environment. They called it Visual Basic. The first versions ran in Microsoft’s Disk Operating System (MS-DOS), but later, we got support for Windows, Windows 2, and then Windows 3.1. Windows 3.1 was significant because that’s when we got true multitasking if our PC was equipped with an 80386 processor. PCs were no longer limited to running one program at a time, and the Windows OS made mouse-driven interaction ubiquitous.

			Things got interesting with VB. Instead of coding an interface, you drew the interface. The IDE included a palette of components and a window. You could draw buttons, text boxes, and anything else you needed, directly onto the window. After you drew them, you would then “wire them together” with event handlers. What you drew was what showed up when you ran the program. The VB user interface (UI) was ultimately carried over into Microsoft’s Visual Studio. Even today, Visual Studio 2022 continues with the same features that were so groundbreaking in 1991. Figure 1.1 shows the toolkit used to draw visual UIs for Windows:

			
				
					[image: Figure 1.1: The Visual Studio IDE originated as a product called Visual Basic in 1991. It defined the standards for what a good IDE should be]
				

			

			Figure 1.1: The Visual Studio IDE originated as a product called Visual Basic in 1991. It defined the standards for what a good IDE should be

			The VB3 IDE that began my career introduced even more ground-breaking features that my smug, cargo-pants-wearing Unix colleagues could only dream of. They were still fighting over vi’s superiority over Emacs, or vice versa, depending on whom you asked. Meanwhile, VB3 had colored syntax highlighting, support for editing multiple files, a graphical interface editor for drawing buttons and other screen widgets, and a visual programming tool that tied code, events, and GUI elements together. It had a debugging system you could use by simply clicking a line number. Doing so would create a red dot – a breakpoint in the code where the execution would stop during a test run, allowing the developer to inspect the state of the running program. It was pure coder nerd-vana! Love them or hate them, Microsoft’s VB IDEs defined what IDEs are supposed to be today. Nobody who has learned to code using a Microsoft IDE, whether it be a legacy language or a modern one, is willing to accept anything less than that experience.

			With every language that I’ve learned since, the first thing I always do is find the very best IDE available that offers those features I can’t live without. When I started working with Python 3 about six years ago, I found PyCharm. I used it to perform a full re-write on a complex software-as-a-service (SaaS) product, which took me about 18 months to complete. It was trial by fire. In this book, I intend to share what I learned, complete with scorch marks.

			Throughout this book, we will be learning about the general interface of the PyCharm IDE, along with customizations and extensions to help you adapt your tools to the kind of work you’ll be doing with Python. This first chapter discusses the merits of IDEs in general. I’ll provide a comparison of the most common tools used for Python development. Some of them are very good while others, despite being widely used, are fairly primitive.

			We’ll cover the following main topics in this chapter:

			
					The purpose of PyCharm as a Python IDE and some notable details on its developing company, JetBrains

					The usage of PyCharm within the community and a breakdown of which professions tend to utilize PyCharm the most

					A comprehensive outline regarding the advantages and disadvantages of using PyCharm, in comparison to other Python editors/IDEs

					The differences between the Professional and Community editions of PyCharm and the additional functionalities that the paid edition offers

			

			On the other hand, if you have already decided that PyCharm is the Python IDE for you, feel free to jump to Chapter 2, Installing and Configuring PyCharm, to go through the installation and registration process. If you have already downloaded and successfully set up PyCharm on your system, you might want to begin at the second section of this book, starting from Chapter 3, Customizing Interpreters and Virtual Environments.

			Technical requirements

			This chapter is introductory, so we won’t be coding yet and the technical requirements are nil. It’s Chapter 1 and I know you’re all fired up and ready to go and nil is boring. So, let’s get moving!

			First, here is what you will need to be successful with this book:

			
					A computer. I know! It’s obvious, but I pride myself on being complete and leaving nothing to chance!

					An OS. This works best if it is installed on your computer already since we won’t cover how to do that in this book. Windows, macOS, Linux – it’s all the same as far as this book is concerned because PyCharm works in all three, and the UI is nearly identical in each environment.

					An installation of Python. We’re going to be using Python 3 exclusively in this book. There are a few different “flavors” of Python 3 but for the most part, the plain old Python 3 from https://www.python.org will be fine. We’ll get into those “flavors” later when we start talking about virtual environments in Chapter 3, Customizing Interpreters and Virtual Environments. If revision numbers give you comfort, the latest release at the time I’m writing this book is 3.11.1. The Python revision I’m using in that production SaaS app I mentioned earlier is 3.8. If your Python 3 installation is older than that, you should update it.

					At some point, a GitHub account might come in handy since I will be sharing the code from the book using a Git repository.

			

			The continued success of Python

			In the first edition of this book, the author titled this section The recent rise of Python. Time has passed and I’m picking up where he left off. I think it’s important to point out that the recent rise has more or less continued since the first edition of this book was published. Python has continued to be one of the most popular and widely adopted languages for some very good reasons. One of those reasons is that Python stresses readability and uses a simple syntax. This allows newcomers to the language, and indeed to the field of software development, a quick path to success. Contrast that with the previously normal experience of forcing college and university students to learn C or C++ as their first language. These languages are terse and complicated and generally have a poor track record when it comes to developer productivity. Sure, C and C++ are powerful languages and can produce the most performant software available. However, in my experience, a language that can take you from “Hello World” to being able to produce useful software in a short period trumps the performance gains in all but the most extreme cases. Guido van Rossum, the creator of Python, compares the quickness of Python to other languages in his paper OMG-DARPA-MCC Workshop on Compositional Software Architecture. In the paper, van Rossum states that development in Python is estimated to be 3-5 times faster than that in Java, and 5-10 times faster than that in C/C++. Keeping this difference in mind, we can easily understand why Python is being so widely adopted. After all, time is money. You can find Guido van Rossum’s complete essay here: http://www.python.org/doc/essays/omg-darpa-mcc-position/.

			The comparison between Python and Java or C/C++ is a weak one since these languages are designed and used for different applications. C and C++ are used when very high performance is required. Most OSs are written in C++, as are real-time systems such as those you’d find in a Tesla automobile or modern spacecraft. It isn’t necessarily fair to compare specific productivity between Python and C++ because they aren’t used to make the same types of applications.

			Java, on the other hand, is used to develop the same types of applications for which you might use Python: enterprise and web applications. Java, though, requires a lot of boilerplate. This means a developer has to create a lot of code and structures just to support the application’s existence before they can even think about writing code for the application itself. This boilerplate is largely absent from Python. Furthermore, Java relies on a very rigid, static object-oriented paradigm. Python, in contrast, is far more flexible, offering a dynamic programming model. Even though the two languages are used to make the same type of application, Python gives you some serious shortcuts, owing to its more flexible paradigm.

			These factors that comprise Python’s strengths, along with many others, have coalesced to form a very accessible development language supported by a community of raving fans. That community is still growing by introducing coding to a gamut of fields and professions distinct from those of us who historically focus solely on traditional application development. At the time of writing, the TIOBE Index, a ranking system for the popularity of programming languages, ranks Python as the number one language, as seen in Figure 1.2:

			
				
					[image: Figure 1.2: TIOBE rankings show Python to be the most popular language]
				

			

			Figure 1.2: TIOBE rankings show Python to be the most popular language

			Python has a huge standard library that provides anything you might need to build any kind of software you can imagine. If that statement proves false for your specific project, there is a vast third-party and largely open source ecosystem consisting of hundreds of thousands of libraries upon which you can build. You can find a catalog of these libraries at https://pypi.org. Taking all this together, a new software developer can go from idea and zero Python experience to a production application very quickly. This process can be greatly accelerated by a good IDE.

			The philosophy of IDEs

			Back when I was your age, things were different. That is, of course, unless we are the same age, in which case everything was the same. We didn’t have the internet. When we wanted to learn new coding languages and techniques or understand the history of our craft, we were required to take a sacred pilgrimage. One year, I smuggled in a Polaroid. You can see the pictures I took in Figure 1.3. You should understand that all of what I am about to tell you is both true and a closely guarded industry secret. Just so we’re clear, you didn’t hear this from me.

			Hidden somewhere in a mystic range of mountains, seekers of great coding wisdom would ascend the 10,000 stairs by the light of the full moon in search of the Master. The journey was not easy, and the wisdom imparted had to be hard-earned. It was on one such crusade that I learned why good IDEs are so important. The Master said, “If you know the language, and you know the IDE, you need not fear the result of a hundred deployments.”

			
				
					[image: Figure 1.3: High in the sacred mountains, up the 10,000 stairs﻿,﻿ lies the monastery where I learned to code]
				

			

			Figure 1.3: High in the sacred mountains, up the 10,000 stairs, lies the monastery where I learned to code

			The Master often speaks in riddles, so let me explain. Deployment refers to a published iteration or an increment of your software. In most professional circumstances, the objective is to publish your software. If our objective is to publish, the next sticking point is that we must know a programming language. I assume you have at least a tacit understanding of programming in Python. That just leaves the Master’s reference to the IDE.

			There are several classes of tools a developer might use to develop Python code. The Python language can be considered an interpreted language. We could argue that when it runs, some of the code is optimized into C code and cached, but at this stage, we aren’t worried about that level of detail. The point is that a Python program exists as simple plain text files and can be executed in that form. Contrast this with statically compiled languages such as C, C++, C#, Java, or Go. Those and many other languages require the code in the text files to undergo a compilation phase where a new executable file is produced. In C#, you can’t simply execute a .cs file. You need to compile it into a binary, then execute the binary. Since Python executes its code directly via the Python interpreter, the level of tooling needed to work on Python can be very simple. Essentially, any text editor will do. There are three levels of editor capability to choose from.

			The first is a simple text editor. Simple text editors are generally limited to opening, editing, and saving text. They are generic tools designed to work with any kind of text file, from grocery lists to systemd configurations. In Windows, you might know it as Notepad. On a Mac, you might use TextPad, and if you are rocking a Linux desktop such as Ubuntu, you’ll easily find Text Editor. If you are not a fan of GUIs on your OS, then you have no doubt heard of editors such as vi, vim (vi improved), Emacs, and nano. All these programs fall into the category of simple text editors. If you’re not sure what a systemd configuration is, don’t sweat it; it’s a system administration file on Linux. I just needed something that sounded complicated to characterize the more complex end of the text file gamut.

			The second evolution of programming editors is called enhanced editors. These editors are purposefully designed to work with technical files. Some popular examples include the following:

			
					Visual Studio Code

					Atom

					Notepad++

					UltraEdit

					Sublime Text

					JetBrains Fleet

					Bluefish Editor

					IDLE (the editor that ships with Python)

			

			These tools are designed to work with a wide range of programming languages and can generally be easily customized to add support for emerging languages. Enhanced editors offer some common features that make a developer’s life a little nicer, such as these:

			
					Syntax highlighting, which color codes keywords and other semantic elements in your code.

					Macros, which allow the developer to record and play back common keystrokes

					Project and file organization to allow easy switching between multiple files that make up a project

					Rudimentary code completion to reduce the amount of typing needed to write your code

					Plugin support for other niceties such as linters, spell checkers, file previews for your code, and more

			

			Over time, some of these enhanced editors have become very robust because you can customize and expand their capabilities. When you consider these tools as they are right out of the box, they are more useful and specialized than general text editors, but they fall short of qualifying as IDEs.

			At the top of the code editor food chain is the IDE. If you were to look inside the cockpit of a fighter plane from the World War I era, you’d see a few simple controls and nothing more. If that’s a text editor, the IDE is the cockpit of a Boeing 747 aircraft. Every tool a developer could ever desire or need is crammed into a comparably complex UI. IDEs contain all the features of an enhanced text editor, but usually offer the following additional enhancements:

			
					Some easy ways to run your code right from the editor.

					Tooling to help manage your source code repository, such as Git or Subversion.

					An integrated, easy-to-use debugger, which allows you to pause the execution of a running program and inspect or alter its current state.

					Tools to help you write automated tests such as unit tests and run and visualize the results.

					Complex code completion is based on the introspection or indexing of the code in your project. In modern IDEs, this is enhanced using artificial intelligence (AI).

					Profiling tools to help you find execution bottlenecks.

					Integrated tooling to help with supplementary systems, such as databases.

					Tools for deploying your code to a server or cloud environment right from the IDE.

			

			Some popular examples of IDEs include the following:

			
					Visual Studio (this is different from Visual Studio Code)

					PyCharm

					IntelliJ IDEA

					NetBeans

					Apple Xcode

					Xamarin Studio

					Eclipse

			

			As you can see, the IDE is the most powerful weapon in your coding arsenal. It is important to use the best one available to you. If you are new to software development, or maybe even not-so-new, you might wonder why the enhanced editors are so popular. At the time of writing, roughly 50% of developers use Visual Studio Code, which is not on my list of IDEs.

			Many developers prefer a more “lightweight” development environment. This is especially true of frontend web developers who swear by Sublime Text and Visual Studio Code. In truth, they need all the features of the IDE, and they use them, but they are spread out across different tools they use throughout the day. A frontend developer relies on profilers and debuggers that run in web browsers and they don’t need those tools in an IDE. Instead, they can get a simpler editor that downloads quickly, installs simply, and runs instantly when they click the icon in their OS.

			I submit that if you are doing full stack web development or mobile development, or you need to work servers or containers, an IDE is a better choice.

			There exists a certain class of software developer who swears you should never use anything other than the simplest possible tools. They believe that reliance on a tool to do coding and related hard work diminishes the overall mastery and accomplishment needed to be considered proficient. I couldn’t disagree more. One year, while at the monastery, the Master told me a story of a great swordsman from Japan named Miyamoto Musashi. In his day, every samurai knew of Musashi as the greatest living swordsman and all the samurai wanted to take a shot at defeating him. Back then, duels were usually fought to the death. One day, a dueling challenger met Musashi as he was getting off a boat. Musashi was unarmed. The challenger waited until Musashi could fashion a wooden sword, called a bokken, from one of the boat’s oars, which he intended to use in the dual. Legend has it Musashi made a fool of that challenger and left him alive, much to the challenger’s disgrace. Musashi, the Master said, was the finest warrior who ever lived, and his skill with a sword has never since been matched. However, if the objective were simply to defeat him, I could have easily done so with a machine gun.

			In my opinion, limiting the tools you use owing to a sense of pride in your capability, or lack thereof, is foolish. The objective of a software developer is to ship software, usually on an unforgiving deadline. It isn’t to waste time trying to prove yourself to someone else’s standards, unless, of course, you’re a degree-seeking student. I’m sure there are a few of you reading this book. Play the game and do what your professors say. You should realize that once you graduate, everything changes. You will be expected to produce code quickly, accurately, and consistently. This is best achieved via the automation available in a good IDE. You should choose the best tool for the job at hand. I found PyCharm helped me to become productive while I was learning the Python language. When you start, and you’re not using an editor that corrects your line spacing and indents, you’re going to make a lot of silly mistakes. It’s frustrating. I’d think to myself, “If I were using C#, I’d be done by now.” I was even tempted to abandon Python and PyCharm for something more comfortable. However, that’s not what I wanted to do.

			PyCharm will underline all those silly mistakes for you and correct them with the touch of a button! I learned, after seeing those mistakes underlined over and over, what to do when I’m using an editor without code inspection. Today, when I am working in other languages, I still use Python rules. Having learned Python with the help of PyCharm, I was able to ship faster, learn faster, and improve my code in other languages and tools. Do me a favor and never let anybody tell you you’re not a real developer because you didn’t do something their way. If they persist, tell them nano is better than vi or Emacs, and just walk away. Such a statement will probably cause their head to explode.

			I’d like to make one more comment about Visual Studio Code. This editor has evolved through plugins to the point where it can compete with a fully featured IDE. However, this comes at a cost compared to a professionally developed IDE such as PyCharm. To get the identical features you’d find in PyCharm in Visual Studio Code, you’d need to install a large number of plugins. These plugins are all written by the community, which means they are all independent development efforts. These plugins will never work as cohesively as the base features you will find in an IDE such as PyCharm. This is also true when comparing Visual Studio with Visual Studio Code. Try creating a C# project in Visual Studio versus Visual Studio Code and you’ll find the process is dreamy and smooth in Visual Studio. Visual Studio Code, on the other hand, requires a lot of command-line work and lots of weird plugin installations. The experience just isn’t the same. The same observation holds with other editors such as vim, which can be heavily customized. You’ll spend a week messing with plugins and open source scripts to achieve, at best, partial parity with an IDE’s out-of-the-box functionality.

			PyCharm as a Python IDE

			It’s all well and good to talk about tool comparisons common to other languages. But we don’t care about that, do we? We want to know our options for Python! The best IDEs are typically specialized. PyCharm is specialized in working with Python. That’s it. When you create a new project in PyCharm, you’ll see options for Python projects and nothing else. Contrast this experience with Visual Studio. In my opinion, Visual Studio is the only close competitor to PyCharm when it comes to working with Python projects. When a project is created in Visual Studio, you will most likely spend a good five minutes trying to wade through the myriad of options. The IDE supports dozens of languages, and that is compounded by a dozen project types such as web, desktop, and others. Visual Studio is trying to be all things to all developers. PyCharm only wants to play with Python developers.

			PyCharm itself was created with a few design goals in mind:

			
					Intelligent coding assistance

					Streamlined programming tools

					Web development options

					Scientific computing support

					Visual debugging and performance profiling

			

			We’ll take a look at each of these design goals in turn, but first, I need to point something out. At the time I’m writing this, PyCharm is about to go through a big change. JetBrains is working on a brand-new user experience. By the time this book is published, there is a strong chance that this new UI will be the default. If you’re new to PyCharm, you should understand that you’re going to see it in two different ways for a while. The classic UI will continue to be available in the product for a time, allowing us to ease into the new experience. I’ve decided I’m going to embrace the new UI given the time between the first edition and this one is a few years. That said, it bears mentioning that you’re going to see the classic UI alongside the new UI until probably late 2024 when the old UI is no longer maintained. It will become deprecated and one day will disappear into the sands of time like Shelley’s fabled statue of Ozymandias:

			
				
					[image: Figure 1.4: The new UI (top) compared to the classic UI (bottom)]
				

			

			Figure 1.4: The new UI (top) compared to the classic UI (bottom)

			Figure 1.4 shows the two UIs side by side. The design objective of the new UI is to reduce the clutter in the interface. They’re not wrong on that point. As the tool has grown over the years, more and more features have been crammed into the menus, making the UI a little bit daunting for new users. The biggest thing to realize is that most of the things you’d find in the menu are still there, but the menu system itself is hidden beneath the hamburger icon in the top-left corner of the screen. Don’t worry; I’ll cover this in detail later. As I write this, there is a setting we’ll review in Chapter 2, Installing and Configuring PyCharm, that allows you to toggle between the classic and new UIs.

			I wanted to point this out now because you’re about to see some screenshots, and if you’ve seen the old UI, you might think you’ve picked up the wrong book. You haven’t. Just the opposite. If I time this right, you’ll be the only one with the right book.

			Intelligent coding assistance

			I’m going to tell you something my wife says all the time. I’m very lazy. Wait. That came out wrong. She is saying that I’m lazy. I’m not saying that she is saying she is lazy. Sheesh. Writing is hard! I almost dug a hole there, didn’t I?

			She’s not wrong. As a developer, I am essentially very lazy. I refuse to spend hours or even minutes doing something the long way. The Greeks had a legend about a guy named Sisyphus who was cursed to push a stone up a steep hill. As soon as he reached the top, the stone would roll back down the hill. Sisyphus was stuck in an infinite loop with no Cmd/Ctrl + C option on his keyboard.

			Here’s one thing I know: Sisyphus was not a software developer! Any software developer would have rolled that stone exactly twice, after which they would have spent eternity devising a system of pulleys and cranes controlled by an IoT device. Naturally, the microcontroller would be running a Python script. I digress.

			What some (I say in my head looking in my unsuspecting wife’s direction) might call lazy, I call efficient! As a developer, I want to create maximum effect with minimal effort in everything I do. Writing code is complicated. You are writing instructions for the most stubborn and unintelligent object ever devised. Coding is worse than trying to teach a 2-year-old to tie their shoes. Trust me, I’ve done both! Coders must be extremely specific and verbose in their explanation of any operations they want to perform. Furthermore, things are made worse by the language developers out there who tend to want to force users to write a bunch of boilerplate code. I’m talking about the excise code that has nothing to do with the code you want to write or the problem you want to solve. Python generally avoids this, so let me give an example of possibly the worst offender: Java.

			Back in the day when I was a wee lad, Java was all the rage. There was this caste of corporate programmers involved with Java who thought up something called Enterprise Java Beans (EJBs). EJBs were supposed to be the epitome of module programming with reusable objects. It was an absolute beating to implement. Rather than simply making a class, which is all you need, you had to create a special file structure with various folders and manifest files to expose what was in the bean, and it was all compiled into a special format. It turned out that the special format was nothing more than a ZIP file. It took a lot of work just to make an EJB, which meant developers had to make a ton of files and write a lot of code just to get started on the functionality they needed to express to get their work done. That’s what we mean by boilerplate. Boilerplate is generally useless but necessary because, without it, the code doesn’t work.

			All IDEs have evolved because of this phenomenon. PyCharm evolved from JetBrains’ Java IDE, IntelliJ. Python doesn’t usually have a lot of boilerplate required for your code to work, but it does come up. There are two kinds of boilerplate. The boilerplate needed to make old-school EJBs work is the bad kind. The boilerplate generated as a means to jumpstart your project is the good kind. As we’ll see, PyCharm, as with most IDEs, generates a folder structure, a set of files, and some basic code to get you started. That can be considered boilerplate. But in this case, that code isn’t retained. It is replaced by the real code for your project. The code generated by the IDE is just a mental prompt to get you going. It prevents you from having to create your project’s starting point by hand.

			All this is great, but boilerplate code generation isn’t what we usually think about when we hear “intelligent coding assistance.” We usually think of the feature pioneered by Microsoft called IntelliSense. If you’ll allow me to anthropomorphize the IDE for a moment, this feature watches as you type your code. All the while, the IDE is thinking about what you’re trying to do. When it sees a way it can help, such as by completing a word or line for you automatically, it presents that as an option. I have an intelligent person completing all my sentences for me: she’s my wife. When she completes my sentences for me, they are usually more organized and intelligent than they would have been if I were on my own. (This might be another reason she thinks I’m lazy.)

			I want to point out that not all tools with an IntelliSense-like feature are created equally. When you see this feature in an enhanced editor, it usually works differently than it would in an IDE. In enhanced editors, they use keyword lists to highlight and autocomplete the elements of a language. Really good enhanced editors might index your code and recognize variable and function names and use statistics to give you the most likely completion first. That option is generally followed by a long list of noise comprising every possibility that exists for a given completion. Code completion is becoming very advanced with the introduction of AI tools, and this makes the difference between IDEs and enhanced editors a little muddier, at least on this point. Tools such as GitHub’s Copilot can not only autocomplete variable names and keywords but also write entire sections of your code automatically.

			It is important to remember, at least as I write this, that those AI features are not part of the IDE or enhanced editor. They are implemented as plugins. Since this is true, I’ll continue espousing the merits of IDEs, and PyCharm in particular, based solely on the merits of the software by itself. We’ll discuss plugins in Chapter 16, More Possibilities with PyCharm Plugins.

			While enhanced editors might present you with a long list of possibilities for your code completion, PyCharm can analyze your code and perform more intelligent autocompletion. You also get code analysis, such as duplicate code warnings. A common antipattern in software development is copying and pasting code across or even within the same project. It’s a terrible but common thing to see. PyCharm will spot duplicate code and flag it for you so that you can be reminded to refactor the duplicated code into a function or module that can be reused and maintained in one location.

			PyCharm can also perform a static analysis of your code. This type of analysis is looking for antipatterns within the code itself; for example, PyCharm will detect dead code like that shown in Figure 1.5. Concerning Python development, PyCharm will automatically format your indentations and give you critical feedback on how your code conforms to PEP-8 conventions, which are stylistic requirements you must meet to be considered pythonic (that’s a good thing).

			For example, if you were to type the following code into a new file in PyCharm, you’d see PyCharm’s warning that you have created unreachable code on line 13. The text on that line is highlighted. Hovering your mouse over this highlighted line reveals what is wrong:

			
def print_hi(name):
 print(f'Hi, {name}')
 for x in range(25):
 print(str(x))
 if x == 12:
 return
 print("You'll never make it here")
if __name__ == '__main__':
 print_hi('PyCharm')
			The print_hi function starts innocuously enough by printing to the console whatever is passed into the function within the name argument. After that, we create a loop that will run 25 times. On each run of the loop, we print out x, which contains the current iteration. When the counter variable, x, reaches 12, the loop exits via the return function, which, as luck has it, is on line 12. I assure you, this is purely a coincidence. Since the loop returns on line 12, the code on line 13 will never be reached:

			
				
					[image: Figure 1.5: PyCharm will highlight many common coding mistakes such as this one. The code on line 13 is unreachable, which is indicated when you hover your mouse over the highlighted code]
				

			

			Figure 1.5: PyCharm will highlight many common coding mistakes such as this one. The code on line 13 is unreachable, which is indicated when you hover your mouse over the highlighted code

			PyCharm also allows you to navigate between files in a complex project by helping you find where functions, variables, and classes are defined, as well as where they are used. Over time, you’ll learn a set of keystrokes that will allow you to move anywhere in your project without your fingers leaving the keyboard.

			In essence, PyCharm’s intelligent coding assistance allows you to worry less about mistakes and more about your logic and requirements, which allows you to complete your code more quickly with fewer mistakes.

			Streamlined programming tools

			Writing code is but one activity a developer performs each day in pursuit of a project deadline. Great developers also spend time debugging, testing, and profiling their products to produce the best possible result. We also need to deal with pushing code to testing servers, refactoring (other people’s) bad code, working with databases, and dealing with containers. There is tooling in PyCharm for each of these processes and more. When I write complicated web applications in PyCharm, the only tools I usually have open are PyCharm and a web browser: two tools each on their own monitor.

			The PyCharm debugger

			My favorite feature and the one that got me excited the first time I used PyCharm is the debugger. PyCharm’s debugger is great. It is much better than the standard debugger you get with Python itself. Python ships with a debugger called Python Debugger (pdb). In my humble opinion, I’d rather eat bugs off the sidewalk than use this tool. I alluded to this earlier in this chapter. I grew up using Microsoft debuggers and simply nothing else will do. PyCharm’s debugger works exactly as I would expect. Click your mouse at the line where you want execution to stop to make a breakpoint and click the debug button in the IDE, and the program runs and stops at the indicated line. You will get a screen where you can inspect both the state of the stack as well as the terminal output. It’s very simple to use, and I’ll be showing you how to do so in Chapter 6, Seamless Testing, Debugging, and Profiling.

			Running tests with the graphical test runner

			Testing tools are integrated in the form of test runners. PyCharm supports all the major testing frameworks, including pytest, nose, and the regular unit test features from the standard library. Again, I’m coming from experiencing some very good IDEs, and in this case, I’m remembering Eclipse and Visual Studio, which both include graphical test runners. The adage If the bar is green, the code is clean is visually implemented in PyCharm. You can see an example in Figure 1.6. You can run your tests and see a list display showing what passed and what failed, though it is a list rather than a bar. You can then rerun your failing tests until they work.

			I’ll give you a simple example. In main.py within this chapter’s source code, I have one file called main.py and another called test_main.py. The content of main.py is a simple function that adds two numbers together:

			
def add_two_numbers(a: int, b: int) -> int:
 return a + b
			Within the test_main.py file, there is a simple unit test:

			
from unittest import TestCase
from main import add_two_numbers
class Test(TestCase):
 def test_add_two_numbers(self):
 self.assertTrue(add_two_numbers(a=5, b=6) == 11, \
 "Should be 11")
 def test_show_a_fail(self):
 self.fail()
			The Test class contains two tests: one that will pass and one that will automatically fail. I usually make the automatically failing test first just to make sure I have my test class set up properly. Then, later, I remove the fail because of my dopamine addiction, which is only satisfied by green checkmarks in the test runner, as seen in Figure 1.6. If I right-click on test_main.py, as seen in Figure 1.5, I’ll get an option to run the tests within the file:

			
				
					[image: Figure 1.6: Right-click the test_main.py file and click Run ‘Python tests in test…’ to run the unit tests contained within the file]
				

			

			Figure 1.6: Right-click the test_main.py file and click Run ‘Python tests in test…’ to run the unit tests contained within the file

			Look to the lower-left corner in Figure 1.7, which shows the test run’s completion, and you’ll see a list of tests that passed or failed with either a green check or a yellow X showing failure. Like all figures in this book, which are printed in black and white, you won’t see the colors. Color ink is expensive, and your father is right, money doesn’t grow on trees:

			
				
					[image: Figure 1.7: PyCharm’s built-in test runner shows a traditional pass/fail list (lowe﻿r-left pane) to indicate passing and failing tests]
				

			

			Figure 1.7: PyCharm’s built-in test runner shows a traditional pass/fail list (lower-left pane) to indicate passing and failing tests

			PyCharm’s profiling tools

			Similarly, code profiling is built in and easy to use. You can click the Profile button to run the code. When the program exits, you will get a graph of each function call, along with the time and resources consumed by the call. This makes it easy to spot unrealized opportunities for improvement concerning the speed of execution and resource consumption.

			Consider the possibility that you have an algorithm in your program that might not be performing as you’d like. I know, I know, it would never happen to you, so supposed you just got hired, and the person they fired wrote this horribly performing algorithm. Maybe pretend it is 1956, and the guy who got fired from your new employer, New York Life Insurance Company, was one Edward Harry Friend. Friend wrote a paper titled Sorting on Electronic Computer Systems, which is likely the first published instance of an algorithm we know today as bubble sort. If Friend had written his algorithm in Python 3, it might look a little like this:

			
def bubble_sort(input_array):
 length_of_array = len(input_array)
			Friend has just created a function that accepts a list as an argument, which in our case will be an array of integers. The objective is to sort these numbers. To do this, let’s create two loops, one inside the other:

			
 for i in range(length_of_array):
 for j in range(0, length_of_array - i - 1):
 if input_array[j] > input_array[j + 1]:
 input_array[j], input_array[j + 1] = \
 input_array[j + 1], input_array[j]
			Within these loops, each number is compared with the number before it. If it is determined those two numbers are out of order, they are swapped. In the next run of the loop, this happens again with the next two numbers, and this continues until it reaches the end of the list.

			If you’ve studied algorithms at all, you’ve probably heard of bubble sort, and you’ve been warned as to why it is not used. It is very slow. We have a for loop within another for loop, which is fine if the size of your unsorted list is small. But this algorithm slows down at a logarithmic rate as the list of numbers grows. Algorithm performance is measured using big O notation. I don’t want to turn this into an algorithm book, so I’ll just tell you that a loop inside another loop will scale poorly in terms of performance. In big O notation, we classify this algorithm as O(n2). That’s bad.

			In plain English, this means that if you double the count of numbers to sort (n), then your algorithm will take 22 or 4 times longer to process. If you multiply your count’s size by 5, then it becomes 52 or 25 times slower. The bigger the list, the slower it sorts.

			To show off the performance tool, we’re going to give this test run a list of 100,000 numbers to sort. Now is a good time to point out I’m running an Intel i9 processor. If you’re a student or some other budget-constrained consumer rocking an i3 processor (or worse), you might want to take the list of numbers down a few zeros if you want to try this out. It takes a good while on my i9:

			
test_array = []
for x in range(100000):
 test_array.append(random.randint(1, 10000))
			Let’s finish the test code by calling the function and printing the results:

			
bubble_sort(test_array)
print("The result of the sort is:")
for i in range(len(test_array)):
 print(test_array[i])
			We’ll cover the profiling tool extensively in Chapter 6, Seamless Testing, Debugging, and Profiling, but for now, let’s just run this code with the profiler and review the result. To run the profiler on the performance.py file, simply right-click the file and click More Run/Debug, then Profile ‘performance’, as shown in Figure 1.8:

			
				
					[image: Figure 1.8: Right-click the file you’d like to profile and click More Run/Debug | Profile ‘performance’ to see a performance profile]
				

			

			Figure 1.8: Right-click the file you’d like to profile and click More Run/Debug | Profile ‘performance’ to see a performance profile

			Remember, if you use the same code I did, this will take a long time to run, especially on a slower computer. Feel free to adjust the size of the list downward if it’s taking too long to run. The result is a .pstat file that displays as a table in PyCharm. Again, we’ll cover this more extensively in Chapter 6, Seamless Testing, Debugging, and Profiling. You can see the performance report in Figure 1.9:

			
				
					[image: Figure 1.9: PyCharm’s resource profiler shows the performance bottlenecks in a running program]
				

			

			Figure 1.9: PyCharm’s resource profiler shows the performance bottlenecks in a running program

			As you can see, 84.4% of the program’s time is spent in the bubble_sort function, which is the bottleneck. PyCharm has told you where to concentrate your refactoring efforts to improve the performance of your program.

			Publishing from the IDE

			When you need to publish your code to a testing server, and you aren’t using a continuous integration system for that, you can use PyCharm. To be clear, you should use a continuous integration system, but I often use the PyCharm features early in a project before the continuous integration system is operational to get code up for stakeholders to play with. You can deploy using file transfer protocol (FTP) or secure file transfer protocol (SFTP), or copy directly to a network share for a quick and easy way to share your progress with anyone who might want to review it.

			Refactoring tools

			PyCharm has robust refactoring tools you’d expect from a proper IDE. If you want to change a variable name, or even a method signature on a function, right-click and select the Refactor tool. Rest assured the changes you make will carry over to all related instances in your project, not just in the file you are editing. Figure 1.10 shows an example of this in action:

			
				
					[image: Figure 1.10: PyCharm has a full ﻿selection of refactoring tools available]
				

			

			Figure 1.10: PyCharm has a full selection of refactoring tools available

			In addition to renaming a variable or function, there are other actions you can perform, such as changing the method signature and changing the structure of your object-oriented classes.

			Working with databases in PyCharm

			If you work with databases, the Professional edition of PyCharm includes a graphical table editor and SQL support for dozens of popular databases. Check it out in Figure 1.11. I’ll talk more about the Professional edition of PyCharm a little later in this chapter; we’ll have a whole chapter on the database features in Chapter 11, Understanding Database Management with PyCharm:

			
				
					[image: Figure 1.11: PyCharm has a robust and complete set of tools for working with relational databases such as Oracle, SQL Server, Postgres, and many more]
				

			

			Figure 1.11: PyCharm has a robust and complete set of tools for working with relational databases such as Oracle, SQL Server, Postgres, and many more

			As you can see, a great many relational and NoSQL databases are directly supported.

			Remote development, containers, and virtual machines

			Finally, but not exhaustively, PyCharm has features for working with remote systems via SSH, local virtual machines using HashiCorp’s Vagrant, and extensive support for Docker containers.

			This isn’t an exhaustive list of what PyCharm can do for you, but by now, you get the point. Every tool you might need is integrated into the development environment. That’s probably why they called it an integrated development environment.

			Web development options

			I’d wager that more than half the developers working in Python need, at some point, a web project. Whether you’re like me and you’re making a SaaS offering as a fully realized web application, or you are doing rocket science and you need a way to visualize and interactively share your latest fast-Fourier transform on deep space radio emissions data, web projects are usually inevitable. I’m not a scientist and I made that up. If the last sentence made sense to anyone, it was pure coincidence.

			Working with web projects offers a new and separate layer of complexity. Most use three-tier designs commonly expressed with the model-view-controller (MVC) pattern. If you’re not sure what this means, stay tuned because there’s a whole section of this book dedicated to web development. For now, this means the application has a frontend where the user can interact, a middle tier containing connective logic, and a database tier for structured data storage and retrieval. Only the middle tier is done in Python. We’ll extensively cover web development in later chapters, but for now, I want to tell you about the level of tooling you get with PyCharm.

			The company that made PyCharm, JetBrains, makes a variety of IDEs targeted at different languages. One of their IDEs is specifically targeted toward web development. It is called WebStorm. I said earlier that good IDEs target one language. WebStorm targets JavaScript; specifically, we’re talking about full stack JavaScript. Modern JavaScript execution occurs in two places. Traditionally, JavaScript was always executed in the browser. About 10 years ago, Node.js was released and JavaScript was released from the confines of the browser window and allowed to run on the backend.

			Earlier, I alluded to a robust set of features in PyCharm for working with databases. JetBrains also has an IDE that targets SQL database developers called DataGrip. As it happens, the Professional edition of PyCharm includes the entire feature set available in WebStorm and DataGrip. When you buy the Professional edition, you’re getting three JetBrains products in one package: PyCharm, WebStorm, and DataGrip. When you use PyCharm to work on web projects, you need all three feature sets and they are there for you in the Professional edition.

			Scientific computing support

			The growth of the data science field has played an important role in the growth of Python itself, and Python is now the most common programming tool used in scientific projects (even more common than R). Notable functionalities included in PyCharm that facilitate data science work are the integration of IPython, Jupyter notebooks, and an interactive console. The support for scientific computing in PyCharm is detailed in section four of this book, starting from Chapter 13, Turning On Scientific Mode. PyCharm also provides a customized view that optimally organizes workspaces in a scientific project called SciView, which is shown in Figure 1.12:

			
				
					[image: Figure 1.12: SciView in PyCharm grants access to scientific visualization tools via a slick interface]
				

			

			Figure 1.12: SciView in PyCharm grants access to scientific visualization tools via a slick interface

			Understanding the Professional, Community, and Educational editions

			There are three editions to PyCharm. I’ve alluded to two, because the third is a special version that is only useful to teachers, and the focus of this book is application development, not software development instruction. I’ll tell you about each, but I know what you want is a feature comparison chart. You’ll find it in Figure 1.13:

			
				
					
					
					
				
				
					
							
							
							PyCharm Professional

						
							
							PyCharm Community

						
					

					
							
							Cost

						
							
							Paid

						
							
							Free

						
					

					
							
							Intelligent Python editor

						
							
							[image: Checkmark with solid fill]

						
							
							[image: Checkmark with solid fill]

						
					

					
							
							Graphical debugger and test runner

						
							
							[image: Checkmark with solid fill]

						
							
							[image: Checkmark with solid fill]

						
					

					
							
							Code navigation and refactor tools

						
							
							[image: Checkmark with solid fill]

						
							
							[image: Checkmark with solid fill]

						
					

					
							
							Code inspection

						
							
							[image: Checkmark with solid fill]

						
							
							[image: Checkmark with solid fill]

						
					

					
							
							Git, Subversion, and other source control tools

						
							
							[image: Checkmark with solid fill]

						
							
							[image: Checkmark with solid fill]

						
					

					
							
							Scientific tools

						
							
							[image: Checkmark with solid fill]

						
							
					

					
							
							Web development with HTML, JavaScript, CSS, and so on

						
							
							[image: Checkmark with solid fill]

						
							
					

					
							
							Python web framework support

						
							
							[image: Checkmark with solid fill]

						
							
					

					
							
							Performance profiling

						
							
							[image: Checkmark with solid fill]

						
							
					

					
							
							Remote development, containers, and so on

						
							
							[image: Checkmark with solid fill]

						
							
					

					
							
							Database and SQL support

						
							
							[image: Checkmark with solid fill]

						
							
					

				
			

			Figure 1.13: A feature comparison chart showing the features contained in the free Community edition versus the paid Professional version

			The Community edition is free but only offers a limited set of features compared to the Professional edition. It is perfect for working on projects that only entail working with Python. The product I work on has a set of Python scripts that batch-process large amounts of data. Everything happens in Python and this is the perfect use case for the Community edition. If all you need is a terrific Python IDE, use the free version. The Community edition is also perfect if you are just working on automation scripts, such as graphics pipelines for 3D computer graphics, or general IT task automation.

			The Professional edition has all the features of the free version but adds web development, database, remote development, containerization, and scientific project types. This is aimed at professionals who produce publishable software projects. While it is not free, JetBrains is pretty good about keeping it affordable with several pricing options, depending on how you are using the tool. Solo developers may obtain licenses at a lower price point than corporate developers. There are also ways to get the Professional edition free of charge, such as proving that you are using PyCharm on a fully open source software (FOSS) project. Start-up companies might be eligible for a 50% discount, and if you’re teaching in a code boot camp or a university setting, you may also qualify for free professional licenses. Since these things can fluctuate over time, you should check the JetBrains website for full details at https://www.jetbrains.com/pycharm/.

			I said earlier there are three editions of PyCharm, and we’ve only covered two. The Educational edition is aimed at teachers and university professors developing curricula to teach Python. This edition can create and play back interactive lessons right in the IDE. It is only valuable to teachers, instructors, and content creators.

			In this book, I will focus on the features present in the Community edition and the Professional edition.

			Summary

			In this chapter, we introduced the Python language itself, as well as the background behind Python IDEs in general and, specifically, PyCharm.

			We also discussed the usability of PyCharm for Python programmers. Specifically, to be able to take full advantage of all the features and functionalities that PyCharm offers without becoming too dependent on the IDE, a programmer should first master the fundamentals of the Python language and its core syntax. We also looked at comparisons between PyCharm itself and various other Python editors/IDEs and the reason why PyCharm is considered the best development environment of them all.

			Finally, we compared the two editions of PyCharm that are available for download: the paid Professional edition and the free Community edition. If you are working with large, complex projects with many moving parts, including database management, web development languages, and viewability in scientific reports, then you will most likely benefit from using the Professional edition.

			In the next chapter, you will learn how to download PyCharm, set it up on your system, and configure its environment for your Python projects. This will serve as the first step in getting started with PyCharm, after which we will start discussing the specific features PyCharm offers that this book covers.

			Questions

			Answer the following questions to test your knowledge of this chapter:

			
					Programmers typically develop their code with an editor or an IDE. What is the difference between the two, and which one is PyCharm?

					Why might some think that an IDE for Python development might be inappropriate or unnecessary?

					What are some key features of PyCharm? Of those features, which give PyCharm an edge over other editors/IDEs?

					What advantage does PyCharm have over editors such as Visual Studio Code or vim, which can be configured to perform many of the same features offered by PyCharm?

					What are the three editions of PyCharm? What are the key differences between them?

			

			Further reading

			Be sure to check out the companion website for this book at http://pycharm-book.com. To learn more about the topics that were covered in this chapter, take a look at the following resources:

			
					Friend, Edward H. Sorting on Electronic Computer Systems. Journal of the ACM (JACM) 3.3 (1956): 134-168.

					Nguyen, Quan. Hands-On Application Development with PyCharm: Accelerate your Python applications using practical coding techniques in PyCharm. Packt Publishing Ltd, 2019.

					Shelley, Percy B. Ozymandias. https://www.poetryfoundation.org/poems/46565/ozymandias.

					Wikipedia contributors. (2022, December 19). Bubble sort. Wikipedia. https://en.wikipedia.org/wiki/Bubble_sort.

			

		

	

		
			2

			Installing and Configuring PyCharm

			In the previous chapter, we looked at the most popular features of PyCharm and considered not only what makes PyCharm a great IDE but also what makes any IDE historically great. There is a base set of features we as developers need in order to be truly productive. In this chapter, we’ll turn our focus toward installing PyCharm. You may be thinking that you simply download and install it. You can do that, but there are different ways to install PyCharm that you might like better. There are also different options based on your operating system.

			Aside from the simple act of downloading the installer, running it, and mashing the next button until the installer’s dialog boxes go away, there are other considerations for getting the tool properly installed and working. PyCharm is highly customizable, and you are presented with some of those customization options as soon as the program runs for the first time. Some of these options are interesting, and some of them can be troublesome if you’re just picking every option and every customization during the process.

			Here’s what you can look forward to in this chapter:

			
					Downloading JetBrains Toolbox and using it to install and manage PyCharm. This is my recommended method of installation because you get an easy way to handle upgrades and uninstall. You can even install and manage several versions of PyCharm should you ever need to.

					We’ll run PyCharm for the first time and go through the customization options the software presents on the first run. Naturally, you can change these at any time, and we’ll cover that too.

					We’ll clone this book’s repository from GitHub using PyCharm’s integrated version control system (VCS) tools.

			

			Technical requirements

			To be successful in this chapter, you will need the following:

			
					A computer. Just in case you missed this particular gag in Chapter 1, I pride myself on being complete and leaving nothing to chance! The computer should meet the following system requirements for PyCharm:	64-bit versions of Microsoft Windows 8 or higher, macOS 10.14 or higher, or Linux running GNOME or KDE desktop.
	The official system requirements list 4 GB RAM as the minimum and 8 GB as recommended. If you intend to do non-trivial work, and you’re thinking about specs on a new computer, I wouldn’t buy less than 16 GB RAM, and I’d prefer 32 GB. The lighter specs are just those needed to run PyCharm. Most developers run more than the IDE.
	2.5 GB hard disk space; SSD recommended. Again, that’s PyCharm’s low-end recommendation. If you’re shopping, get an NVMe drive rather than an SSD. The performance is usually 10x greater and the cost is easily affordable.
	1,024 X 768 minimum screen resolution. That’s the low-end specification, and it’s a joke. You won’t get much done on a screen that size, and even cheap computers today can easily support 1,920 X 1,080. For professional work, you really want 4K if possible, or failing that two (or more) 1,920 X 1,080 monitors. The more screen real estate you have, the more productive you will be with any IDE. On a 4K monitor, I can have PyCharm showing me my project explorer, two open code windows side by side, the database explorer, and a terminal session.

					An operating system. This works best if it is installed on your computer already since we don’t cover how to do that in this book. Windows, macOS, Linux—it’s all the same as far as this book is concerned because PyCharm works in all three environments, and the UI is nearly identical in each environment.

					A connection to the internet.

					An installation of Python 3. We’re going to be using Python 3 exclusively in this book. There are a few different “flavors” of Python 3, but for the most part, the plain old Python 3 from https://www.python.org will be fine. We’ll get into those “flavors” later when we start talking about virtual environments in Chapter 3, Customizing Interpreters and Virtual Environments. If revision numbers give you comfort, the latest release at the time I’m writing is 3.11.1. The Python revision I’m using in that production SaaS app I mentioned in Chapter 1 is 3.8. If your Python 3 installation is older than that, you should update it.

					At some point, a GitHub account might become handy since I will be sharing the code from the book using a Git repository. Since you’ll be cloning some code, but not pushing, it isn’t strictly necessary to sign in—that is, unless you’d like to sign in, view the book’s repository, and give it a star. That’d be peachy and prove to the world that you’re a stand-up human being.

			

			Downloading PyCharm the traditional way

			First, I’m going to show the simplest, most direct, and most common way to install PyCharm. There’s a decent chance you’ve already done this before you bought this book, and there’s nothing wrong with that. After we cover this, I’ll show you my preferred way to install using a free app from JetBrains called Toolbox. You can choose any of the installation methods you’d like, knowing the choice won’t affect the outcome of anything we do in this book.

			Note there is a 30-day free trial available for the Professional edition if you’d like to try it out. After 30 days, you’ll have to pay for it or downgrade to the Community edition. Furthermore, don’t get too hung up on the version number displayed in Figure 2.1. JetBrains releases updates to PyCharm quite often, and the number will probably change several times before this book even hits the shelves. It’s hard to go wrong with the latest version.

			To download and install PyCharm, direct your browser to https://www.jetbrains.com/pycharm. The site will detect your operating system and attempt to present you with the correct download option.

			The download page has three main parts, as seen in Figure 2.1:

			
					You can select the operating system (Windows, macOS, or Linux). If you want to use Linux, make sure you’re running GNOME or KDE as those are supported window managers.

					You can choose between the Professional edition or the Community edition.

					Regardless of the first two options, make sure you take a look at the dropdown for the installer. Windows and Linux let you select between Intel and ARM. macOS lets you select between Intel and Apple Silicon:

			

			
				
					[image: Figure 2.1: The download window on the JetBrains website; make sure the correct operating system and processor are selected]
				

			

			Figure 2.1: The download window on the JetBrains website; make sure the correct operating system and processor are selected

			Once you have downloaded the proper version, follow the regular installation procedure for your operating system. If you selected a Linux version, you aren’t downloading an installer—you’re downloading a gzipped .tar file. You can just extract it and run PyCharm from the resulting folder.

			JetBrains Toolbox

			I just presented the most common way people install software, including PyCharm, to their development computer. There is a different way, which I prefer, involving installing a separate product called JetBrains Toolbox. Toolbox is especially useful if you have multiple JetBrains products, as I do. I have a subscription to all their tools, and I regularly use many of them. My preferred C# IDE is JetBrains Rider, which I used exclusively in my book Real-World Implementation of Design Patterns in C#, available from Packt Publishing.

			Even if you don’t use multiple JetBrains products, Toolbox provides some useful features such as providing an easy way to install, uninstall, and update your PyCharm installation. You can even use it to install multiple versions of PyCharm should you ever need to, including Early Access Program (EAP) releases. EAP releases give you access to the most cutting-edge features from JetBrains before they are generally available. As a development lead, I like to take the newest IDEs for a test drive before I give the all-clear to my development team. Toolbox makes that very easy.

			Toolbox is a separate download, and it is free. Let’s start by revisiting the PyCharm download page. At the bottom, you’ll find a link to JetBrains Toolbox, as shown in Figure 2.2:

			
				
					[image: Figure 2.2: Skip the usual download links we covered earlier and instead click the link to Toolbox]
				

			

			Figure 2.2: Skip the usual download links we covered earlier and instead click the link to Toolbox

			It is entirely possible that JetBrains will re-arrange its website. If there is no link at the bottom, you can simply search for Toolbox and find the most current download. You’ll land on a page like the one shown in Figure 2.3:

			
				
					[image: Figure 2.3: The Toolbox download screen]
				

			

			Figure 2.3: The Toolbox download screen

			As with the normal PyCharm download we reviewed earlier, this web page will detect the operating system you are using. The options are a bit simpler, but if you’re using a Mac, be sure to click the format button to select Intel versus Apple Silicon, as seen in Figure 2.3.

			Installing Toolbox in Windows

			The process for installing Toolbox is straightforward. It’s a case where you run the installer and smash the Next button until the dialog goes away.

			Note that when Toolbox is running, you can find it in the system tray in Windows.

			Installing Toolbox in macOS

			As with all things Mac, the macOS install is very easy. Having verified you downloaded the right version of the .dmg file (Intel versus Apple Silicon), find the downloaded .dmg file in the Downloads folder within your home folder. Double-click to open the .dmg file. Drag the Toolbox icon to the Applications folder. You’re done!

			Installing PyCharm with Toolbox

			Regardless of how you got here—be it on a Mac, Windows, or Linux—you should now have Toolbox running. At this point, the experience is almost universal. On macOS, Toolbox is just a regular app like any other. On Windows, though, it runs in the system tray.

			Running Toolbox for the first time brings a pretty standard end user license agreement (EULA). You know the drill. Read it and make sure that JetBrains isn’t demanding the surrender of your firstborn, then make your selection to agree or disagree with the EULA. Naturally, if you disagree, our time together is at an end, unless you’re tuning in for the occasional dad joke. I’ll operate on the assumption you agreed to the EULA.

			With Toolbox installed, you can install IDEs. You’ll see a screen like the one shown in Figure 2.4, which lists all the available JetBrains products:

			
				
					[image: Figure 2.4: JetBrains Toolbox running in the Windows system tray]
				

			

			Figure 2.4: JetBrains Toolbox running in the Windows system tray

			Naturally, we’re only interested in PyCharm. Figure 2.4 shows PyCharm Professional and PyCharm Community in the list. If you’re interested in the PyCharm Educational edition, it’s further down on the list.

			To install an IDE, click the Install button and wait while Toolbox downloads and installs the IDE. Once it is installed, the Toolbox menu changes slightly to show you which tools you have installed. You can see mine after I installed PyCharm Professional in Figure 2.5:

			
				
					[image: Figure 2.5: The Toolbox ﻿app after installation of PyCharm Professional]
				

			

			Figure 2.5: The Toolbox app after installation of PyCharm Professional

			You’ll notice Toolbox lists the applications you have installed at the top of the list, while those available for install are below. The advantage offered by Toolbox versus a normal install is the ability to launch, update, and uninstall your IDEs as well as easily experiment with different versions.

			Launching PyCharm using Toolbox

			After you’ve installed PyCharm, you can launch it or any installed IDE by simply clicking the entry in the menu. Before we leave Toolbox, let me show you some more interesting features.

			Installing an alternate version or uninstalling

			Next to each installed IDE in the list, you’ll see three dots, as seen in Figure 2.6:

			
				
					[image: Figure 2.6: The three dots next to each app represent a menu]
				

			

			Figure 2.6: The three dots next to each app represent a menu

			The dots are a menu. If you click them, you’ll see some options. You can access the settings for PyCharm. We’re going to do this later inside PyCharm itself, so we don’t need to do that now. There’s an option for viewing the latest news by clicking What’s new. Below that, there is an option for installing different versions of PyCharm aside from the latest. You can easily roll back to the last install if you have problems with the latest. Finally, below the divider and rendered in a very intimidating red font is the option to uninstall. It even has a terrifying and mysterious ellipsis following the menu option. Hovering over the option usually instills a sense of foreboding in all who try it. You were warned.

			Updating PyCharm using Toolbox

			Toolbox will help you stay up to date with the latest version of PyCharm and any other IDEs you use. Toolbox itself has its own settings and its own update mechanism.

			To get to these settings, click the hexagonal icon in the top-right corner of the Toolbox screen, as seen in Figure 2.7:

			
				
					[image: Figure 2.7: Use the hexagonal icon at the top of ﻿Toolbox to access its update options]
				

			

			Figure 2.7: Use the hexagonal icon at the top of Toolbox to access its update options

			The Log in option allows you to connect Toolbox to your JetBrains account. The About and FAQ options show information about the product. The latter takes you to a website where the product's frequently asked questions (FAQ) is maintained. The Quit option will close the Toolbox program.

			Launching and registering PyCharm

			Launching PyCharm, regardless of how you do it, shows you a splash screen, then takes you to a set of typical first-launch screens. If you installed the Professional edition, the first thing you’ll see is the registration screen shown in Figure 2.8:

			
				
					[image: Figure 2.8: The licensing screen in PyCharm Professional appears on the first run]
				

			

			Figure 2.8: The licensing screen in PyCharm Professional appears on the first run

			The most common way to proceed here is to log in to your JetBrains account. Clicking the button labeled Log In to JetBrains Account… will launch your browser. You can log in or create an account. If you have purchased a license, logging in will associate your copy with the license you purchased.

			If you work for a company that owns many licenses, you might need to log in to a JetBrains license server. There is also an option for registering with a registration code. You’ll find this code in your store account. This can be useful if you don’t have good internet access.

			Do you have more than one computer?

			Note that it is legal to install on multiple computers so long as you aren’t running two copies concurrently with the same license. The IDE will detect that and demand you shut one copy down.

			If you don’t have a license and you aren’t ready to commit, you can select the Start trial option. You will still have to log in to a JetBrains account in order to activate your trial.

			Setting up PyCharm

			When you launch PyCharm for the first time, and you make it past the license and registration, the very next thing you see is a smallish window representing PyCharm without a loaded project. You can see the light color scheme version of this screen in Figure 2.9:

			
				
					[image: Figure 2.9: PyCharm with no loaded project]
				

			

			Figure 2.9: PyCharm with no loaded project

			From this window, there are a few obvious options. I call them obvious because they are right in the middle of a big open space in the middle of the window. You can create a project, open an existing project, or clone a project from a VCS such as Git or Subversion (SVN). However, my first stop is in the gray area to the left on the screen where you’ll find the Customize menu option. Let’s go ahead and review your options for customizing PyCharm to fit your working style. Clicking Customize brings you to the preferences screen, as seen in Figure 2.10:

			
				
					[image: Figure 2.10: A small window for setting some of the important preferences in PyCharm]
				

			

			Figure 2.10: A small window for setting some of the important preferences in PyCharm

			This screen allows us to change the most frequently accessed settings. We can change our color theme, the IDE font, and our keymap.

			At the bottom, we can import our settings. This is useful when your boss finally springs for that new laptop, and you don’t want to spend a bunch of time re-customizing your IDE. As we all know, a well-configured, personalized IDE is like your old couch. Everybody who tries to sit on it will be horribly uncomfortable. Also, it smells. Your friends won’t tell you, but it does. To you, though, it’s molded itself perfectly to your form via potentially years of sedentary satisfaction. That’s your IDE. You might take years tweaking it to perfection only to be faced with having to start over every time you get a new machine. Not today, friends. Not with PyCharm. We can export, import, and even share our settings and easily bring them into new installations.

			I like big fonts and I don’t know why!

			You might be noting my font sizes are gigantic in all these shots. I am from Texas, and everything is bigger in Texas. However, in this case, I did that for you. Screenshots are easy to read with exaggerated font sizes, so you’ll see crazy settings in my preferences throughout this book.

			You might be thinking at this point that PyCharm has a rather paltry set of customization options. You’d be wrong. This deceptively simple window is meant to ease you in by presenting the most changed settings. Many users stop here. But not you. No, not you. You’re a Viking! Other developers see a deceptively diminutive All settings… button at the bottom of the screen and think There be dragons! You see a rich opportunity for adventure! So, click the All settings… button, if you dare, and we’ll explore this brave new world together.

			Appearance and behavior

			Clicking the All settings… button brings you to the screen shown in Figure 2.11. I will mercifully not attempt to cover every available setting as the list of possibilities is extensive to the point of tedium. The takeaway as you move through the customization settings is that you can pretty much customize every pixel generated by the running IDE:

			
				
					[image: Figure 2.11: The Settings screen in PyCharm lets you change every aspect of the user experience within PyCharm]
				

			

			Figure 2.11: The Settings screen in PyCharm lets you change every aspect of the user experience within PyCharm

			Perhaps the most useful way to start is to point out there is a search box at the top of the settings categories list. It is usually more practical to search for the setting you want than it is to troll through all the screens trying to find it.

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/image/B19644_Figure_1.01.jpg
O Fle ft Viw Gt Poit Bd Oobug Fomst Tt Awbie ook Edemsons Window Hep | Seech (CulhQ)
©-0[B-SBB|9C-|[omg [y | b romowmo- b &~ W@ k| r B 0 [mTH
HES o x| TR vt e

ol o-=-06

£
[sevch Toober
A Windows orms

| SeschSction Eplorer i1

@
B Gededitr
B Combobox & Fom.
W vt . b ne
A e Click Me!
A it
B it
.
G Makedtttor
B Mot
G Nottyion N
@ Naveidromn
O At
© ot 2
© Radot [romsommo “Jsromsommatom =] @yborion Gkttt sender,vervge e %
£ Roitor @ 1 -namespace FormsDemo 5
- 2 |E
b o, sk
i . Soton ko [et
e M3 . public partial class Forml : Form =t
M & Toobors 4 £
o St s o =
e 5 o public Form1() mn s s
+ iy € cnsbitune -
+ Dy eisi , it ok
S 7 InitializeComponent(); s e |
s | prevsim ol
There are no usable controls n this group. Drag an item onto. 9 t Backgroundimage- 1
vt e b . ipamansina T
s i
10 ¢ private void buttonl_Click(object sender, EventArgs e) 1o ot
n | i ool oot
o St
12 Nantaoh Iy
13 1 Pt T
- Soplst pp v
14 3 o s -
15 [} Tt
|| et ot e et

OEBPS/image/B19644_Figure_2.01.jpg
per Tool: Team To Education

PyCharm Comingin 2023.1 What's New Features Learn Pricing

Download PyCharm

Windows ~ macOS Linux o

Professional Community

For both Scientific and Web Python For pure Python development
Version: 2022.3.2 development. With HTML, JS, and SQL
Build: 223861748 SHRBOLE

25 January 2023

c<IED @
System requirements

Free 30-day trial available Free, built on (_
Installation instructions

Other versions -exe (ARM64)

Third-party software Get the Toolbox App to download PyCharm and
its future updates with ease

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/toc.xhtml

		

		Contents

			

						Hands-On Application Development with PyCharm

						Contributors

						About the authors

						About the reviewers

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Part 1: The Basics of PyCharm

						Chapter 1: Introduction to PyCharm – the Most Popular IDE for Python

					

								Technical requirements

								The continued success of Python

								The philosophy of IDEs

								PyCharm as a Python IDE

							

										Intelligent coding assistance

										Streamlined programming tools

										Web development options

										Scientific computing support

										Understanding the Professional, Community, and Educational editions

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 2: Installing and Configuring PyCharm

					

								Technical requirements

								Downloading PyCharm the traditional way

								JetBrains Toolbox

							

										Installing Toolbox in Windows

										Installing Toolbox in macOS

										Installing PyCharm with Toolbox

										Launching PyCharm using Toolbox

										Installing an alternate version or uninstalling

										Updating PyCharm using Toolbox

							

						

								Launching and registering PyCharm

								Setting up PyCharm

							

										Appearance and behavior

							

						

								Working with projects

							

										Creating a new project

										Running a PyCharm project

							

						

								Cloning this book’s code from GitHub

							

										Setting up your GitHub account

										Cloning the book’s repository

							

						

								Summary

								Questions

								Further reading

					

				

						Part 2: Improving Your Productivity

						Chapter 3: Customizing Interpreters and Virtual Environments

					

								Technical requirements

								Virtual environments

							

										Creating a virtual environment by hand

							

						

								Creating a project in PyCharm (revisited)

								Using an existing virtual environment

								Changing the interpreter for a project

								Activating virtualenv

							

										Using the integrated terminal

										Working with the REPL in the console window

							

						

								Working with third-party package libraries

							

										Adding third-party libraries in PyCharm

										Removing third-party libraries in PyCharm

										Using a requirements.txt file

										The new Python Packages window

							

						

								Professional features important to virtual environments

								Importing projects into PyCharm

							

										Importing a project cloned from a repository

										Dealing with invalid interpreters

							

						

								Working with run configurations

								PyCharm’s project files

								Summary

								Questions

								Further reading

					

				

						Chapter 4: Editing and Formatting with Ease in PyCharm

					

								Technical requirements

								Code analysis, inspection, and suggestion

							

										It duzunt assewm yew cna spel

										It understands your code

										Postfix code completion

										Hippie completion

										Indexing

										Power Save Mode

							

						

								Customizing code completion

							

										Match case

										Sorting suggestions alphabetically

										Machine learning assisted completions

										Showing the documentation popup in [...] ms

										Parameter info

							

						

								Code analysis and automated fixes

							

										Problem detection

										Syntax errors

										Duplicated code

										PEP-8 problems

										Dead code

										Method signature mismatches

										The road to good code is paved with PyCharm’s intentions

							

						

								Refactoring

							

										What is refactoring?

										Refactoring tools in PyCharm

							

						

								Documentation

							

										Working with docstrings

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 5: Version Control with Git in PyCharm

					

								Technical requirements

								Version control and Git essentials

								Setting up Git on your computer

							

										Setting your default username and email address

										Generating an SSH key

										Adding your SSH key to your GitHub account

							

						

								Setting up a repository manually

							

										Master versus main branches in GitHub

										Manually initializing the repository

										Working with remotes

										Adding a remote on GitHub

										The first push

										Making, committing, and pushing a change

							

						

								Working with Git in the IDE

								Version control in PyCharm

								Creating a new project from scratch using VCS tooling in PyCharm

							

										Initializing the local Git repository

										Adding a remote on GitHub

										Adding project files

										Adding a .gitignore file

										Pulling and pushing

										Branching and merging

										Creating a branch

										Switching between branches

										Merging

										Viewing the branch diagram

							

						

								Diffs and conflict resolution

							

										Viewing diffs

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 6: Seamless Testing, Debugging, and Profiling

					

								Technical requirements

								Testing, testing, 1-2-3

								Unit testing in Python using PyCharm

							

										Choosing a test library

										Adding a bank account class

										Testing the bank account class

										Running the tests

										Fixing the failing tests

										Testing the fault paths

										Generating tests automatically

										Generating the transaction test

							

						

								Working with PyCharm’s debugger

							

										Using the debugger to find and fix our test problem

							

						

								Checking test coverage

							

										Test coverage output

							

						

								Profiling performance

							

										Profiling in PyCharm

										Comparing performance versus the built-in sum() function

										Viewing the call graph

										Navigating using the performance profile

										Performance cProfile snapshots

							

						

								Summary

								Questions

								Further reading

					

				

						Part 3: Web Development in PyCharm

						Chapter 7: Web Development with JavaScript, HTML, and CSS

					

								Technical requirements

								Introduction to HTML, JavaScript, and CSS

								Writing code with HTML

							

										Creating HTML in PyCharm

										Creating an empty project

										Previewing web pages

										Reloading the browser view on save

										Using the PyCharm HTML preview

										Configuring the available browsers

										Navigating structure code with the structure window

							

						

								Adding the CSS

							

										Using color selectors

							

						

								Adding JavaScript

							

										Adding some JavaScript code

										Adding the elements to the HTML file

										Debugging client-side JavaScript

										Working with Emmet templating

							

						

								HTML project types in PyCharm Professional

							

										HTML 5 Boilerplate

										Previewing and editing graphics with external tools

										Uploading your site to a server

										Creating a Bootstrap project

							

						

								Working with modern JavaScript and NodeJS

							

										Creating a NodeJS project

										Creating a React project

										Other frontend frameworks

							

						

								Summary

								Questions

					

				

						Chapter 8: Building a Dynamic Web Application with Flask

					

								Technical requirements

								Web basics – client-server architecture

								Exploring the request-response mechanism in HTTP – how clients and servers communicate

								What is Flask?

							

										Request-response handling and routing with Werkzeug

										Templating with Jinja2

							

						

								A note on naming files and folders

								Creating a Flask application in PyCharm Professional

								Creating a dynamic web application

							

										Setting up the static parts

										Running the Flask app

										Let’s make it look a little better

										Adding some CSS

										Making the page dynamic

										Editor enhancements for working with Flask and Jinja2

							

						

								Summary

								Further reading

					

				

						Chapter 9: Creating a RESTful API with FastAPI

					

								Technical requirements

								There is no REST in a wicked stateless world

								Creating a FastAPI project in PyCharm Professional

								Running the FastAPI project

								Working with PyCharm’s HTTP Requests

							

										Examining the details of the return

										We just generated a new run configuration

										Using Before launch actions in run configurations

										Working with HTTP Request environments

							

						

								Let’s get CRUDdier and then get testier!

							

										Getting testier

										Creating the tests

							

						

								Editing and debugging a full stack app by attaching projects

							

										Creating a React app in a separate project

										Attaching the project to the FastAPI project we created earlier

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 10: More Full Stack Frameworks – Django and Pyramid

					

								Technical requirements

								What’s all this fuss about Django?

							

										Django framework components

							

						

								Creating a Django project

								Structure of a Django project

							

										Initial configuration

										Running the Django project

							

						

								Creating Django models

								Performing migrations using manage.py

								The Django admin interface

							

										Creating a superuser and logging in

										Adding the Author and Book models to the admin interface

							

						

								Creating Django views

							

										What’s with the weird Python icon in the template gutter?

										Run it!

							

						

								Building Pyramid applications with PyCharm

							

										Creating a Pyramid project

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 11: Understanding Database Management in PyCharm

					

								Technical requirements

								Relational databases in a nutshell

								Structured Query Language

							

										The two halves of SQL

										Relationships

										More relational structures

										Database terminology uses simple English plurals

							

						

								Database tooling in PyCharm

								Setting up a MySQL database server with Docker

							

										Installing and running the MySQL container

										Stopping and starting the container

							

						

								Connecting to data sources using PyCharm

							

										Creating a new database

										Setting the SQL dialect (this is crucial)

										Grouping and color coding data sources

							

						

								Database design and manipulation

							

										Creating a table

										Altering existing structures

										Generating scripts

							

						

								Querying the data source using SQL

							

										Ad hoc queries

										Generating SQL statements

										Running the query

										Exporting query results

										Working with SQL files

							

						

								Summary

								Further reading

					

				

						Part 4: Data Science with PyCharm

						Chapter 12: Turning On Scientific Mode

					

								Technical requirements

								Creating a scientific project in PyCharm

								Additional configuration for science projects in PyCharm

							

										Markdown plugins

										Adding images

										Installing the CSV plugin

										Installing the cell mode plugin

							

						

								Installing packages

							

										Backfill your requirements.txt file

							

						

								Adding some sciency code

								Toggling scientific mode

								Understanding the advanced features of PyCharm’s scientific projects

							

										The documentation viewer

										Using code cells in PyCharm

										Using PyCharm code cells

										The cell mode plugin

							

						

								Summary

								Questions

					

				

						Chapter 13: Dynamic Data Viewing with SciView and Jupyter

					

								Technical requirements

								Data viewing made easy with PyCharm’s SciView panel

								Viewing and working with plots

							

										Heatmaps and correlational data

							

						

								Viewing and working with data

							

										Filtering in the Data tab

							

						

								Understanding IPython and magic commands

							

										Installing and setting up IPython

										Introducing IPython magic commands

							

						

								Leveraging Jupyter notebooks

								Understanding Jupyter basics

								The idea of iterative development

								Jupyter notebooks in PyCharm

							

										Creating a notebook and adding our code

										Documenting with Markdown and LaTeX

										Adding our plots

										Executing the cells

										Odds and ends

							

						

								Summary

								Questions

					

				

						Chapter 14: Building a Data Pipeline in PyCharm

					

								Technical requirements

								Working with datasets

								Starting with a question

							

										Archived user data

										Tappy data

							

						

								Data collection

							

										Downloading from an external source

										Manually collecting/web scraping

										Collecting data via third parties

										Database exports

							

						

								Version control for datasets

							

										Using Git Large File Support

							

						

								Data cleansing and preprocessing

							

										A toxic data example peripherally involving ninjas

										Exploratory analysis in PyCharm

										Data cleansing

										Exploring the second dataset

										Refactoring for scale

							

						

								Data analysis and insights

							

										Starting the notebook and reading in our processed data

							

						

								Using charts and graphs

								Machine learning-based insights

								Scripts versus notebooks in data science

								Summary

								Questions

								Further reading

					

				

						Part 5: Plugins and Conclusion

						Chapter 15: More Possibilities with Plugins

					

								Technical requirements

								Bundled plugins and JetBrains Marketplace

							

										The plugins window

										Bundled plugins

										JetBrains Marketplace

										Making your own plugins

										Requiring plugins for your projects

										Useful miscellaneous plugins

							

						

								Code with me (and never be lonely again)

								Remote development

							

										Configuring remote development in PyCharm

										Creating a remote project

										Let’s try that again

										Creating a virtual environment on the remote

										Other considerations

							

						

								Working with Docker

							

										The bundled Docker plugin

										Create the project

										Add a Docker run configuration

							

						

								Summary

					

				

						Chapter 16: Your Next Steps with PyCharm

					

								Miscellaneous topics in PyCharm

							

										Remote virtual environments

										Working with HashiCorp Vagrant

										Tracking your time

										TODO list

										Macros

										Notifications

							

						

								New features in 2023.2

							

										Black integration

										GitLab integration

										Run anywhere

										AI Assistant

										Jupyter Notebook support for Polars

							

						

								Summary and closing remarks

								Further reading

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

	

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/image/B19644_Figure_1.05.jpg
Pycharmpemo main

PyCharmbemo - unreachable py

) Project

—o- ¥ [Ppycharmbemo -/Hands-On-Application
> [Dvenv
@ ligature_demo.py
@ main.py
@ performance.py
@ test_main.py
unreachable.py
(h External Libraries
=9 scratches and Consoles

0]
¥

o Pycharmbemo > @ unreachable.py

@ unreachable.py

13

print_hi()

Current File v

b &

This is a sample Python script. 1Ay

Press Shift+F10 to execute it or replace it with your ¢
Press Double Shift to search everywhere for classes, fi

Bruce M. Van Horn Il
def print_hi(name):
print(f'Hi, {name}')
for x in range(25):
print(str(x))
if x = 12:
return
? print("Vou'ﬁl never make it here")
This code is unreachable

e

forxin range(2s) > ifx==12

PN ..t tnv ta win tha cemind

1324 CRLF UTF-8 4spaces Python 3.10 (Pycharmbemo) o

OEBPS/image/B19644_Figure_2.05.jpg
<

JetBrains

- Toolbox

Tools Projects Services

Installed
PyCharm Professional
2022.31

Available

Fleet

The next-generation IDE by JetBrains

IntelliJ IDEA Ultimate
The Leading Java and Kotlin IDE

IntelliJ IDEA Community Edition

The IDE for pure Java and Kotlin development

Aqua
A powerful IDE for test automation

. Android Studio by Google
An IDE for Android app development

DataSpell
An IDE for data scientists

Install

Install

Install

Install

Install

Install

OEBPS/image/B19644_QR_Free_PDF.jpg

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/image/B19644_Figure_2.04.jpg
JetBrains

- Toolbox

Tools Projects

Fleet Install

The next-generation IDE by JetBrains

Aqua (0 nstat

A powerful IDE for test automation

IntelliJ IDEA Ultimate Install

The Leading Java and Kotiin IDE

IntelliJ IDEA Community Edition Install

The IDE for pure Java and Kotiin development

™ Android Studio by Google Install

An IDE for Android app development

PyCharm Professional Install

@
@

stack Python IDE

DataSpell Install

An IDE for data scientists

fYg PyCharm Community nstall
The pure Python IDE
Tfd Webstorm nstall

N siem
8D g0 @

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/image/B19644_Figure_1.04.jpg
testi— main py

@ manv D £

O @ mainpy x 1
n 1 # This is a sample Python script. v g
8o :
3 # Press Shift+F10 to execute it or replace it with your code.
4 # Press Double Shift to search everywhere for classes, files, tool windows, actio
5
6
7 def print_hi(name): -
8 # Use a breakpoint in the code line below to debug your script.
) print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint.
10
11
12 # Press the green button in the gutter to run the script.
13p if _name_ = '_main__':
14 print_hi('PyCharm"')
15
o 16 # See PyCharm help at https://wmv.jetbrains.com/help/pycharm/
¥ ilq:namefzz;mam;
Otests > @ main.py 13:27 LF UTF-8 4 spaces Python 3.10 (tests) &5

[e— =

File Edit View Navigate Code Refactor Run Tools VCS Window Help

tests) # main.py % [#main-| > 6 G-= Q&
= Project ~ © X = & - amainpy i
EVz":::w‘“’Vm””"mlws"es“' 1 # This is a sample Python script. i
2
P 3 # Press Shift+F10 to execute it or replace it with your code.
= pyvenv.cfg 4 # Press Double Shift to search everywhere for classes, files, tool
5 ;T:r:‘:l’{ibraﬁes 5
% Scratches and Consoles 6
7 def print_hi(name): 4
8 # Use a breakpoint in the code line below to debug your script
9@ print(f'Hi, {name}') # Press Ctrl+F8 to toggle the breakpoint
10
il
12 # Press the green button in the gutter to run the script.
X 13 » if __name__ = '__main__':
H 14 print_hi('PyCharm')
& 15
; 16 # See PyCharm help at https://ww. jetbrains.com/help/pycharm/
E 17

¥ Version Control _# Python Packages =TODO _# Python Console @ Problems _m Terminal o Services

>

aseqeieq m

SUONBYION R MIINDS

© pownload pre-built shared indexes: Reduce the indexing time and CPU load with pre-built Python packages shared index... (5 minutes ago) 10:1 LF UTF-8 & spaces Python 3.10 (test4) &

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/image/B19644_Figure_1.12.jpg
T OE Ve e

& mainpy

scientificproject

.hist(x, alpha=0.5, label='x")
.hist(y, alpha=0.5, label='y") @_copy_docstring_and_deprecators(Ax¢
10 plt.

plt.

sciview pata Plots

e
import numpy as np PO s m @ O w2 40x80 PNG (24-bit color) 1226 kB Sl
import matplotlib.pyplot as plt

oo

100 3
np.random.normal(o, 1, N) =
np.random.normal(2, 3, N) Documentation legend(*args, **kwargs)

mmatplotlib.pyplot

legend(loc="upper right') def legend(*args: Any,

show() *xkwargs: Any) -> Any
= < Python 3.10 (scientificProject) >
“legend(*args, **kwargs)” on matplotlib.org -

108 LF UTF-8 4spaces Python 310 (scientificProject) cf'

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

OEBPS/image/B19644_Figure_2.08.jpg
[7€] Licenses

fPC | @ Adivete PyCharm () Starttial
Plugins
e Get license from:
Code With Me = S
A ciero naie © Biccount O Acvatoncode

Login...

Proxy settings

O License server

X

Buy license »

OEBPS/image/B19644_Figure_1.08.jpg
New > PyChamemo - performance.py

Pycharmbemo - EESORY trisx performance v > £k
9 X
=5 o & copy Ctrl+C
Copy Path/Reference... Bndom
~o-1 | 8 Pycharmbeg [paste ctrisv €]
> [venv
&
8o '."ga_‘”’e‘c Find Usages AtF7y sort is the slowest sort algorithm there is 0
i Inspect Code... Van H I
@ performal an Horn
@ testmain pefactor > le_sort(input_array):
@ unreacha _ B
> b External Libr Bookmarks , th_of_array = len(input_array)
=° scratches an . g i
it Co Ctri+Alt+L - .
selomatCode i in range(length_of_array):
opti Imports. Ctrl+Alt+0 PR z
PSR - for j in range(0, length_of_array - i - 1):
Delete... Delete

if dnnnt avvauldl N dnnot awvauls o 11
override File Type

profile Run ‘performance’ Cirl-Shift+F10

9999 Debug 'performance’

@ Snaps [More Run/oebug > (2 Run‘performance’ with Coverage ins.PyCharm-Professional/cache/JetE
(@ profile “performance’

X (1) open in Right Split shift+Enter
O] Proce

=% concurrency Diagram for ‘performance’

open In >

Modify Run Configuration...
?'9 Local History >
o Pycharmbemo > @ p Git v >

14220 CRLF UTF-8 4 spaces Python 3.10 (PycharmbDemo) o§

OEBPS/image/B19644_Figure_1.03.jpg

OEBPS/image/B19644_Figure_2.03.jpg
Solutic

Toolbox App FAQ & Shortcuts Blog & Social

Version: 1.27.2, Released: December 19, 2022
Other versions

Tools ! prof - a

Update al

IntelliJ IDEA Utimate

g JetBrains
g = Toolbox App

What's newin 202212

Manage your IDEs the easy way

Intelli IDEA Community Edition | nstat | £
Android Studio o Googie e | 3
1] b Its free. System| 73)
a PyCharm Professional e | 3 dmg (macos Intel)
) oo] i .dmg (macOS Apple Silicon)

targz (Linux)

OEBPS/image/B19644_Figure_2.11.jpg
Q- Appearance & Behavior =

> Appearance & Behavior cystomize IDE appearance and behavior: change themes and font size, tune the keymap, configure plugins and system
settings, such as password policies, HTTP proxy, and updates.

Keymap
S Editor Appearance
New Ul _
Plugins Menus and Toolbars
> Version Control System Settings
Python Interpreter Eile colors
. 4 Scopes
> Build, Execution, Deploy Notiiestions
> Languages & Framewor Quick Lists
> Tools Path Vvariables
Settings Sync
Advanced Settings

4 € “ Cancel

OEBPS/image/Packt_Logo_New.png
<packm

OEBPS/image/B19644_Figure_1.11.jpg
Pycharmpemo

PyChamDermo - performance py

main

(5] Pl @ performance.py
.~ [Pycharmbemo - /iands-or import random
> venv
2 .
%o Rty # bubble sort is the
& mainpy
@ performance.py Bruce M. Van Horn Il
@ test_main.py def bubble_sort(inpu
@ unreachable.py

b External Libraries

length_of_array

=0 scratches and Consoles

1%

o Pycharmbemo > @ performance.py

for i in range(l

for j in ran

9 if input
inpu

test_array = []
for x in range(10000
test_array.appen

bubble_sort() > fori in range(length_of_array)

performance v >k
Database ©
e ®
Complete Support € Dpata source >
it Amazon Redshift L DDL Data Source
= Apache Cassandra < Data Source from URL
2 Apache Derby [Dpata source from Path
< Apache Hive =) import from clipboard
o GlESELRERER Driver and Data Source oy
/A Azure Synapse Analytics i1 Driver
© sigauery
Il clickHouse [Import Data Sources...
@ cockroachps
@ couchbase Query
§ Documentos
2{ Exasol
Greenplum
| H2
@ HsaLbe
B3 18M Db2 LUW
Z MmariaDB

UTF-8 4 spaces Python 3.10 (Pycharmbemo) §

OEBPS/image/B19644_Figure_1.07.jpg
PyCharmDemo - test_mainpy

Pycharmbemo main Python testsin .._mainpy v > £¥
= Pl @ test_main.py B¢
o ¥ [Dpycharmpemo -/Hands-on 1A v e
> [Jvenv Bruce M. Van Horn Il *
8 # ligature_demo.py class Test(TestCase):)
@ main.py

@ performance.py
@ test_main.py
@ unreachable.py
> (b External Libraries
=9 scratches and consoles

Test

Run G G

& ve o

~ € Test Results
v € test_main
@ v @ Test
test_add_two_numbers
%9 @ test_show_a_fail

3

0 Pycharmbemo > @ test_main.py

Bruce M. Van Horn Il *
def test_add_two_numbers(self):
self.assertTrue(add_two_numbers(a=5, b=6) = 11,
"Should be 11")

Bruce M. Van Horn Il
def test show a fail(self):

test_add_two_numbers()

Tests failed: 1, passed: 1 of 2 tests - 4 ms

4ms /home/bruce/Hands-On-Application-Development-with-PyCharm

Testing started at 3:23 PM ... v
ims Launching unittests with arguments python -m unittest /hor -

4ms

4ms

>

9:40 CRLF UTF-8 4spaces Python 3.10 (Pycharmbemo) o

OEBPS/image/B19644_Figure_1.13.png

OEBPS/image/B19644_Figure_2.07.jpg
JetBrains

- Toolbox

Login 2
Tools Projects Services

Check for updates ~ Ctrl+R

Installed
Settings Ctrl+Comma
PyCh Professi
yCharm Professior =~
2022.3.2
FAQ 7
« Available Quit Ctrl+Q

Fleet Install :

The next-generation IDE by JetBrains

IntelliJ IDEA Ultimate Install H
The Leading Java and Kotlin IDE

IntelliJ IDEA Community Edition Install H

Aqua Install :
A powerful IDE for test automation

The IDE for pure Java and Kotlin development

. Android Studio by Google Install H
An IDE for Android app development

DataSpell Install :
An IDE for data scientists

OEBPS/image/B19644_Figure_1.09.jpg
PyCharmDemo - PyChamDemoz.pstat

PycCharmbemo main performance v >
) Pl @ performance.py # pycharmDemo2.pstat : [ai¢
_o. ~ [pycharmbemo -/Hands-On Statistics ~ Call Graph g
> [venv _—
@ ligature_demo.py Name call count Time (ms) own Time (ms) v 0
oo -
@ main.py bubble_sort 1 8196 84.4% 8196 84.4%
@ performance.py randrange 10000 865 89% 3% 32%
: test_main.py <built-in method builtins.print> 10001 257 26% 27 26%
unieachecls oy _randbelow_with_getrandbits 10000 38 39% 05 23%
> (b External Libraries o 9 oo ol
erformance. | % %
= Scratches and consoles PPy)
<built-in method _operator.index: 30000 m 18% m 18%
randint 10000 992 10.2% 126 13%
& <method ‘getrandbits' of'_randon 16431 9% 10% 9% 1.0%
<method ‘append" of 'list' objects: 10000 57 06% 57 06%
Profile performance
9999

Snapshot saved to /home/bruce/.var/app/com.jetbrains.PyCharm-Professional/cache/JetE

@
X
0] Process finished with exit code 0
4
5

PycharmDemoz2.pstat Python 3.10 (PyCharmDemo)

OEBPS/image/B19644_Figure_2.09.jpg
Welcome to PyCharm =

Pycharm
L 202232
Projects
~ Remote Development Beta welcome to PyCharm
3 SSH Create a new project to start from scratch.

® JetBrains open existing project from disk or version control.
etBrains Space

Customize

Plugins

§

B

New Project open Get from VCS

Learn

OEBPS/Fonts/CourierStd.otf

OEBPS/image/B19644_Figure_1.10.jpg
Workspaces Applications.

Pycharmbemo main
O »
o~ ¥ [Pycharmpemo -/Hands-On
> [Jvenv
o & ¥
% ligature_demo.py

@ main.py
& performance.py
@ test_main.py
@ unreachable.py
(b External Libraries
=° scratches and Consoles

AN CER |

©Pycharmbemo > @ performance.py

Feb11 404 P

@ performance.py

import random

bubble sort is th
Bruce M. Van Horn Il

4 def bubble_sort(inpi

length_of_array

for i in range(’
for j in rai

if inpu

inpi

test_array = []
for x in range(1000!
test_array.appel

bubble_sort()

O show Context Actions

() paste
Copy / Paste Special

Column Selection Mode

Find Usages

Refactor
Folding

GoTo

Generate.

Run ‘performance’
Debug performance’

More Run/Debug

open in

Local History

Git

Execute Line in Python Console

@ Run File in Python Console

[+ compare with clipboard

Alt+Enter

ctrisv

>

AltsShift+Insert

Alt+F7

>

>

Alt+insert

Ctrl+shift+F10

Alt+Shift+E

Rename... n

change signature...

Introduce Variable...
Introduce Constant...

Introduce Field...

Introduce Parameter...

Extract Method...
Extract Superclass...

Movi

Copy File..

Pull Members U

Push Members Down...

))

CtrisAltsv
CtrisAltsC

Ctrl+Alt+F &

ctri+Alt+p

Fs

4 spaces Python 3.10 (Pycharmbemo) o§

OEBPS/image/B19644_Figure_2.10.jpg
a PyCharm
202232

Projects
~ Remote Development
" SSH
' JetBrains Space
Customize
Plugins

Learn

Beta

Welcome to PyCharm

Color theme

Accessibility

IDE font: 22.0 v

Adjust colors for red-green vision deficiency How it works
Requires restart. For protanopia and deuteranopia.

Keymap

windows v | configure...

Import Settings...

All settings...

OEBPS/image/Cover.png
Hands-On

Application Development
with PyCharm

Build applications like a pro
with the ultimate python development tool

<> BRUCE M. VAN HORN II | QUAN NGUYEN

OEBPS/image/B19644_Figure_2.02.jpg
Get the Toolbox App to download PyCharm and
its future updates with ease

OEBPS/image/B19644_Figure_1.02.jpg
TIOBE Popularity Rankings December, 2022

\

mPython wC wC++ mjava mCH mVisual Basic mSQL mAssembly mPHP = Go mVB6

OEBPS/image/B19644_Figure_2.06.jpg
JetBrains

- Toolbox
Tools Projects Services Q
Installed \
PyCharm Professional
2022.3.2
Settings
What's new

v Available .
Other versions

Fleet
The next-generation IDE by Jet Roll back to 2022.3.1

Aqua Uninstall...
A powerful IDE for test automation

IntelliJ IDEA Ultimate Install H
The Leading Java and Kotlin IDE

IntelliJ IDEA Community Edition Install H

The IDE for pure Java and Kotlin development

. Android Studio by Google Install H
An IDE for Android app development

DataSpell Install :
An IDE for data scientists

OEBPS/image/B19644_Figure_1.06.jpg
New > PyCharmemo - test_main.py

PyCharmDen eSS Ctriex currentfile~ > £

o o @ copy ctrisc t_mainpy i /3
Copy Path/Reference...

. v [Jpycharm s a unit test that proves the test in the above f a1 ~ v: g

[E) paste ctrisv
> Cyvenv
& i :
8o b :‘g;:" Find Usages AF7 ttest import TestCase
& perra] "oPeCt Code- 1 import add_two_numbers
@ testn gefactor >
2 unrea .
> b External| Bookmarks 5, gan-HomIl
=0 Scratcher st(TestCase):
Reformat Code Ctrl+Alt+L ce M. Van Horn Il *
optimize Imports Ctri+Alt+0
¥ s ! test_add_two_numbers(self):
Delete... Delete
o self.assertTrue(add_two_numbers(a=5, b=6) = 11,
override File Type "Should be 11")
Run 'Rython tests in test..' Cirl+Shift+F10
Debug 'Python tests in test...' ce M. Van Horn Il
Mo s/ Deting > test_show_a_fail(self):
(D) open in Right Split shitsenter se Lf . fail()
@ Open In >
4 Local History > ers()

o Pycharmbemo > ¢ Git ~ > 9:40 CRLF UTF-8 4 spaces Python 3.10 (Pycharmbemo) o

