[image: Cover-Abbildung]

		

				
			
		Ian Stewart

		 	
		

			 
		
			
				Welt-Formeln
			
			
		
			17 mathematische Gleichungen, die Geschichte machten

			

		
		
			 
			 

			
			 
			 

			
			Aus dem Englischen von Monika Niehaus und Bernd Schuh

			 

			
			 
			

		

		
		 
		
		 
		 
		 
		

		
		
	
		
			
				
					Über dieses Buch
				

			
			 
			
            Sie haben die Geschichte des Menschen mindestens ebenso beeinflusst wie Kriege, Revolutionen und die Mächtigen der Welt – Gleichungen fassen in wenigen Symbolen den Fortschritt des Wissens zusammen. Vom Bau der Pyramiden bis zur Satellitennavigation bilden sie die Basis jeder Erfindung. Manche von ihnen sind gar zu Ikonen der Moderne geworden, zum Beispiel Einsteins E=mc².  In diesem Buch erklärt uns Englands Mathe-Guru Ian Stewart die wichtigsten 17: ihre Vorgeschichte, ihren praktischen Nutzen, die Bedeutung der Zeichen. Vom Satz des Pythagoras über Logarithmen, imaginäre Zahlen, die Differentialrechnung, Newtons Gravitationsgesetz oder Gauss'  Normalverteilung bis hin zum zweiten Hauptsatz der Thermodynamik oder zur Chaostheorie hat er Gleichungen ausgewählt, die jedem von uns in der einen oder anderen Form schon einmal begegnet sind.

         

		
	
		
			
			 
			
				
					Impressum
				

			 
			 
			
            Deutsche Erstausgabe

            Veröffentlicht im Rowohlt Verlag, Reinbek bei Hamburg, März 2014

            Copyright der deutschsprachigen Ausgabe 

            © 2014 by Rowohlt Verlag GmbH, Reinbek bei Hamburg

            
            Die englische Originalausgabe erschien 2012 unter dem Titel 

            «Seventeen Equations that Changed the World» bei Profile Books, London.

            Copyright © 2012 by Joat Enterprises

            Redaktion Heiner Höfener

            Umschlaggestaltung ZERO Werbeagentur, München

            (Umschlagabbildung: FinePic, München)

            
            
            
            ISBN 978-3-644-50681-7

            
            

         

			 

			Schrift Droid Serif Copyright © 2007 by Google Corporation

			Schrift Open Sans Copyright © by Steve Matteson, Ascender Corp

			 

			Dieses Werk ist urheberrechtlich geschützt, jede Verwertung bedarf der Genehmigung des Verlages.

			 

			Die Nutzung unserer Werke für Text- und Data-Mining im Sinne von § 44b UrhG behalten wir uns explizit vor.


			
			
		
	
		
			
			 
			
				
					Hinweise des Verlags
				

			 
			Abhängig vom eingesetzten Lesegerät kann es zu unterschiedlichen Darstellungen des vom Verlag freigegebenen Textes kommen.

			 

			Alle angegebenen Seitenzahlen beziehen sich auf die Printausgabe.

			 

			Im Text enthaltene externe Links begründen keine inhaltliche Verantwortung des Verlages, sondern sind allein von dem jeweiligen Dienstanbieter zu verantworten. Der Verlag hat die verlinkten externen Seiten zum Zeitpunkt der Buchveröffentlichung sorgfältig überprüft, mögliche Rechtsverstöße waren zum Zeitpunkt der Verlinkung nicht erkennbar. Auf spätere Veränderungen besteht keinerlei Einfluss. Eine Haftung des Verlags ist daher ausgeschlossen.

			 

			 

			www.rowohlt.de


		
		
	Inhaltsübersicht
	Motto
	Warum Gleichungen?
	Kapitel 1 Die Squaw auf dem Nilpferd
	Kapitel 2 Eine praktische Abkürzung
	Kapitel 3 Geister abgeschiedener Größen
	Kapitel 4 Das System der Welt
	Kapitel 5 Monstrum der idealen Welt
	Kapitel 6 Alles dreht sich um Knoten
	Kapitel 7 Zufallsmuster
	Kapitel 8 Good Vibrations
	Kapitel 9 Es kräuselt und blinkt
	Kapitel 10 Die Menschheit hebt ab
	Kapitel 11 Wellen im Äther
	Kapitel 12 Gesetz und Unordnung
	Kapitel 13 Eines ist absolut
	Kapitel 14 Quantenseltsamkeit
	Kapitel 15 Codes, Kommunikation und Computer
	Kapitel 16 Das Ungleichgewicht der Natur
	Kapitel 17 Die Midas-Formel
	Was kommt als Nächstes?
	Abbildungsnachweis


               «Um die mühsame Wiederholung der Wörter ‹ist das Gleiche wie› zu vermeiden, werde ich, wie ich es häufig bei meinen Arbeiten tue, zwei parallele Striche einsetzen oder zwillingshafte Linien gleicher Länge, weil keine zwei Dinge sich mehr gleichen können.»

                

               Robert Recorde, Der Wetzstein des Wissens, 1557

            

               Warum Gleichungen?

            Gleichungen sind das Lebenselixier von Mathematik, Naturwissenschaften und Technik. Ohne sie würde es unsere Welt in ihrer gegenwärtigen Form nicht geben. Gleichungen stehen jedoch in dem Ruf, abschreckend zu wirken: So erklärten Stephen Hawkings Verleger ihrem Autor, jede Gleichung werde den Verkaufserfolg seines Buches Eine kurze Geschichte der Zeit halbieren, ignorierten aber dann ihren eigenen Rat und erlaubten ihm, E = mc2 aufzunehmen, obwohl sie ohne die Formel doch angeblich weitere 10 Millionen Exemplare verkauft hätten. Ich bin auf Hawkings Seite. Gleichungen sind zu wichtig, um sie zu verstecken. Aber diese Verleger hatten auch in gewisser Weise recht: Gleichungen sind formal und streng, sie sehen kompliziert aus, und selbst diejenigen unter uns, die Gleichungen lieben, können verscheucht werden, wenn sie mit ihnen bombardiert werden.
In diesem Buch habe ich eine gute Entschuldigung. Da es ausdrücklich um Gleichungen geht, kann ich ebenso wenig vermeiden, Gleichungen aufzunehmen, wie ich ein Buch über Bergsteigen schreiben könnte, ohne das Wort «Berg» zu verwenden. Ich möchte Sie überzeugen, dass Gleichungen eine wichtige Rolle bei der Schaffung unserer heutigen Welt gespielt haben, von der Kartographie bis zum Navi, von Musik bis zum Fernsehen, von der Entdeckung Amerikas bis zur Erforschung der Jupitermonde. Zum Glück muss man kein wissenschaftliches Genie sein, um die Poesie und Schönheit einer guten, bedeutenden Gleichung schätzen zu können.
In der Mathematik gibt es zwei Typen von Gleichungen, die, oberflächlich betrachtet, sehr ähnlich aussehen. Der eine Typ stellt Beziehungen zwischen verschiedenen mathematischen Größen her: Die Aufgabe besteht darin nachzuweisen, dass die Gleichung wahr ist. Der andere Typ liefert Information über eine unbekannte Größe, und die Aufgabe des Mathematikers besteht darin, die Gleichung zu lösen – das Unbekannte bekannt zu machen. Die Unterscheidung ist nicht eindeutig, denn manchmal lässt sich dieselbe Gleichung auf beiderlei Weisen einsetzen, doch sie stellt eine nützliche Leitlinie dar. In diesem Buch werden Sie beide Typen finden.
Gleichungen in der reinen Mathematik gehören im Allgemeinen zum ersten Typ: Sie enthüllen wunderbare Muster und Regelmäßigkeiten. Sie sind gültig, weil es angesichts unserer Annahmen über die logische Struktur der Mathematik keine Alternative gibt. Der Satz des Pythagoras, der eine Gleichung darstellt, ausgedrückt in der Sprache der Geometrie, ist ein Beispiel. Wenn man Euklids Grundannahmen über Geometrie akzeptiert, dann ist der Satz des Pythagoras wahr.
Gleichungen in der angewandten Mathematik und in der mathematischen Physik gehören gewöhnlich zum zweiten Typ. Sie codieren Information über die wirkliche Welt; sie drücken Eigenschaften des Universums aus, die im Prinzip ganz anders hätten aussehen können. Newtons Gravitationsgesetz ist ein gutes Beispiel. Es sagt uns, wie die Anziehungskraft zwischen zwei Körpern von ihrer Masse und Entfernung abhängt. Die Lösung der resultierenden Gleichung sagt uns dann, wie die Planeten die Sonne umkreisen oder wie man eine Flugbahn für eine Raumsonde entwerfen sollte. Newtons Gesetz ist jedoch kein mathematisches Theorem; es stimmt aus physikalischen Gründen; es passt zu den Beobachtungen. Das Gesetz der Schwerkraft hätte auch anders aussehen können. Tatsächlich ist es anders: Einsteins Allgemeine Relativitätstheorie verbessert Newtons Gesetz, da sie einige Beobachtungen besser erklärt, während sie diejenigen unangetastet lässt, von denen wir bereits wissen, dass Newtons Gesetz gut auf sie passt.
Der Lauf der menschlichen Geschichte ist immer wieder durch eine Gleichung in eine andere Richtung gelenkt worden. Gleichungen verfügen über verborgene Macht. Sie enthüllen die innersten Geheimnisse der Natur. Unter diesem Blickwinkel sehen Historiker den Aufstieg und Fall von Zivilisationen gewöhnlich nicht. Könige und Königinnen und Kriege und Naturkatastrophen findet man in Geschichtsbüchern in Hülle und Fülle, doch Gleichungen sind dünn gesät. Das ist unfair. Zu viktorianischen Zeiten demonstrierte Michael Faraday in der Royal Institution in London Besuchergruppen die Verbindung zwischen Magnetismus und Elektrizität. Einer Anekdote nach fragte ihn der spätere Premierminister William Gladstone, ob daraus irgendwelche praktische Konsequenzen erwachsen würden. Wie es heißt (die Beweislage ist dünn, aber warum eine schöne Geschichte ruinieren?), soll Faraday ihm geantwortet haben: «Durchaus, Sir. Eines Tages werden Sie darauf Steuern erheben.» Falls er das wirklich gesagt hat, hatte er recht. James Clerk Maxwell verwandelte frühe experimentelle Beobachtungen und empirische Gesetze über Magnetismus in ein System von Gleichungen für den Elektromagnetismus. Zu den vielen Konsequenzen, die daraus erwuchsen, gehörten Radio, Radar und Fernsehen.
Eine Gleichung bezieht ihre Macht aus einer einfachen Quelle. Sie sagt uns, dass zwei Berechnungen, die unterschiedlich erscheinen, die gleiche Antwort haben. Das Schlüsselsymbol ist das Gleichheitszeichen, =. Der Ursprung der meisten mathematischen Symbole ist entweder im Nebel der Zeit verschollen oder so jung, dass es keinerlei Zweifel gibt. Das Gleichheitszeichen ist ungewöhnlich, da es 450 Jahre zurückdatiert, wir aber nicht nur wissen, wer es erfunden hat, sondern auch warum. Der Erfinder war Robert Recorde, der es 1557 in seinem Buch The Whetstone of Witte (Der Wetzstein des Wissens) einführte. Recorde verwendete zwei parallele Linien (er benutzte einen veralteten englischen Begriff, gemowe, was so viel wie «Zwilling» bedeutet), um mühsame Wiederholungen der Wörter ‹ist das Gleiche wie› zu vermeiden. Dieses Symbol wählte er, weil «keine zwei Dinge sich mehr gleichen können als Zwillinge». Recorde traf eine gute Wahl. Sein Symbol ist seit nun 450 Jahren in Gebrauch.
Die Macht einer Gleichung liegt in der philosophisch schwierigen Korrespondenz zwischen Mathematik, einer kollektiven Schöpfung des menschlichen Geistes und einer äußerlichen physischen Wirklichkeit. Gleichungen machen tief gehende Strukturen der Außenwelt erfassbar und geben ihnen eine Form. Dadurch, dass wir lernen, Gleichungen wertzuschätzen und die Geschichten zu lesen, die sie erzählen, können wir wichtige Merkmale der Welt um uns herum entdecken. Prinzipiell könnte es andere Möglichkeiten geben, dasselbe Ergebnis zu erreichen. Viele Menschen ziehen Wörter Symbolen vor; auch Sprache verleiht uns Macht über unsere Umgebung. Das Verdikt von Naturwissenschaften und Technik lautet jedoch: Wörter sind zu ungenau, und unser Sprachschatz ist zu begrenzt, um uns wirklich Zugang zu den tieferen Aspekten der Wirklichkeit zu eröffnen. Die menschliche Sprache ist zu stark durch Annahmen und Assoziationen gefärbt. Wörter allein können uns nicht die wesentlichen Einsichten liefern, die wir brauchen.
Gleichungen können es. Sie gehören seit Jahrtausenden zu den wichtigsten Triebkräften in der menschlichen Zivilisation. Unsere ganze Geschichte hindurch haben Gleichungen die Fäden in der Gesellschaft gezogen. Sicherlich im Verborgenen – doch der Einfluss war da, ob bemerkt oder unbemerkt. Dies ist die Geschichte des Aufstiegs der Menschheit, erzählt anhand von 17 Gleichungen.

               Kapitel 1  Die Squaw auf dem Nilpferd

               Der Satz des Pythagoras

            
               Was sagt sie uns?

               Wie die drei Seiten eines rechtwinkligen Dreiecks zueinander in Beziehung stehen.

                

               Warum ist das wichtig?

               Sie stellt ein wesentliches Bindeglied zwischen Geometrie und Algebra dar und erlaubt uns, Entfernungen in Form von Koordinaten zu berechnen. Zudem hat sie die Trigonometrie inspiriert.

                

               Was hat sie gebracht?

               Landvermessung, Navigation und in neuerer Zeit die Spezielle und die Allgemeine Relativitätstheorie – die beiden gegenwärtig besten Theorien über Raum, Zeit und Schwerkraft.

               
               
            
Fordern Sie irgendeinen Schüler auf, einen berühmten Mathematiker zu nennen, und falls ihnen überhaupt ein solcher einfällt, werden die meisten sicherlich für Pythagoras optieren. Falls nicht, fällt vielleicht der Name Archimedes. Selbst der berühmte Isaac Newton spielt hinter diesen beiden Superstars der Antike nur die dritte Geige. Archimedes war ein intellektueller Riese, Pythagoras wahrscheinlich nicht, doch er verdient mehr Anerkennung, als er oft erhält. Nicht für das, was er geleistet hat, sondern für das, was er in Gang gesetzt hat.
Pythagoras wurde um 570 v. Chr. auf der griechischen Insel Samos in der östlichen Ägäis geboren. Er war Philosoph und Geometer. Das Wenige, was wir über sein Leben wissen, stammt von viel späteren Autoren, und wie historisch korrekt diese Informationen sind, ist fraglich, doch die wichtigsten Daten sind wahrscheinlich korrekt. Um 530 v. Chr. siedelte er wahrscheinlich nach Kroton über, einer griechischen Kolonie im heutigen Süditalien. Dort gründete er eine philosophisch-religiöse Schule, die Pythagoreer, die glaubten, das Universum basiere auf Zahlen. Der heutige Ruhm ihres Gründers beruht auf dem Satz, der seinen Namen trägt. Dieser Satz wird seit mehr 2000 Jahren gelehrt und hat Eingang in die Popkultur gefunden. In den Film Merry Andrew (1958), in dem Danny Kaye die Hauptrolle spielte, heißt es in einem Song:

               Das Quadrat der Hypotenuse

               Eines rechtwinkligen Dreiecks

               Ist gleich

               der Summe der Quadrate

               der beiden anliegenden Seiten.

            
Der Song fährt mit einer doppeldeutigen Aufforderung fort, seine Partizipien nicht baumeln zu lassen, und verknüpft Einstein, Newton und die Gebrüder Wright mit dem berühmten Satz. Die beiden ersten rufen «Heureka!», nein, das war Archimedes. Sie merken schon, dass sich der Songtext nicht gerade durch historische Präzision auszeichnet, aber das ist nun mal Hollywood. In Kapitel 13 werden wir jedoch sehen, dass der Songtexter Johnny Mercier wahrscheinlich näher an Einstein dran war, als ihm bewusst war.
Der Satz des Pythagoras taucht im englischen Sprachraum in einem sehr bekannten Witz auf, der auf schrecklichen Kalauern über die Squaw auf dem Nilpferd (engl. hippopotamus, verballhornt Hypotenuse) basiert. Man findet den Witz überall im Internet, doch deutlich schwieriger ist es, seinen Ursprung zu finden.[1] Darüber hinaus gibt es Pythagoras-Cartoons, Pythagoras-T-Shirts und sogar eine griechische Briefmarke (Abbildung 1).

               Abbildung 1: Griechische Briefmarke, die den Satz des Pythagoras illustriert.


            
Trotz all diesem Rummel wissen wir nicht, ob Pythagoras seinen Satz tatsächlich bewies. Tatsächlich wissen wir nicht einmal, ob der Satz von ihm stammt. Er könnte durchaus von einem seiner Schüler oder einem babylonischen oder sumerischen Schreiber entdeckt worden sein. Aber Pythagoras strich den Ruhm ein, und sein Name blieb damit verbunden. Welchen Ursprungs auch immer, der Satz und seine Konsequenzen hatten einen gewaltigen Einfluss auf die menschliche Geschichte. Sie öffneten buchstäblich unsere Welt.
 
Die Griechen drückten den Satz des Pythagoras nicht als Gleichung im modernen symbolischen Sinne aus. Das kam erst später mit der Entwicklung der Algebra. In der Antike wurde der Satz verbal und geometrisch formuliert. Eine elegante Form erhielt der Satz erst in den Schriften des Alexandriners Euklid, der auch den ersten, uns überlieferten Beweis führte. Um 250 v. Chr. wurde Euklid durch seine berühmten Elemente, das einflussreichste mathematische Lehrbuch aller Zeiten, zum ersten modernen Mathematiker. Euklid verwandelte Geometrie in Logik, indem er seine Grundannahmen explizit formulierte und dann benutzte, um all seine Sätze systematisch zu beweisen. Er baute einen begrifflichen und gedanklichen Turm, dessen Fundament Punkte, Linien und Kreise waren und dessen Zinnen aus genau fünf regelmäßigen Körpern bestand.
Eines der Juwelen in Euklids Krone war der Satz, den wir heute den Satz des Pythagoras nennen: Satz 47 aus Euklids Elementen lautet: In den rechtwinkligen Dreiecken ist das Quadrat, welches von der dem rechten Winkel gegenüberliegenden Seite beschrieben wird, den Quadraten, welche von den ihn einschließenden Seiten beschrieben werden, gleich.
Kein hippopotamus. Und auch keine Hypotenuse. Nicht einmal ein ausdrückliches «Summe» oder «addieren sich». Dennoch stellt der Satz des Pythagoras eindeutig eine Gleichung dar, da er das entscheidende Wort gleich enthält.
Was höhere Mathematik angeht, so arbeiteten die Griechen mit Linien und Flächen statt mit Zahlen. Daher hätten Pythagoras und seine griechischen Nachfolger den Satz als Gleichheit von Flächen formulieren können: «Die Fläche eines Quadrats, das mit Hilfe der längsten Seite eines rechtwinkligen Dreiecks konstruiert wird, ist die Summe der Flächen der Quadrate, die aus den beiden anderen Seiten gebildet werden.» Die längste Seite ist die berühmte Hypotenuse, was so viel bedeutet wie «die sich unten erstreckende [Dreieckseite]», wie es der Fall ist, wenn man das Diagramm in der geeigneten Orientierung zeichnet (Abbildung 2, links).

               Abbildung 2: Links: Konstruktionsgeraden für Euklids Beweis des Satzes des Pythagoras. Mitte und rechts: Alternativer Beweis für den Satz. Die äußeren Quadrate haben die gleiche Fläche, und alle schattierten Dreiecke haben ebenfalls die gleiche Fläche. Daher hat das gekippte weiße Quadrat die gleiche Fläche wie die beiden anderen weißen Quadrate zusammen.


            
Innerhalb von nur 2000 Jahren ist der Satz des Pythagoras als algebraische Gleichung in eine neue Form gegossen worden:
Dabei ist c die Länge der Hypotenuse, a und b sind die Längen der anderen beiden Seiten, und die kleine hochgestellte 2 bedeutet «zum Quadrat». Algebraisch ist das Quadrat einer jeden Zahl eben diese Zahl, multipliziert mit sich selbst, und wir wissen, dass die Fläche eines jeden Quadrats dem Quadrat der Länge seiner Seite entspricht. Daher sagt Pythagoras’ Gleichung, wie ich sie nun nennen will, dasselbe aus, was Euklid sagte – abgesehen von verschiedenen psychologischen Altlasten, die damit zu tun haben, wie man in der Antike über grundsätzliche mathematische Konzepte wie Zahlen und Flächen dachte, ein Thema, das ich an dieser Stelle nicht weiter vertiefen möchte.
Die Gleichung des Pythagoras hat viele Verwendungen und Konsequenzen. Ganz direkt erlaubt sie, die Länge der Hypotenuse zu berechnen, wenn die beiden anderen Seiten gegeben sind. Nehmen wir zum Beispiel an, dass a = 3 und b = 4 ist. Dann gilt: c2 = a2 + b2 = 32 + 42 = 9 + 16 = 25. Daher ist c = 5. Das ist das berühmte 3–4–5-Dreieck, das in der Schulmathematik allgegenwärtig ist und das einfachste Beispiel für ein pythagoreisches Tripel darstellt: eine Liste ganzer Zahlen, die die Gleichung des Pythagoras erfüllen. Das nächsteinfache Tripel ist, abgesehen von skalierten Versionen wie 6–8–10, das 5–12–13-Dreieck. Es gibt unendlich viele solcher Tripel, und die Griechen wussten, wie man sie konstruiert. Derartige Tripel sind in der Zahlentheorie noch immer von gewissem Interesse, und selbst in den letzten zehn Jahren sind neue Eigenschaften entdeckt worden.
Statt c mit Hilfe von a und b zu bestimmen, kann man indirekt vorgehen und die Gleichung nach a auflösen, wenn b und c bekannt sind. Man kann auch subtilere Fragen beantworten, wie wir gleich sehen werden.
Warum ist der Satz wahr? Euklids Beweis ist ziemlich kompliziert und erfordert, im Diagramm in Abbildung 2 (links) fünf zusätzliche Linien zu ziehen und sich auf mehrere bereits zuvor bewiesene Sätze zu stützen. Viktorianische Schuljungen (damals gab es nur wenige Mädchen, die sich mit Geometrie beschäftigten) bezeichneten das Diagramm wenig ehrerbietig als «Pythagoras’ Hosen». Ein direkter und intuitiver, wenn auch nicht sehr eleganter Beweis benutzt vier Kopien des Dreiecks, um zwei Lösungen desselben mathematischen Puzzles zu verknüpfen (Abbildung 2, rechts). Das Bild ist überzeugend, doch die Ergänzung der logischen Details erfordert einiges an Nachdenken. Woher wissen wir zum Beispiel, dass die gekippte weiße Figur in der Mitte des Bildes ein Quadrat ist?
 
Vieles spricht dafür, dass der Satz des Pythagoras schon lange vor Pythagoras bekannt war. Ein babylonisches Tontäfelchen[2] im Britischen Museum enthält in Keilschrift ein mathematisches Problem und seine Antwort, die man etwa so übersetzen könnte:

               4 ist die Länge und 5 die Diagonale. Was ist die Breite?

               4 mal 4 ist 16.

               5 mal 5 ist 25.

               Nimm 16 von 25 und übrig bleiben 9.

               Wie oft muss ich welche Zahl malnehmen, um 9 zu erhalten?

               3 mal 3 ist 9.

               Daher ist 3 die Breite.

            
Deshalb kannten die Babylonier zweifellos das 3-4-5-Dreieck, und das bereits 1000 Jahre vor Pythagoras.
Ein anderes Täfelchen, YBC 7289 aus der babylonischen Sammlung der Yale University, zeigt Abbildung 3 (links). Zu sehen ist das Diagramm eines Quadrats mit einer Seitenlänge von 30, dessen Diagonale zwei Zahlenlisten trägt: 1, 24, 51, 10 und 42, 25, 35. Die Babylonier benutzten eine auf der Zahl 60 basierende Notation, daher liest sich die erste Liste tatsächlich als 1 + 24/60 + 51/602 + 10/603, was, in Dezimalzahlen ausgedrückt, 1,4142129 ist. Die Quadratwurzel von 2 ist 1,4142135. Die zweite Liste entspricht dem 30-Fachen dieses Werts. Also wussten die Babylonier, dass die Diagonale eines Quadrats gleich der Seitenlänge multipliziert mit der Quadratwurzel von 2 ist. Da 12 + 12 = 2 = (√2)2 ist, ist dies ebenfalls ein Beispiel für den Satz des Pythagoras.

               Abbildung 3: Links: YBC
						7289. Rechts: Plimpton 322.


            
Noch bemerkenswerter, wenn auch rätselhafter, ist die Tontafel Plimpton 322 aus der George-Arthur-Plimpton-Sammlung der Columbia University (Abbildung 3, rechts). Es handelt sich um eine Tabelle mit vier Spalten und 15 Zeilen. Die letzte Spalte listet lediglich die Zeilenzahlen auf, von 1 bis 15. Im Jahr 1945 haben die Wissenschaftshistoriker Otto Neugebauer und Abraham Sachs[3] festgestellt, dass das Quadrat der Zahl (nennen wir es c) in der dritten Spalte minus dem Quadrat der Zahl (nennen wir es b) in der zweiten Spalte in jeder Zeile selbst ein Quadrat (nennen wir es a) ist. Daraus folgt a2 + b2 = c2; daher enthält die Tafel offenbar pythagoreische Tripel. Zumindest ist das der Fall, wenn man vier offensichtliche Fehler korrigiert. Dennoch ist nicht absolut sicher, dass Plimpton 322 etwas mit pythagoreischen Tripeln zu tun hat, und selbst wenn das der Fall sein sollte, könnte es lediglich eine bequeme Liste von Dreiecken gewesen sein, deren Fläche leicht zu berechnen war. Diese könnten dann gesammelt worden sein, weil sie gute Näherungswerte für andere Dreiecke und Formen lieferten, beispielsweise im Rahmen von Landvermessungen.
Eine andere herausragende antike Zivilisation ist die des alten Ägypten. Einiges spricht dafür, dass Pythagoras als junger Mann Ägypten besucht hat, und einige Historiker vermuten, dass er dort auf seinen Satz gestoßen ist. Die Berichte ägyptischer Mathematiker, die bis in unsere Zeit überdauert haben, stützen diese Vermutung kaum, doch ihre Zahl ist recht gering. Oft wird – in der Regel im Zusammenhang mit den Pyramiden – darauf verwiesen, dass die Ägypter rechte Winkel mit Hilfe des 3-4-5-Dreiecks konstruierten, indem sie ein Seil mit 12 Knoten in gleichen Abständen entsprechend auslegten, und Archäologen solche Seile gefunden hätten. Beide Behauptungen ergeben jedoch nicht viel Sinn. Eine solche Technik wäre nicht sehr zuverlässig gewesen, denn Seile kann man dehnen und die Knotenabstände hätten sehr genau eingehalten werden müssen. Die Präzision, mit der die Pyramiden von Gizeh errichtet worden sind, ist allem überlegen, was man mit einem solchen Seil hatte erreichen können. Weitaus praktischere Werkzeuge, ähnlich dem Winkel eines Zimmermanns, sind gefunden worden. Ägyptologen, die auf antike ägyptische Mathematik spezialisiert sind, kennen keine Berichte, die besagen, dass Seile oder Schnüre verwendet wurden, um ein 3-4-5-Dreieck zu konstruieren, und es gibt keine Beispiele für solche Seile. Daher ist diese Geschichte, so hübsch sie auch sein mag, höchstwahrscheinlich eine Legende.
 
Wenn wir Pythagoras in unsere moderne Welt versetzen könnten, würde er viele Unterschiede zwischen damals und heute feststellen. In seiner Zeit war das medizinische Wissen rudimentär, künstliches Licht spendeten nur Kerzen und Fackeln, und die schnellste Form der Kommunikation war ein berittener Bote oder ein Leuchtturm auf einem Hügel. Die damals bekannte Welt umfasste einen großen Teil von Europa, Asien und Afrika – aber weder Nord- und Südamerika noch Australien, die Arktis oder die Antarktis. Viele Kulturen hielten die Welt für flach: eine runde Scheibe oder sogar ein Quadrat, das nach den vier Himmelrichtungen ausgerichtet war. Trotz der Entdeckungen in der klassischen griechischen Antike war diese Überzeugung im Mittelalter noch weit verbreitet, wie sich an den orbis-terrae-Karten (Erdkreiskarten) ablesen lässt (Abbildung 4).

               Abbildung 4: Weltkarte, die der marokkanische Kartograph al-Idrisi für König Roger II. von Sizilien um 1100 anfertigte.


            
Wer erkannte als Erster, dass die Welt rund war? Laut Diogenes Laertios, einem griechischen Biographen im 3. Jahrhundert, war es Pythagoras. In seinem Buch Leben und Meinungen berühmter Philosophen, einer Sammlung von Aussprüchen und biographischen Anmerkungen, die eine unserer Hauptquellen für das Privatleben der altgriechischen Philosophen ist, schrieb er: «Pythagoras war der Erste, der die Welt rund nannte, auch wenn Theophrastos dies Parmenides zuschreibt und Zenon Herodot.» Die alten Griechen behaupteten ganz unabhängig von den historischen Fakten gern, dass wichtige Entdeckungen von ihren berühmten Vorfahren gemacht worden seien, daher sollten wir diese Behauptung nicht unbesehen übernehmen, doch unbestritten ist, dass vom 5. Jahrhundert v. Chr. an alle angesehenen griechischen Philosophen und Mathematiker von der Kugelgestalt der Erde überzeugt waren. Diese Vorstellung scheint tatsächlich um die Zeit des Pythagoras aufgekommen zu sein und könnte auf einen seiner Anhänger zurückgehen. Aber es könnte sich auch um Allgemeinwissen gehandelt haben, das auf Hinweisen wie dem runden Schatten der Erde auf dem Mond bei einer Mondfinsternis oder auf einer Analogie zu dem offensichtlich runden Mond basierte.
Aber selbst für die Griechen war die Erde das Zentrum des Universums, und alles drehte sich um sie. Navigiert wurde nach ungefähren Berechnungen: Nachts orientierte man sich an den Sternen, tagsüber folgte man der Küstenlinie. Pythagoras’ Gleichung änderte das alles. Sie eröffnete der Menschheit den Weg zum heutigen Verständnis der Geographie unseres Planeten und seines Platzes im Sonnensystem. Es war der erste entscheidende Schritt in Richtung auf geometrische Methoden, wie man sie für Kartographie, Navigation und Landvermessung braucht. Diese Gleichung lieferte zugleich den Schlüssel zu einer entscheidend wichtigen Beziehung zwischen Geometrie und Algebra. Diese Entwicklungslinie führt von der Antike geradewegs zur Allgemeinen Relativitätstheorie und zur Kosmologie (siehe Kapitel 13). Pythagoras’ Gleichung eröffnete dem menschlichen Entdeckungsdrang im übertragenen wie auch im wörtlichen Sinne völlig neue Möglichkeiten. Sie enthüllte die Form unserer Welt und zeigte uns unseren Platz im Universum.
 
Viele der Dreiecke, auf die wir im realen Leben treffen, sind nicht rechtwinklig, daher mag die direkte Anwendbarkeit der Gleichung begrenzt erscheinen. Doch jedes Dreieck lässt sich in zwei rechtwinklige Dreiecke zerlegen (Abbildung 6), jede polygonale Form in Dreiecke. Daher nimmt die Gleichung a2 + b2 = c2 eine Schlüsselstellung ein: Sie beweist, dass eine nützliche Beziehung zwischen der Form eines Dreiecks und den Längen seiner Seiten besteht. Das Gebiet, das sich aus dieser Erkenntnis entwickelte, ist die Trigonometrie, die Dreiecksmessung.
Das rechtwinklige Dreieck ist für die Trigonometrie von grundlegender Bedeutung, und vor allem bestimmt es die trigonometrischen Grundfunktionen: Sinus, Cosinus und Tangens. Diese Bezeichnungen sind arabischen Ursprungs, und die Geschichte dieser Funktionen und ihrer vielen Vorgänger zeigen den komplizierten Weg, auf dem die heutige Version des Gebietes entstand. Ich werde die Sache abkürzen und das Ergebnis erläutern. Ein rechtwinkliges Dreieck hat natürlich einen rechten Winkel, aber seine beiden anderen Winkel sind nicht festgelegt – davon abgesehen, dass sie sich zu 90° addieren. Mit jedem Winkel korrespondieren drei Funktionen, das heißt, Regeln zur Berechnung einer korrespondierenden Zahl. Für den Winkel A in Abbildung 5 mit den traditionellen Seiten a, b und c definieren wir Sinus (sin), Cosinus (cos) und Tangens (tan) wie folgt:
Diese Größen sind nur vom Winkel A abhängig, da alle rechtwinkligen Dreiecke mit einem gegebenen Winkel A abgesehen vom Maßstab identisch sind.

               Abbildung 5: Trigonometrie basiert auf einem rechtwinkligen Dreieck.


            
Infolgedessen ist es möglich, für eine Reihe von Winkeln eine Tafel mit Sinus-, Cosinus- und Tangenswerten zu erstellen, mit deren Hilfe man dann Eigenschaften rechtwinkliger Dreiecke berechnen kann. Eine typische Anwendung, die bis in die Antike zurückreicht, besteht darin, die Höhe einer hohen Säule zu berechnen, wobei man nur Maße benutzt, die sich vom Boden aus erheben lassen. Nehmen wir an, aus 100 Meter Entfernung betrage der Winkel zur Spitze der Säule 22°. Setzen wir in Abbildung 5 A = 22°, sodass a die Höhe der Säule ist. Dann sagt uns die Definition der Tangensfunktion:
sodass gilt:
Da tan 22° gleich 0,404 ist, wenn wir ihn bis zur dritten Dezimalstelle angeben, folgern wir, dass a = 40,4 Meter ist.

               Abbildung 6: Unterteilung eines Dreiecks in zwei rechtwinklige Dreiecke.


            
Wenn man die trigonometrischen Funktionen einmal kennt, lässt sich die Gleichung des Pythagoras leicht auf Dreiecke ohne rechten Winkel ausdehnen. Abbildung 6 zeigt ein Dreieck mit einem Winkel C und den Seiten a, b, c. Man unterteile das Dreieck in zwei rechtwinklige Dreiecke, wie oben zu sehen. Dann zeigen eine zweifache Anwendung des Pythagoras und ein wenig Algebra,[4] 
					
					
					dass gilt:
was der Pythagoras-Gleichung ähnelt, abgesehen von dem zusätzlichen Term – 2ab cosC. Diese «Cosinusregel» erfüllt dieselbe Aufgabe wie der Pythagoras, indem sie c mit a und b verknüpft, doch nun müssen wir Angaben über den Winkel C einbeziehen.
Die Cosinusregel ist einer der Pfeiler der Trigonometrie. Wenn wir zwei Seiten eines Dreiecks und den eingeschlossenen Winkel kennen, können wir daraus die dritte Seite berechnen. Andere Gleichungen ergeben dann die verbliebenen Winkel. All diese Gleichungen lassen sich letztlich auf rechteckige Dreiecke zurückführen.
 
Ausgerüstet mit trigonometrischen Gleichungen und geeigneten Messinstrumenten können wir Landvermessungen durchführen und präzise Karten erstellen. Diese Idee ist nicht neu; sie taucht bereits im Rhind-Papyrus auf, einer Sammlung altägyptischer mathematischer Abhandlungen aus der Zeit um 1650 v. Chr. Der griechische Philosoph Thales benutzte um 600 v. Chr. Dreiecksgeometrie, um die Höhe der Pyramiden von Gizeh abzuschätzen. Hero von Alexandria beschrieb 50 n. Chr. dieselbe Technik. Um 240 v. Chr. berechnete der griechische Mathematiker Eratosthenes die Größe der Erde, indem er den Winkel der Mittagssonne an zwei verschiedenen Orten maß: Alexandria und Siene (heute Assuan) in Ägypten. Arabische Gelehrte, die später in die Fußstapfen der Griechen traten, bewahrten und verbesserten diese Methoden und benutzten sie vor allem für astronomische Messungen wie die Größe der Erde.
Die Landvermessung kam 1533 allmählich in Gang, als der niederländische Kartograph Gemma Frisius in seinem Buch Libellus de Locorum Describendorum Ratione (Büchlein, in dem es um eine Methode geht, Orte zu beschreiben) erklärte, wie sich Trigonometrie einsetzen ließ, um präzise Karten herzustellen. Diese Methode verbreitete sich durch Mundpropaganda in ganz Europa und kam auch dem dänischen Adligen und Astronomen Tycho Brahe zu Ohren. Im Jahr 1579 setzte Brahe sie ein, um eine präzise Karte von Hven herzustellen, der Insel, auf der sein Observatorium lag. Um 1615 hatte der niederländische Mathematiker Willebrod Snellius (Snel van Royen) die Methode weiterentwickelt und im Wesentlichen in ihre moderne Form gebracht, die sogenannte Triangulation. Durch sehr sorgfältige Messung einer Ausgangslänge und vieler Winkel lassen sich die Lage der Ecken des Dreiecks und damit alle interessierenden Parameter darin berechnen. Mit Hilfe eines Netzwerks von 33 Dreiecken berechnete Snellius die Entfernung zwischen zwei niederländischen Städten, Alkmaar und Bergen op Zoom. Er wählte diese beiden Städte, weil sie auf demselben Längengrad und zudem genau eine Bogenminute auseinanderlagen. Da er die Entfernung zwischen beiden Städten kannte, konnte er die Größe der Erde berechnen, die er 1617 in seiner Schrift Eratosthenes Batavus (Der niederländische Eratosthenes) veröffentlichte. Sein Ergebnis ist bis auf 4 Prozent korrekt. Außerdem modifizierte er die trigonometrischen Gleichungen, um der sphärischen Natur der Erdoberfläche Rechnung zu tragen, ein wichtiger Schritt in Richtung auf eine effektive Navigation.
Triangulation ist eine indirekte Methode zur Berechnung von Entfernungen mit Hilfe von Winkeln. Wenn man ein Stück Land vermisst, sei es eine zukünftige Baustelle oder ein ganzes Land, ist die wichtigste praktische Überlegung, dass es viel einfacher ist, Winkel zu messen als Entfernungen. Bei der Triangulation misst man viele Winkel und ein paar Distanzen; alles andere folgt aus den trigonometrischen Gleichungen. Man beginnt, indem man eine Linie zwischen zwei Punkten absteckt; die Länge dieser sogenannten Grundlinie (Basis) wird direkt und mit großer Genauigkeit gemessen. Dann sucht man sich einen herausragenden Punkt in der Landschaft, der von beiden Enden der Grundlinie aus sichtbar ist, und misst von beiden Enden der Grundlinie den Winkel zwischen der Grundlinie und diesem Punkt. Nun haben wir ein Dreieck, von dem wir eine Seite und zwei Winkel kennen; damit liegen Form und Größe fest. Auf trigonometrischem Wege lassen sich dann die beiden anderen Seiten berechnen.
Tatsächlich haben wir nun zwei neue Grundlinien: die neu berechneten Seiten des Dreiecks. Von ihnen ausgehend, können wir Winkel zu anderen, weiter entfernt gelegenen Punkten messen. Auf diese Weise lässt sich die ganze zu vermessende Fläche mit einem Netz von Dreiecken überziehen. Innerhalb eines jeden Dreiecks kann man die Winkel zu allen auffälligen Merkmalen bestimmen – Kirchtürmen, Straßenkreuzungen und so weiter. Derselbe trigonometrische Trick legt ihre Lage präzise fest. Um die Genauigkeit des ganzen Messverfahrens zu überprüfen, kann man zum Abschluss eine der zuletzt bestimmten Seiten direkt messen.
Ab Ende des 18. Jahrhunderts wurde Triangulation routinemäßig zur Landvermessung eingesetzt. Die Ordinary Survey of Great Britain (Ordentliche Landvermessung von Großbritannien) kam 1783 in Gang, und es sollte 70 Jahre dauern, um die Aufgabe zu vollenden. Die Great Trigonometric Survey of India (Große trigonometrische Landvermessung von Indien), in deren Verlauf unter anderem das Himalajagebirge kartiert und die Höhe des Mount Everest bestimmt wurde, begann 1801. Im 20. Jahrhundert werden die meisten großräumigen Vermessungen mittels Satellitenfotografie und GPS (Global Positioning System) durchgeführt. Explizite Triangulation ist nicht länger in Gebrauch. Aber sie ist hinter den Kulissen noch immer da und steckt in den Methoden, die benutzt werden, um aus Satellitendaten geographische Positionen abzuleiten.
 
Der Satz des Pythagoras war auch für die Erfindung der Koordinatengeometrie von entscheidender Bedeutung. Diese Darstellungsweise ermöglicht es, geometrische Formen mit Hilfe von Zahlen darzustellen, wobei man ein System von mit Zahlen versehenen Linien nutzt, die als Achsen bezeichnet werden. Am weitesten verbreitet ist das sogenannte kartesische Koordinatensystem, das eine Ebene aufspannt; es ist nach dem französischen Mathematiker und Philosophen René Descartes benannt, der auf diesem Gebiet zu den großen Pionieren zählte – wenn er auch nicht der erste war. Man zeichne zwei aufeinander senkrechte Geraden und bezeichne die horizontale mit x, die vertikale mit y. Diese Geraden sind die Achsen, und sie kreuzen sich in einem Punkt, der als Ursprung des Koordinatensystems bezeichnet wird. Die Abstände auf diesen Achsen werden nun, vom Ursprung ausgehend, wie ein Lineal mit Zahlen versehen: positive Zahlen rechts des Ursprungs und nach oben, negative links und nach unten. Nun können wir jeden Punkt auf der Ebene durch zwei Zahlen x und y – seine Koordinaten – kennzeichnen, indem wir die Punkte mit den beiden Achsen durch senkrechte bzw. parallele Linien verbinden (Abbildung 7). Dieses Zahlenpaar (x, y) kennzeichnet die Lage des Punktes eindeutig.

               Abbildung 7: Die beiden Achsen und die Koordinaten eines Punktes.


            
Die großen europäischen Mathematiker des 17. Jahrhunderts erkannten, dass eine Linie oder Kurve in der Ebene in diesem Kontext mit dem Satz Lösungen (x, y) einer Gleichung in x und y korrespondiert. Beispielsweise beschreibt y = x eine Diagonale, die von links unten nach rechts oben durch den Ursprung verläuft, denn (x, y) liegt dann und nur dann auf dieser Linie, wenn y = x ist. Generell entspricht eine lineare Gleichung – der Form ax + by = c mit Konstanten a, b, c – einer Geraden und umgekehrt.
Welche Gleichung entspricht einem Kreis? An dieser Stelle kommt Pythagoras’ Gleichung wieder ins Spiel. Sie besagt implizit, dass der Abstand r vom Ursprung zum Punkt (x, y) die Gleichung
erfüllt. Wenn wir diese Gleichung nach r auflösen, erhalten wir
Da die Gesamtheit aller Punkte, die in einer Entfernung r vom Ursprung liegen, einen Kreis mit dem Radius r beschreiben, dessen Mittelpunkt der Ursprung ist, definiert diese Gleichung einen Kreis. Allgemeiner gesagt erfüllt der Kreis mit dem Radius r und einem Mittelpunkt (a, b) die Gleichung
und dieselbe Gleichung legt den Abstand r zwischen den beiden Punkten (a, b) und (x, y) fest. Daher verrät uns der Satz des Pythagoras zwei wichtige Dinge: welche Gleichungen Kreise beschreiben und wie man Abstände aus Koordinaten errechnet.
 
Der Satz des Pythagoras ist daher schon in sich wichtig, doch er übt durch seine Verallgemeinerungen einen noch größeren Einfluss aus. An dieser Stelle möchte ich nur einen einzigen Strang dieser weiteren Entwicklungen verfolgen, um die Verbindung zur Relativitätstheorie aufzuzeigen, auf die wir in Kapitel 13 zurückkommen.
Der Beweis des Satzes des Pythagoras in Euklids Elementen verankert das Theorem fest im Reich der euklidischen Geometrie. Es gab eine Zeit, in der man diesen Ausdruck durch «Geometrie» allein hätte ersetzen können, denn es wurde allgemein angenommen, Euklids Geometrie sei die wahre Geometrie des physikalischen Raumes. Das war schließlich offensichtlich. Aber wie die meisten Dinge, die als offensichtlich gelten, stellte es sich als falsch heraus.
Euklid leitete all seine Sätze aus einer Handvoll Grundannahmen ab, die er als Definitionen, Axiome und allgemeine Vorstellungen klassifizierte. Sein System war elegant, intuitiv und knapp – abgesehen von einer auffälligen Ausnahme, dem fünften Axiom: «Wenn eine gerade Linie mit zwei geraden Linien bewirkt, dass innen auf derselben Seite entstehende Winkel zusammen kleiner als zwei Rechte werden, dann treffen sich die zwei geraden Linien bei Verlängerung ins Unendliche auf der Seite, auf der die Winkel liegen, die zusammen kleiner als zwei Rechte sind.» Das ist nicht ganz leicht zu verdauen; Abbildung 8 könnte helfen.

               Abbildung 8: Euklids Parallelenaxiom.


            
Mehr als 1000 Jahre versuchten Mathematiker, das zu reparieren, was sie als Makel ansahen. Sie hielten nicht bloß nach etwas Einfachem und Intuitivem Ausschau, mit dem sich dasselbe erreichen ließ, auch wenn einige von ihnen auf etwas Derartiges stießen. Sie wollten das ganze unglückliche Axiom loswerden, indem sie es bewiesen. Nach mehreren Jahrhunderten erkannten die Mathematiker schließlich, dass es alternative nicht euklidische Geometrien gab, was implizit besagte, dass ein solcher Beweis nicht existierte. Diese neuen Geometrien waren genauso logisch konsistent wie die euklidische, und sie gehorchten allen euklidischen Axiomen mit Ausnahme des Parallelenaxioms. Sie ließen sich als die Geometrie der Geodäsie – der kürzesten Verbindungen – auf gekrümmten Oberflächen deuten (Abbildung 9). Das lenkte die Aufmerksamkeit auf die Bedeutung von Krümmung.

               Abbildung 9: Krümmung einer Oberfläche. Links: Krümmung null. Mitte: Krümmung positiv. Rechts: Krümmung negativ.


            
Die Ebene des Euklid ist flach, ihre Krümmung null. Eine Kugel weist überall dieselbe Krümmung auf und ist positiv: Von jedem Punkt gesehen, sieht sie wie eine Kuppel aus. (Eine technische Feinheit: Großkreise schneiden sich in zwei Punkten, nicht in einem, wie es Euklids Axiom verlangt, daher ist die sphärische Geometrie dadurch modifiziert, dass man Antipodenpunkte auf der Kugel identifiziert und sie als identisch betrachtet. Die Oberfläche wird zur sogenannten projektiven Ebene, und die Geometrie wird als elliptische Geometrie bezeichnet.) Eine Oberfläche mit einer konstanten negativen Krümmung gibt es auch: Von jedem Punkt gesehen, sieht sie wie ein Sattel aus. Diese Oberfläche wird als hyperbolische Ebene bezeichnet, und man kann sie auf mehrere völlig prosaische Weisen darstellen. Vielleicht am einfachsten ist es, sie als das Innere einer runden Scheibe anzusehen und «Gerade» als den Bogen eines Kreises zu definieren, der den Rand der Scheibe im rechten Winkel schneidet (Abbildung 10).

               Abbildung 10: Scheibenmodell einer hyperbolischen Ebene. Alle drei Geraden durch P schneiden die Gerade L nicht.


            
Auch wenn die Geometrie der Ebene nicht euklidisch sein mag, könnte man meinen, dass dies für die Geometrie des Raumes unmöglich sein muss. Man kann eine Oberfläche krümmen, indem man sie in eine dritte Dimension drückt, aber man kann den Raum nicht krümmen, weil es keinen Platz für eine zusätzliche Dimension gibt, in die man ihn drücken könnte. Wir können zum Beispiel einen dreidimensionalen hyperbolischen Raum modellieren, indem wir das Innere einer Kugel nehmen. Geraden lassen sich als Kreisbögen und Ebenen als Kugelteile verstehen, die die Grenze im rechten Winkel schneiden. Diese Geometrie ist dreidimensional, erfüllt sämtliche euklidischen Axiome bis auf das fünfte und definiert in einem Sinne, der sich genauer festmachen lässt, einen gekrümmten dreidimensionalen Raum. Aber dieser ist nicht um irgendetwas oder in eine neue Richtung gekrümmt.
Er ist einfach nur gekrümmt.
Mit all diesen neuen Geometrien zur Hand begann eine neue Sichtweise immer stärker in den Mittelpunkt des Interesses zu rücken – aber nicht in der Mathematik, sondern in der Physik. Da der Raum nicht euklidisch sein muss, welche Form hat er dann tatsächlich? Man erkannte, dass man diese Frage nicht beantworten konnte. Im Jahr 1813 maß Gauß, der wusste, dass sich die Winkel eines Dreiecks im dreidimensionalen Raum nicht zu 180° addieren, die Winkel eines Dreiecks, das von drei Bergen gebildet wurde – dem Brocken, dem Hohenhagen und dem Inselberg. Er erhielt ein Ergebnis, das 15 Bogensekunden über 180° lag. Falls diese Messung korrekt war, hieß das, dass der Raum (zumindest in der Region) positiv gekrümmt war. Man braucht jedoch ein viel größeres Dreieck und viel genauere Messmethoden, um Beobachtungsfehler zu eliminieren. Daher brachten Gauß’ Messungen keine Entscheidung. Der Raum konnte euklidisch sein oder auch nicht.
 
Meine Bemerkung, der dreidimensionale hyperbolische Raum sei «einfach nur gekrümmt», basiert auf einer neuen Sichtweise von Krümmung, die ebenfalls auf Gauß zurückgeht. Die Kugel weist eine konstante positive Krümmung auf, die hyperbolische Ebene eine konstante negative Krümmung. Die Krümmung einer Oberfläche muss aber nicht konstant sein. Sie kann an einigen Orten stark, an anderen weniger stark gekrümmt sein oder sogar an manchen Stellen positiv, an anderen negativ sein. Die Krümmung könnte von Ort zu Ort ständig variieren. Wenn die Oberfläche wie ein Hundeknochen aussieht, dann sind die Halbkugeln an den Enden positiv gekrümmt, der Teil, der sie verbindet, hingegen negativ.
Gauß suchte nach einer Formel, die Krümmung einer Oberfläche an jedem beliebigen Punkt zu charakterisieren. Als er schließlich fündig wurde und sie 1828 in seiner Schrift Disquisitiones Generales Circa Superficies Curva (Allgemeine Untersuchungen über gekrümmte Flächen) veröffentlichte, bezeichnete er sie als «theorema egregium», den «wunderbaren Satz». Was war daran so bemerkenswert? Gauß war von einer naiven Sichtweise von Krümmung ausgegangen: Man bette die Oberfläche in den dreidimensionalen Raum ein und berechne, wie stark gekrümmt sie ist. Die Antwort sagte ihm jedoch, dass dieser umgebende Raum keine Rolle spielte. Er ging nicht in die Gleichung ein. Er schrieb: «Die Formel selbst … führt zu dem bemerkenswerten Satz: Wenn eine gekrümmte Oberfläche auf irgendeiner beliebigen anderen Oberfläche entwickelt wird, bleibt das Maß der Krümmung in jedem Punkt unverändert.» Mit «entwickelt» meinte er «herumgewickelt».
Nehmen Sie ein flaches Blatt Papier, die Krümmung beträgt null. Nun wickeln Sie es um eine Flasche. Wenn die Flasche zylindrisch ist, passt das Blatt sich perfekt an, ohne Falten zu werfen, gestreckt oder eingerissen zu werden. Es ist gekrümmt, soweit man sehen kann, doch es handelt sich um eine triviale Form der Krümmung, da es die Geometrie auf dem Blatt in keiner Weise verändert hat. Verändert hat sich nur die Beziehung des Blattes mit dem umgebenden Raum. Zeichnen Sie ein rechtwinkliges Dreieck auf das flache Blatt, messen Sie die Seiten und überprüfen Sie den Satz des Pythagoras. Nun wickeln Sie das Diagramm um die Flasche. Die Länge der Seite, auf dem Blatt gemessen, verändert sich nicht. Pythagoras gilt noch immer.
Die Oberfläche einer Kugel hat jedoch eine Krümmung, die ungleich null ist. Daher ist es nicht möglich, ein Blatt Papier um eine Kugel zu wickeln, dass es perfekt passt, also ohne es zu falten, zu strecken oder einzureißen. Die Geometrie auf einer Kugel unterscheidet sich ihrem Wesen nach (intrinsisch) von der Geometrie auf einer Ebene. So bilden beispielsweise der Erdäquator und die Längengrade von 0° und von 90° nach Norden ein Dreieck mit drei rechten Winkeln und drei gleichen Seiten (vorausgesetzt, die Erde ist eine perfekte Kugel). Daher ist Pythagoras’ Gleichung falsch.
Heute nennen wir eine Krümmung in ihrem intrinsischen Sinne «Gauß’sche Krümmung». Gauß hat erklärt, warum es wichtig ist, eine einprägsame Analogie zu gebrauchen, die noch immer verwendet wird. Stellen wir uns eine Ameise vor, die auf einer Oberfläche lebt, welche sie nicht verlassen kann. Wie kann sie herausfinden, ob die Oberfläche gekrümmt ist? Sie kann nicht von der Oberfläche herunterkrabbeln und schauen, ob sie gekrümmt ist. Aber sie kann Gauß’ Formel benutzen, indem sie geeignete Messungen ausschließlich auf der Oberfläche durchführt. Wir sind in derselben Situation wie die Ameise, wenn wir versuchen, die wahre Geometrie unseres Raumes herauszufinden. Wir können nicht aus ihm heraustreten. Bevor wir die Ameise nachahmen und Messungen durchführen können, brauchen wir jedoch eine Formel für die Krümmung eines dreidimensionalen Raumes. Gauß hatte sie nicht. Doch einer seiner Studenten behauptete in einem Anfall von Tollkühnheit, er habe sie.
 
Der Schüler war Georg Bernhard Riemann, und er war dabei, sich zu habilitieren, also die Lehrbefugnis an deutschen Universitäten zu erlangen. Eine erfolgreiche Habilitation bedeutete in Riemanns Tagen, dass er anschließend von Studenten eine Gebühr für das Hören seiner Vorlesungen verlangen konnte. Damals musste der Kandidat seine Forschungsergebnisse in einer öffentlichen Vorlesung präsentieren, die gleichzeitig eine Prüfung war. Dazu bot er mehrere Themen an, und der Prüfer, in diesem Fall Gauß, wählte ein Thema aus. Riemann, ein brillantes mathematisches Talent, listete mehrere orthodoxe Themen auf, die er in- und auswendig kannte, doch in einem Anfall von Kühnheit schlug er auch das Thema «Über die Hypothesen, welche der Geometrie zugrunde liegen» vor. Dafür interessierte sich Gauß schon seit langem, und daher wählte er natürlich dieses Thema für Riemanns Prüfung. Riemann bereute sofort, ein derart herausforderndes Thema angegeben zu haben. Er verabscheute öffentliche Vorträge von ganzem Herzen, und er hatte die Mathematik nicht im Detail durchdacht, sondern lediglich einige vage, wenn auch faszinierende Ideen über den gekrümmten Raum. In beliebig dimensionalen Räumen. Was Gauß mit seinem bemerkenswerten Satz für zwei Dimensionen formuliert hatte, wollte Riemann für beliebig viele Dimensionen formulieren. Nun musste er sich an die Arbeit machen, und zwar rasch. Die Vorlesung stand an. Der Druck brachte Riemann einem Nervenzusammenbruch nahe, und dass er tagsüber Gauß’ Mitarbeiter Wilhelm Weber bei Experimenten mit Elektrizität helfen musste, machte die Sache nicht besser. Nun, vielleicht half ihm dieser Job doch weiter, denn als Riemann über die Beziehung zwischen elektrischer und magnetischer Kraft nachdachte, erkannte er, dass man Kraft mit Krümmung verknüpfen kann. Das Pferd vom Schwanz aufzäumend, konnte er die Mathematik der Kräfte dazu benutzen, Krümmung zu definieren, wie es für seine Prüfung verlangt war.
Im Jahr 1854 hielt Riemann seinen Habilitationsvortrag, der auf viel Zustimmung stieß, und das war kein Wunder. Er begann zu definieren, was er als «Mannigfaltigkeit» bezeichnete. Formal wird eine Mannigfaltigkeit durch ein System mit vielen Koordinaten sowie eine Formel für den Abstand zwischen nahe gelegenen Punkten beschrieben; heute sprechen wir in diesem Kontext von einer Riemann’schen Metrik. Weniger formal ist eine Mannigfaltigkeit ein multidimensionaler Raum in all seiner Pracht. Der Höhepunkt von Riemanns Vorlesung war eine Formel, die Gauß’ bemerkenswerten Satz verallgemeinerte: Sie definierte die Krümmung der Mannigfaltigkeit allein in Begriffen ihrer Metrik. Und an dieser Stelle schlägt die Geschichte einen Kreis wie die Riesenschlange Ouroboros und verschlingt ihren eigenen Schwanz, da die Metrik sichtlich Anklänge an Pythagoras enthält.
Nehmen wir beispielsweise an, dass die Mannigfaltigkeit drei Dimensionen aufweist, wobei (x, y, z) die Koordinaten eines Punktes und (x + dx, y + dy, z + dz) die Koordinaten eines nahe gelegenen Punktes sind und d so viel wie «ein wenig von» bedeutet. Wenn der Raum euklidisch ist, also eine Krümmung von null aufweist, erfüllt die Strecke ds zwischen diesen beiden Punkten die Gleichung
Und das entspricht der Pythagoras-Gleichung, beschränkt auf nahe zusammenliegende Punkte. Ist der Raum gekrümmt, und die Krümmung variiert von Punkt zu Punkt, sieht die entsprechende Formel, die Metrik, so aus:
Hier können X, Y, Z, U, V, W von x, y, z abhängig sein. Das sieht vielleicht ein bisschen überladen aus, aber wie in der Pythagoras-Gleichung geht es um Summen von Quadraten (und eng verwandte Produkte zweier Größen, wie dxdy) sowie ein wenig Schnickschnack. Die Zweien treten auf, weil sich die Formel als 3×3-Tabelle oder Matrix darstellen lässt:
Dort treten X, Y, Z nur einmal auf, U, V, W jedoch zweimal. Die Tabelle ist symmetrisch, wenn man sie an der Diagonalen spiegelt; in der Sprache der Differentialgeometrie handelt es sich um einen symmetrischen Tensor. Riemanns Verallgemeinerung von Gauß’ bemerkenswertem Satz ist eine Formel für die Krümmung der Mannigfaltigkeit an jedem gegebenen Punkt, ausgedrückt mit Hilfe dieses Tensors. In dem Spezialfall, in dem der Satz des Pythagoras gilt, beträgt die Krümmung null. Daher ist die Gültigkeit der Pythagoras-Gleichung ein Test für das Fehlen einer Krümmung.
Wie die Gauß-Formel hängt Riemanns Ausdruck für die Krümmung nur von der Metrik der Mannigfaltigkeit ab. Eine auf die Mannigfaltigkeit beschränkte Ameise könnte die Metrik durch Ausmessen winziger Dreiecke und Berechnung der Krümmung analysieren. Die Krümmung ist eine intrinsische Eigenschaft einer Mannigfaltigkeit und unabhängig vom umgebenden Raum. Tatsächlich bestimmt die Metrik bereits die Geometrie, sodass kein umgebender Raum notwendig ist. Insbesondere können wir menschlichen Ameisen uns fragen, welche Form unser riesiges und geheimnisvolles Universum hat, und hoffen, eine Antwort zu finden, indem wir Daten erheben, ohne dass es erforderlich wäre, aus dem Universum hinauszutreten. Was nur gut ist, denn das können wir nicht.
Riemann fand seine Formel, indem er die Geometrie über Kräfte definierte. Fünfzig Jahre später stellte Einstein Riemanns Idee auf den Kopf und griff auf Geometrie zurück, um die Gravitationskraft in seiner Allgemeinen Relativitätstheorie zu erklären, und inspirierte damit neue Vorstellungen über die Form des Universums (siehe Kapitel 13). Dieser Ablauf der Ereignisse ist wirklich erstaunlich. Der Satz des Pythagoras wurde vor rund 3500 Jahren formuliert, um das Land eines Bauern zu vermessen. Seine Erweiterung auf Dreiecke ohne rechten Winkel und Dreiecke auf einer Kugeloberfläche erlaubten uns, unsere Kontinente zu kartieren und unseren Planeten zu vermessen. Und eine bemerkenswerte Verallgemeinerung lässt uns nun gar die Form unseres Universums bestimmen. Große Ideen entwickeln sich oft aus bescheidenen Anfängen.

               Kapitel 2  Eine praktische Abkürzung

               Logarithmen

            
               Was sagt sie uns?

               Wie man Zahlen multipliziert, indem man stattdessen korrespondierende Zahlen addiert.

                

               Warum ist das wichtig?

               Addieren ist viel einfacher als multiplizieren.

                

               Was hat sie gebracht?

               Effziente Methoden zur Berechnung astronomischer Phänomene wie Verfinsterungen und Planetenumlaufbahnen. Die Beschleunigung wissenschaftlicher Berechnungen. Den treuen Begleiter des Ingenieurs, den Rechenschieber. Radioaktiven Zerfall und die Psychophysik der menschlichen Wahrnehmung.

               
               
            
Zahlen hatten ihren Ursprung in praktischen Problemen: Registrierung von Eigentum, wie Tiere oder Land, und finanzielle Transaktionen, wie Steuererhebung und Buchhaltung. Die früheste bekannte Zahlennotation, abgesehen von vielsagenden Markierungen wie ||||, findet man auf der Außenseite von Tonhüllen. Um 8000 v. Chr. führten mesopotamische Schreiber mit Hilfe von kleinen, unterschiedlich geformten Tongebilden Buch. Die Archäologin Denise Schmandt-Besserat erkannte, dass jede Form einen Artikel des Grundbedarfs repräsentierte – eine Kugel stand für Getreide, ein Ei für einen Krug Öl und so weiter. Aus Sicherheitsgründen wurden die Formen in Ton eingehüllt und versiegelt. Aber es war lästig, die Tonhülle aufzubrechen, um herauszufinden, wie viele Formen sich darin befanden, daher kratzten die antiken Buchhalter Symbole auf die Außenseite, um anzuzeigen, was sich im Inneren befand. Schließlich erkannten sie, dass man, wenn man über solche Symbole verfügt, auf die Tonformen verzichten kann. Das Ergebnis war eine Reihe schriftlicher Symbole für Zahlen – der Ursprung aller späteren Zahlensymbole und vielleicht auch der Schrift.
Zusammen mit den Zahlen wurde die Arithmetik entwickelt: Methoden zum Addieren, Subtrahieren, Multiplizieren und Dividieren von Zahlen. Zum Addieren dienten Geräte wie der Abakus; die Ergebnisse konnten dann mit Symbolen wiedergegeben werden. Später fand man Wege, die Berechnung allein anhand der Symbole durchzuführen, ohne mechanische Hilfen, auch wenn der Abakus in vielen Teilen der Welt weiterhin in Gebrauch ist, während in den meisten anderen Ländern elektronische Taschenrechner Papier und Stift ersetzt haben.
Die Arithmetik erwies sich auch in anderer Weise als wesentlich, vor allem in der Astronomie und bei der Landvermessung. Als sich die Grundlinien der Physik abzuzeichnen begannen, mussten die frühen Wissenschaftler immer aufwendigere Berechnungen per Hand durchführen. Oft nahm dies einen Großteil ihrer Zeit in Anspruch, manchmal Monate oder Jahre, und raubte ihnen die Zeit für kreativeres Tun. Schließlich wurde es dringend, den Prozess zu beschleunigen. Zahllose mechanische Geräte wurden entwickelt, doch der wichtigste Durchbruch war konzeptueller Natur: Erst denken, dann rechnen. Mit Hilfe geschickter Mathematik ließen sich schwierige Berechnungen stark vereinfachen.
Die neue Mathematik entwickelte rasch ein Eigenleben mit tiefgreifenden theoretischen wie praktischen Folgen. Heutzutage sind diese frühen Ideen zu einem unverzichtbaren Werkzeug in den gesamten Naturwissenschaften geworden und reichen sogar bis in die Psychologie und die Geisteswissenschaften hinein. Sie wurden bis in die 1980er Jahre überall verwendet; erst dann machten Computer ihre Anwendung zu praktischen Zwecken überflüssig, aber dennoch ist ihre Bedeutung in Mathematik und Wissenschaft seitdem weiterhin gewachsen.
Die zentrale Idee ist ein mathematisches Verfahren, das man als Logarithmieren bezeichnet. Erfinder des Logarithmus war ein schottischer Gutsherr, doch es bedurfte eines Geometrieprofessors mit großem Interesse für Navigation und Astronomie, um die brillante, aber fehlerhafte Idee des Gutsherrn durch eine weitaus bessere zu ersetzen.
 
Im März 1615 schrieb Henry Briggs einen Brief an den irischen Theologen und Verfasser einer Weltgeschichte James Ussher und berichtete darin von einem entscheidenden Ereignis in der Geschichte der Naturwissenschaften:

               Napier, Lord of Markinston, hat mich dazu gebracht, mich voller Hingabe mit seinen neuen und wunderbaren Logarithmen zu beschäftigen. Ich hoffe, wenn Gott will, ihn diesen Sommer zu sehen, denn ich habe noch nie ein Buch gesehen, das mir besser gefiel oder das mich in größeres Staunen versetzte.

            
Briggs war der erste Professor für Geometrie am Gresham College in London und «Napier, Lord of Markinston» war John Napier, achter Laird of Merchiston, heute ein Teil der Stadt Edinburgh in Schottland. Napier scheint etwas von einem Mystiker gehabt zu haben, er hatte großes theologisches Interesse, doch es konzentrierte sich auf das Buch der Offenbarung. Seiner Ansicht nach war sein wichtigstes Werk A Plaine Discovery of the Whole Revelation of St John, das ihn zu der Voraussage führte, die Welt werde 1688 oder 1700 untergehen. Angeblich soll er sich mit Alchemie und Nekromantie beschäftigt haben, und sein Interesse am Okkulten brachte ihm den Ruf eines Magiers ein. Gerüchten zufolge trug er, wohin er auch ging, eine schwarze Spinne in einer kleinen Schachtel bei sich und besaß einen «Hausgeist» oder magischen Kumpan, einen pechschwarzen Hahn. Einem seiner Nachkommen, Mark Napier, zufolge, setzte Napier seinen Hausgeist dazu ein, diebische Dienstboten zu ertappen. Er schloss die Verdächtigen in einem Raum mit dem Hahn ein und befahl ihnen, den Hahn zu streicheln, wobei er ihnen klarmachte, dass sein magischer Vogel den Schuldigen unfehlbar herausfinden werde. Doch Napiers Mystizismus hatte einen durchaus rationalen Kern: Er bestreute den Hahn mit einer feinen Rußschicht. Ein unschuldiger Diener würde den Hahn, wie befohlen, ohne zu Zögern streicheln und Ruß an die Hand bekommen, während ein Schuldiger, der seine Enttarnung fürchtete, den Hahn nicht berühren würde. Daher bewiesen saubere Hände paradoxerweise, dass der Betreffende schuldig war.
Napier widmete der Mathematik viel Zeit, vor allem Methoden, die es erlaubten, komplexe arithmetische Berechnungen schneller durchzuführen. Eine seiner Erfindungen, die Napier’schen Rechenstäbe, bestand aus einem Satz von zehn mit Zahlen versehenen Stäben, die lange Multiplikationen vereinfachten. Noch besser war eine Erfindung, die seinen Ruf begründete und eine wissenschaftliche Revolution bewirkte: nicht sein Buch über die Offenbarung, wie er gehofft hatte, sondern sein Werk Mirifici logarithmorum canonis descriptio (Beschreibung des wundervollen Canons der Logarithmen) (1614). Das Vorwort zeigt deutlich, dass Napier genau wusste, was er da geschaffen hatte und wozu es dienen konnte:[1]

               Weil nichts, liebe mathematische Kollegen, bei der Ausübung der mathematischen Künste lästiger ist als die großen Verzögerungen, die beim Durchführen langer Multiplikationen und Divisionen, beim Auffinden von Verhältnissen und beim Ziehen von Quadrat- und Kubikwurzeln auftreten – und … die vielen schwer zu fassenden Fehler, die dabei auftreten: Ich habe daher lange überlegt, durch welch sicheren und raschen Kunstgriff ich diese besagten Schwierigkeiten beheben könnte. Nach langem Nachdenken habe ich schließlich eine erstaunliche Möglichkeit gefunden, diese Vorgänge abzukürzen … es ist eine erfreuliche Aufgabe, diese Methode zu erklären, damit sie von allen Mathematikern angewandt werden kann.

            
Als Briggs von den Logarithmen hörte, war er augenblicks begeistert. Wie zahlreiche Mathematiker seiner Zeit verbrachte er viel Zeit mit astronomischen Berechnungen. Das wissen wir, weil Briggs in einem anderen Brief an Ussher aus dem Jahr 1610 erwähnt, dass er gerade Verfinsterungen berechnet, und weil Briggs bereits früher zwei Bücher mit Zahlentafeln veröffentlicht hatte, von denen sich das eine mit dem Nordpol, das andere mit Navigation beschäftigte. All dies hatte sehr viele aufwendige arithmetische und trigonometrische Berechnungen verlangt. Napiers Erfindung würde eine Menge mühsame Arbeit ersparen. Doch je mehr Briggs Napiers Werk studierte, desto klarer wurde ihm, dass dessen Strategie zwar wunderbar, seine Taktik aber falsch war. Briggs entwickelte eine einfache, aber effiziente Verbesserung und machte sich auf die lange Reise nach Schottland. Als die beiden sich trafen, «verbrachten sie fast eine Viertelstunde damit, sich voller Bewunderung anzuschauen, bevor auch nur ein Wort gesprochen wurde».[2]
 
Was rief so viel Bewunderung hervor? Die entscheidende Beobachtung für jeden, der sich mit Arithmetik beschäftigte, war, dass Zahlen addieren relativ einfach ist, Zahlen multiplizieren hingegen nicht. Multiplikation verlangt viel mehr arithmetische Operationen als Addition. So erfordert die Addition von zwei zehnstelligen Zahlen beispielsweise zehn einfache Schritte, die Multiplikation hingegen 200. Bei modernen Computern spielt dieses Thema noch immer eine wichtige Rolle, doch heute versteckt es sich hinter den Algorithmen, die zur Multiplikation eingesetzt werden. In Napiers Tagen musste jedoch alles von Hand erledigt werden. Wäre es nicht großartig, wenn es einen mathematischen Trick gäbe, der diese lästigen Multiplikationen in hübsche, rasche Additionen umwandeln könnte? Es klang zu schön, um wahr zu sein, doch Napier erkannte, dass es möglich war. Der Trick bestand darin, mit Potenzen einer festen Zahl zu arbeiten.
In der Algebra werden die Potenzen einer unbekannten Größe x durch eine kleine Hochzahl angezeigt. Das heißt, xx = x2, xxx = x3, xxxx = x4 und so weiter, wobei das Nebeneinanderstellen zweier Buchstaben wie üblich in der Algebra bedeutet, dass man sie multiplizieren soll. So gilt beispielsweise 104 = 10 × 10 × 10 × 10 = 10000. Man muss nicht lange mit solchen Ausdrücken herumspielen, um festzustellen, was, sagen wir, 104 × 103 ergibt. Man schreibt einfach:
Die Zahl der Nullen in der Antwort ist gleich 7, die Summe von 4 + 3. Der erste Schritt in der Rechnung zeigt, warum es 4 + 3 ist: Wir schreiben vier Zehnen und drei Zehnen nebeneinander. Kurz gesagt
In derselben Weise gilt: Welchen Wert x auch immer annimmt, wenn wir seine ate Potenz mit seiner bten Potenz multiplizieren, wobei a und b ganze Zahlen sind, erhalten wir die (a + b)te Potenz:
Das mag wie eine harmlose Formel aussehen, doch links werden zwei Größen multipliziert, während der Hauptschritt rechts lediglich darin besteht, a und b zu addieren, was einfacher ist.
Nehmen wir beispielsweise an, man möchte 2,67 mit 3,51 multiplizieren. Durch eine lange Multiplikation erhält man 9,3717, auf zwei Dezimalstellen verkürzt 9,37. Was ist, wenn man es mit der vorangegangenen Formel probiert? Der Trick besteht in der Wahl von x. Wenn wir x = 1,001 wählen, ergibt sich mit etwas Arithmetik
korrekt auf zwei Dezimalstellen. Dann sagt uns die Formel, dass 2,67 × 3,51
ergibt, also bis auf zwei Dezimalstellen genau 9,37.
Der Kern der Rechnung ist eine einfache Addition: 983 + 1256 = 2239. Wenn Sie jedoch meine Arithmetik prüfen, werden Sie rasch feststellen, dass ich das Problem nicht etwa leichter, sondern schwerer gemacht habe. Um herauszufinden, was (1,001)983 ergibt, muss man 1,001 983 Mal mit sich selbst malnehmen. Und um herauszufinden, dass 983 die richtige Potenz ist, bedarf es noch mehr Arbeit. Daher erscheint die Idee auf den ersten Blick nichts zu bringen.
Napiers große Erkenntnis war, dass dieser Einwand falsch ist. Aber um ihn zu widerlegen, muss jemand mit viel Ausdauer eine Menge Potenzen von 1,001 berechnen, von (1,001)2 bis, sagen wir, (1,001)10000. Dann kann man eine Tabelle mit sämtlichen Werten veröffentlichen. Anschließend war der größte Teil der Arbeit getan. Man muss nur mit dem Finger die aufeinanderfolgenden Potenzen entlangfahren, bis man 2,67 neben 983 findet, ebenso 3,51 neben 1256. Dann addiert man die beiden Zahlen und erhält 2239. Die korrespondierende Reihe der Tafel sagt dann, dass diese Potenz von 1,001 gleich 9,37 ist. Aufgabe gelöst.
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