
[image: Cover Image]

BASH COMMAND LINE AND SHELL SCRIPTS

POCKET PRIMER

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and disc (the “Work”), you agree that this license grants permission to use the contents contained herein, including the disc, but does not give you the right of ownership to any of the textual content in the book / disc or ownership to any of the information or products contained in it. This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone involved in the creation, writing, or production of the companion disc, accompanying algorithms, code, or computer programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to insure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs. The Work is sold “as is” without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book and/or disc, and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” vary from state to state, and might not apply to the purchaser of this product.

(Companion files are also available for downloading from the publisher at info@merclearning.com.)

BASH COMMAND LINE AND SHELL SCRIPTS

POCKET PRIMER

Oswald Campesato

[image: figure]

MERCURY LEARNING AND INFORMATION

Dulles, Virginia

Boston, Massachusetts

New Delhi

Copyright © 2020 by MERCURY LEARNING AND INFORMATION LLC.

All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION

22841 Quicksilver Drive

Dulles, VA 20166

info@merclearning.com

www.merclearning.com

(800) 232-0223

O. Campesato. Bash Command Line and Shell Scripts Pocket Primer.

ISBN: 978-1-68392-504-0

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2020935567

202122321 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For additional information, please contact the Customer Service Dept. at (800) 232-0223(toll free).

Digital versions of our titles are available at: www.academiccourseware.com and other electronic vendors. Companion files are available from the publisher by writing to info@merclearning.com.

The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the book and/or disc, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.

I’d like to dedicate this book to my parents – may this bring joy and happiness into their lives.

CONTENTS

Preface

Chapter 1:Introduction

What is Unix?

Available Shell Types

What is bash?

Getting help for bash Commands

Navigating Around Directories

The history Command

Listing Filenames with the ls Command

Displaying Contents of Files

The cat Command

The head and tail Commands

The Pipe Symbol

The fold Command

File Ownership: Owner, Group, and World

Hidden Files

Handling Problematic Filenames

Working with Environment Variables

The env Command

Useful Environment Variables

Setting the PATH Environment Variable

Specifying Aliases and Environment Variables

Finding Executable Files

The printf Command and the echo Command

The cut Command

The echo Command and Whitespaces

Command Substitution (“backtick”)

The “pipe” Symbol and Multiple Commands

Using a Semicolon to Separate Commands

The paste Command

Inserting Blank Lines with the paste Command

A Simple Use Case with the paste Command

A Simple Use Case with cut and paste Commands

What about zsh?

Switching between bash and zsh

Configuring zsh

Summary

Chapter 2:Files and Directories

Create, Copy, Remove, and Move Files

Creating Text Files

Copying Files

Copy Files with Command Substitution

Deleting Files

Moving Files

The ln Command

The basename, dirname, and file Commands

The wc Command

The cat Command

The more Command and the less Command

The head Command

The tail Command

Comparing File Contents

The Parts of a Filename

Working with File Permissions

The chmod Command

Changing owner, permissions, and groups

The umask and ulimit Commands

Working with Directories

Absolute and Relative Directories

Absolute/Relative Pathnames

Creating Directories

Removing Directories

Navigating to Directories

Moving Directories

Using Quote Characters

Streams and Redirection Commands

Working with Metacharacters

Working with Character Classes

MetaCharacters and Character Classes

Digits and Characters

Working with “^” and “\” and “!”

Filenames and Metacharacters

Summary

Chapter 3:Useful Commands

The join Command

The fold Command

The split Command

The sort Command

The uniq Command

How to Compare Files

The od Command

The tr Command

A Simple Use Case

The find Command

The tee Command

File Compression Commands

The tar command

The cpio Command

The gzip and gunzip Commands

The bunzip2 Command

The zip Command

Commands for zip Files and bz Files

Internal Field Separator (IFS)

Data From a Range of Columns in a Dataset

Working with Uneven Rows in Datasets

Summary

Chapter 4:Conditional Logic and Loops

Quick Overview of Operators in bash

Arithmetic Operations and Operators

The expr Command

Arithmetic Operators

Boolean and Numeric Operators

Compound Operators and Numeric Operators

Working with Variables

Assigning Values to Variables

The read Command for User Input

Boolean Operators and String Operators

Compound Operators and String Operators

File Test Operators

Compound Operators and File Operators

Conditional Logic with if/else/fi Statements

The case/esac Statement

Working with Strings in Shell Scripts

Working with Loops

Using a for loop

Checking Files in a Directory

Working with Nested Loops

Using a while Loop

The while, case, and if/elif/else/fi Statements

Using an until Loop

User-defined Functions

Creating a Simple Menu from Shell Commands

Arrays in bash

Working with Arrays

Summary

Chapter 5:Filtering Data with grep

What is the grep Command?

Metacharacters and the grep Command

Escaping Metacharacters with the grep Command

Useful Options for the grep Command

Character Classes and the grep Command

Working with the –c Option in grep

Matching a Range of Lines

Using Back References in the grep Command

Finding Empty Lines in Datasets

Using Keys to Search Datasets

The Backslash Character and the grep Command

Multiple Matches in the grep Command

The grep Command and the xargs Command

Searching zip Files for a String

Checking for a Unique Key Value

Redirecting Error Messages

The egrep Command and fgrep Command

Displaying “Pure” Words in a Dataset with egrep

The fgrep Command

A Simple Use Case

Summary

Chapter 6:Transforming Data with sed

What is the sed Command?

The sed Execution Cycle

Matching String Patterns Using sed

Substituting String Patterns Using sed

Replacing Vowels from a String or a File

Deleting Multiple Digits and Letters from a String

Search and Replace with sed

Datasets with Multiple Delimiters

Useful Switches in sed

Working with Datasets

Printing Lines

Character Classes and sed

Removing Control Characters

Counting Words in a Dataset

Back References in sed

Displaying Only “Pure” Words in a Dataset

One Line sed Commands

Summary

Chapter 7:Working with awk

The awk Command

Built-in Variables That Control awk

How Does the awk Command Work?

Aligning Text with the printf Command

Conditional Logic and Control Statements

The while Statement

A for loop in awk

A for loop with a break Statement

The next and continue Statements

Deleting Alternate Lines in Datasets

Merging Lines in Datasets

Printing File Contents as a Single Line

Joining Groups of Lines in a Text File

Joining Alternate Lines in a Text File

Matching with Metacharacters and Character Sets

Printing Lines Using Conditional Logic

Splitting Filenames with awk

Working with Postfix Arithmetic Operators

Numeric Functions in awk

One Line awk Commands

Useful Short awk Scripts

Printing the Words in a Text String in awk

Count Occurrences of a String in Specific Rows

Printing a String in a Fixed Number of Columns

Printing a Dataset in a Fixed Number of Columns

Aligning Columns in Datasets

Aligning Columns and Multiple Rows in Datasets

Removing a Column from a Text File

Subsets of Columns Aligned Rows in Datasets

Counting Word Frequency in Datasets

Displaying Only “Pure” Words in a Dataset

Working with Multiline Records in awk

A Simple Use Case

Another Use Case

Summary

Chapter 8:Intro to Shell Scripts

What are Shell Scripts?

A Simple Shell Script

Setting Environment Variables via Shell Scripts

Sourcing or “Dotting” a Shell Script

Working with Functions in Shell Scripts

Passing values to Functions in a Shell Script (1)

Passing values to Functions in a Shell Script (2)

Iterate through values passed to a Function

Positional Parameters in User-defined Functions

Shell Scripts, Functions, and User Input

Recursion and Shell Scripts

Iterative Solutions for Factorial Values

Calculating Fibonacci Numbers

Calculating the GCD of Two Positive Integers

Calculating the LCM of two Positive Integers

Calculating Prime Divisors

Summary

Chapter 9:Shell Scripts with grep and awk Command

The grep Command with zip Files

The grep Command with Multiple Files

Simulating Relational Data with the grep Command

Checking Updates in a Logfile

Processing Multiline Records

Adding the Contents of Records

Using the split Function in awk

Scanning Diagonal Elements in Datasets

Adding Values From Multiple Datasets (1)

Adding Values From Multiple Datasets (2)

Adding Values From Multiple Datasets (3)

Calculating Combinations of Field Values

Summary

Chapter 10:Miscellaneous Shell Scripts

Using rm and mv with Directories

Using the find Command with Directories

Creating a Directory of Directories

Cloning a set of Sub-directories

Executing Files in Multiple Directories

The case/esac Command

Compressing/uncompressing Files

The dd Command

The crontab Command

Uncompressing Files as a cron Job

Scheduled Commands and Background Processes

How to Schedule Tasks

The nohup Command

Executing Commands Remotely

How to Schedule Tasks in the Background

How to Terminate Processes

Terminating Multiple Processes

Process-Related Commands

How to Monitor Processes

Checking Execution Results

System Messages and Log Files

Disk Usage Commands

Trapping and Ignoring Signals

Arithmetic with the bc and dc Commands

Working with the date Command

Print-related Commands

Creating a Report with the printf() Command

Checking Updates in a Logfile

Listing Active Users on a Machine

Miscellaneous Commands

Summary

Index

PREFACE

What is The Goal?

The goal of this book is to introduce readers to an assortment of powerful command line utilities that can be combined to create simple, yet powerful shell scripts. While all examples and scripts use the “bash” command set, many of the concepts translate into other command shells (such as sh, ksh, zsh, and csh), including the concept of piping data between commands, regular expression substitution, and the sed and awk commands. Aimed at a reader relatively new to working in a bash environment, the book is comprehensive enough to be a good reference and teach a few new tricks to those who already have some experience with creating shells scripts.

This short book contains a variety of code fragments and shell scripts for data scientists, data analysts, and other people who want shell-based solutions to “clean” various types of text files. In addition, the concepts and code samples in this book are useful for people who want to simplify routine tasks.

This book takes introductory concepts and commands in bash, and then demonstrates their use in simple yet powerful shell scripts. This book does not cover “pure” system administration functionality for Unix or Linux.

Is This Book is For Me and What Will I Learn?

This book is intended for general users, data scientists, data analysts, and other people who perform a variety of tasks from the command line, and who also have a limited knowledge of shell programming.

You will acquire an understanding of how to use various bash commands, often as part of short shell scripts. The chapters also contain simple use cases that illustrate how to perform various tasks involving text files, such as switching the order of a two-column text file, removing control characters in a text file, find specific lines and merge them, reformatting a date field in a text file, and removing nested quotes.

This book saves you the time required to search for relevant code samples, adapting them to your specific needs, which is a potentially time-consuming process.

How Were the Code Samples Created?

The code samples in this book were created and tested using bash on a Macbook Pro with OS X 10.12.6 (macOS Sierra). The code samples are derived primarily from scripts prepared by the author, and in some cases there are code samples that incorporate short sections of code from discussions in online forums. The key point to remember is that the code samples follow the “Four Cs”: they must be Clear, Concise, Complete, and Correct to the extent that it’s possible to do so, given the page length of this book.

What You need to Know for This Book

You need some familiarity with working from the command line in a Unix-like environment. However, there are subjective prerequisites, such as a desire to learn shell programming, along with the motivation and discipline to read and understand the code samples. In any case, if you’re not sure whether or not you can absorb the material in this book, glance through the code samples to get a feel for the level of complexity.

Which bash Commands are Excluded?

The commands that do not meet any of the criteria listed in the previous section are not included in this Primer. Consequently, there is no coverage of commands for system administration (e.g., shutting down a machine, scheduling backups, and so forth). The purpose of the material in the chapters is to illustrate how to use bash commands for handling common data cleaning tasks with text files, after which you can do further reading to deepen your knowledge.

How do I Set up a Command Shell?

If you are a Mac user, there are three ways to do so. The first method is to use Finder to navigate to Applications > Utilities and then double click on the Utilities application. Next, if you already have a command shell available, you can launch a new command shell by typing the following command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on a Macbook from a command shell that is already visible simply by clicking command+n in that command shell, and your Mac will launch another command shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.com/) that simulates bash commands, or use another toolkit such as MKS (a commercial product). Please read the online documentation that describes the download and the installation processes.

What are the “Next Steps” After Finishing This Book?

The answer to this question varies widely, mainly because the answer depends heavily on your objectives. The best answer is to try a new tool or technique from the book out on a problem or task you care about, professionally or personally. Precisely what that might be depends on who you are, as the needs of a data scientist, manager, student or developer are all different. In addition, keep what you learned in mind as you tackle new data cleaning or manipulation challenges. Sometimes knowing that a particular technique is possible can make finding a solution easier, even if you have to re-read the section to remember exactly how the syntax works.

If you have reached the limits of what you have learned here and want to get further technical depth on these commands, there is a wide variety of literature published and online resources describing the bash shell, Unix programming, and the grep, sed, and awk commands.

O. Campesato

April 2020

CHAPTER 1

INTRODUCTION

This chapter contains a fast-paced introduction to basic commands in the bash shell, such as navigating around the file system, listing files, and displaying the contents of files. As you will soon see, this chapter is dense and contains a very eclectic mix of topics in order to prepare you for later chapters. If you already have some knowledge of bash commands, you can probably skim quickly through this introductory chapter and then proceed to Chapter 2. Incidentally, sometimes you will “bash shell” instead of just bash (as in the first sentence of this paragraph), and although the former is actually redundant, there won’t be any confusion about its intended meaning.

The first part of this chapter starts with a brief introduction to some Unix shells, followed by a discussion about files, file permissions, and directories. You will also learn how to create files and directories and how to change their access permissions.

The second part of this chapter introduces simple shell scripts, along with commands for making them executable. Since shell scripts involve various bash commands (and can optionally contain user-defined functions), it’s a good idea to learn about bash commands before you create bash scripts.

The third portion of this chapter discusses two useful bash commands: the cut command (for cutting or extracting columns and/or fields from a dataset) and the paste command (for “pasting” text or datasets together vertically).

In addition, the final part of this chapter contains a use case involving the cut command and paste command that illustrates how to switch the order of two columns in a dataset. You can also perform this task using the awk command (discussed in Chapter 7 and Chapter 9).

There are a few points to keep in mind before delving into the details of shell scripts. First, shell scripts can be executed from the command line after adding “execute” permissions to the text file containing the shell script. Second, you can use the crontab utility to schedule the execution of your shell scripts according to a schedule of your choice. Specifically, the crontab utility allows you to specify the execution of a shell script on an hourly, daily, weekly, or monthly basis. Tasks that are commonly scheduled via crontab include performing backups, removing unwanted files, and so forth. If you are completely new to Unix-based systems, just keep in mind that there is a way to run scripts both from the command line and in a “scheduled” manner. Setting file permissions to run the script from the command line will be discussed later.

Third, the contents of any shell script can be as simple as a single command or can comprise hundreds of lines of bash commands. In general, the more useful (and often more interesting) shell scripts involve a combination of several bash commands. A learning tip: since there are usually several ways to produce the desired result, it’s helpful to read other people’s shell scripts to learn how to combine commands in useful ways.

WHAT IS UNIX?

Unix is an operating system created by Ken Thompson in the early 1970s, which eventually led to a number of variations, such as HP/UX for HP machines and AIX for IBM machines. Linux Torvalds developed the Linux operating system during the 1990s, and many Linux commands are the same as their bash counterparts (but differences exist, often in the commands for system administrators). The Mac OS X operating system is based on AT&T Unix.

Unix has a rich and storied history, and if you are really interested in learning about its past, you can read online articles and also Wikipedia. This book foregoes those details and focuses on helping you quickly learn how to become productive with various commands.

Available Shell Types

The original Unix shell is the Bourne shell, which was written in the mid-1970s by Stephen R. Bourne. In addition, the Bourne shell was the first shell to appear on bash systems, and you will sometimes hear “the shell” as a reference to the Bourne shell. The Bourne shell is a POSIX standard shell, usually installed as /bin/sh on most versions of Unix, whose default prompt is the $ character. Consequently, Bourne shell scripts will execute on almost every version of Unix. In essence, the AT&T branches of Unix support the Bourne shell (sh), bash, Korn shell (ksh), tsh, and zsh.

However, there is also the BSD branch of Unix that uses the “C” shell (csh), whose default prompt is the % character. In general, shell scripts written for csh will not execute on AT&T branches of Unix, unless the csh shell is also installed on those machines (and vice versa).

The Bourne shell is the most ‘unadorned’ in the sense that it lacks some commands that are available in the other shells, such as history, noclobber, and so forth. Some well-known variants for Bourne Shell are listed as follows:

Korn shell (ksh)

Bourne Again shell (bash)

POSIX shell (sh)

zsh (“Zee shell”)

The different C-type shells are as shown below:

C shell (csh)

TENEX/TOPS C shell (tcsh)

The commands and the shell scripts in this book are based on the bash shell, and many of the commands also work in other Bourne-related shells (and the remaining shells have a similar command to accomplish the same goal). When you are unable to perform a particular shell-related task, perform an Internet search for “how to use <bash command> in <shell name>” and you will often find an answer. Keep in mind that sometimes there are variations in syntax for a given command in a particular shell, and typing “man <command>” in a command shell can provide useful information.

WHAT IS BASH?

Bash is an acronym for “Bourne Again Shell”, which has its roots in the Bourne shell created by Stephen R. Bourne. Shell scripts based on the Bourne shell will execute in bash, but the converse is not necessarily true. The bash shell provides additional features that are unavailable in the Bourne shell, such as support for arrays (discussed later in this chapter).

On Mac OS X, the /bin directory contains the following executable shells:

-r-xr-xr-x 1 root wheel 1377872 Apr 28 2017 /bin/ksh

-r-xr-xr-x 1 root wheel 630464 Apr 28 2017 /bin/sh

-rwxr-xr-x 1 root wheel 375632 Apr 28 2017 /bin/csh

-rwxr-xr-x 1 root wheel 592656 Apr 28 2017 /bin/zsh

-r-xr-xr-x 1 root wheel 626272 Apr 28 2017 /bin/bash

In case you’re interested, a nice comparison matrix of the support for various features among the preceding shells is here:

https://stackoverflow.com/questions/5725296/difference-between-sh-and-bash Something else that might surprise you: in some environments the Bourne shell sh is the Bash shell, which you can check by typing the following command:

sh --version

GNU bash, version 3.2.57(1)-release (x86_64-apple-darwin16)

Copyright (C) 2007 Free Software Foundation, Inc.

If you are new to the command line (be it Mac, Linux, or PCs), please read the Preface that provides some useful guidelines for accessing command shells.

Getting help for bash Commands

If you want to see the options for a specific bash command, invoke the man command to see a description of that bash command and its options:

man cat

Keep in mind that the man command produces terse explanations, and if those explanations are not clear enough, you can search for online code samples that provide more details.

Navigating Around Directories

In a command shell, you will often perform some common operations, such as displaying (or changing) the current directory, listing the contents of a directory, displaying the contents of a file, and so forth. The following set of commands show you how to perform these operations, and you can execute a subset of these commands in the sequence that is relevant to you. Options for some of the commands in this section (such as the ls command) are described in greater detail later in this chapter.

A frequently used Bash command is pwd (“print working directory”) that displays the current directory, as shown here:

pwd

The output of the preceding command might look something like this:

/Users/jsmith

Use the cd (“change directory”) command to go to a specific directory. For example, type the command cd /Users/jsmith/Mail to navigate to this directory (or some other existing directory). If you are currently in the /Users/jsmith directory, just type cd Mail.

You can navigate to your home directory with either of these commands:

$ cd $HOME

$ cd

One convenient way to return to the previous directory is the command cd –. Keep in mind that the cd command on Windows merely displays the current directory and does not change the current directory (unlike the cd command in bash).

The history Command

The history command displays a list (i.e., the history) of commands that you executed in the current command shell, as shown here:

history

A sample output of the preceding command is given below:

1202 cat sample.txt > longfile2.txt
1203 vi longfile2.txt
1204 cat longfile2.txt |fold -40
1205 cat longfile2.txt |fold -30
1206 cat longfile2.txt |fold -50
1207 cat longfile2.txt |fold -45
1208 vi longfile2.txt
1209 history
1210 cd /Library/Developer/CommandLineTools/usr/include/ c++/
1211 cd /tmp
1212 cd $HOME/Desktop
1213 history

If you want to navigate to the directory that is shown in line 1210, you can do so simply by typing the following command:

!1210

The command !cd will search backwards through the history of commands to find the first command that matches the cd command, in this case, line 1212 is the first match. If there aren’t any intervening cd commands between the current command and the command in line 1210, then !1210 and !cd will have the same effect.

NOTE

Be careful with the “!” option with bash commands because the command that matches the “!” might not be the one you intended, so it’s safer to use the history command and then explicitly specify the correct number (in that history) when you invoke the “!” operator.

LISTING FILENAMES WITH THE LS COMMAND

The ls command is for listing filenames, and there are many switches available that you can use, as shown in this section. For example, the ls command displays the following filenames (the actual display depends on the font size and the width of the command shell) on my Mac:

apple-care.txt iphonemeetup.txt outfile.txt
ssl-instructions.txt checkin-commands.txt kyrgyzstan.txt output.txt

The command ls -1 (the digit “1”) displays a vertical listing of filenames:

apple-care.txt
checkin-commands.txt
iphonemeetup.txt
kyrgyzstan.txt
outfile.txt
output.txt
ssl-instructions.txt

The command ls -1 (the letter “l”) displays a long listing of filenames:

total 56

-rwx------ 1 ocampesato staff 25 Apr 06 19:21
apple-care.txt

-rwx------ 1 ocampesato staff 146 Apr 06 19:21 checkin-
commands.txt

-rwx------ 1 ocampesato staff 478 Apr 06 19:21
iphonemeetup.txt

-rwx------ 1 ocampesato staff 12 Apr 06 19:21 kyrgyzstan.txt

-rw-r--r-- 1 ocampesato staff 11 Apr 06 19:21 outfile.txt

-rw-r--r-- 1 ocampesato staff 12 Apr 06 19:21 output.txt

-rwx------ 1 ocampesato staff 176 Apr 06 19:21
ssl-instructions.txt

The command ls -1t (the letters “l” and “t”) display a time-based long listing:

total 56

-rwx------ 1 ocampesato staff 25 Apr 06 19:21
apple-care.txt

-rwx------ 1 ocampesato staff 146 Apr 06 19:21 checkincommands.txt

-rwx------ 1 ocampesato staff 478 Apr 06 19:21
iphonemeetup.txt

-rwx------ 1 ocampesato staff 12 Apr 06 19:21 kyrgyzstan.txt

-rw-r--r-- 1 ocampesato staff 11 Apr 06 19:21 outfile.txt

-rw-r--r-- 1 ocampesato staff 12 Apr 06 19:21 output.txt

-rwx------ 1 ocampesato staff 176 Apr 06 19:21
ssl-instructions.txt

The command ls -ltr (the letters “l”, “t”, and “r”) display a reversed time-based long listing of filenames:

total 56

-rwx------ 1 ocampesato staff 176 Apr 06 19:21
ssl-instructions.txt

-rw-r--r-- 1 ocampesato staff 12 Apr 06 19:21 output.txt

-rw-r--r-- 1 ocampesato staff 11 Apr 06 19:21 outfile.txt

-rwx------ 1 ocampesato staff 12 Apr 06 19:21 kyrgyzstan.
txt

-rwx------ 1 ocampesato staff 478 Apr 06 19:21
iphonemeetup.txt

-rwx------ 1 ocampesato staff 146 Apr 06 19:21 checkin-
commands.txt

-rwx------ 1 ocampesato staff 25 Apr 06 19:21 apple-care.txt

Here is the description of all the listed columns in the preceding output:

Column #1: represents file type and permission given on the file (see below)

Column #2: the number of memory blocks taken by the file or directory

Column #3: the (Bash user) owner of the file

Column #4: represents a group of the owner

Column #5: represents the file size in bytes.

Column #6: the date and time when this file was created or last modified

Column #7: represents a file or directory name

In the ls -l listing example, every file line began with a d, -, or l. These characters indicate the type of file that is listed. These (and other) initial values are described below:

	-
	Regular file (ASCII text file, binary executable, or hard link)

	b
	Block special file (such as a physical hard drive)

	c
	Character special file (such as a physical hard drive)

	d
	Directory file that contains a listing of other files and directories.

	l
	Symbolic link file

	p
	Named pipe (a mechanism for interprocess communications)

	s
	Socket (for interprocess communication)

If you look back at the long listing that is displayed earlier in this section, you will see that the leftmost character is a dash (“-”), which means that it’s a long listing of regular files.

You can invoke the wc (word count) command to display the number of lines, words and characters in any text file, an example of which is shown here:

wc iphonemeetup.txt
10 5 478 iphonemeetup.txt

The preceding output shows that the file iphonemeetup.txt contains 10 lines, 5 words and 478 characters, which means that the file size is actually quite small.

Another point to keep in mind: this book works with files and directories, and occasionally with symbolic links; the other file types are primarily useful for programmers. Consult online documentation for more details regarding the ls command.

DISPLAYING CONTENTS OF FILES

This section introduces you to several commands for displaying different lines of text in a text file. The commands that you will learn about are cat, head, tail, fold, and also the pipe (“|”) command.

The cat Command

Invoke the cat command to display the entire contents of sample.txt:

cat sample.txt

The preceding command displays the following text:

the contents
of this
long file
are too long
to see in a
single screen
and each line
contains
one or
more words
and if you
use the cat
command the
(other lines are omitted)

The cat command displays the entire contents of a file, which might be inconvenient when you want to see a small portion of a file. Fortunately, the head and tail commands are available, along with several commands that display only a portion of a file, such as less and more that are discussed later.

You can also display the contents of multiple files via the cat command and a metacharacter (discussed in more detail later), such as ? or *. For example, suppose that the file temp1 has the following contents:

this is line1 of temp1
this is line2 of temp1
this is line3 of temp1

Let’s also suppose that the file temp2 has these contents:

this is line1 of temp2
this is line2 of temp2

Now type the following command that contains the ? metacharacter:

cat temp?

The output from the preceding command is shown here:

this is line1 of temp1
this is line2 of temp1
this is line3 of temp1
this is line1 of temp2
this is line2 of temp2

If you type the command cat temp* then the output will be the contents of all the files whose name starts with temp in the current directory. If you have a file – let’s call it temp2 – that contains binary data, then you will probably see some strange-looking output on your screen!

The head and tail Commands

The head command displays the first ten lines of a text file (by default), an example of which is here:

head sample.txt

The preceding command displays the following text:

the contents
of this
long file
are too long
to see in a
single screen
and each line
contains
one or
more words

The head command also provides an option to specify a different number of lines to display, as shown here:

head -4 sample.txt

The preceding command displays the following text:

the contents
of this
long file
are too long

The tail command displays the last 10 lines (by default) of a text file:

tail sample.txt

The preceding command displays the following text:

is available
in every shell
including the
bash shell
csh
zsh
ksh
and Bourne shell

NOTE

The last two lines in the preceding output are blank lines (not a typographical error in this page).

Similarly, the tail command allows you to specify a different number of lines to display: tail –4 sample.txt displays the last 4 lines of sample.txt.

Use the more command to display a screenful of data, as shown here:

more sample.txt

Press the <spacebar> to view the next screenful of data, and press the <return> key to see the next line of text in a file. Incidentally, some people prefer the less command, which generates essentially the same output as the more command. (A geeky joke: “What’s less? It’s more.”)

The Pipe Symbol

A very useful feature of bash is its support for the pipe symbol (“ | ”) that enables you to “pipe” or redirect the output of one command to become the input of another command. The pipe command is very handy when you want to perform a sequence of operations involving various bash commands.

For example, the following code snippet combines the head command with the cat command and the pipe (“| ”) symbol:

cat sample.txt| head -2

A technical point: the preceding command creates two bash processes (more about processes later) whereas the command head -2 sample.txt only creates a single bash process.

You can use the head and tail commands in more interesting ways. For example, the following command sequence displays lines 11 through 15 of

sample.txt:
head -15 sample.txt |tail -5

The preceding command displays the following text:

and if you
use the cat
command the
file contents
scroll

Display the line numbers for the preceding output as follows:

cat –n sample.txt | head –15 | tail –5

The preceding command displays the following text:

11 and if you
12 use the cat
13 command the
14 file contents
15 scroll

You won’t see the “tab” character from the output, but it’s visible if you redirect the previous command sequence to a file and then use the “-t” option with the cat command:

cat –n sample.txt | head –15 | tail –5 > 1
cat –t 1
 11^Iand if you
 12^Iuse the cat
 13^Icommand the
 14^Ifile contents
 15^Iscroll

The fold Command

The fold command enables you to “fold” the lines in a text file, which is useful for text files that contain long lines of text that you want to split into shorter lines. For example, here are the contents of longfile2.txt:

the contents of this long file are too long to see in a
single screen and each line contains one or more words and
if you use the cat command the file contents scroll off the
screen so you can use other commands such as the head or
tail or more commands in conjunction with the pipe command
that is very useful in Bash and is available in every shell
including the bash shell csh zsh ksh and Bourne shell

You can “fold” the contents of longfile2.txt into lines whose length is 45 (just as an example) with this

command: cat longfile2.txt |fold -45

The output of the preceding command is here:

the contents of this long file are too long t
o see in a single screen and each line contai
ns one or more words and if you use the cat c
ommand the file contents scroll off the scree
n so you can use other commands such as the h
ead or tail or more commands in conjunction w
ith the pipe command that is very useful in U
nix and is available in every shell including
the bash shell csh zsh ksh and Bourne shell

Notice that some words in the preceding output are split based on the line width, and not “newspaper style.”

In Chapter 4, you will learn how to display the lines in a text file that match a string or a pattern, and in Chapter 5 you will learn how to replace a string with another string in a text file.

FILE OWNERSHIP: OWNER, GROUP, AND WORLD

Bash files can have partial or full rwx privileges, where r = read privilege, w = write privilege, x = execute and can be executed from the command line, simply by typing the file name (or the full path to the file if the file is not in your current directory). Invoking an executable file from the command line will cause the operating system to attempt to execute commands inside the text file (which must be valid shell commands or executable files with valid shell commands).

Use the chmod command to change permissions for files. For example, if you need to set the owner, group, and other permissions equal to rwx rwr-- for a file, use the following command:

chmod u=rwx g=rw o=r filename

In the preceding command the options u, g, and o represent user permissions, group permissions, and others permissions, respectively.

Modify permissions on a file by specifying + to add permission to a user, group or others and specify - to remove permissions. For example, given a file with the permissions rwx rw- r--, add the executable permission to “others” as follows:

chmod o+x filename

Add the executable permission to all permission categories, that is, for the user, group, and others as follows:

chmod a+x filename

As you can surmise, the letter a in the preceding code snippet means “all groups”. Conversely, specify a - in order to remove permissions from all groups, as shown here:

chmod a-x filename

HIDDEN FILES

A so-called “hidden” file is a filename that starts with a period character (.). Bash programs (including the shell) use most of these files to store configuration information. Some common examples of hidden files include the files:

.profile: the Bourne shell (sh) initialization script

.bash_profile: the bash shell (bash) initialization script

.kshrc: the Korn shell (ksh) initialization script

.cshrc: the C shell (csh) initialization script

.rhosts: the remote shell configuration file

You can display a list of hidden files in a directory via the ls command and the -a option, as shown here:

OEBPS/nav.xhtml

Contents

		Cover Page

		Title

		Copyright

		Dedication

		Contents

		Preface

		Chapter 1: Introduction

		What is Unix?

		Available Shell Types

		What is bash?

		Getting help for bash Commands

		Navigating Around Directories

		The history Command

		Listing Filenames with the ls Command

		Displaying Contents of Files

		The cat Command

		The head and tail Commands

		The Pipe Symbol

		The fold Command

		File Ownership: Owner, Group, and World

		Hidden Files

		Handling Problematic Filenames

		Working with Environment Variables

		The env Command

		Useful Environment Variables

		Setting the PATH Environment Variable

		Specifying Aliases and Environment Variables

		Finding Executable Files

		The printf Command and the echo Command

		The cut Command

		The echo Command and Whitespaces

		Command Substitution (“backtick”)

		The “pipe” Symbol and Multiple Commands

		Using a Semicolon to Separate Commands

		The paste Command

		Inserting Blank Lines with the paste Command

		A Simple Use Case with the paste Command

		A Simple Use Case with cut and paste Commands

		What about zsh?

		Switching between bash and zsh

		Configuring zsh

		Summary

		Chapter 2: Files and Directories

		Create, Copy, Remove, and Move Files

		Creating Text Files

		Copying Files

		Copy Files with Command Substitution

		Deleting Files

		Moving Files

		The ln Command

		The basename, dirname, and file Commands

		The wc Command

		The cat Command

		The more Command and the less Command

		The head Command

		The tail Command

		Comparing File Contents

		The Parts of a Filename

		Working with File Permissions

		The chmod Command

		Changing owner, permissions, and groups

		The umask and ulimit Commands

		Working with Directories

		Absolute and Relative Directories

		Absolute/Relative Pathnames

		Creating Directories

		Removing Directories

		Navigating to Directories

		Moving Directories

		Using Quote Characters

		Streams and Redirection Commands

		Working with Metacharacters

		Working with Character Classes

		MetaCharacters and Character Classes

		Digits and Characters

		Working with “^” and “\” and “!”

		Filenames and Metacharacters

		Summary

		Chapter 3: Useful Commands

		The join Command

		The fold Command

		The split Command

		The sort Command

		The uniq Command

		How to Compare Files

		The od Command

		The tr Command

		A Simple Use Case

		The find Command

		The tee Command

		File Compression Commands

		The tar command

		The cpio Command

		The gzip and gunzip Commands

		The bunzip2 Command

		The zip Command

		Commands for zip Files and bz Files

		Internal Field Separator (IFS)

		Data From a Range of Columns in a Dataset

		Working with Uneven Rows in Datasets

		Summary

		Chapter 4: Conditional Logic and Loops

		Quick Overview of Operators in bash

		Arithmetic Operations and Operators

		The expr Command

		Arithmetic Operators

		Boolean and Numeric Operators

		Compound Operators and Numeric Operators

		Working with Variables

		Assigning Values to Variables

		The read Command for User Input

		Boolean Operators and String Operators

		Compound Operators and String Operators

		File Test Operators

		Compound Operators and File Operators

		Conditional Logic with if/else/fi Statements

		The case/esac Statement

		Working with Strings in Shell Scripts

		Working with Loops

		Using a for loop

		Checking Files in a Directory

		Working with Nested Loops

		Using a while Loop

		The while, case, and if/elif/else/fi Statements

		Using an until Loop

		User-defined Functions

		Creating a Simple Menu from Shell Commands

		Arrays in bash

		Working with Arrays

		Summary

		Chapter 5: Filtering Data with grep

		What is the grep Command?

		Metacharacters and the grep Command

		Escaping Metacharacters with the grep Command

		Useful Options for the grep Command

		Character Classes and the grep Command

		Working with the –c Option in grep

		Matching a Range of Lines

		Using Back References in the grep Command

		Finding Empty Lines in Datasets

		Using Keys to Search Datasets

		The Backslash Character and the grep Command

		Multiple Matches in the grep Command

		The grep Command and the xargs Command

		Searching zip Files for a String

		Checking for a Unique Key Value

		Redirecting Error Messages

		The egrep Command and fgrep Command

		Displaying “Pure” Words in a Dataset with egrep

		The fgrep Command

		A Simple Use Case

		Summary

		Chapter 6: Transforming Data with sed

		What is the sed Command?

		The sed Execution Cycle

		Matching String Patterns Using sed

		Substituting String Patterns Using sed

		Replacing Vowels from a String or a File

		Deleting Multiple Digits and Letters from a String

		Search and Replace with sed

		Datasets with Multiple Delimiters

		Useful Switches in sed

		Working with Datasets

		Printing Lines

		Character Classes and sed

		Removing Control Characters

		Counting Words in a Dataset

		Back References in sed

		Displaying Only “Pure” Words in a Dataset

		One Line sed Commands

		Summary

		Chapter 7: Working with awk

		The awk Command

		Built-in Variables That Control awk

		How Does the awk Command Work?

		Aligning Text with the printf Command

		Conditional Logic and Control Statements

		The while Statement

		A for loop in awk

		A for loop with a break Statement

		The next and continue Statements

		Deleting Alternate Lines in Datasets

		Merging Lines in Datasets

		Printing File Contents as a Single Line

		Joining Groups of Lines in a Text File

		Joining Alternate Lines in a Text File

		Matching with Metacharacters and Character Sets

		Printing Lines Using Conditional Logic

		Splitting Filenames with awk

		Working with Postfix Arithmetic Operators

		Numeric Functions in awk

		One Line awk Commands

		Useful Short awk Scripts

		Printing the Words in a Text String in awk

		Count Occurrences of a String in Specific Rows

		Printing a String in a Fixed Number of Columns

		Printing a Dataset in a Fixed Number of Columns

		Aligning Columns in Datasets

		Aligning Columns and Multiple Rows in Datasets

		Removing a Column from a Text File

		Subsets of Columns Aligned Rows in Datasets

		Counting Word Frequency in Datasets

		Displaying Only “Pure” Words in a Dataset

		Working with Multiline Records in awk

		A Simple Use Case

		Another Use Case

		Summary

		Chapter 8: Intro to Shell Scripts

		What are Shell Scripts?

		A Simple Shell Script

		Setting Environment Variables via Shell Scripts

		Sourcing or “Dotting” a Shell Script

		Working with Functions in Shell Scripts

		Passing values to Functions in a Shell Script (1)

		Passing values to Functions in a Shell Script (2)

		Iterate through values passed to a Function

		Positional Parameters in User-defined Functions

		Shell Scripts, Functions, and User Input

		Recursion and Shell Scripts

		Iterative Solutions for Factorial Values

		Calculating Fibonacci Numbers

		Calculating the GCD of Two Positive Integers

		Calculating the LCM of two Positive Integers

		Calculating Prime Divisors

		Summary

		Chapter 9: Shell Scripts with grep and awk Command

		The grep Command with zip Files

		The grep Command with Multiple Files

		Simulating Relational Data with the grep Command

		Checking Updates in a Logfile

		Processing Multiline Records

		Adding the Contents of Records

		Using the split Function in awk

		Scanning Diagonal Elements in Datasets

		Adding Values From Multiple Datasets (1)

		Adding Values From Multiple Datasets (2)

		Adding Values From Multiple Datasets (3)

		Calculating Combinations of Field Values

		Summary

		Chapter 10: Miscellaneous Shell Scripts

		Using rm and mv with Directories

		Using the find Command with Directories

		Creating a Directory of Directories

		Cloning a set of Sub-directories

		Executing Files in Multiple Directories

		The case/esac Command

		Compressing/uncompressing Files

		The dd Command

		The crontab Command

		Uncompressing Files as a cron Job

		Scheduled Commands and Background Processes

		How to Schedule Tasks

		The nohup Command

		Executing Commands Remotely

		How to Schedule Tasks in the Background

		How to Terminate Processes

		Terminating Multiple Processes

		Process-Related Commands

		How to Monitor Processes

		Checking Execution Results

		System Messages and Log Files

		Disk Usage Commands

		Trapping and Ignoring Signals

		Arithmetic with the bc and dc Commands

		Working with the date Command

		Print-related Commands

		Creating a Report with the printf() Command

		Checking Updates in a Logfile

		Listing Active Users on a Machine

		Miscellaneous Commands

		Summary

		Index

Pagebreaks of the print version

		i

		ii

		iii

		iv

		v

		vi

		vii

		viii

		ix

		x

		xi

		xii

		xiii

		xiv

		xv

		vxi

		xvii

		xviii

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

		79

		80

		81

		82

		83

		84

		85

		86

		87

		88

		89

		90

		91

		92

		93

		94

		95

		96

		97

		98

		99

		100

		101

		102

		103

		104

		105

		106

		107

		108

		109

		110

		111

		112

		113

		114

		115

		116

		117

		118

		119

		120

		121

		122

		123

		124

		125

		126

		127

		128

		129

		130

		131

		132

		133

		134

		135

		136

		137

		138

		139

		140

		141

		142

		143

		144

		145

		146

		147

		148

		149

		150

		151

		152

		153

		154

		155

		156

		157

		158

		159

		160

		161

		162

		163

		164

		165

		166

		167

		168

		169

		170

		171

		172

		173

		174

		175

		176

		177

		178

		179

		180

		181

		182

		183

		184

		185

		186

		187

		188

		189

		190

		191

		192

		193

		194

		195

		196

		197

		198

		199

		200

		201

		202

		203

		204

		205

		206

		207

		208

		209

		210

		211

		212

		213

		214

		215

		216

		217

		218

		219

		220

		221

		222

		223

		224

		225

		226

		227

		228

		229

		230

		231

		232

		233

		234

		235

		236

		237

		238

		239

		240

		241

		242

		243

		244

		245

		246

		247

		248

		249

		250

		251

		252

		253

		254

		255

		256

		257

		258

		259

		260

		261

		262

		263

		264

		265

		266

OEBPS/css/page-template.xpgt

	

	

	
	

	

	
	

OEBPS/images/cover.jpg
-3.2%

-3.2$ ifconfig -8

Tof: flags=8049<UP, LOBPEADNE MU, M
options=3<RICTIM, FICSW

inet6 ::1 prefizies 3%

inet 127.0.0.1 nn-tu”—l'"

BASH COMMAND LINE |
AND SHELL SCRIPTS

POCKET PRIMER

@ OSWALD CAMPESATO

OEBPS/images/logo.jpg

