

 [image: Embedded Linux Development Using Yocto Project Cookbook.]

Embedded Linux Development Using Yocto Project Cookbook

Second Edition

Practical recipes to help you leverage the power of Yocto to build exciting Linux-based systems

Alex González

BIRMINGHAM - MUMBAI

 Embedded Linux Development Using Yocto Project Cookbook
Second Edition

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Gebin George

Acquisition Editor: Prachi Bisht

Content Development Editor: Dattatraya More

Technical Editor: Jovita Alva

Copy Editor: Safis Editing

Project Coordinator: Shweta H Birwatkar

Proofreader: Safis Editing

Indexer: Francy Puthiry

Graphics: Tania Dutta

Production Coordinator: Arvindkumar Gupta

First published: March 2015

Second edition: January 2018

Production reference: 1240118

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78839-921-0

www.packtpub.com

 I dedicate this second edition to the loving memory of my mum whose example makes me constantly challenge myself.

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

 Why subscribe?

	Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

	Improve your learning with Skill Plans built especially for you

	Get a free eBook or video every month

	Mapt is fully searchable

	Copy and paste, print, and bookmark content

 PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

 Foreword

Adoption of Linux continues to grow year by year, with the majority of growth in the area of embedded systems. While it is possible to build an embedded Linux operating system from scratch, it is hard work and error prone. Thankfully, there is a better way—using the BitBake build tool, the OpenEmbedded Core metadata and the Poky distribution, which, together, make up the Yocto Project.

Since its inception in 2010, the Yocto Project has progressed to become the de facto build system for a wide range of appliances and devices running Linux. Now, with the advent of the connected world known as the Internet of Things, the Yocto Project is taking on a key role in creating the backbone operating systems for devices that we rely on every day. So, the Yocto Project does not stand still, it has to continually evolve to cater for current generations of hardware and to support the tools and applications used in modern connected devices.

However, as anyone who has dipped a toe into the Yocto Project pool will know, the water gets deep very quickly. The flexibility of the Yocto Project means that you need to be aware of many concepts if you are to make best use of the tool. I heartily recommend this book as your lifesaver! Alex’s thorough understanding of the topic, coupled with a practical approach to problem solving, makes this an easy-to-read, essential companion that will help you not only to keep your head above water but to become a proficient swimmer.

This second edition of Embedded Linux Development Using Yocto Project Cookbook follows in the same style and technical content as the first, but has been refreshed and extended to describe the current versions of the Yocto Project. Alex’s deep understanding of the Yocto Project conjoins with his practical knowledge of the subject to produce a practical guide to the Yocto Project. The cookbook style allows you to dip in and out as needed to find answers to particular problems. Alex always adds pointers to more detailed descriptions of the problems covered, so that, step by step, you can build up a thorough understanding of the underlying principles. As an educator, I am always looking for books to recommend to my students. This is at the top of my list when teaching people about the Yocto Project.

Chris Simmonds

Founder of 2net.co.uk, author and teacher

 Contributors

 About the author

Alex González is a software engineering supervisor at Digi International and product owner of the Digi Embedded Yocto distribution. He started working professionally with embedded systems in 1999 and the Linux kernel in 2004, designing products for voice and video over IP networks, and followed his interests into machine-to-machine (M2M) technologies and the Internet of Things. Born and raised in Bilbao, Spain, Alex has an electronic engineering degree from the University of the Basque Country and he received his MSc in communication systems from the University of Portsmouth.

I would like to thank the Yocto and OpenEmbedded communities, whose dedication keep the Yocto Project running, and the people involved with the Freescale BSP community layer, whose joint work is the basis for this book.

Also, the amazing people who work with me on a daily basis and from whom I am constantly learning, and especially to Javier Viguera for his efforts in thoroughly reviewing the contents of the book.

 About the reviewer

Javier Viguera has been a Linux fan since the mid-1990s, when he managed to install Slackware at home to avoid fighting for a two hour slot in the university's computer lab.

With a master's degree in telecommunications engineering and a bachelor's degree in computer science, he is currently working at Digi International as an embedded software engineer.

Living in La Rioja, Spain, in his spare time Javier likes to see good classical movies. He is also a fan of airplanes and aviation.

I would like to thank the author Alex, for this opportunity. Also, and especially, my wife and daughter for supporting me during the review.

 Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

 Table of Contents

 	
 Preface
 	
 Who this book is for

	
 What this book covers

	
 To get the most out of this book
 	
 Download the example code files

	
 Download the color images

	
 Conventions used

	
 Get in touch
 	
 Reviews

	
 The Build System
 	
 Introduction

	
 Setting up the host system
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 See also

	
 Installing Poky
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 See also

	
 Creating a build directory
 	
 How to do it...

	
 How it works...

	
 There's more...

	
 Building your first image
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Explaining the NXP Yocto ecosystem
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 See also

	
 Installing support for NXP hardware
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 See also

	
 Building Wandboard images
 	
 How to do it...

	
 How it works...

	
 See also

	
 Using the Toaster web interface
 	
 Getting ready

	
 How to do it...
 	
 Administrator interface

	
 Starting a build

	
 Customizing images with Toaster

	
 Building SDKs with Toaster

	
 How it works...

	
 There's more...

	
 Running a Toaster Docker container
 	
 How to do it...

	
 See also

	
 Configuring network booting for a development setup
 	
 Getting ready
 	
 Installing a TFTP server

	
 Installing an NFS server

	
 How to do it...

	
 Using Docker as a Yocto build system container
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 See also

	
 Sharing downloads
 	
 Getting ready

	
 How to do it...

	
 Sharing the shared state cache
 	
 How to do it...

	
 There's more...

	
 Setting up a package feed
 	
 Getting ready
 	
 Versioning packages

	
 How to do it...

	
 There's more...
 	
 Generating signed packages

	
 Using signed package feeds

	
 Creating a GNUPG key pair

	
 Backing up your keys

	
 See also

	
 Using build history
 	
 How to do it...

	
 How it works...
 	
 Looking at build history

	
 There's more...

	
 Working with build statistics
 	
 How to do it...

	
 How it works...

	
 There's more...

	
 See also

	
 Debugging the build system
 	
 Getting ready
 	
 Finding recipes

	
 Dumping BitBake's environment

	
 Using the development shell

	
 How to do it...
 	
 Task log and run files

	
 Adding logging to recipes

	
 Looking at dependencies

	
 Debugging dependencies

	
 Debugging BitBake

	
 Error reporting tool

	
 The BSP Layer
 	
 Introduction

	
 Creating a custom BSP layer
 	
 How to do it...

	
 How it works...

	
 There's more...
 	
 Adding a new machine

	
 Adding a custom device tree to the Linux kernel

	
 Adding a custom U-Boot machine

	
 Adding a custom formfactor file

	
 Build your custom machine

	
 See also

	
 Adding a custom kernel and bootloader
 	
 Getting ready
 	
 Finding the Linux kernel source

	
 Finding the U-Boot source

	
 Developing using a Git repository fork

	
 How to do it...

	
 How it works...

	
 Building the U-Boot bootloader
 	
 Getting ready

	
 How to do it...

	
 There's more...

	
 Describing Linux's build system
 	
 How to do it...

	
 How it works...

	
 There's more...

	
 Configuring the Linux kernel
 	
 Getting ready

	
 How to do it...
 	
 Using Yocto to configure the Linux kernel

	
 There's more...

	
 Building the Linux kernel
 	
 How to do it...
 	
 Using Yocto to build the Linux kernel

	
 There's more...

	
 Building external kernel modules
 	
 Getting ready

	
 How to do it...

	
 There's more...
 	
 Module auto-loading

	
 See also

	
 Debugging the Linux kernel and modules
 	
 How to do it...

	
 How it works...

	
 There's more...
 	
 Using dynamic debug

	
 Rate-limiting debug messages

	
 See also

	
 Debugging the Linux kernel booting process
 	
 How to do it...

	
 How it works...
 	
 Dumping the kernel's printk buffer from the bootloader

	
 There's more...

	
 Using the kernel function tracing system
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...
 	
 Filtering function traces

	
 Enabling trace options

	
 Using the function tracer on oops

	
 Getting a stack trace for a given function

	
 Configuring the function tracer at boot

	
 See also

	
 Managing the device tree
 	
 Getting ready

	
 How to do it...

	
 How it works...
 	
 The compatible property

	
 The Wandboard device tree file

	
 Defining buses and memory-addressable devices

	
 There's more...
 	
 Modifying and compiling the device tree in Yocto

	
 See also

	
 Debugging device tree issues
 	
 How to do it...

	
 How it works...
 	
 Looking at the device tree from U-Boot

	
 Looking at the device tree from the Linux kernel

	
 The Software Layer
 	
 Introduction

	
 Exploring an image's contents
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 Adding a new software layer
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 See also

	
 Selecting a specific package version and provider
 	
 How to do it...
 	
 How do we select which provider to use?

	
 How do we select which version to use?

	
 How do we select which version not to use?

	
 Adding supported packages
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...
 	
 Configuring packages

	
 Adding new packages
 	
 Getting ready

	
 How to do it...

	
 How it works...
 	
 Package licensing

	
 Fetching package contents

	
 Specifying task overrides

	
 Configuring packages

	
 Splitting into several packages

	
 Setting machine-specific variables

	
 Adding data, scripts, or configuration files
 	
 How to do it...

	
 There's more...

	
 Managing users and groups
 	
 Getting ready

	
 How to do it...

	
 There's more...

	
 Using the sysvinit initialization manager
 	
 Getting ready

	
 How to do it...

	
 Using the systemd initialization manager
 	
 Getting ready

	
 How to do it...

	
 There's more...
 	
 Installing systemd unit files

	
 See also

	
 Installing package installation scripts
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 Reducing the Linux kernel image size
 	
 How to do it...

	
 How it works...

	
 Reducing the root filesystem size
 	
 How to do it...

	
 How it works...

	
 Memory-based root filesystems
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Securing the root filesystem
 	
 Getting ready

	
 How to do it...
 	
 Setting up SELinux

	
 Setting up SMACK

	
 How it works...
 	
 Looking into SELinux

	
 Looking into SMACK

	
 See also

	
 Releasing software
 	
 Getting ready

	
 How to do it...

	
 There's more...

	
 See also

	
 Analyzing your system for compliance
 	
 How to do it...

	
 There's more...

	
 Working with open source and proprietary code
 	
 How to do it...

	
 How it works...
 	
 The U-Boot bootloader

	
 The Linux kernel

	
 glibc

	
 musl

	
 BusyBox

	
 The Qt framework

	
 The X Windows system

	
 There's more...

	
 See also

	
 Application Development
 	
 Introduction

	
 Introducing toolchains
 	
 Getting ready

	
 How to do it...

	
 Preparing an SDK
 	
 Getting ready

	
 How to do it...

	
 How it works...
 	
 Customizing standard and extensible SDKs

	
 Adding packages to the SDKs

	
 Using the extensible SDK
 	
 Getting ready
 	
 Exploring the extensible SDK contents

	
 How to do it...

	
 How it works...
 	
 The workspace layer

	
 Recipe development workflow

	
 Adding a recipe to the workspace layer

	
 Removing a recipe from the workspace layer

	
 Modifying a recipe in the workspace layer

	
 Building and testing your recipe

	
 Updating a recipe with your changes

	
 Finishing work on a recipe

	
 There's more...

	
 Using the Eclipse IDE
 	
 Getting ready

	
 How to do it...

	
 There's more...

	
 See also

	
 Developing GTK+ applications
 	
 Getting ready

	
 How to do it...

	
 There's more...

	
 Using the Qt Creator IDE
 	
 Getting ready

	
 How to do it...

	
 Developing Qt applications
 	
 Getting ready

	
 How to do it...

	
 There's more...

	
 Describing workflows for application development
 	
 How to do it...

	
 How it works...
 	
 External development

	
 Working directory development

	
 External source development

	
 Working with GNU make
 	
 How to do it...

	
 See also

	
 Working with the GNU build system
 	
 Getting ready

	
 How to do it...

	
 See also

	
 Working with the CMake build system
 	
 Getting ready

	
 How to do it...

	
 See also

	
 Working with the SCons builder
 	
 Getting ready

	
 How to do it...

	
 See also

	
 Developing with libraries
 	
 Getting ready
 	
 Building a static library

	
 Building a shared dynamic library

	
 How to do it...

	
 How it works...

	
 There's more...

	
 See also

	
 Working with the Linux framebuffer
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 See also

	
 Using the X Windows system
 	
 Getting ready

	
 How to do it...

	
 There's more...

	
 See also

	
 Using Wayland
 	
 Getting ready

	
 How to do it...

	
 There's more...

	
 See also

	
 Adding a web browser application
 	
 Getting ready

	
 How to do it...

	
 There's more...

	
 See also

	
 Adding Python applications
 	
 Getting ready

	
 How to do it...

	
 There's more...

	
 Integrating the Open Java Development Kit
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 See also

	
 Integrating Java applications
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 See also

	
 Integrating Node.js applications
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 See also

	
 Running Docker application containers
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 See also

	
 Debugging, Tracing, and Profiling
 	
 Introduction

	
 Analyzing core dumps
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 See also

	
 Native GDB debugging
 	
 Getting ready

	
 How to do it...

	
 There's more...

	
 Cross GDB debugging
 	
 Getting ready

	
 How to do it...

	
 There's more...

	
 Using strace for application debugging
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 See also

	
 Using the kernel's performance counters
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 See also

	
 Using static kernel tracing
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 See also

	
 Using dynamic kernel tracing
 	
 Getting ready

	
 How to do it...

	
 There's more...

	
 See also

	
 Using dynamic kernel events
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Exploring Yocto's tracing and profiling tools
 	
 Getting ready

	
 How to do it...

	
 There's more...

	
 Tracing and profiling with perf
 	
 Getting ready

	
 How to do it...

	
 How it works...
 	
 Reading tracing data

	
 There's more...
 	
 Profile charts

	
 Using perf as a strace substitute

	
 See also

	
 Using SystemTap
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 See also

	
 Using LTTng
 	
 Getting ready

	
 How to do it...

	
 How it works...
 	
 Extending application profiling

	
 There's more...

	
 See also

	
 Using blktrace
 	
 Getting ready

	
 How to do it...

	
 How it works...

	
 There's more...

	
 Other Books You May Enjoy
 	
 Leave a review - let other readers know what you think

 Preface

A few years ago, embedded would have been a synonym for a small, resource-constrained, dedicated system. Nowadays, it's easy to find embedded systems with 1 GB or more of memory, plenty of storage, and dedicated hardware accelerators for things such as graphics, video, cryptography, and even high-end 64-bit multicore systems.

The embedded space is split between small microcontroller-based systems that are direct successors of the embedded systems from a few years back, and a new generation of embedded Linux-based systems which require a different set of tools, skills, and workflows to develop them.

Since the first edition of this book was published, the embedded Linux space has started to be influenced by young engineers with roots in the maker movement who are used to the rapid prototyping of products and ideas with Raspberry Pi-like hardware and PC-like distributions such as Debian, as well as the emergence of the Internet of Things as a disruptive force. This has brought the security of always-available, cloud-connected embedded devices to the front line, but has also blurred the line between professional embedded Linux systems and hobbyist products.

Still, professional embedded systems have a distinct set of requirements that are common to all of them:

	Industrial specifications, robustness, and reliability

	Dedicated optimized applications

	Security guarantees

	Remote and secure over-the-air updates

	Power management considerations

	Fast startup time

	Graphical user interfaces

	Some degree of real-time capabilities

	Long maintenance of line both for hardware and software, usually above 5 years.

When designing embedded products with the preceding requirements in mind, it is clear that educational hardware and desktop-oriented distributions are never going to be able to provide the level of control, configurability, and flexibility needed to design a professional embedded product.

This is why the Yocto Project remains the chosen embedded Linux builder for professional systems. It's flexibility and scalability allows it to build resource-constrained low-end to high-end embedded Linux products and adapt software accordingly.

In this new edition, the content has been completely reviewed and updated to the Yocto Project 2.4 release, and new content has been added to address some of the changes and trends that have appeared since the first edition was published.

 Who this book is for

This book is the ideal way for embedded developers learning about embedded Linux and the Yocto project to become proficient and broaden their knowledge with examples that are immediately applicable to embedded developments.

Experienced embedded Yocto developers will find new insights into working methodologies and ARM-specific development competence.

 What this book covers

Chapter 1, The Build System, describes and uses the Poky build system and extends it to the Freescale BSP Community layer. It also describes common build system configurations and features to optimize the build of target images, including the use of Toaster and Docker.

Chapter 2, The BSP Layer, guides the reader through the customization of the BSP for their own product. It then explains how to configure, modify, build, and debug the U-Boot boot loader, Linux kernel, and its device tree.

Chapter 3, The Software Layer, describes the process of creating a new software layer to hold new applications, services, or modifications to existing packages; explains size and security optimization methodologies for both the Linux kernel and the root filesystem; and discusses a release process for license compliance.

Chapter 4, Application Development, starts by introducing both the standard and extensible SDKs, and deals with application development in detail, including different graphical backends and development environments such as Eclipse and Qt Creator, and recipe creation for different programming languages.

Chapter 5, Debugging, Tracing and Profiling, discusses debugging tools and techniques, and explores the tracing functionalities offered by the Linux kernel along with some of the user space tracing and profiling tools that make use of them.

 To get the most out of this book

This books assumes some basic working knowledge of GNU/Linux systems and applications such as the bash shell and derivatives, as well as standard tools such as grep, patch, and diff. The examples have been tested with an Ubuntu 16.04 LTS system, but any Linux distribution supported by the Yocto project can be used.

The book is structured to follow the usual development workflow of an embedded Linux product, but chapters, or even individual recipes, can be read independently.

Recipes take a practical, hands-on approach using an NXP i.MX6-based system, the Wandboard Quad, as base hardware. However, any other i.MX-based hardware can be used to follow the examples.

 Download the example code files

You can download the example code files for this book from your account at www.packtpub.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

	Log in or register at www.packtpub.com.

	Select the SUPPORT tab.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR/7-Zip for Windows

	Zipeg/iZip/UnRarX for Mac

	7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Embedded-Linux-Development-Using-Yocto-Project-Cookbook-Second-Edition. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: http://www.packtpub.com/sites/default/files/downloads/EmbeddedLinuxDevelopmentUsingYoctoProjectCookbookSecondEdition_ColorImages.pdf.

 Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "In this case, both imx6q.dtsi and ;imx6qdl-wandboard-revd1.dtsi are overlaid with the contents of imx6qp-wandboard-revd1.dts."

A block of code is set as follows:

#include "imx6q-wandboard-revd1.dts"
#include "imx6qp.dtsi"

/ {
 model = "Wandboard i.MX6QuadPlus rev.D1";
};

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

Allow override of WANDBOARD_GITHUB_MIRROR to make use of
local repository easier
WANDBOARD_GITHUB_MIRROR ?= "git://github.com/wandboard-org/linux.git"

Any command-line input or output is written as follows:

$ cd /opt/yocto/fsl-community-bsp/wandboard/tmp/deploy/sdk/
$./poky-glibc-x86_64-core-image-minimal-cortexa9hf-neon-toolchain-2.4.sh

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Build the project by going to Project | Build Project."

Warnings or important notes appear like this.

Tips and tricks appear like this.

 Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

 Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

 The Build System

In this chapter, we will cover the following recipes:

	Setting up the host system

	Installing Poky

	Creating a build directory

	Building your first image

	Explaining the NXP Yocto ecosystem

	Installing support for NXP hardware

	Building Wandboard images

	Using the Toaster web interface

	Running a Toaster Docker container

	Configuring network booting for a development setup

	Using Docker as a Yocto build system container

	Sharing downloads

	Sharing the shared state cache

	Setting up a package feed

	Using build history

	Working with build statistics

	Debugging the build system

 Introduction

The Yocto Project (http://www.yoctoproject.org/) is an embedded Linux distribution builder that makes use of several other open source projects. In this book, the generic term Yocto refers to the Yocto Project.

A Linux distribution is a collection of software packages and policies, and there are hundreds of Linux distributions available. Most of these are not designed for embedded systems and they lack the flexibility needed to accomplish target footprint sizes and functionality tweaks, as well as not catering well for resource constrained systems.

The Yocto Project, in contrast, is not a distribution per se; it allows you to create a Linux distribution designed for your particular embedded system. The Yocto Project provides a reference distribution for embedded Linux, called Poky.

The Yocto Project has the BitBake and OpenEmbedded-Core (OE-Core) projects at its base. Together they form the Yocto build system which builds the components needed for an embedded Linux product, namely:

	A bootloader image

	A Linux kernel image

	A root filesystem image

	Toolchains and software development kits (SDKs) for application development

With these, the Yocto Project covers the needs of both system and application developers. When the Yocto Project is used as an integration environment for bootloaders, the Linux kernel, and user space applications, we refer to it as system development.

For application development, the Yocto Project builds SDKs that enable the development of applications independently of the Yocto build system.

The Yocto Project makes a new release every 6 months. The latest release at the time of this writing is Yocto 2.4 Rocko, and all the examples in this book refer to the 2.4 release.

A Yocto release comprises the following components:

	Poky, the reference build system and distribution

	Board Support Packages (BSPs) with the recipes needed to support different architectures and boards

	Build Appliance, a virtual machine image ready to use Yocto

	Standard and extensible SDKs for the host system

	Eclipse plugins

And for the different supported platforms:

	Prebuilt toolchains

	Prebuilt images

The Yocto 2.4 release is available to download from http://downloads.yoctoproject.org/releases/yocto/yocto-2.4/.

 Setting up the host system

This recipe will explain how to set up a host Linux system to use the Yocto Project.

 Getting ready

The recommended way to develop an embedded Linux system is using a native Linux workstation. Development work using virtual machines, such as the Build Appliance, is discouraged, although they may be used for demo and test purposes.

Docker containers are increasingly used as they provide a maintainable way to build the same version of Yocto over the course of several years, which is a common need for embedded systems with long product lifetimes. We will cover using Docker as a Yocto build system in the Using Docker as a Yocto build system container recipe in this same chapter.

Yocto builds all the components mentioned before from scratch, including the cross-compilation toolchain and the native tools it needs, so the Yocto build process is demanding in terms of processing power and both hard drive space and I/O.

Although Yocto will work fine on machines with lower specifications, for professional developers' workstations, it is recommended to use symmetric multiprocessing (SMP) systems with 8 GB or more system memory and a high capacity, fast hard drive, and solid state drives (SSD) if possible. Due to different bottlenecks in the build process, there does not seem to be much improvement above eight CPUs or around 16 GB RAM.

The first build will also download all the sources from the internet, so a fast internet connection is also recommended.

 How to do it...

Yocto supports several Linux host distributions, and each Yocto release will document a list of the supported ones. Although the use of a supported Linux distribution is strongly advised, Yocto is able to run on any Linux system if it has the following dependencies:

	Git 1.8.3.1 or greater

	Tar 1.27 or greater

	Python 3.4.0 or greater

Yocto also provides a way to install the correct version of these tools by either downloading a buildtools-tarball or building one on a supported machine. This allows virtually any Linux distribution to be able to run Yocto, and also makes sure that it will be possible to replicate your Yocto build system in the future. The Yocto Project build system also isolates itself from the host distribution's C library, which makes it possible to share build caches between different distributions and also helps in future-proofing the build system. This is important for embedded products with long-term availability requirements.

This book will use the Ubuntu 16.04 Long-Term Stable (LTS) Linux distribution for all examples. Instructions to install on other Linux distributions can be found in the Supported Linux Distributions section of the Yocto Project Reference Manual, but the examples will only be tested with Ubuntu 16.04 LTS.

To make sure you have the required package dependencies installed for Yocto and to follow the examples in the book, run the following command from your shell:

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib build-essential chrpath socat libsdl1.2-dev xterm bmap-tools make xsltproc docbook-utils fop dblatex xmlto cpio python python3 python3-pip python3-pexpect xz-utils debianutils iputils-ping python-git bmap-tools python3-git curl parted dosfstools mtools gnupg autoconf automake libtool libglib2.0-dev python-gtk2 bsdmainutils screen libstdc++-5-dev libx11-dev

Downloading the example code
You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files emailed directly to you.

The example code in the book can be accessed through several GitHub repositories at https://github.com/yoctocookbook2ndedition. Follow the instructions on GitHub to obtain a copy of the source in your computer.

You will also need to configure the Git revision control software as follows:

$ git config --global user.email "your.email.address@somewhere.com"
$ git config --global user.name "Your Name"

 How it works...

The preceding command uses apt-get, the Advanced Packaging Tool (APT) command-line tool. It is a frontend of the dpkg package manager that is included in the Ubuntu distribution. It will install all the required packages and their dependencies to support all the features of the Yocto Project as well as the examples in this book.

Git is a distributed source control versioning system under the General Public License v2 (GNU) originally developed by Linus Torvalds for the development of the Linux kernel. Since then, it has become the standard for many open source projects. Git will be the tool of choice for source version control used in this book.

 There's more...

If build times are an important factor for you, there are certain steps you can take when preparing your disks to optimize them even further:

	Place the build directories on their own disk partition or a fast external solid state drive.

	Use the ext4 filesystem but configure it not to use journalism on your Yocto-dedicated partitions. Be aware that power losses may corrupt your build data.

	Mount the filesystem in such a way that read times are not written/recorded on file reads, disable write barriers, and delay committing filesystem changes with the following mount options:

noatime,barrier=0,commit=6000

These changes reduce the data integrity safeguards, but with the separation of the build directories to their own disk, failures would only affect temporary build data, which can be erased and regenerated.

 See also

	The complete Yocto Project installation instructions for Ubuntu and other supported distributions can be found in the Yocto Project Reference Manual at http://www.yoctoproject.org/docs/2.4/ref-manual/ref-manual.html

	Git documentation and other reference material can be found at https://git-scm.com/documentation

 Installing Poky

This recipe will explain how to set up your host Linux system with Poky, the Yocto Project reference system.

 Getting ready

Poky uses the OpenEmbedded build system and, as such, uses the BitBake tool, a task scheduler written in Python which is forked from Gentoo's Portage tool. You can think of BitBake as the make utility in Yocto. It will parse the configuration and recipe metadata, schedule a task list, and run through it.

BitBake is also the command-line interface to Yocto.

Poky and BitBake are two of the open source projects used by Yocto:

	The Poky project is maintained by the Yocto community. You can download Poky from its Git repository at http://git.yoctoproject.org/cgit/cgit.cgi/poky/.

	Development discussions can be followed and contributed to by visiting the development mailing list at https://lists.yoctoproject.org/listinfo/poky.

	Poky development takes place in the master branch. Before merging submitted patches into the master, maintainers test them in the master-next branch.

	Stable Yocto releases have their own branch. Yocto 2.4 is maintained in the rocko branch, and Yocto releases are tagged in that branch.

	BitBake, on the other hand, is maintained by both the Yocto and OpenEmbedded communities, as the tool is used by both. BitBake can be downloaded from its Git repository at http://git.openembedded.org/bitbake/.

	Development discussions can be followed and contributed to by visiting the development mailing list at http://lists.openembedded.org/mailman/listinfo/bitbake-devel.

	Bitbake also uses master and master-next in the same way, but then creates a new branch per release, for example 1.32, with tags going into the corresponding release branch.

The Poky distribution only supports virtualized QEMU machines for the following architectures:

	ARM (qemuarm, qemuarm64)

	x86 (qemux86)

	x86-64 (qemux86-64)

	PowerPC (qemuppc)

	MIPS (qemumips, qemumips64)

Apart from these, it also supports some reference hardware BSPs, representative of the architectures just listed. These are:

	Texas Instruments BeagleBone (beaglebone)

	Freescale MPC8315E-RDB (mpc8315e-rdb)

	Intel x86-based PCs and devices (genericx86 and genericx86-64)

	Ubiquiti Networks EdgeRouter Lite (edgerouter)

To develop on different hardware, you will need to complement Poky with hardware-specific Yocto layers. This will be covered later on.

 How to do it...

The Poky project incorporates a stable BitBake release, so to get started with Yocto, we only need to install Poky in our Linux host system.

Note that you can also install BitBake independently through your distribution's package management system. This is not recommended and can be a source of problems, as BitBake needs to be compatible with the metadata used in Yocto. If you have installed BitBake from your distribution, please remove it.

The current Yocto release is 2.4, or Rocko, so we will install that into our host system. We will use the /opt/yocto folder as the installation path:

$ sudo install -o $(id -u) -g $(id -g) -d /opt/yocto
$ cd /opt/yocto
$ git clone --branch rocko git://git.yoctoproject.org/poky

 How it works...

The previous instructions use Git (the source code management system command-line tool) to clone the Poky repository, which includes BitBake, into a new poky directory under /opt/yocto, and point it to the rocko stable branch.

 There's more...

Poky contains three metadata directories, meta, meta-poky, and meta-yocto-bsp, as well as a template metadata layer, meta-skeleton, which can be used as a base for new layers. Poky's three metadata directories are explained here:

	meta: This directory contains the OpenEmbedded-core metadata, which supports the ARM, ARM64, x86, x86-64, PowerPC, MIPS, and MIPS64 architectures and the QEMU emulated hardware. You can download it from its Git repository at http://git.openembedded.org/openembedded-core/.

Development discussions can be followed and contributed to by visiting the development mailing list at http://lists.openembedded.org/mailman/listinfo/openembedded-core.

	meta-poky: This contains Poky's distribution-specific metadata.

	meta-yocto-bsp: This contains metadata for the reference hardware boards.

 See also

	More information about OpenEmbedded, the build framework for embedded Linux used by the Yocto Project, can be found at http://www.openembedded.org

	The official Yocto Project documentation can be accessed at http://www.yoctoproject.org/docs/2.4/mega-manual/mega-manual.html

 Creating a build directory

Before building your first Yocto image, we need to create a build directory for it.

The build process, on a host system as outlined before, can take up to 1 hour and needs around 20 GB of hard drive space for a console-only image. A graphical image, such as core-image-sato, can take up to 4 hours for the build process and occupy around 50 GB of space.

 How to do it...

The first thing we need to do is create a build directory for our project, where the build output will be generated. Sometimes, the build directory may be referred to as the project directory, but build directory is the appropriate Yocto term.

There is no right way to structure the build directories when you have multiple projects, but a good practice is to have one build directory per architecture or machine type. They can all share a common downloads folder, and even a shared state cache (this will be covered later on), so keeping them separate won't affect the build performance, but it will allow you to develop on multiple projects simultaneously.

To create a build directory, we use the oe-init-build-env script provided by Poky. The script needs to be sourced into your current shell, and it will set up your environment to use the OpenEmbedded/Yocto build system, including adding the BitBake utility to your path.

You can specify a build directory to use or it will use build by default. We will use qemuarm for this example:

$ cd /opt/yocto/poky
$ source oe-init-build-env qemuarm

The script will change to the specified directory.

As oe-init-build-env only configures the current shell, you will need to source it on every new shell. But, if you point the script to an existing build directory, it will set up your environment but won't change any of your existing configurations.

BitBake is designed with a client/server abstraction, so we can also start a persistent server and connect a client to it. To instruct a BitBake server to stay resident, configure a timeout in seconds in your build directory's conf/local.conf configuration file as follows:

BB_SERVER_TIMEOUT = "n"

With n being the time in seconds for BitBake to stay resident.

With this setup, loading cache and configuration information each time is avoided, which saves some overhead.

 How it works...

The oe-init-build-env script calls scripts/oe-setup-builddir script inside the Poky directory to create the build directory.

On creation, the qemuarm build directory contains a conf directory with the following three files:

	bblayers.conf: This file lists the metadata layers to be considered for this project.

	local.conf: This file contains the project-specific configuration variables. You can set common configuration variables to different projects with a site.conf file, but this is not created by default. Similarly, there is also an auto.conf file which is used by autobuilders. BitBake will first read site.conf, then auto.conf, and finally local.conf.

	templateconf.cfg: This file contains the directory that includes the template configuration files used to create the project. By default it uses the one pointed to by the templateconf file in your Poky installation directory, which is meta-poky/conf by default.

To start a build from scratch, that's all the build directory needs.

Erasing everything apart from these files will recreate your build from scratch, as shown here:

$ cd /opt/yocto/poky/qemuarm

$ rm -Rf tmp sstate-cache

 There's more...

You can specify different template configuration files to use when you create your build directory using the TEMPLATECONF variable, for example:

$ TEMPLATECONF=meta-custom/config source oe-init-build-env <build-dir>

The TEMPLATECONF variable needs to refer to a directory containing templates for both local.conf and bblayer.conf, but named local.conf.sample and bblayers.conf.sample.

For our purposes, we can use the unmodified default project configuration files.

 Building your first image

Before building our first image, we need to decide what type of image we want to build. This recipe will introduce some of the available Yocto images and provide instructions to build a simple image.

 Getting ready

Poky contains a set of default target images. You can list them by executing the following commands:

$ cd /opt/yocto/poky
$ ls meta*/recipes*/images/*.bb

A full description of the different images can be found in the Yocto Project Reference Manual, on Chapter 13, Images. Typically, these default images are used as a base and customized for your own project needs. The most frequently used base default images are:

	core-image-minimal: This is the smallest BusyBox, sysvinit, and udev-based console-only image

	core-image-full-cmdline: This is the BusyBox-based console-only image with full hardware support and a more complete Linux system, including Bash

	core-image-lsb: This is a console-only image that is based on Linux Standard Base (LSB) compliance

	core-image-x11: This is the basic X11 Windows-system-based image with a graphical terminal

	core-image-sato: This is the X11 Window-system-based image with a SATO theme and a GNOME mobile desktop environment

	core-image-weston: This is a Wayland protocol and Weston reference compositor-based image

You will also find images with the following suffixes:

	dev: This image is suitable for development work, as it contains headers and libraries

	sdk: This image includes a complete SDK that can be used for development on the target

	initramfs: This is an image that can be used for a RAM-based root filesystem, which can optionally be embedded with the Linux kernel

 How to do it...

	To build an image, we need to configure the machine we are building it for and pass its name to BitBake. For example, for the qemuarm machine, we would run the following:

$ cd /opt/yocto/poky/
$ source /opt/yocto/poky/oe-init-build-env qemuarm
$ MACHINE=qemuarm bitbake core-image-minimal

	Or we could export the MACHINE variable to the current shell environment before sourcing the oe-init-build-env script with the following:

$ export MACHINE=qemuarm

	On an already configured project, we could also edit the conf/local.conf configuration file to change the default machine to qemuarm:

- #MACHINE ?= "qemuarm"
+ MACHINE ?= "qemuarm"

	Then, after setting up the environment, we execute the following:

$ bitbake core-image-minimal

With the preceding steps, BitBake will launch the build process for the specified target image.

 How it works...

When you pass a target recipe to BitBake, it first parses the following configuration files in order:

	conf/bblayers.conf: This file is parsed to find all the configured layers

	conf/layer.conf: This file is parsed on each configured layer

	meta/conf/bitbake.conf: This file is parsed for its own configuration

	conf/local.conf: This file is used for any other configuration the user may have for the current build

	conf/machine/<machine>.conf: This file is the machine configuration; in our case, this is qemuarm.conf

	conf/distro/<distro>.conf: This file is the distribution policy; by default, this is the poky.conf file

There are also some other distribution variants included with Poky:

	

	poky-bleeding: Extension to the Poky default distribution that includes the most up-to-date versions of packages

	poky-lsb: LSB compliance extension to Poky

	poky-tiny: Oriented to create headless systems with the smallest Linux kernel and BusyBox read-only or RAM-based root filesystems, using the musl C library

And then, BitBake parses the target recipe that has been provided and its dependencies. The outcome is a set of interdependent tasks that BitBake will then execute in order.

A depiction of the BitBake build process is shown in the following diagram:

BitBake build process

 There's more...

Most developers won't be interested in keeping the whole build output for every package, so it is recommended to configure your project to remove it with the following configuration in your conf/local.conf file:

INHERIT += "rm_work"

But at the same time, configuring it for all packages means that you won't be able to develop or debug them.

You can add a list of packages to exclude from cleaning by adding them to the RM_WORK_EXCLUDE variable. For example, if you are going to do BSP work, a good setting might be:

RM_WORK_EXCLUDE += "linux-wandboard u-boot-fslc"

Remember that you can use a custom template local.conf.sample configuration file in your own layer to keep these configurations and apply them for all projects so that they can be shared across all developers.

On a normal build, the -dbg packages that include debug symbols are not needed. To avoid creating -dbg packages, do this:

INHIBIT_PACKAGE_DEBUG_SPLIT = "1"

Once the build finishes, you can find the output images in the tmp/deploy/images/qemuarm directory inside your build directory.

You can test run your images on the QEMU emulator by executing this:

$ runqemu qemuarm core-image-minimal

The runqemu script included in Poky's scripts directory is a launch wrapper around the QEMU machine emulator to simplify its usage.

The Yocto Project also has a set of precompiled images for supported hardware platforms that can be downloaded from http://downloads.yoctoproject.org/releases/yocto/yocto-2.4/machines/.

 Explaining the NXP Yocto ecosystem

As we saw, Poky metadata starts with the meta, meta-poky, and meta-yocto-bsp layers, and it can be expanded by using more layers.

An index of the available OpenEmbedded layers that are compatible with the Yocto Project is maintained at http://layers.openembedded.org/.

An embedded product's development usually starts with hardware evaluation using a manufacturer's reference board design. Unless you are working with one of the reference boards already supported by Poky, you will need to extend Poky to support your hardware by adding extra BSP layers.

 Getting ready

The first thing to do is to select which base hardware your design is going to be based on. We will use a board that is based on a NXP i.MX6 System on Chip (SoC) as a starting point for our embedded product design.

This recipe gives an overview of the support for NXP hardware in the Yocto Project.

 How to do it...

The SoC manufacturer (in this case, NXP) has a range of reference design boards for purchase, as well as official Yocto-based software releases. Similarly, other manufacturers that use NXP's SoCs offer reference design boards and their own Yocto-based BSP layers and even distributions.

Selecting the appropriate hardware to base your design on is one of the most important design decisions for an embedded product. Depending on your product needs, you will decide to either:

	Use a production-ready board, like a single-board computer (SBC)

	Use a System-on-Module (SoM) and build your custom carrier board around it

	Use NXP's SoC directly and design your own board

Most of the time, a production-ready board will not match the specific requirements of a professional embedded system, and the process of designing a complete carrier board using NXP's SoC would be too time consuming. So, using an appropriate module that already solves the most technically challenging design aspects is a common choice.

Some of the characteristics that are important to consider are:

	Industrial temperature ranges

	Power management

	Long-term availability

	Pre-certified wireless and Bluetooth (if applicable)

The Yocto community that support NXP-based boards is called the FSL community BSP and their main layers are called meta-freescale and meta-freescale-3rdparty. The Freescale brand was acquired by NXP with the purchase of Freescale. The selection of boards that are supported on meta-freescale is limited to NXP reference designs, which would be the starting point if you are considering designing your own carrier board around NXP's SoC. Boards from other vendors are maintained on the meta-freescale-3rdparty layer.

There are other embedded manufacturers that use meta-freescale, but they have not integrated their boards in the meta-freescale-3rdparty community layer. These manufacturers keep their own BSP layers, which depend on meta-freescale, with specific support for their hardware. An example of this is Digi International and its ConnectCore product range, with the Yocto layers available at https://github.com/digi-embedded/meta-digi. There is also a Yocto-based distribution available called Digi Embedded Yocto.

 How it works...

To understand NXP's Yocto ecosystem, we need to start with the FSL community BSP, comprising the meta-freescale layer with support for NXP's reference boards, and its companion, meta-freescale-3rdparty, with support for boards from other vendors, and its differences with the official NXP Yocto BSP releases that NXP offers for their reference designs.

There are some key differences between the community and NXP Yocto releases:

	NXP releases are developed internally by NXP without community involvement and are used for BSP validation on NXP reference boards.

	NXP releases go through an internal QA and validation test process, and they are maintained by NXP support.

	NXP releases for a specific platform reach a maturity point, after which they are no longer worked on. At this point, all the development work has been integrated into the community layer and the platforms are further maintained by the FSL BSP community.

	NXP Yocto releases are not Yocto compatible, while the community release is.

NXP's engineering works very closely with the FSL BSP community to make sure that all development in their official releases is integrated in the community layer in a reliable and quick manner.

The FSL BSP community is also very responsive and active, so problems can usually be worked on with them to benefit all parts.

 There's more...

The FSL community BSP extends Poky with the following layers:

	meta-freescale: This is the community layer that supports NXP reference designs. It has a dependency on OpenEmbedded-Core. Machines in this layer will be maintained even after NXP stops active development on them. You can download meta-freescale from its Git repository at http://git.yoctoproject.org/cgit/cgit.cgi/meta-freescale/.

Development discussions can be followed and contributed to by visiting the development mailing list at https://lists.yoctoproject.org/listinfo/meta-freescale.

The meta-freescale layer provides both the i.MX6 Linux kernel and the U-Boot source either from NXP's or from FSL community BSP maintained repositories using the following links:

	

	NXP's Linux kernel Git repository: http://git.freescale.com/git/cgit.cgi/imx/linux-imx.git/

	FSL community Linux kernel Git repository: https://github.com/Freescale/linux-fslc.git

	NXP's U-Boot Git repository: http://git.freescale.com/git/cgit.cgi/imx/uboot-imx.git/

	FSL community U-Boot Git repository: https://github.com/Freescale/u-boot-fslc.git

Other Linux kernel and U-Boot versions are available, but keeping the manufacturer's supported version is recommended.

The meta-freescale layer includes NXP's proprietary binaries to enable some hardware features—most notably its hardware graphics, multimedia, and encryption capabilities. To make use of these capabilities, the end user needs to accept the NXP End-User License Agreement (EULA), which is included in the meta-freescale layer.

	meta-freescale-3rdparty: This layer adds support for other community-maintained boards, for example, the Wandboard. To download the layer's content, you may visit https://github.com/Freescale/meta-freescale-3rdparty/.

	meta-freescale-distro: This layer adds a metadata layer for demonstration target images. To download the layer's content, you may visit https://github.com/Freescale/meta-freescale-distro.

This layer adds two different sets of distributions, one maintained by the FSL BSP community (fslc- distributions) and one maintained by NXP (fsl- distributions). They are a superset of Poky that allows you to easily choose the graphical backend to use between:

	

	framebuffer

	x11

	Wayland

	XWayland

We will learn more about the different graphical backends in Chapter 4, Application Development.

NXP uses another layer on top of the layers previously mentioned for their official software releases:

	meta-fsl-bsp-release: This is an NXP-maintained layer that is used in the official NXP software releases. It contains modifications to both meta-freescale and meta-freescale-distro. It is not part of the community release but can be accessed at http://git.freescale.com/git/cgit.cgi/imx/meta-fsl-bsp-release.git/.

NXP-based platforms extended layers hierarchy

 See also

	
For more information, refer to the FSL community BSP web page available at http://freescale.github.io/

	
NXP's official support community can be accessed at https://community.nxp.com/

 Installing support for NXP hardware

In this recipe, we will install the FSL community BSP Yocto release that adds support for NXP hardware to our Yocto installation.

 Getting ready

With so many layers, manually cloning each of them and adding them to your project's conf/bblayers.conf file is cumbersome. The community uses the repo tool developed by Google for their community Android to simplify the installation of Yocto.

To install repo in your host system, type in the following commands:

$ mkdir -p ${HOME}/bin/
$ curl https://storage.googleapis.com/git-repo-downloads/repo >
 ${HOME}/bin/repo
$ chmod a+x ${HOME}/bin/repo

The repo tool is a Python utility that parses an XML file, called manifest, with a list of Git repositories. The repo tool is then used to manage those repositories as a whole.

 How to do it...

For an example, we will use repo to download all the repositories listed in the previous recipe to our host system. For that, we will point it to the FSL community BSP manifest for the Rocko release:

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

 <default sync-j="4" revision="master"/>

 <remote fetch="https://git.yoctoproject.org/git" name="yocto"/>
 <remote fetch="https://github.com/Freescale" name="freescale"/>
 <remote fetch="https://github.com/openembedded" name="oe"/>

 <project remote="yocto" revision="rocko" name="poky" path="sources/poky"/>
 <project remote="yocto" revision="rocko" name="meta-freescale" path="sources/meta-freescale"/>

 <project remote="oe" revision="rocko" name="meta-openembedded" path="sources/meta-openembedded"/>

 <project remote="freescale" revision="rocko" name="fsl-community-bsp-base" path="sources/base">
 <linkfile dest="README" src="README"/>
 <linkfile dest="setup-environment" src="setup-environment"/>
 </project>

 <project remote="freescale" revision="rocko" name="meta-freescale-3rdparty" path="sources/meta-freescale-3rdparty"/>
 <project remote="freescale" revision="rocko" name="meta-freescale-distro" path="sources/meta-freescale-distro"/>
 <project remote="freescale" revision="rocko" name="Documentation" path="sources/Documentation"/>

</manifest>

The manifest file shows all the installation paths and repository sources for the different components that are going to be installed.

OEBPS/assets/e8dd91ef-514b-4dd0-9c91-f1c608e9eec7.jpg
~anMapt

OEBPS/assets/3c57bc97-f3bd-4ed0-a571-cb4572bf0280.png

OEBPS/assets/6ec151a9-d9d3-4f3d-b076-f1de1d299238.png
Foreword by:
Chris Simmonds
Founder of 2net.co.uk, Author, and Teacher

Embedded Linux
Development Using
Yocto Project

Cookbook

Second Edition

Practical recipes to help you leverage the power of Yocto
to build exciting Linux-based systems

n TN

OEBPS/assets/cf8d2cfc-84eb-4586-80fa-2b29d9463ab7.png

OEBPS/assets/6f8d49df-2d52-418b-adbd-126ee3d6023c.png
bblayers.conf

<

Z
conf/layer.conf]
. =
meta/conf/bitbake.conf é
(O] conf/site.conf, conf/auto.conf, conf/local.conf 8
% conf/machine/machine.conf %
o conf/distro/distro.conf 8
<C
o
Ll
x
<C
m
=
m
. <
Recipes
' 5
.bb P
.bbappend L|_.|
=
Fetch
Patch 5
Configure =)
. m
Compile
O]
=
S
S RPM IPK DEB &
O g
Q
L
< QUALITY ASSURANCE E
<
m
=
m

TARGET IMAGES
U-Boot SDK
Kernel

Root filesystem

OEBPS/assets/a99b2d3e-462b-4312-b999-0d455b8ecfe1.png
Packh

OEBPS/assets/3dcf2823-34bf-411e-9f14-e1dd39bf0c00.png
meta-qt5
meta-swupdate
meta-gnome

meta-openembedded

SOFTWARE

meta-digl

meta-fsi-bsp-release

OEM

meta-freescale
meta-freescale-3rdparty

meta-freescale-distro

FSL
COMMUNITY
BSP

meta
meta-poky

POKY

meta-yocto-bsp

