

 [image: Cover of C# 13 and .NET 9 – Modern Cross-Platform Development Fundamentals , Ninth Edition by Mark J. Price]

 C# 13 and .NET 9 – Modern Cross-Platform Development Fundamentals

 Ninth Edition

 Start building websites and services with ASP.NET Core 9, Blazor, and EF Core 9

 Mark J. Price

 [image:]

 C# 13 and .NET 9 – Modern Cross-Platform Development Fundamentals

 Ninth Edition

 Copyright © 2024 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Senior Publishing Product Manager: Suman Sen

 Acquisition Editor – Peer Reviews: Jane D'Souza

 Project Editor: Janice Gonsalves

 Content Development Editor: Shazeen Iqbal

 Copy Editor: Safis Editing

 Technical Editor: Simanta Rajbangshi

 Proofreader: Safis Editing

 Indexer: Rekha Nair

 Presentation Designer: Pranit Padwal

 Developer Relations Marketing Executive: Priyadarshini Sharma

 First published: March 2016

 Second edition: March 2017

 Third edition: November 2017

 Fourth edition: October 2019

 Fifth edition: November 2020

 Sixth edition: November 2021

 Seventh edition: November 2022

 Eighth edition: November 2023

 Ninth edition: November 2024

 Production reference: 1071124

 Published by Packt Publishing Ltd.

 Grosvenor House

 11 St Paul’s Square

 Birmingham

 B3 1RB, UK.

 ISBN 978-1-83588-122-4

 www.packt.com

 Contributors

 About the author

 Mark J. Price is a Microsoft Specialist: Programming in C# and Architecting Microsoft Azure Solutions, with over 20 years of experience. Since 1993, he has passed more than 80 Microsoft programming exams and specializes in preparing others to pass them. Between 2001 and 2003, Mark was employed to write official courseware for Microsoft in Redmond, USA. His team wrote the first training courses for C# while it was still an early alpha version. While with Microsoft, he taught “train-the-trainer” classes to get Microsoft Certified Trainers up-to-speed on C# and .NET. Mark has spent most of his career training a wide variety of students from 16-year-old apprentices to 70-year-old retirees, with the majority being professional developers. Mark holds a BSc in Computer Science.

 Thank you to all my readers. Your support means I get to write these books and celebrate your successes.

 Special thanks to the readers who give me actionable feedback via my GitHub repository and email and interact with me and the book communities on Discord. You help make my books even better with every edition.

 Extra special thanks to Alex, who brings joy and comfort to my life.

 About the reviewer

 Kieran Foot is a self-taught C# developer with a deep passion for learning new technologies and techniques. He is constantly exploring the latest developments in C#, with a particular focus on web technologies. As the lead software developer at ConnX Business Solutions, a small software company based in the UK, he has the opportunity to apply his knowledge in practice and assist others in acquiring new skills. He enjoys helping others and is an active member of the Packt community.

 Learn more on Discord

 To join the Discord community for this book – where you can share feedback, ask questions to the author, and learn about new releases – follow the QR code below:

 https://packt.link/csharp13dotnet9

 [image:]

 Preface

 There are programming books that are thousands of pages long that aim to be comprehensive references to the C# language, the .NET libraries, and app models like websites, services, and desktop and mobile apps.

 This book is different. It is concise and aims to be a brisk, fun read that is packed with practical hands-on walk-throughs of each subject. The breadth of the overarching narrative comes at the cost of some depth, but you will find many signposts to explore further if you wish.

 This book is simultaneously a step-by-step guide to learning modern C# and proven practices using cross-platform .NET, and a brief introduction to the fundamentals of modern web development, along with the creation of websites and services that can be built with these technologies. This book is most suitable for beginners to C# and .NET, as well as programmers who have worked with C# in the past but may feel left behind by the changes in the past few years.

 If you already have experience with older versions of the C# language, then in the first topic of Chapter 2, Speaking C#, you can review the tables of new language features in an online section.

 If you already have experience with older versions of the .NET libraries, then, in the first section of Chapter 7, Packaging and Distributing .NET Types, you can review the tables of the new library features in an online section.

 I will point out the cool corners and gotchas of C# and .NET so that you can impress colleagues and get productive fast. Rather than slowing down and boring some readers by explaining every little thing, I will assume that you are smart enough to Google an explanation for topics that are related but not necessary to include in a beginner-to-intermediate guide that has limited space in a printed book.

 Some chapters have links to additional related online-only content for those readers who would like more details. For example, Chapter 1, Hello, C#! Welcome, .NET!, has an online section about the history and background of .NET.

 Where to find the code solutions

 You can download solutions for the step-by-step guided tasks and exercises from the GitHub repository at the following link:

 https://github.com/markjprice/cs13net9

 If you don’t know how to download or clone a GitHub repository, then I provide instructions at the end of Chapter 1, Hello, C#! Welcome, .NET!.

 What this book covers

 Chapter 1, Hello, C#! Welcome, .NET!, is about setting up your development environment to use either Visual Studio or VS Code with C# Dev Kit. Then you will learn how to use them to create the simplest application possible with C# and .NET. For simplified console apps, you will see the use of the top-level program feature introduced in C# 9, which is then used by default in the project templates for C# 10 onwards. You will also learn about some good places to look for help, including AI tools like ChatGPT and GitHub Copilot, and ways to contact me to get help with an issue or give me feedback to improve the book today through its GitHub repository and in future print editions.

 Chapter 2, Speaking C#, introduces the versions of C# and has tables showing which version introduced new features in an online section. I will explain the grammar and vocabulary that you will use every day to write the source code for your applications. In particular, you will learn how to declare and work with variables of different types.

 Chapter 3, Controlling Flow, Converting Types, and Handling Exceptions, covers using operators to perform simple actions on variables, including comparisons, writing code that makes decisions, pattern matching, repeating a block of statements, and converting between types. This chapter also covers writing code defensively to handle exceptions when they inevitably occur, including using guard clauses like ThrowIfLessThan on the ArgumentOutOfRangeException class introduced with .NET 8.

 Chapter 4, Writing, Debugging, and Testing Functions, is about following the Don’t Repeat Yourself (DRY) principle by writing reusable functions using both imperative and functional implementation styles. You will also learn how to use debugging tools to track down and remove bugs, use Hot Reload to make changes while your app is running, monitor your code while it executes to diagnose problems, and rigorously test your code to remove bugs, ensuring stability and reliability before it gets deployed into production.

 Chapter 5, Building Your Own Types with Object-Oriented Programming, discusses all the different categories of members that a type like a class can have, including fields to store data and methods to perform actions. You will use Object-Oriented Programming (OOP) concepts, such as aggregation and encapsulation, and how to manage namespaces for types, including the ability to alias any type introduced with C# 12. You will learn language features such as tuple syntax support and out variables, local functions, and default literals and inferred tuple names. You will also learn how to define and work with immutable types using the record keyword, init-only properties, and with expressions, introduced in C# 9. Finally, we look at how C# 11 introduced the required keyword to help avoid the overuse of constructors to control initialization, how C# 12 introduced primary constructors for non-record types, and how C# 13 expands the supported types for a params parameter and how you can now define partial properties as well as partial methods.

 Chapter 6, Implementing Interfaces and Inheriting Classes, explains deriving new types from existing ones using OOP. You will learn how to define operators, delegates, and events, how to implement interfaces about base and derived classes, how to override a member of a type, how to use polymorphism, how to create extension methods, how to cast between classes in an inheritance hierarchy, and about the big changes in C# 8 with the introduction of nullable reference types, along with the switch to make this the default in C# 10 and later. In an optional online-only section, you can learn how analyzers can help you write better code.

 Chapter 7, Packaging and Distributing .NET Types, introduces the versions of .NET and includes tables showing which version introduced new library features in an online section. I will then present the .NET types that are compliant with .NET Standard and explain how they relate to C#. Throughout this chapter, you will learn how to write and compile code on any of the supported operating systems, including the Windows, macOS, and Linux variants. You will learn how to package, deploy, and distribute your own apps and libraries. In three optional online-only sections, you can learn how to use legacy .NET Framework libraries in .NET libraries, about the possibility of porting legacy .NET Framework code bases to modern .NET, and about source generators and how to create them.

 Chapter 8, Working with Common .NET Types, discusses the types that allow your code to perform common practical tasks, such as manipulating numbers and text, storing items in collections, and, in an optional online-only section, working with a network using low-level types. You will also learn about regular expressions and the improvements that make writing them easier, as well as how to use source generators to improve their performance. Introduced with .NET 9 are new classes for Base64-encoded URLs, performing multiplication on big integers, ordered dictionaries, read-only sets, improvements to searching in strings, and being able to generate regular expressions on a partial property.

 Chapter 9, Working with Files, Streams, and Serialization, covers interacting with a filesystem, reading and writing to files and streams, text encoding, and serialization formats like JSON and XML, including the improved functionality and performance of the System.Text.Json classes. If you use Linux, then you will be interested in how to programmatically work with tar archives, which you can learn about in an online-only section. .NET 9 (finally!) removes the dangerous legacy BinaryFormatter serialization class and adds a class to export JSON schemas.

 Chapter 10, Working with Data Using Entity Framework Core, explains reading and writing to relational databases, such as SQL Server and SQLite, using the object-relational mapping (ORM) technology named Entity Framework Core (EF Core). You will learn how to define entity models that map to existing tables in a database using Database First models. In three optional online-only sections, you can also learn how to define Code First models that can create tables and databases at runtime, how to insert, update, and delete data, and how to group multiple changes together using transactions.

 Chapter 11, Querying and Manipulating Data Using LINQ, teaches you about Language INtegrated Queries (LINQ)—language extensions that add the ability to work with sequences of items and filter, sort, and project them into different outputs. This chapter includes LINQ methods introduced in .NET 6, like TryGetNonEnumeratedCount and DistinctBy, in .NET 7, like Order and OrderDescending, and in .NET 9, like CountBy, AggregateBy, and Index. Optional online-only sections cover using multiple threads with parallel LINQ, working with LINQ to XML, and creating your own LINQ extension methods.

 Chapter 12, Introducing Modern Web Development Using .NET, introduces you to the types of web projects that can be built using C# and .NET. You will also build an EF Core model to represent the database for a fictional organization named Northwind that will be used throughout the rest of the chapters in the book. You will learn how to efficiently manage NuGet package version using Central Package Management. Finally, you will be introduced to common web technologies like HTML and CSS.

 Chapter 13, Building Websites Using ASP.NET Core, is about learning the basics of building websites with a modern HTTP architecture on the server side, using ASP.NET Core. You will learn how to implement the ASP.NET Core feature known as Blazor static Server-Side Rendering (SSR), which replaces the legacy Razor Pages technology for creating data-driven web pages. You will learn how to optimize static assets like JavaScript and stylesheets using a new method introduced with .NET 9, MapStaticAssets. In two optional online-only sections, you’ll see how to customize the HTTP request and response pipeline, and you’ll gain insight into enabling HTTP/3 in your website project.

 Chapter 14, Building Interactive Web Components Using Blazor, introduces how to build web user interface components using Blazor that can be executed either on the server side or on the client side inside the web browser. You will see how to build components that are easy to switch between the client and the server, with the new hosting model introduced with .NET 8.

 Chapter 15, Building and Consuming Web Services, explains building backend REST architecture web services using the ASP.NET Core Minimal APIs. We will cover how to document them using the new Microsoft-implemented OpenAPI documentation generator. Introduced with .NET 9 is a hybrid cache that you will learn how to use to get the best of in-memory and distributed caching. Then we will see how to properly consume them using factory-instantiated HTTP clients. In two optional online-only sections, you will be introduced to advanced features, like health checks and adding security HTTP headers, and how Minimal APIs projects can use native ahead-of-time (AOT) compilation during the publishing process to improve startup time and memory footprint.

 Epilogue describes your options for further study about C# and .NET.

 Appendix, Answers to the Test Your Knowledge Questions, has the answers to the test questions at the end of each chapter. You can read the appendix at the following link: https://packt.link/LsQtz.

 What you need for this book

 You can develop and deploy C# and .NET apps using VS Code and the command-line tools on most operating systems, including Windows, macOS, and many varieties of Linux. An operating system that supports VS Code and an internet connection is all you need to follow along with this book.

 If you prefer alternatives, then the choice is yours whether to use Visual Studio, or a third-party tool like JetBrains Rider.

 Downloading the color images of this book

 We also provide you with a PDF file that has color images of the screenshots and diagrams used in this book. The color images will help you better understand the changes in the output.

 You can download this file from https://packt.link/gbp/9781835881224.

 Conventions

 In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

 CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “The Controllers, Models, and Views folders contain ASP.NET Core classes and the .cshtml files for execution on the server.”

 A block of code is set as follows:

 // storing items at index positions
names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

 When we wish to draw your attention to a particular part of a code block, the relevant lines or items are highlighted:

 // storing items at index positions
names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

 Any command-line input or output is written as follows:

 dotnet new console

 Bold: Indicates a new term, an important word, or words that you see on the screen, for example, in menus or dialog boxes. For example: “Clicking on the Next button moves you to the next screen.”

 Important notes and links to external sources for further reading appear in a box like this.

 Good Practice: Recommendations for how to program like an expert appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata, select your book, click on the Errata Submission Form link, and enter the details.

 Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name.

 Please contact us at copyright@packt.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

 Leave a Review!

 Thank you for purchasing this book from Packt Publishing—we hope you enjoy it! Your feedback is invaluable and helps us improve and grow. Once you’ve completed reading it, please take a moment to leave an Amazon review; it will only take a minute, but it makes a big difference for readers like you.

 Scan the QR code below to receive a free ebook of your choice.

 [image: A qr code with black squares Description automatically generated]
 https://packt.link/NzOWQ

 Download a free PDF copy of this book

 Thanks for purchasing this book!

 Do you like to read on the go but are unable to carry your print books everywhere?

 Is your eBook purchase not compatible with the device of your choice?

 Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

 Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

 The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily.

 Follow these simple steps to get the benefits:

 	Scan the QR code or visit the link below:

 [image:]
 https://packt.link/free-ebook/9781835881224

 	Submit your proof of purchase.

 	That’s it! We’ll send your free PDF and other benefits to your email directly.

 1

 Hello, C#! Welcome, .NET!

 In this first chapter, the first goal is setting up your development environment to use Visual Studio 2022, Visual Studio Code, or JetBrains Rider.

 Throughout this book, I will use the names Visual Studio, VS Code, and Rider to refer to these three code editors, respectively.

 The other goals are understanding the similarities and differences between modern .NET, .NET Core, .NET Framework, Mono, Xamarin, and .NET Standard; creating the simplest application possible with C# 13 and .NET 9, using various code editors; and then discovering good places to look for help.

 My style of writing ensures that you can get started from my book and then switch to online documentation and other online resources, like videos, blogs, and forums, which are the main ways that developers like to learn, as shown at the following link: https://survey.stackoverflow.co/2024/developer-profile#learning-to-code.

 This chapter covers the following topics:

 	Introducing this book and its contents

 	Setting up your development environment

 	Understanding .NET

 	Building console apps using Visual Studio

 	Building console apps using VS Code

 	Making good use of the GitHub repository for this book

 	Looking for help

 Introducing this book and its contents

 Let’s get started by introducing you to the code solutions, structure, and content of this book.

 Getting code solutions for this book

 The GitHub repository for this book has solutions that use full application projects for all code tasks and exercises, found at the following link:

 https://github.com/markjprice/cs13net9

 After navigating to the GitHub repository in your web browser, press the . (dot) key on your keyboard, or manually change .com to .dev in the link to convert the repository into a live code editor based on VS Code, called GitHub Codespaces, as shown in Figure 1.1:

 [image:]
 Figure 1.1: GitHub Codespaces live-editing the book’s GitHub repository

 Warning! When you access a repository using GitHub Codespaces, its GitHub Repositories extension will attempt to download the repository’s index. By default, the maximum size can be up to 50MB but the repository exceeds this limit, so you will see the following warning message: Repository exceeds download size limit! Continuing with partial text services. You can ignore this message because you are not using the full features.

 We provide you with a PDF file that has color images of the screenshots and diagrams used in this book. You can download this file from https://packt.link/gbp/9781837635870.

 VS Code in a web browser is great to run alongside your chosen local code editor as you work through the book’s coding tasks. You can compare your code to the solution code and easily copy and paste parts if needed.

 You do not need to use or know anything about Git to get the solution code of this book. You can download a ZIP file containing all the code solutions by using the following direct link and then extract the ZIP file into your local filesystem: https://github.com/markjprice/cs13net9/archive/refs/heads/main.zip.

 .NET terms used in this book

 Throughout this book, I use the term modern .NET to refer to .NET 9 and its predecessors, like .NET 6, that derive from .NET Core. I use the term legacy .NET to refer to .NET Framework, Mono, Xamarin, and .NET Standard.

 Modern .NET is a unification of those legacy platforms and standards.

 The structure and style of this book

 After this first chapter, the book will be divided into three parts: language, libraries, and web development.

 First, we will cover the grammar and vocabulary of the C# language; second, we will cover the types available in the .NET libraries for building app features; and third, we will cover the fundamentals of cross-platform websites, services, and browser apps that you can build using C# and .NET.

 Most people learn complex topics best by imitation and repetition, rather than reading a detailed explanation of the theory; therefore, I will not overload you with detailed explanations of every step throughout this book. The idea is to get you to write some code and see it run.

 You don’t need to know all the nitty-gritty details immediately. That will be something that comes with time as you build your own apps and go beyond what any book can teach you.

 In the words of Samuel Johnson, author of the English dictionary in 1755, I have committed “a few wild blunders, and risible absurdities, from which no work of such multiplicity is free.” I take sole responsibility for these and hope you appreciate the challenge of my attempt to lash the wind by writing this book about rapidly evolving technologies, like C# and .NET, and the apps that you can build with them.

 If you have a complaint about this book, then please contact me before writing a negative review on Amazon. Authors cannot respond to Amazon reviews, so I cannot contact you to resolve the problem and help you or listen to your feedback and try to do better in the next edition. Please ask a question on the Discord channel for this book at https://packt.link/csharp13dotnet9, email me at markjprice@gmail.com, or raise an issue in the GitHub repository for the book at the following link: https://github.com/markjprice/cs13net9/issues.

 Topics covered by this book

 The following topics are covered in this book:

 	Language fundamentals: Fundamental features of the C# language, from declaring variables to writing functions and object-oriented programming.

 	Library fundamentals: Fundamental features of the .NET base class library, as well as some important optional packages for common tasks like database access.

 	Modern web development fundamentals: Modern features of the ASP.NET Core framework for server-side and client-side website and web service development. This includes Blazor and Minimal APIs and excludes controller-based features like MVC and Web API, or legacy features like Razor Pages.

 This book, C# 13 and .NET 9 – Modern Cross-Platform Development Fundamentals, is best read linearly, chapter by chapter, because it builds up fundamental skills and knowledge.

 Topics covered by Apps and Services with .NET 8

 The following topics are available in a companion book, Apps and Services with .NET 8:

 	Data: SQL Server and Azure Cosmos DB.

 	Specialized libraries: Dates, times, time zones, and internationalization; common third-party libraries for image handling, logging, mapping, and generating PDFs; multitasking and concurrency; and many more.

 	Services: Caching, queuing, background services, gRPC, GraphQL, Azure Functions, SignalR, and Minimal APIs.

 	User interfaces: ASP.NET Core, Blazor, and .NET MAUI.

 This book can be read more like a cookbook, so if you are especially interested in building gRPC services, then you can read that chapter without the preceding chapters about minimal API services.

 Topics covered by Tools and Skills for .NET 8

 The following topics are available in a companion book, Tools and Skills for .NET 8:

 	Debugging and memory analysis.

 	All the important types of testing, from unit and integration to performance and web UI testing.

 	Docker and .NET Aspire for local distributed development and testing.

 	Design patterns and solution architecture.

 	Preparing for an interview to get the .NET developer career that you want.

 My books for .NET 8 are equally applicable to .NET 9. You can make your projects target .NET 9 and all the code examples will work. You should not need to wait for packages to upgrade to also target .NET 9, due to backward compatibility.

 Finding all my books

 To see a list of all the books I have published with Packt, you can use the following link:

 https://subscription.packtpub.com/search?query=mark+j.+price

 A similar list is available on Amazon:

 https://www.amazon.com/Mark-J-Price/e/B071DW3QGN/

 You can search other book-selling sites for my books too.

 Setting up your development environment

 Before you start programming, you’ll need a code editor for C#, either from Microsoft or a third party.

 Microsoft has a family of code editors and Integrated Development Environments (IDEs), which include:

 	Visual Studio for Windows

 	VS Code for Windows, Mac, or Linux

 	VS Code for the Web or GitHub Codespaces

 Third parties have created their own C# code editors; for example, JetBrains has the cross-platform Rider, which is available for Windows, Mac, or Linux and since October 2024 is free for non-commercial use. Rider is popular with more experienced .NET developers.

 Warning! Although JetBrains is a fantastic company with great products, both Rider and the ReSharper extension for Visual Studio are software, and all software has bugs and quirky behavior. For example, they might show errors like Cannot resolve symbol in your Razor Pages, Razor views, and Blazor components. Yet you can build and run those files because there is no actual problem. If you have installed the Unity Support plugin, then it will complain about boxing operations (which are a genuine problem for Unity game developers) but in projects that are not Unity; hence, the warning is not applicable.

 Most readers use Visual Studio, which is a large and complex tool that can do many things. But Visual Studio likes to provide its own mechanism to do as much as possible, and a .NET developer who uses it could easily think that Visual Studio is the only way to complete a .NET-related task, like modifying project configuration or editing a code file.

 Always try to remember that Visual Studio and all the other code editors are just tools that do work for you that you could do manually. They just show you a view above what is really happening in the files you’re working on, like the project file and all the C# code files.

 You could just use a plain text editor to manually edit the project and code files. Ultimately, you use the dotnet command-line interface to compile– aka build– the project files into a runnable assembly packaged as either a .dll or .exe file, as shown in Figure 1.2:

 [image:]
 Figure 1.2: All code editors ultimately just change underlying files

 Choosing the appropriate tool and application type for learning

 What is the best tool and application type for learning C# and .NET?

 When learning, the best tool is one that helps you write code and configuration but does not hide what is really happening. IDEs provide graphical user interfaces that are friendly to use, but what are they doing for you underneath? A more basic code editor that is closer to the action while providing help to write your code can be better while you are learning.

 Having said that, you could make the argument that the best tool is the one you are already familiar with or that you or your team will use as your daily development tool. For that reason, I want you to be free to choose any C# code editor or IDE to complete the coding tasks in this book, including VS Code, Visual Studio, and even Rider.

 In this book, I give detailed step-by-step instructions in this chapter on how to create multiple projects in both Visual Studio and VS Code. There are also links to online instructions for other code editors, as shown at the following link: https://github.com/markjprice/cs13net9/blob/main/docs/code-editors/README.md.

 In subsequent chapters, I will only give the names of projects along with general instructions, so you can use whichever tool you prefer.

 The best application type for learning the C# language constructs and many of the .NET libraries is one that does not distract with unnecessary application code. For example, there is no need to create an entire Windows desktop application or a website just to learn how to write a switch statement.

 For that reason, I believe the best method for learning the C# and .NET topics in Chapters 1 to 11 is to build console apps. Then, in Chapters 12 to 15, which are about web development, you will build websites and services using the modern parts of ASP.NET Core, including Blazor and Minimal APIs.

 VS Code for cross-platform development

 The most modern and lightweight code editor to choose from, and the only one from Microsoft that is cross-platform, is VS Code. It can run on all common operating systems, including Windows, macOS, and many varieties of Linux, including Red Hat Enterprise Linux (RHEL) and Ubuntu.

 VS Code is a good choice for modern cross-platform development because it has an extensive and growing set of extensions to support many languages beyond C#. The most important extension for C# and .NET developers is the C# Dev Kit that was released in preview in June 2023, as it turns VS Code from a general-purpose code editor into a tool optimized for C# and .NET developers.

 More Information: You can read about the C# Dev Kit extension in the official announcement at the following link: https://devblogs.microsoft.com/visualstudio/announcing-csharp-dev-kit-for-visual-studio-code/.

 Being cross-platform and lightweight, VS Code and its extensions can be installed on all platforms that your apps will be deployed to for quick bug fixes and so on. Choosing VS Code means a developer can use a cross-platform code editor to develop cross-platform apps. VS Code is supported on ARM processors so that you can develop on Apple Silicon computers and Raspberry Pi computers.

 VS Code has strong support for web development, although it currently has weak support for mobile and desktop development.

 VS Code is by far the most popular code editor or IDE, with over 73% of professional developers selecting it in a Stack Overflow survey, which you can read at the following link: https://survey.stackoverflow.co/2024/.

 GitHub Codespaces for development in the cloud

 GitHub Codespaces is a fully configured development environment, based on VS Code, that can be spun up in an environment hosted in the cloud and accessed through any web browser. It supports Git repos, extensions, and a built-in command-line interface, so you can edit, run, and test from any device.

 But note that for your GitHub Codespaces experience to be fully functional and practically useful, it does have a license cost.

 More Information: You can learn more about GitHub Codespaces at the following link: https://github.com/features/codespaces.

 Visual Studio for general development

 Visual Studio can create most types of applications, including console apps, websites, web services, and desktop apps. Although you can use Visual Studio to write a cross-platform mobile app, you still need macOS and Xcode to compile it.

 Visual Studio only runs on Windows 10 version 1909 or later, Home, Professional, Education, or Enterprise; or on Windows 11 version 21H2 or later, Home, Pro, Pro Education, Pro for Workstations, Enterprise, or Education. Windows Server 2016 and later are also supported. 32-bit operating systems and Windows S mode are not supported.

 Warning! Visual Studio for Mac does not officially support .NET 8 or later, and it reached its end of life in August 2024. If you have been using Visual Studio for Mac, then you should switch to VS Code for Mac, Rider for Mac, or use Visual Studio for Windows in a virtual machine on your local computer or in the cloud, using a technology like Microsoft Dev Box. The retirement announcement can be read here: https://devblogs.microsoft.com/visualstudio/visual-studio-for-mac-retirement-announcement/.

 What I used

 To write and test the code for this book, I used the following hardware and software:

 	Windows 11 on a Surface Laptop 7 Copilot+ PC with Visual Studio, VS Code, and Rider.

 	macOS on an Apple Silicon Mac mini (M1) desktop with VS Code and Rider.

 I hope that you have access to a variety of hardware and software too, as seeing the differences in platforms deepens your understanding of development challenges, although any one of the above combinations is enough to learn the fundamentals of C# and .NET and how to build practical apps and websites.

 Deploying cross-platform

 Your choice of code editor and operating system for development does not limit where your code gets deployed.

 .NET 9 supports the following platforms for deployment:

 	Windows: Windows 10 version 1607 or later, Windows 11 version 22000 or later, Windows Server 2012 R2 SP1 or later, and Nano Server version 2019 or 2022.

 	Mac: macOS Catalina version 10.15 or later and in the Rosetta 2 x64 emulator.

 	Linux: Alpine Linux 3.19 or 3.20, CentOS Stream 9, Debian 12, Fedora 40, openSUSE 15.5 or 15.6, RHEL 8 or 9, SUSE Enterprise Linux 15.5 or 15.6, and Ubuntu 20.04, 22.04, or 24.04.

 	Android: API 21 or later is the minimum SDK target. Versions 12, 12.1, 13, and 14.

 	iOS and iPadOS: 15, 16, or 17. iOS 12.2 is used as the minimum SDK target.

 	Mac Catalyst: 12, 13, or 14.

 Warning! .NET support for Windows 7 and 8.1 ended in January 2023: https://github.com/dotnet/core/issues/7556.

 Windows Arm64 support in .NET 5 and later means you can develop on, and deploy to, Windows Arm devices like Microsoft’s Windows Dev Kit 2023 (formerly known as Project Volterra) and Surface Pro 11 and Surface Laptop 7.

 You can review the latest supported operating systems and versions at the following link: https://github.com/dotnet/core/blob/main/release-notes/9.0/supported-os.md.

 All versions of .NET that are supported can be automatically patched via Microsoft Update on Windows.

 Downloading and installing Visual Studio

 Many professional .NET developers use Visual Studio in their day-to-day development work. Even if you choose to use VS Code to complete the coding tasks in this book, you might want to familiarize yourself with Visual Studio too. It is not until you have written a decent amount of code with a tool that you can really judge if it fits your needs.

 If you do not have a Windows computer, then you can skip this section and continue to the next section, where you will download and install VS Code on macOS or Linux.

 Since October 2014, Microsoft has made a professional-quality edition of Visual Studio available to students, open-source contributors, and individuals for free. It is called Community Edition. Any of the editions are suitable for this book. If you have not already installed it, let’s do so now:

 	Download the latest version of Visual Studio from the following link: https://visualstudio.microsoft.com/downloads/.

 Visual Studio vNext: At the time of writing, Visual Studio is version 17.12 and branded as Visual Studio 2022. I expect the next major version of Visual Studio to be version 18.0 and be branded as Visual Studio 2025. It is likely to be released in the first half of 2025, after this book is published. Visual Studio 2025 will have mostly the same features as the 2022 edition, although the user interface might move things around a bit.

 	Run the installer to start the installation.

 	On the Workloads tab, select the following:
 	ASP.NET and web development.

 	.NET desktop development (because this includes console apps).

 	Desktop development with C++ with all default components (because this enables you to publish console apps and web services that start faster and have smaller memory footprints).

 	Click Install and wait for the installer to acquire the selected software, and then install it.

 	When the installation is complete, click Launch.

 	The first time that you run Visual Studio, you will be prompted to sign in. If you have a Microsoft account, you can use that account. If you don’t, then register for a new one at the following link: https://signup.live.com/.

 	The first time that you run Visual Studio, you will be prompted to configure your environment. For Development Settings, choose Visual C#. For the color theme, I chose Blue, but you can choose whatever tickles your fancy.

 	If you want to customize your keyboard shortcuts, navigate to Tools | Options…, and then select the Keyboard section.

 Keyboard shortcuts for Visual Studio

 In this book, I will avoid showing keyboard shortcuts, since they are often customized. Where they are consistent across code editors and commonly used, I will try to show them.

 If you want to identify and customize your keyboard shortcuts, then you can, as shown at the following link: https://learn.microsoft.com/en-us/visualstudio/ide/identifying-and-customizing-keyboard-shortcuts-in-visual-studio.

 Downloading and installing VS Code

 VS Code has rapidly improved over the past couple of years and has pleasantly surprised Microsoft with its popularity. If you are brave and like to live on the bleeding edge, then there is the Insiders edition, which is a daily build of the next version.

 Even if you plan to only use Visual Studio for development, I recommend that you download and install VS Code and try the coding tasks in this chapter using it, and then decide if you want to stick with just using Visual Studio for the rest of the book.

 Let’s now download and install VS Code, the .NET SDK, and the C# Dev Kit extension:

 	Download and install either the Stable build or the Insiders edition of VS Code from the following link: https://code.visualstudio.com/.

 More Information: If you need more help installing VS Code, you can read the official setup guide at the following link: https://code.visualstudio.com/docs/setup/setup-overview.

 	Download and install the .NET SDK for version 9.0 and version 8.0 from the following link: https://www.microsoft.com/net/download.

 In real life, you are extremely unlikely to only have one .NET SDK version installed on your computer. To learn how to control which .NET SDK version is used to build a project, we need multiple versions installed. .NET 8 and .NET 9 are the only supported versions at the time of publishing in November 2024. You can safely install multiple SDKs side by side. The most recent SDK will be used to build your projects.

 	To install the C# Dev Kit extension with a user interface, you must first launch the VS Code application.

 	In VS Code, click the Extensions icon or navigate to View | Extensions.

 	C# Dev Kit is one of the most popular extensions available, so you should see it at the top of the list, or you can enter C# in the search box.

 C# Dev Kit has a dependency on the C# extension version 2.0 or later, so you do not have to install the C# extension separately. Note that C# extension version 2.0 or later no longer uses OmniSharp, since it has a new Language Server Protocol (LSP) host. C# Dev Kit also has dependencies on the .NET Install Tool for Extension Authors and IntelliCode for C# Dev Kit extensions, so they will be installed too.

 	Click Install and wait for the supporting packages to download and install.

 Good Practice: Be sure to read the license agreement for C# Dev Kit. It has a more restrictive license than the C# extension: https://aka.ms/vs/csdevkit/license.

 Installing other extensions

 In later chapters of this book, you will use more VS Code extensions. If you want to install them now, all the extensions that we will use are shown in Table 1.1:

 	
 Extension name and identifier

 	
 Description

 	
 C# Dev Kit

 ms-dotnettools.csdevkit

 	
 Official C# extension from Microsoft. Helps you manage your code with a solution explorer and test your code with integrated unit test discovery and execution, elevating your C# development experience wherever you like to develop (Windows, macOS, Linux, and even in a codespace).

 	
 C#

 ms-dotnettools.csharp

 	
 Provides rich language support for C# and is shipped along with C# Dev Kit. Powered by a Language Server Protocol (LSP) server, this extension integrates with open source components like Roslyn and Razor to provide rich type information and a faster, more reliable C# experience.

 	
 IntelliCode for C# Dev Kit

 ms-dotnettools.vscodeintellicode-csharp

 	
 Provides AI-assisted development features for Python, TypeScript/JavaScript, C#, and Java developers.

 	
 MSBuild project tools

 tintoy.msbuild-project-tools

 	
 Provides IntelliSense for MSBuild project files, including autocomplete for <PackageReference> elements.

 	
 Markdown All in One

 yzhang.markdown-all-in-one

 	
 All you need for Markdown (keyboard shortcuts, table of contents, auto preview, and more).

 	
 Polyglot Notebooks

 ms-dotnettools.dotnet-interactive-vscode

 	
 This extension adds support for using .NET and other languages in a notebook. It has a dependency on the Jupyter extension (ms-toolsai.jupyter), which itself has dependencies.

 	
 ilspy-vscode

 icsharpcode.ilspy-vscode

 	
 Decompile MSIL assemblies – support for modern .NET, .NET Framework, .NET Core, and .NET Standard.

 	
 REST Client

 humao.rest-client

 	
 Send an HTTP request and view the response directly in VS Code.

 Table 1.1: VS Code extensions for .NET development

 You can install a VS Code extension at the command prompt or terminal, as shown in Table 1.2:

 	
 Command

 	
 Description

 	
 code --list-extensions

 	
 List installed extensions.

 	
 code --install-extension <extension-id>

 	
 Install the specified extension.

 	
 code --uninstall-extension <extension-id>

 	
 Uninstall the specified extension.

 Table 1.2: Managing VS Code extensions at the command prompt

 For example, to install the C# Dev Kit extension, enter the following at the command prompt:

 code --install-extension ms-dotnettools.csdevkit

 I have created PowerShell scripts to install and uninstall the VS Code extensions in the preceding table. You can find them at the following link: https://github.com/markjprice/cs13net9/tree/main/scripts/extension-scripts/. PowerShell scripts are cross-platform, as you can read about at the following link: https://learn.microsoft.com/en-us/powershell/scripting/overview.

 Understanding VS Code versions

 Microsoft releases a new feature version of VS Code (almost) every month and bug-fix versions more frequently. For example:

 	Version 1.93.0, August 2024 feature release

 	Version 1.93.1, August 2024 bug fix release

 The version used in this book is 1.93.0, the August 2024 feature release, but the version of VS Code is less important than the version of the C# Dev Kit or C# extension that you install. I recommend C# Dev Kit v1.10.18 or later with C# extension v2.45.20 or later.

 While the C# extension is not required, it provides IntelliSense as you type, code navigation, and debugging features, so it’s something that’s very handy to install and keep updated to support the latest C# language features.

 Keyboard shortcuts for VS Code

 If you want to customize your keyboard shortcuts for VS Code, then you can, as shown at the following link: https://code.visualstudio.com/docs/getstarted/keybindings.

 I recommend that you download a PDF of VS Code keyboard shortcuts for your operating system from the following list:

 	Windows: https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf

 	macOS: https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf

 	Linux: https://code.visualstudio.com/shortcuts/keyboard-shortcuts-linux.pdf

 Understanding .NET

 “Those who cannot remember the past are condemned to repeat it.”

 – George Santayana

 .NET, .NET Core, .NET Framework, .NET Standard, and Xamarin are related and overlapping platforms for developers used to build applications and services.

 If you are not familiar with the history of .NET, then I will introduce you to each of these .NET concepts at the following link:

 https://github.com/markjprice/cs13net9/blob/main/docs/ch01-dotnet-history.md

 As time moves on, more and more readers already know the history of .NET, so it would be a waste of space in the book to continue to include it. But if you are new to it, then make sure you read all the extras that I provide online, like the preceding one.

 Understanding .NET support

 .NET versions are either Long-Term Support (LTS), Standard-Term Support (STS) (formerly known as Current), or Preview, as described in the following list:

 	LTS releases are a good choice for applications that you do not intend to update frequently, although you must update the .NET runtime for your production code monthly. LTS releases are supported by Microsoft for 3 years after General Availability (GA), or 1 year after the next LTS release ships, whichever is longer.

 	STS releases include features that may change based on feedback. These are a good choice for applications that you are actively developing because they provide access to the latest improvements. STS releases are supported by Microsoft for 18 months after GA, or 6 months after the next STS or LTS release ships, whichever is longer.

 	Preview releases are for public testing. These are a good choice for adventurous programmers who want to live on the bleeding edge, or programming book authors who need to have early access to new language features, libraries, and app and service platforms. Preview releases are not usually supported by Microsoft, but some preview or Release Candidate (RC) releases may be declared Go Live, meaning they are supported by Microsoft in production.

 STS and LTS releases receive critical patches throughout their lifetime for security and reliability.

 Good Practice: You must stay up to date with the latest patches to get support. For example, if a system is running on .NET runtime version 9.0.0 and then version 9.0.1 is released, you must install version 9.0.1 to get support. These updates are released on the second Tuesday of each month, aka Patch Tuesday.

 To better understand your choices of STS and LTS releases, it is helpful to see them visualized, with 3-year-long black bars for LTS releases, and 1½-year-long gray bars for STS releases, as shown in Figure 1.3:

 [image:]
 Figure 1.3: Support durations for recent and planned STS and LTS releases

 During the lifetime of .NET 9, .NET 8 will still be supported and .NET 10 will be released. I have tried to be cognizant that you might choose to use .NET 8 or .NET 10 with this book; however, obviously, the book cannot cover new features of .NET 10, since I don’t know what they will be!

 If you need LTS from Microsoft, then set your .NET projects to target .NET 8 today and then migrate to .NET 10 after it is released in November 2025. This is because .NET 9 is an STS release, and therefore, it will lose support in May 2026, before .NET 8 does in November 2026. As soon as .NET 10 is released, start upgrading your .NET 8 projects to it. You will have a year to do so before .NET 8 reaches its end of life.

 Good Practice: Remember that with all releases, you must upgrade to bug-fix releases like .NET runtime 9.0.1 and .NET SDK 9.0.101, which are expected to release in December 2024, as updates are released every month.

 At the time of publishing in November 2024, all versions of modern .NET have reached their EOL, except those shown in the following list, which are ordered by their EOL dates:

 	.NET 9 will reach EOL in May 2026.

 	.NET 8 will reach EOL in November 2026.

 	.NET 10 will be available from November 2025 and it will reach EOL in November 2028.

 You can check which .NET versions are currently supported and when they will reach EOL at the following link: https://github.com/dotnet/core/blob/main/releases.md.

 Understanding end of life (EOL)

 End of support or end of life (EOL) means the date after which bug fixes, security updates, or technical assistance are no longer available from Microsoft.

 For example, now that .NET 6 has reached end of support on November 12, 2024, you can expect the following:

 	Projects that use .NET 6 will continue to run.

 	No new security updates will be issued for .NET 6 and therefore continuing to use an unsupported version will increasingly expose you to security vulnerabilities.

 	You might not be able to access technical support for any .NET 6 applications that you continue to use.

 	You will get NETSDK1138 build warnings when targeting .NET 6 from a later SDK like the .NET 9 SDK.

 	You will get warnings in Visual Studio when targeting .NET 6.

 Understanding .NET support phases

 The lifetime of a version of .NET passes through several phases, during which they have varying levels of support, as described in the following list:

 	Preview: These are not supported at all. .NET 9 Preview 1 to Preview 7 were in this support phase from February 2024 to August 2024.

 	Go Live: These are supported until GA, and then they become immediately unsupported. You must upgrade to the final release version as soon as it is available. .NET 9 Release Candidate 1 and Release Candidate 2 were in this support phase in September and October 2024, respectively.

 	Active: .NET 9 will be in this support phase from November 2024 to November 2025.

 	Maintenance: Supported only with security fixes for the last 6 months of its lifetime. .NET 9 will be in this support phase from November 2025 to May 2026.

 	EOL: Not supported. .NET 9 will reach its EOL in May 2026.

 Understanding .NET runtime and .NET SDK versions

 If you have not built a standalone app, then the .NET runtime is the minimum you need to install so that an operating system can run a .NET application. The .NET SDK includes the .NET runtime, as well as the compilers and other tools needed to build .NET code and apps.

 .NET runtime versioning follows semantic versioning – that is, a major increment indicates breaking changes, minor increments indicate new features, and patch increments indicate bug fixes.

 .NET SDK versioning does not follow semantic versioning. The major and minor version numbers are tied to the runtime version they are matched with. The third number follows a convention that indicates the minor and patch versions of the SDK. The third number starts at 100 for the initial version (equivalent to 0.0 for the minor and patch numbers). The first digit increments with minor increments, and the other two digits increment with patch increments.

 You can see an example of this in Table 1.3:

 	
 Change

 	
 Runtime

 	
 SDK

 	
 Initial release

 	
 9.0.0

 	
 9.0.100

 	
 SDK bug fix

 	
 9.0.0

 	
 9.0.101

 	
 Runtime and SDK bug fix

 	
 9.0.1

 	
 9.0.102

 	
 SDK new feature

 	
 9.0.1

 	
 9.0.200

 Table 1.3: Examples of changes and versions for a .NET runtime and SDK

 Listing and removing versions of .NET

 .NET runtime updates are compatible with a major version such as 9.x, and updated releases of the .NET SDK maintain the ability to build applications that target previous versions of the runtime, which enables the safe removal of older versions.

 You can see which SDKs and runtimes are currently installed using the following commands:

 dotnet --list-sdks
dotnet --list-runtimes
dotnet --info

 Good Practice: To make it easier to enter commands at the command prompt or terminal, the following link lists all commands throughout the book that can be easily copied and pasted: https://github.com/markjprice/cs13net9/blob/main/docs/command-lines.md.

 On Windows, use the Apps & features section to remove .NET SDKs.

 On Linux, there is no single mechanism, but you can learn more at the following link:

 https://learn.microsoft.com/en-us/dotnet/core/install/remove-runtime-sdk-versions?pivots=os-linux

 You could use a third-party tool like Dots, the friendly .NET SDK manager, found at the following link: https://johnnys.news/2023/01/Dots-a-dotnet-SDK-manager. At the time of writing, you must build the app from source on its GitHub repository, so I only recommend that for advanced developers.

 Understanding intermediate language

 The C# compiler (named Roslyn) used by the dotnet CLI tool converts your C# source code into intermediate language (IL) code and stores the IL in an assembly (a DLL or EXE file). IL code statements are like assembly language instructions, which are executed by .NET’s virtual machine, known as CoreCLR, the newer name for the Common Language Runtime (CLR) in modern .NET. The legacy .NET Framework has a CLR that is Windows-only, and modern .NET has one for each OS, like Windows, macOS, and Linux. These days, they are all commonly referred to as CLRs.

 At runtime, CoreCLR loads the IL code from the assembly, the just-in-time (JIT) compiler compiles it into native CPU instructions, and then it is executed by the CPU on your machine.

 The benefit of this two-step compilation process is that Microsoft can create CLRs for Linux and macOS, as well as for Windows. The same IL code runs everywhere because of the second compilation step, which generates code for the native operating system and CPU instruction set.

 Regardless of which language the source code is written in (for example, C#, Visual Basic, or F#), all .NET applications use IL code for their instructions stored in an assembly. Microsoft and others provide disassembler tools that can open an assembly and reveal this IL code, such as the ILSpy .NET Decompiler extension. You will learn more about this in Chapter 7, Packaging and Distributing .NET Types, in an online section found at the following link: https://github.com/markjprice/cs13net9/blob/main/docs/ch07-decompiling.md.

 So, the compilation process typically involves translating source code into IL, which is then compiled into machine code at runtime by the CLR using JIT compilation. Ahead-of-Time (AOT) compilation is an alternative to this approach, and you will learn about it in Chapter 7, Packaging and Distributing .NET Types.

 Comparing .NET technologies

 We can summarize and compare the current .NET technologies, as shown in Table 1.4:

 	
 Technology

 	
 Description

 	
 Host operating systems

 	
 Modern .NET

 	
 A modern feature set, with full C# 8 to C# 13 language support. It can be used to port existing apps or create new desktop, mobile, and web apps and services.

 	
 Windows, macOS, Linux, Android, iOS, tvOS, and Tizen

 	
 .NET Framework

 	
 A legacy feature set with limited C# 8 support and no C# 9 or later support. It should be used to maintain existing applications only.

 	
 Windows only

 	
 Xamarin

 	
 Mobile and desktop apps only.

 	
 Android, iOS, and macOS

 Table 1.4: Comparison of .NET technologies
 Visual Studio, Rider, and even VS Code (with the C# Dev Kit extension installed) all have a concept called a solution that allows you to open and manage multiple projects simultaneously. We will use a solution to manage the two projects that you will create in this chapter.

 Building console apps using Visual Studio

 The goal of this section is to showcase how to build a console app using Visual Studio.

 If you do not have a Windows computer or want to use VS Code, then you can skip this section, since the code will be the same; just the tooling experience is different. However, I recommend that you review this section because it does explain some of the code and how top-level programs work, and that information applies to all code editors.

 This section is also available in the GitHub repository (so it can be updated after publishing if needed) at the following link:

 https://github.com/markjprice/cs13net9/blob/main/docs/code-editors/vs.md

 If you want to see similar instructions for using Rider, they are available in the GitHub repository at the following link:

 https://github.com/markjprice/cs13net9/blob/main/docs/code-editors/rider.md

 Writing code using Visual Studio

 Let’s get started writing code:

 	Start Visual Studio.

 	In the Create a new project dialog, select the C# language to filter the project templates, enter console in the Search for templates box, and then select Console App.

 Make sure that you have chosen the cross-platform project template, not the one for .NET Framework, which is Windows-only, and the C# project template rather than another language, such as Visual Basic or TypeScript.

 	Click Next.

 	In the Configure your new project dialog, enter HelloCS for the project name, C:\cs13net9 for the location, and Chapter01 for the solution name.

 Screenshots of Visual Studio when creating new projects can be found in the GitHub repository at the following link: https://github.com/markjprice/cs13net9/blob/main/docs/ch01-project-options.md.

 	Click Next.

 	In the Additional information dialog, in the Framework drop-down list, note that your .NET SDK choices indicate if that version is Standard Term Support, Long Term Support, Preview, or Out of support, and then select .NET 9.0 (Standard Term Support).

 You can install as many .NET SDK versions as you like. If you are missing a .NET SDK version, then you can install it from the following link: https://dotnet.microsoft.com/en-us/download/dotnet.

 	Leave the checkbox labeled Do not use top-level statements clear. (Later in this chapter, you will create a console app that selects this option, so you will see the difference.)

 	Leave the checkbox labeled Enable native AOT publish clear. You will learn what this option does in Chapter 7, Packaging and Distributing .NET Types.

 	Click Create.

 	If you cannot see Solution Explorer, then navigate to View | Solution Explorer.

 	If code is not shown, then in Solution Explorer, double-click the file named Program.cs to open it, and note that Solution Explorer shows the HelloCS project, as shown in Figure 1.4:

 [image:]
 Figure 1.4: Editing Program.cs in Visual Studio

 	In Program.cs, note that the code consists of only a comment and a single statement, as shown in the following code:
 // See https://aka.ms/new-console-template for more information
Console.WriteLine("Hello, World!");

 This template uses the top-level program feature introduced in C# 9, which I will explain later in this chapter. As the comment in the code says, you can read more about this template at the following link: https://aka.ms/new-console-template.

 	In Program.cs, modify line 2 so that the text that is being written to the console says Hello, C#!.
 All code examples and commands that you must review or type are shown in plain text, so you will never have to read code or commands from a screenshot, like in Figure 1.4, which might be too small or too faint in print.

 Compiling and running code using Visual Studio

 The next task is to compile and run the code:

 	In Visual Studio, navigate to Debug | Start Without Debugging.

 Good Practice: When you start a project in Visual Studio, you can choose whether to attach a debugger or not. If you do not need to debug, then it is better not to attach one because attaching a debugger requires more resources and slows everything down. Attaching a debugger also limits you to only starting one project. If you want to run more than one project, each with a debugger attached, then you must start multiple instances of Visual Studio. In the toolbar, click the green outline triangle button (to the right of HelloCS in the top bar shown in Figure 1.5) to start without debugging, instead of the green solid triangle button (to the left of HelloCS in the top bar shown in Figure 1.5), unless you need to debug.

 	The output in the console window will show the result of running your application, as shown in Figure 1.5:

 [image:]
 Figure 1.5: Running the console app on Windows

 	Press any key to close the console app window and return to Visual Studio.

 	Optionally, close the Properties pane to make more vertical space for Solution Explorer.

 	Double-click the HelloCS project, and note that the HelloCS.csproj project file shows that this project has its target framework set to net9.0, as shown in Figure 1.6.

 	In the Solution Explorer toolbar, toggle on the Show All Files button, and note that the compiler-generated bin and obj folders are visible, as shown in Figure 1.6:

 [image:]
 Figure 1.6: Showing the compiler-generated folders and files

 Understanding the compiler-generated folders and files

 Two compiler-generated folders were created, named obj and bin, as described in the following list:

 	The obj folder contains one compiled object file for each source code file. These objects haven’t been linked together into a final executable yet.

 	The bin folder contains the binary executable for the application or class library. We will look at this in more detail in Chapter 7, Packaging and Distributing .NET Types.

 You do not need to look inside these folders or understand their files yet (but feel free to browse around if you are curious).

 Just be aware that the compiler needs to create temporary folders and files to do its work. You could delete these folders and their files, and they will be automatically recreated the next time you “build” or run the project. Developers often delete these temporary folders and files to “clean” a project. Visual Studio even has a command on the Build menu named Clean Solution that deletes some of these temporary files for you. The equivalent command with the CLI is dotnet clean.

 Understanding top-level programs

 If you have seen older .NET projects before, then you might have expected more code, even just to output a simple message. This project has minimal statements because some of the required code is written for you by the compiler when you target .NET 6 or later.

 If you had created the project with .NET SDK 5 or earlier, or if you had selected the checkbox labeled Do not use top-level statements, then the Program.cs file would have more statements, as shown in the following code:

 using System;
namespace HelloCS
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello, World!");
 }
 }
}

 During compilation with .NET SDK 6 or later, all the boilerplate code to define the Program class and its Main method is generated and wrapped around the statements you write.

 This uses a feature introduced in .NET 5 called top-level programs, but it was not until .NET 6 that Microsoft updated the project template for console apps to use top-level statements by default. Then, in .NET 7 and later, Microsoft added options to use the older style if you prefer:

 	If you are using Visual Studio, select the checkbox labeled Do not use top-level statements.

 	If you are using the dotnet CLI at the command prompt, add a switch:
 dotnet new console --use-program-main

 Warning! One functional difference is that the auto-generated code does not define a namespace, so the Program class is implicitly defined in an empty namespace with no name, instead of a namespace that matches the name of the project.

 Requirements for top-level programs

 Key points to remember about top-level programs include the following:

 	There can be only one file like the file you use for top-level program code in a project.

 	Any using statements must be at the top of the file.

 	If you declare any classes or other types, they must be at the bottom of the file.

 	Although you should name the entry-point method Main if you explicitly define it, the method is named <Main>$ when created by the compiler.

 Implicitly imported namespaces

 The using System; statement at the top of the file imports the System namespace. This enables the Console.WriteLine statement to work. But why do we not have to import it in our project?

 The trick is that we still need to import the System namespace, but it is now done for us using a combination of features introduced in C# 10 and .NET 6. Let’s see how:

 	In Solution Explorer, expand the obj, Debug, and net9.0 folders, and open the file named HelloCS.GlobalUsings.g.cs.

 	Note that this file is automatically created by the compiler for projects that target .NET 6 or later and uses a feature introduced in C# 10, called global namespace imports, which imports some commonly used namespaces like System for use in all code files, as shown in the following code:
 // <autogenerated />
global using global::System;
global using global::System.Collections.Generic;
global using global::System.IO;
global using global::System.Linq;
global using global::System.Net.Http;
global using global::System.Threading;
global using global::System.Threading.Tasks;

 	In Solution Explorer, click the Show All Files button to hide the bin and obj folders.

 I will explain more about the implicit imports feature in the next chapter. For now, just note that a significant change that happened between .NET 5 and .NET 6 is that many of the project templates, like the one for console apps, use new SDK and language features to hide what is really happening.

 Revealing the hidden code by throwing an exception

 Now let’s discover how the hidden code has been written:

 	In Program.cs, after the statement that outputs the message, add a statement to throw a new exception, as shown in the following code:
 throw new Exception();

 	In Visual Studio, navigate to Debug | Start Without Debugging. (Do not start the project with debugging, or the exception will be caught by the debugger!)

 	The output in the console window will show the result of running your application, including that a hidden Program class was defined by the compiler, with a method named <Main>$ that has a parameter named args to pass in arguments, as shown in Figure 1.7 and the following output:
 Hello, C#!
Unhandled exception. System.Exception: Exception of type 'System.Exception' was thrown.
 at Program.<Main>$(String[] args) in C:\cs13net9\Chapter01\HelloCS\Program.cs:line 3

 [image:]
 Figure 1.7: Throwing an exception to reveal the hidden Program.<Main>$ method

 	Press any key to close the console app window and return to Visual Studio.

 Revealing the namespace for the Program class

 Now, let’s discover what namespace the Program class has been defined within:

 	In Program.cs, before the statement that throws an exception, add statements to get the name of the namespace of the Program class, and then write it to the console, as shown in the following code:
 string name = typeof(Program).Namespace ?? "<null>";
Console.WriteLine($"Namespace: {name}");

 ?? is the null-coalescing operator. The first statement means, “If the namespace of Program is null, then return <null>; otherwise, return the name.” You will see more explanations of these keywords and operators throughout the book. For now, just enter the code and run it to see what it does.

 Good Practice: Code editors have a feature named code snippets. These allow you to insert pieces of code that you commonly use, by typing a shortcut and pressing Tab twice. For example, in Visual Studio, to enter Console.WriteLine() and leave the cursor in the middle of the parentheses ready for you to type what you want to output, type cw, and then press Tab, Tab. Read the documentation for your code editor to learn how to insert code snippets using shortcuts.

 	In Visual Studio, navigate to Debug | Start Without Debugging.

 	The output in the console window will show the result of running your application, including that the hidden Program class was defined without a namespace, as shown in the following output:
 Namespace: <null>

 	Press any key to close the console app window and return to Visual Studio.

 Adding a second project using Visual Studio

 Let’s add a second project to our solution to explore how to work with multiple projects:

 	In Visual Studio, navigate to File | Add | New Project….
 Warning! The above step adds a new project to the existing solution. Do NOT navigate to File | New | Project…, which instead is meant to be used to create a new project and solution (although the dialog box has a dropdown to choose to add to an existing solution too).

 	In the Add a new project dialog, in Recent project templates, select Console App [C#], and then click Next.

 	In the Configure your new project dialog, for Project name, enter AboutMyEnvironment, leave the location as C:\cs13net9\Chapter01, and then click Next.

 	In the Additional information dialog, select .NET 9.0 (Standard Term Support) and select the Do not use top-level statements checkbox.

 Warning! Make sure you have selected the Do not use top-level statements checkbox so that we get to see the older style of Program.cs.

 	Click Create.

 	In the AboutMyEnvironment project, in Program.cs, note the statements to define a namespace that matches the project name, an internal class named Program, and a static method named Main with a parameter named args that returns nothing (void), as shown in the following code:
 namespace AboutMyEnvironment
{
 internal class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello, World!");
 }
 }
}

 	In Program.cs, in the Main method, replace the existing Console.WriteLine statement with statements to output the current directory, the version of the operating system, and the namespace of the Program class, as shown in the following code:
 Console.WriteLine(Environment.CurrentDirectory);
Console.WriteLine(Environment.OSVersion.VersionString);
Console.WriteLine("Namespace: {0}",
 typeof(Program).Namespace ?? "<null>");

 	In Solution Explorer, right-click the Chapter01 solution, and then select Configure Startup Projects….

 	In the Solution ‘Chapter01’ Property Pages dialog box, set Startup Project to Current selection, and then click OK.

 	In Solution Explorer, click the AboutMyEnvironment project (or any file or folder within it), and note that Visual Studio indicates that AboutMyEnvironment is now the startup project by making the project name bold.

 Good Practice: I recommend this way of setting the startup project because it then makes it very easy to switch startup projects by simply clicking a project (or any file in a project) to make it the startup project. Although you can right-click a project and set it as a startup project, if you then want to run a different project, you must manually change it again. Simply clicking anywhere in the project is easier. In most chapters, you will only need to run one project at a time. In Chapter 15, Building and Consuming Web Services, I will show you how to configure multiple startup projects.

 	Navigate to Debug | Start Without Debugging to run the AboutMyEnvironment project, and note the result, as shown in the following output and Figure 1.8:
 C:\cs13net9\Chapter01\AboutMyEnvironment\bin\Debug\net9.0
Microsoft Windows NT 10.0.26100.0
Namespace: AboutMyEnvironment

 [image:]
 Figure 1.8: Running a console app in a Visual Studio solution with two projects

 Windows 11 is just branding. Its official name is Windows NT, and its major version number is still 10! But its patch version is 22000 or higher.

 	Press any key to close the console app window and return to Visual Studio.
 When Visual Studio runs a console app, it executes it from the <projectname>\bin\Debug\net9.0 folder. It will be important to remember this when we work with the filesystem in later chapters. When using VS Code, or more accurately, the dotnet CLI, it has different behavior, as you are about to see.

 Building console apps using VS Code

 The goal of this section is to showcase how to build a console app using VS Code and the dotnet CLI.

 If you never want to try VS Code or the dotnet command-line tool, then please feel free to skip this section, and then continue with the Making good use of the GitHub repository for this book section.

 Both the instructions and screenshots in this section are for Windows, but the same actions will work with VS Code on the macOS and Linux variants.

 The main differences will be native command-line actions such as deleting a file; both the command and the path are likely to be different on Windows, macOS, and Linux. Luckily, the dotnet CLI tool itself and its commands are identical on all platforms.

 Writing code using VS Code

 Let’s get started writing code!

 	Start your favorite tool for working with the filesystem, for example, File Explorer on Windows or Finder on Mac.

 	Navigate to your C: drive on Windows, your user folder on macOS or Linux (mine are named markjprice and home/markjprice), or any directory or drive in which you want to save your projects.

 	Create a new folder named cs13net9. (If you completed the section for Visual Studio, then this folder will already exist.)

 	In the cs13net9 folder, create a new folder named Chapter01-vscode.

 If you did not complete the section for Visual Studio, then you could name this folder Chapter01, but I will assume you will want to complete both sections and, therefore, need to use a non-conflicting name.

 	In the Chapter01-vscode folder, open the command prompt or terminal. For example, on Windows, right-click on the folder and then select Open in Terminal.

 	At the command prompt or terminal, use the dotnet CLI to create a new solution named Chapter01, as shown in the following command:
 dotnet new sln --name Chapter01

 You can use either -n or --name as the switch to specify a name. If you do not explicitly specify a solution name with one of these switches, then the default would match the name of the folder, for example, Chapter01-vscode.

 	Note the result, as shown in the following output:
 The template "Solution File" was created successfully.

 	At the command prompt or terminal, use the dotnet CLI to create a new subfolder and project for a console app named HelloCS, as shown in the following command:
 dotnet new console --output HelloCS

 You can use either -o or --output as the switch to specify the folder and project name. The dotnet new console command targets your latest .NET SDK version by default. To target a different version, use the -f or --framework switch to specify a target framework. For example, to target .NET 8, use the following command: dotnet new console -f net8.0.

 	At the command prompt or terminal, use the dotnet CLI to add the project to the solution, as shown in the following command:
 dotnet sln add HelloCS

 	Note the results, as shown in the following output:
 Project `HelloCS\HelloCS.csproj` added to the solution.

 	At the command prompt or terminal, start VS Code and open the current folder, indicated with a . (dot), as shown in the following command:
 code .

 	If you are prompted with Do you trust the authors of the files in this folder?, select the Trust the authors of all files in the parent folder ‘cs13net9’ checkbox, and then click Yes, I trust the authors.

 	In VS Code, in EXPLORER, in the CHAPTER01-VSCODE folder view, expand the HelloCS folder, and you will see that the dotnet command-line tool created two files, HelloCS.csproj and Program.cs, and the bin and obj folders, as shown in Figure 1.9:

 [image:]
 Figure 1.9: EXPLORER shows that two files and temporary folders have been created

 	Navigate to View | Output.

 	In the OUTPUT pane, select C# Dev Kit, and note that the tool has recognized and processed the solution.

 	At the bottom of EXPLORER, note SOLUTION EXPLORER.

 	Drag SOLUTION EXPLORER to the top of the EXPLORER pane and expand it.

 	In SOLUTION EXPLORER, expand the HelloCS project, and then click the file named Program.cs to open it in the editor window.

 	In Program.cs, modify line 2 so that the text that is being written to the console says Hello, C#!.

 Good Practice: Navigate to File | Auto Save. This toggle will avoid the annoyance of remembering to save before rebuilding your application each time.

 In the preceding steps, I showed you how to use the dotnet CLI to create solutions and projects. Finally, with the August 2024 or later releases of the C# Dev Kit, VS Code has an improved project creation experience that provides you access to the same options you can use when creating a new project through the dotnet CLI.

 To enable this ability, you must change a setting, as shown in the following configuration:

 "csharp.experimental.dotnetNewIntegration": true

 In VS Code, navigate to File | Preferences | Settings, search for dotnet new, and then select the Csharp > Experimental: Dotnet New Integration checkbox.

 You can learn more at the following link:

 https://devblogs.microsoft.com/dotnet/whats-new-in-csharp-dev-kit-august-2024/#create-new-project-configuration-options

 Compiling and running code using the dotnet CLI

 The next task is to compile and run the code:

 	In SOLUTION EXPLORER, right-click on any file in the HelloCS project and choose Open In Integrated Terminal.

 	In TERMINAL, enter the following command: dotnet run.

 	The output in the TERMINAL window will show the result of running your application.

 	In Program.cs, after the statement that outputs the message, add statements to get the name of the namespace of the Program class, write it to the console, and then throw a new exception, as shown in the following code:
 string name = typeof(Program).Namespace ?? "<null>";
Console.WriteLine($"Namespace: {name}");
throw new Exception();

 	In TERMINAL, enter the following command: dotnet run.

 In TERMINAL, you can press the up and down arrows to loop through previous commands, and then press the left and right arrows to edit the commands before pressing Enter to run them.

 	The output in the TERMINAL window will show the result of running your application, including that a hidden Program class was defined by the compiler, with a method named <Main>$ that has a parameter named args to pass in arguments, and that it does not have a namespace, as shown in the following output:
 Hello, C#!
Namespace: <null>
Unhandled exception. System.Exception: Exception of type 'System.Exception' was thrown.
 at Program.<Main>$(String[] args) in C:\cs13net9\Chapter01-vscode\HelloCS\Program.cs:line 7

 Adding a second project using VS Code

 Let’s add a second project to explore how to work with multiple projects:

 	In TERMINAL, change to the Chapter01-vscode directory, as shown in the following command:
 cd ..

 	In TERMINAL, create a new console app project named AboutMyEnvironment, using the older non-top-level program style, as shown in the following command:
 dotnet new console -o AboutMyEnvironment --use-program-main

 Good Practice: Be careful when entering commands in TERMINAL. Ensure that you are in the correct folder before entering potentially destructive commands!

 	In TERMINAL, use the dotnet CLI to add the new project folder to the solution, as shown in the following command:
 dotnet sln add AboutMyEnvironment

 	Note the results, as shown in the following output:
 Project `AboutMyEnvironment\AboutMyEnvironment.csproj` added to the solution.

 	In SOLUTION EXPLORER, in the AboutMyEnvironment project, open Program.cs, and then in the Main method, change the existing statement to output the current directory, the operating system version string, and the namespace of the Program class, as shown in the following code:
 Console.WriteLine(Environment.CurrentDirectory);
Console.WriteLine(Environment.OSVersion.VersionString);
Console.WriteLine("Namespace: {0}",
 typeof(Program).Namespace ?? "<null>");

 	In SOLUTION EXPLORER, right-click on any file in the AboutMyEnvironment project and choose Open In Integrated Terminal.

 	In TERMINAL, enter the command to run the project, as shown in the following command: dotnet run.

 	Note the output in the TERMINAL window, as shown in the following output:
 C:\cs13net9\Chapter01-vscode\AboutMyEnvironment
Microsoft Windows NT 10.0.26100.0
Namespace: AboutMyEnvironment

 Once you open multiple terminal windows, you can toggle between them by clicking their names in the panel on the right-hand side of TERMINAL. By default, the name will be one of the common shells like pwsh, powershell, zsh, or bash. Right-click and choose Rename to set something else.

 When VS Code, or more accurately, the dotnet CLI, runs a console app, it executes it from the <projectname> folder. Visual Studio executes the app from the <projectname>\bin\Debug\net9.0 folder. It will be important to remember this when we work with the filesystem in later chapters.

 If you were to run the program on macOS Ventura, the environment operating system would be different, as shown in the following output:

 Unix 13.5.2

 Good Practice: Although the source code, like the .csproj and .cs files, is identical, the bin and obj folders that are automatically generated by the compiler could have mismatches that give you errors. If you want to open the same project in both Visual Studio and VS Code, delete the temporary bin and obj folders before opening the project in the other code editor. This potential problem is why I asked you to create a different folder for the VS Code projects in this chapter.

 Summary of steps for VS Code

 Follow these steps to create a solution and projects using VS Code, as shown in Table 1.5:

 	
 Step Description

 	
 Command

 	
 1. Create a folder for the solution.

 	
 mkdir <solution_folder_name>

 	
 2. Change to the folder.

 	
 cd <solution_folder_name>

 	
 3. Create a solution file in the folder.

 	
 dotnet new sln

 	
 4. Create a folder and project using a template.

 	
 dotnet new console -o <project_folder_name>

 	
 5. Add the folder and its project to the solution.

 	
 dotnet sln add <project_folder_name>

 	
 6. Repeat steps 4 and 5 to create and add any other projects.

 	

 	
 7. Open the current folder path (.) containing the solution using VS Code.

 	
 code .

 Table 1.5: Summary of steps to create a solution and projects using VS Code

 Summary of other project types used in this book

 A Console App / console project is just one type of project template. In this book, you will also create projects using the following project templates, as shown in Table 1.6:

 	
 Visual Studio

 	
 dotnet new

 	
 Rider – Type

 	
 Console App

 	
 console

 	
 Console Application

 	
 Class Library

 	
 classlib

 	
 Class Library

 	
 xUnit Test Project

 	
 xunit

 	
 Unit Test Project – xUnit

 	
 ASP.NET Core Empty

 	
 web

 	
 ASP.NET Core Web Application – Empty

 	
 Blazor Web App

 	
 blazor

 	
 ASP.NET Core Web Application – Blazor Web App

 	
 ASP.NET Core Web API

 	
 webapi

 	
 ASP.NET Core Web Application – Web API

 	
 ASP.NET Core Web API (native AOT)

 	
 webapiaot

 	
 ASP.NET Core Web Application – Web API (native AOT)

 Table 1.6: Project template names for various code editors

 The steps for adding any type of new project to a solution are the same. Only the type name of the project template differs and, sometimes, some command-line switches to control options. I will always specify what those switches and options should be if they differ from the defaults.

 A summary of project template defaults, options, and switches can be found here: https://github.com/markjprice/cs13net9/blob/main/docs/ch01-project-options.md.

 Making good use of the GitHub repository for this book

 Git is a commonly used source code management system. GitHub is a company, website, and desktop application that makes it easier to manage Git. Microsoft purchased GitHub in 2018, so it will continue to get closer integration with Microsoft tools.

 I created a GitHub repository for this book, and I use it for the following:

 	To store the solution code for the book that can be maintained after the print publication date.

 	To provide extra materials that extend the book, like errata fixes, small improvements, lists of useful links, and optional sections about topics that cannot fit in the printed book.

 	To provide a place for readers to get in touch with me if they have issues with the book.

 Good Practice: I strongly recommend that you all review the errata, improvements, post-publication changes, and common errors pages before attempting any coding task in this book. You can find them at the following link: https://github.com/markjprice/cs13net9/blob/main/docs/errata/README.md.

 Understanding the solution code on GitHub

 The solution code in the GitHub repository for this book includes folders for each chapter that can be opened with any of the following code editors:

 	Visual Studio or Rider: Open the .sln solution file.

 	VS Code: Open the folder that contains the solution file.

 Chapters 1 to 11 each have their own solution file named ChapterXX.sln, where XX is the chapter number 01 to 11. Chapters 12 to 15 share a single solution file named ModernWeb.sln.

 The .sln solution file format is a Microsoft proprietary file format that is verbose, hard to read, and uses Globally Unique Identifiers (GUIDs) to reference projects and other components of a solution. A new format based on XML, designed to be simpler and easier to read, is coming soon and will use the .slnx file extension. You can learn more about this at the following link: https://github.com/dotnet/sdk/issues/40913.

 All the code solutions can be found at the following link:

 https://github.com/markjprice/cs13net9/tree/main/code

 Good Practice: If you need to, return to this chapter to remind yourself how to create and manage multiple projects in the code editor of your choice. The GitHub repository has step-by-step instructions for three code editors (Visual Studio, VS Code, and Rider), along with additional screenshots: https://github.com/markjprice/cs13net9/tree/main/docs/code-editors/.

 Raising issues with the book

 If you get stuck following any of the instructions in this book, or if you spot a mistake in the text or the code in the solutions, please raise an issue in the GitHub repository:

 	Use your favorite browser to navigate to the following link: https://github.com/markjprice/cs13net9/issues.

 	Click New Issue.

 	Enter as much detail as possible that will help me to diagnose the issue. For example:
 	The specific section title, page number, and step number.

 	As much of your code and configuration that you feel is relevant and necessary.

 	A description of the expected behavior and the behavior experienced.

 	Screenshots (you can drag and drop image files into the Issue box).

 The following is less relevant but might be useful:

 	Your code editor, for example, Visual Studio, VS Code, Rider, or something else, including the version number.

 	Your operating system, for example, Windows 11 64-bit or macOS Ventura version 13.5.2

 	Your hardware, for example, Intel, Apple Silicon, or ARM CPU

 I cannot always respond immediately to issues. But I want all my readers to find success with my book, so if I can help you (and others) without too much trouble, then I will gladly do so.

 Giving me feedback

 If you’d like to give me more general feedback about the book, then either email me at markjprice@gmail.com or ask me a question on Discord in the book channel. You can provide the feedback anonymously, or if you would like a response from me, then you can supply an email address. I will only use this email address to answer your feedback.

 Please join me and your fellow readers on Discord using this invite: https://packt.link/csharp13dotnet9.

 I love to hear from my readers about what they like about my book, as well as suggestions for improvements and how they are working with C# and .NET, so don’t be shy. Please get in touch!

 Thank you in advance for your thoughtful and constructive feedback.

 Avoiding common mistakes

 After working through the step-by-step tasks in this book, readers often then strike out on their own and attempt to write similar code, but sometimes, they hit problems and either raise an issue in the GitHub repository or post a question to the Discord channel for the book.

 From these, I have noted some common mistakes, so I maintain a page in the repository to highlight and explain these potential traps and how to fix them:

 https://github.com/markjprice/cs13net9/blob/main/docs/errata/common-mistakes.md

 Downloading solution code from the GitHub repository

 If you just want to download all the solution files without using Git, click the green <> Code button and then select Download ZIP, as shown in Figure 1.10:

 [image:]
 Figure 1.10: Downloading the repository as a ZIP file

 Good Practice: It is best to clone or download the code solutions to a short folder path, like C:\cs13net9\ or C:\book\, to avoid build-generated files that exceed the maximum path length. You should also avoid special characters like #. For example, do not use a folder name like C:\C# projects\. That folder name might work for a simple console app project, but once you start adding features that automatically generate code, you are likely to have strange issues. Keep your folder names short and simple.

 Using Git with VS Code and the command prompt

 VS Code has integrations with Git, but it will use your operating system’s Git installation, so you must install Git 2 or later first before you get these features.

 You can install Git from the following link: https://git-scm.com/download.

 If you like to use a GUI, you can download GitHub Desktop from the following link: https://desktop.github.com.

 Cloning the book solution code repository

 Let’s clone the book solution code repository. In the steps that follow, you will use the VS Code terminal, but you can enter the commands at any command prompt or terminal window:

 	Create a folder named Repos-vscode in your user or Documents folder, or wherever you want to store your Git repositories.

 	Open the Repos-vscode folder at the command prompt or terminal, and then enter the following command:
 git clone https://github.com/markjprice/cs13net9.git

 Note that cloning all the solutions for all the chapters will take a minute or so, so please be patient.

 Looking for help

 This section is all about how to find quality information about programming on the web.

 Microsoft Learn documentation and Ask Learn

 The definitive resource for getting help with Microsoft developer tools and platforms is in the technical documentation on Microsoft Learn, and you can find it at the following link: https://learn.microsoft.com/en-us/docs.

 “One of the most ambitious and impactful projects our engineers have built recently is Ask Learn, an API that provides generative AI capabilities to Microsoft Q&A.” - Bob Tabor, Microsoft’s Skilling organization

 You can read about it at the following link:

 https://devblogs.microsoft.com/engineering-at-microsoft/how-we-built-ask-learn-the-rag-based-knowledge-service/

 Documentation links in this book

 The official Microsoft documentation for .NET needs to cover all versions. The default version shown in the documentation is always the most recent GA version.

 For example, between November 2024 and November 2025, the default version of .NET shown in the documentation pages will be for .NET 9. Between November 2025 and November 2026, the default version of .NET will be for .NET 10. The following link will automatically direct to the current version, depending on the current date:

 https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.stringsyntaxattribute

 After November 2025, to view the documentation page specifically for .NET 9, append ?view=net-9.0 to the end of a link. For example, use the following link:

 https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.stringsyntaxattribute?view=net-9.0

 All documentation links in this book do not specify a version. If you want to force the documentation to show the version for .NET 8 because you need to target an LTS version (three years) instead of .NET 9, which is an STS version (18 months), then append ?view=net-8.0 to the end of a link.

 You can check what versions a .NET feature supports by appending #applies-to to the end of a link, for example:

 https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.stringsyntaxattribute#applies-to

 We can, therefore, see that the StringSyntax attribute is only available in .NET 7 or later.

 Getting help from the dotnet tool

 At the command prompt, you can ask the dotnet tool for help with its commands. The syntax is:

 dotnet help <command>

 This will cause your web browser to open a page in the documentation about the specified command. Common dotnet commands include new, build, run, and many more.

 Warning! The dotnet help new command worked with .NET Core 3.1 to .NET 6, but it returns an error with .NET 7 or later: Specified command 'new' is not a valid SDK command. Specify a valid SDK command. For more information, run dotnet help. Hopefully, .NET will fix that bug soon!

 Another type of help is command-line documentation. It follows this syntax:

 dotnet <command> -?|-h|--help

 For example, dotnet new -? or dotnet new -h or dotnet new --help outputs documentation about the new command at the command prompt.

 As you should now expect, dotnet help help opens a web browser for the help command, and dotnet help -h outputs documentation for the help command at the command prompt!

 Let’s try some examples:

 	To open the official documentation in a web browser window for the dotnet build command, enter the following at the command prompt or in the VS Code terminal, and note the page opened in your web browser:
 dotnet help build

 	To get help output at the command prompt, use the -? or -h or --help flag, as shown in the following command:
 dotnet build -?

 	You will see the following partial output:
 Description:
 .NET Builder
Usage:
 dotnet build [<PROJECT | SOLUTION>...] [options]
Arguments:
 <PROJECT | SOLUTION> The project or solution file to operate on. If a file is not specified, the command will search the current directory for one.
Options:
 --ucr, --use-current-runtime Use current runtime as the target runtime.
 -f, --framework <FRAMEWORK> The target framework to build for. The target framework must also be specified in the project file.
...
 -?, -h, --help Show command line help.

 	Repeat both types of help requests for the following commands: add, help, list, new, and run, remembering that new might not show its web page, due to a bug introduced in .NET 7.

 Getting definitions of types and their members

 One of the most useful features of a code editor is Go To Definition (F12). It is available in VS Code, Visual Studio, and Rider. It will show what the public definition of the type or member looks like by reading the metadata in the compiled assembly.

 Some tools, such as ILSpy .NET Decompiler, will even reverse-engineer the metadata and IL code back into C# or another language for you.

 A similar and related feature is named Go To Implementation (Ctrl + F12). Instead of reading the metadata or decompiling, this will show the actual source code if that is embedded, using the optional source link feature.

 Warning! Go To Definition should go to the decompiled metadata for a member or type. But if you have previously viewed the source link, then it goes to that. Go To Implementation should go to the source link implementation for a member or type. But if you have disabled the source link, then it goes to the decompiled metadata.

 Let’s see how to use the Go To Definition feature:

 	In your preferred code editor, open the solution/folder named Chapter01.

 If you are using Visual Studio:

 	Navigate to Tools | Options.

 	In the search box, enter navigation to source.

 	Select Text Editor | C# | Advanced.

 	Clear the Enable navigation to Source Link and Embedded sources checkbox, and then click OK, as shown in Figure 1.11:

 [image:]
 Figure 1.11: Disabling Source Link for the Go To Definition feature

 Definitions can be either reverse-engineered from metadata or loaded from the original source code if that is enabled. Personally, I find the code from metadata more useful, as you are about to see. At the end of this section, try switching the Source Link option back on to see the difference.

 	In the HelloCS project, at the bottom of Program.cs, enter the following statement to declare an integer variable named z:
 int z;

 	Click on int, right-click on int, and then choose Go To Definition in Visual Studio or VS Code. In Rider, choose Go to | Go to Declaration or Usages.

 	In the code window that appears, you can see how the int data type is defined, as shown in the following code:
 #region Assembly System.Runtime, Version=9.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a
// C:\Program Files\dotnet\packs\Microsoft.NETCore.App.Ref\9.0.0\ref\net9.0\System.Runtime.dll
#endregion
#nullable enable
using System.Diagnostics.CodeAnalysis;
using System.Globalization;
using System.Numerics;
using System.Runtime.CompilerServices;
namespace System
{
 public readonly struct Int32 : IComparable,
 IComparable<Int32>, IConvertible, ...
 {
 public const Int32 MaxValue = 2147483647;
 public const Int32 MinValue = -2147483648;
 ...
 }
}

 You can see that int:

 	Is defined using the struct keyword.

 	Is in the System.Runtime assembly.

 	Is in the System namespace.

 	Is named Int32.

 	Is, therefore, an alias for the System.Int32 type.

 	Implements interfaces such as IComparable.

 	Has constant values for its maximum (2147483647) and minimum (-2147483648) values.

 	Has methods such as Parse (not visible in the preceding code).

 Currently, the Go To Definition feature is not that useful to you because you do not yet know what all of this information means. By the end of the first part of this book, which consists of Chapters 2 to 6 and teaches you about the C# language, you will know enough for this feature to become very handy.

 	In the code editor window, scroll down to find the Parse method with a single string parameter, as shown in the following code:
 public static Int32 Parse(string s)

 	Expand the code and review the comments that document this method, as shown in Figure 1.12:

 [image:]
 Figure 1.12: The comments for the Parse method with a single string parameter

 In the comments, you will see that Microsoft has documented the following:

 	A summary that describes the method.

 	Parameters like the string value that can be passed to the method.

 	The return value of the method, including its data type.

 	Three exceptions that might occur if you call this method, including ArgumentNullException, FormatException, and OverflowException. Now, we know that we could choose to wrap a call to this method in a try statement and which exceptions to catch.

 Configuring inline aka inlay hints

 Throughout the code in this book, when calling a method, I often explicitly specify named parameters to help you learn what is going on. For example, I have specified the names of the parameters format and arg0 in the following code:

 Console.WriteLine(format: "Value is {0}.", arg0: 19.8);

 Inline hints, aka inlay hints, show the names of parameters without you having to type them, as shown in Figure 1.13:

 [image:]
 Figure 1.13: Configuring inline hints, aka inlay hints

 Most code editors have this feature, which you can enable permanently or only when a key combination like Alt + F1 or Ctrl is held down:

 	In Visual Studio, navigate to Tools | Options, then Text Editor | C# | Advanced, scroll down to the Inline Hints section, select the Display inline parameter name hints checkbox, and then click OK.

 	In VS Code, navigate to File | Preferences | Settings, search for inlay, select the C# filter, and then select the Display inline parameter name hints checkbox.

 	In Rider, in Settings, navigate to Editor | Inlay Hints | C# | Parameter Name Hints.

 Hopefully, you are getting impatient to learn what all this means!

 Be patient for a little longer. You are almost at the end of this chapter, and in the next chapter, you will dive into the details of the C# language. But first, let’s see where else you can look for help.

 Looking for answers on Stack Overflow

 Stack Overflow is the most popular third-party website for getting answers to difficult programming questions. Let’s see an example:

 	Start your favorite web browser.

 	Navigate to stackoverflow.com; in the search box, enter securestring and note the search results.

 Searching for answers using Google

 You can search Google with advanced search options to increase the likelihood of finding what you need:

 	Navigate to Google at the following link: https://www.google.com/.

 	Search for information about garbage collection using a simple Google query, and note that you will probably see a lot of ads for garbage collection services in your local area before you see the Wikipedia definition of garbage collection in computer science!

 	Improve the search by restricting it to a useful site such as Stack Overflow, by removing languages that we might not care about, such as C++, Rust, and Python, or by adding C# and .NET explicitly, as shown in the following search query:
 garbage collection site:stackoverflow.com +C# -Java

 Getting help on Discord and other chat forums

 Asking questions in programming forums and Discord channels is an art as much as it is a science. To maximize your chances of receiving a helpful answer, there’s a blend of clarity, specificity, and community awareness that you should aim for.

 Here are some tips for asking questions:

 	Ask in a public channel, not in private. Please do not direct message an author with a question or a friend request. Remember, every question asked and answered builds the collective knowledge and resourcefulness of the whole community. Asking in public also allows other readers to help you, not just the author. The community that Packt and I have built around my books is friendly and smart. Let us all help you.

 	Research before asking: It’s important to look for answers yourself before turning to the community. Use search engines, official documentation, and the search function within the forum or Discord server. This not only respects the community’s time but also helps you learn more effectively. Another place to look first is the errata and improvements section of the book, found at the following link: https://github.com/markjprice/cs13net9/blob/main/docs/errata/README.md.

 	Be specific and concise: Clearly state what you’re trying to achieve, what you’ve tried so far, and where you’re stuck. A concise question is more likely to get a quick response.

 	Specify the book location: If you are stuck on a particular part of the book, specify the page number and section title so that others can look up the context of your question.

 	Show your work: Demonstrating that you’ve made an effort to solve the problem yourself not only provides context but also helps others understand your thought process and where you might have gone down a wrong path.

 	Prepare your question: Avoid too broad or vague questions. Screenshots of errors or code snippets (with proper formatting) can be very helpful.
 Oddly, I’ve been seeing more and more examples of readers taking photos of their screens and posting those. These are harder to read and limited in what they can show. It’s better to copy and paste the text of your code or the error message so that others can copy and paste it themselves. Alternatively, at least take a high-resolution screenshot instead of a photo with your phone camera at a jaunty angle!

 	Format your code properly: Most forums and Discord servers support code formatting using Markdown syntax. Use formatting to make your code more readable. For example, surround code keywords in single backticks, like `public void`, and surround code blocks with three backticks with optional language code, as shown in the following code:
        ```cs
using static System.Console;
WriteLine("This is C# formatted code.");
```


 Good Practice: After the three backticks that start a code block in Markdown, specify a language short name like cs, csharp, js, javascript, json, html, css, cpp, xml, mermaid, python, java, ruby, go, sql, bash, or shell.

 More Information: To learn how to format text in Discord channel messages, see the following link: https://support.discord.com/hc/en-us/articles/210298617-Markdown-Text-101-Chat-Formatting-Bold-Italic-Underline.

 	Be polite and patient: Remember, you’re asking for help from people who are giving their time voluntarily. A polite tone and patience while waiting for a response go a long way. Channel participants are often in a different time zone, so you may not see your question answered until the next day.

 	Be ready to actively participate: After asking your question, stay engaged. You might receive follow-up questions for clarification. Responding promptly and clearly can significantly increase your chances of getting a helpful answer. When I ask a question, I set an alarm for three hours later to go back and see if anyone has responded. If there hasn’t been a response yet, then I set another alarm for 24 hours later.

 Incorporating these approaches when asking questions not only increases your likelihood of getting a useful response but also contributes positively to the community, by showing respect for others’ time and effort.

 Good Practice: Never just say “Hello” as a message on any chat system. You can read why at the following link: https://nohello.net/. Similarly, don’t ask to ask: https://dontasktoask.com/.

 Searching the .NET source code

 Sometimes, you can learn a lot from seeing how the Microsoft teams have implemented .NET. The source for the entire code base for .NET is available in public GitHub repositories. For example, you might know that there is a built-in attribute to validate an email address.

 Let’s search the repositories for the word “email” and see if we can find out how it works:

 	Use your preferred web browser to navigate to https://github.com/search.

 	Click advanced search.

 	In the search box, type email.

 	In the In these respositories box, type dotnet/runtime. (Other repositories that you might want to search include dotnet/core, dotnet/aspnetcore, dotnet/wpf, and dotnet/winforms.)

 	In the Written in this language box, select C#.

 	At the top right of the page, note how the advanced query has been written for you. Click Search, then the Code filter, and note that the results include EmailAddressAttribute, as shown in Figure 1.14:

 [image:]
 Figure 1.14: Advanced search for email in the dotnet/runtime repository

 	Click the source file, and note that it implements email validation by checking that the string value contains an @ symbol but not as the first or last character, as shown in the following code:
 // only return true if there is only 1 '@' character
// and it is neither the first nor the last character
int index = valueAsString.IndexOf('@');
return
 index > 0 &&
 index != valueAsString.Length - 1 &&
 index == valueAsString.LastIndexOf('@');

 	Close the browser.

 For your convenience, you can do a quick search for other terms by replacing the search term email in the following link: https://github.com/search?q=%22email%22+repo%3Adotnet%2Fruntime+language%3AC%23&type=code&ref=advsearch.

 Source code in documentation

 When you read API reference documentation, you often want to review the actual source code. For .NET APIs that have Source Link enabled, have an accessible PDB, and are hosted in a public GitHub repository, links to source code are included in the definition metadata. For example, the String class documentation page now has this new Source link, and its IndexOf method has a Source link to another of its source files, as shown in Figure 1.15:

 [image: A screenshot of a computer Description automatically generated]
 Figure 1.15: Documentation with links to source files

 You can read more about how the Microsoft team achieved this in the article Introducing links to source code for .NET API Docs, found at the following link: https://devblogs.microsoft.com/dotnet/dotnet-docs-link-to-source-code/.

 Official .NET blog, standups, and news

 To keep up to date with .NET, an excellent blog to subscribe to is the official .NET blog, written by the .NET engineering teams, and you can find it at the following link: https://devblogs.microsoft.com/dotnet/.

 To watch .NET team members walk through previews of new features, you can watch monthly “standups,” available at the following link:

 https://dotnet.microsoft.com/en-us/live/community-standup

 You can subscribe to the latest .NET news at the following link:

 https://github.com/dotnet/core/discussions/categories/news

 Watching Scott Hanselman’s videos

 Scott Hanselman from Microsoft has an excellent YouTube channel about computer stuff that they didn’t teach you at school: http://computerstufftheydidntteachyou.com/.

 I recommend it to everyone working with computers.

 AI tools like ChatGPT and GitHub Copilot

 One of the biggest changes in coding and development in the past few years is the emergence of generative artificial intelligence (AI) tools that can help with coding tasks, like completing a code statement, implementing an entire function, writing unit tests, and suggesting debugging fixes for existing code.

 You can read what developers say about AI tools in the 2023 Stack Overflow Developer Survey: “44% of them use AI tools in their development process now, and 26% plan to soon” (https://stackoverflow.blog/2023/06/14/hype-or-not-developers-have-something-to-say-about-ai/):

 “From research to debugging to documentation, developers are using Generative AI to save time doing various tedious tasks at work. The biggest use case is writing code. This was how 82.55% of developers reported using Generative AI in the recent Stack Overflow Developer Survey.”

 ChatGPT currently has several models for individuals: 4o mini (free), 4o (free but limited), and 4o with 5x more requests and other benefits, like early access to new features and DALL·E image generation ($20 per month). It also has pricing for enterprises. You can check their pricing at the following link: https://openai.com/chatgpt/pricing/.

 ChatGPT example

 Let’s say you need to write a C# function to validate an email address. You might go to ChatGPT and enter the following prompt:

 write a c# function to validate an email address

 It responds with a complete class with methods, as shown in Figure 1.16:

 [image:]
 Figure 1.16: ChatGPT writes a function to validate an email address

 It then provides an explanation of the code and examples of how to call the function, as shown in the following code:

 bool isValid = EmailValidator.IsValidEmail("test@example.com");
Console.WriteLine(isValid ? "Valid" : "Invalid");

 But is a general-purpose generative AI like ChatGPT the best partner for a C# programmer?

 GitHub Copilot for programmers

 Microsoft has a service specifically for programmers, named GitHub Copilot, that can help autocomplete code directly in your code editor. It has plugins for code editors, including Visual Studio, VS Code, and JetBrains IntelliJ-based IDEs.

 Personally, I really like the Copilot branding. It makes it clear that you are the pilot. You are ultimately responsible for “flying the plane.” But for the easy or boring bits, you can hand it over to your co-pilot for a bit, while being actively ready to take back control if needed.

 GitHub Copilot is free for students, teachers, and some open-source project maintainers. For everyone else, it has a 30-day free trial, and then it costs $10 per month or $100 per year for individuals. Once you have an account, you can then sign up for waiting lists to get the more advanced experimental GitHub Copilot features.

 You should check online which Copilot features are available for various code editors. As you can imagine, this is a fast-changing world, and some of what I might write in the book today will be out of date by the time you read it: https://github.com/features/copilot.

 JetBrains has its own GitHub Copilot equivalent, named AI Assistant, which you can read about at the following link: https://blog.jetbrains.com/idea/2023/06/ai-assistant-in-jetbrains-ides/.

 So what can GitHub Copilot do for you today?

 Imagine that you have just added a new class file named Product.cs. You click inside the Product class, press Enter to insert a blank line, and then pause for a second as you think about what you need to type… and then GitHub Copilot generates some sample code in gray, as shown in Figure 1.17:

 [image:]
 Figure 1.17: GitHub Copilot suggesting how to define a Product class

 At this point, you can glance over the code and, if it is close to what you want, just press Tab to insert it all, or press Alt + . (dot) to toggle between other suggestions.

 Sometimes, it is too far from what you need, and you’d be better off ignoring its suggestion completely and just writing it yourself. But usually, there’s something there that’s usable or reminds you of the syntax you need to use. And sometimes, it feels like magic, writing dozens of lines of exactly what you need.

 Microsoft feeds its AI tools with code from public GitHub repositories, including all the repositories I have created since 2016 for all the editions of this book. This means that it can suggest code completions for the readers of this book that are surprisingly accurate predictions, including my frequent use of pop culture references in my code. It’s like I, Mark J. Price, am the “ghost in the machine” guiding your coding.

 It’s easy to imagine a custom ChatGPT that has ingested all the official Microsoft .NET documentation, every public blog article written about .NET, and perhaps even hundreds of books about .NET, and then having a conversation with it to find a bug or suggest how to solve a programming problem.

 You can sign up for GitHub Copilot at the following link: https://github.com/github-copilot/signup/.

 Good Practice: Learn more about how to use Copilot as your coding GPS at the following link: https://devblogs.microsoft.com/visualstudio/using-github-copilot-as-your-coding-gps/.

 Here are some more links about using AI for coding:

 	A Beginner’s Guide to Prompt Engineering with GitHub Copilot: https://dev.to/github/a-beginners-guide-to-prompt-engineering-with-github-copilot-3ibp

 	The Register article about AI: https://www.theregister.com/2024/01/27/ai_coding_automatic/

 	StackOverflow 2024 survey – Code editor / IDE: https://survey.stackoverflow.co/2024/technology#1-integrated-development-environment

 	StackOverflow 2024 survey – AI search tools: https://survey.stackoverflow.co/2024/technology#1-ai-search-and-developer-tools

 Disabling tools when they get in the way

 Although these tools can be helpful, they can also get in your way, especially when learning, because they sometimes do work for you without telling you. If you do not do that work for yourself at least a few times, you won’t learn fully.

 To configure IntelliSense for C# in Visual Studio:

 	Navigate to Tools | Options.

 	In the Options dialog box tree view, navigate to Text Editor | C# | IntelliSense.

 	Click the ? button in the caption bar to view the documentation.

 To configure GitHub Copilot in Visual Studio:

 	Navigate to Tools | Options.

 	In the Options dialog box tree view, navigate to GitHub | Copilot.

 	Set Enable Globally to True or False, and then click OK.

 To disable GitHub Copilot in VS Code:

 	In the status bar, on the right, to the left of the notification icon, click the GitHub Copilot icon.

 	In the popup, click Disable Globally.

 	To enable it, click the GitHub Copilot icon again and then click Enable Globally.

 For help with Rider IntelliSense, please see the following link: https://www.jetbrains.com/help/rider/Auto-Completing_Code.html.

 Practicing and exploring

 Let’s now test your knowledge and understanding by trying to answer some questions, getting some hands-on practice, and going into the topics covered throughout this chapter in greater detail.

 Exercise 1.1 – Online material

 Online material can be extra content written by me for this book, or it can be references to content created by Microsoft or third parties.

 Current versions of .NET

 You can check what the latest version of .NET is for various platforms and what is officially supported at the following link: https://versionsof.net.

 If you need to know more about support for the legacy .NET Framework, you can read about it at the following link: https://learn.microsoft.com/en-us/lifecycle/products/microsoft-net-framework.

 Upgrade to a new .NET version

 .NET releases new versions annually. Some developers begin upgrading as soon as a new version drops, while others prefer to wait until their current version reaches end-of-support. Upgrading involves several important considerations that you can read about at the following link:

 https://learn.microsoft.com/en-us/dotnet/core/install/upgrade

 freeCodeCamp and C# certification

 For many years, Microsoft had an exam for C# 5, Exam 70-483: Programming in C#. I taught hundreds of developers the skills needed to get qualified and pass it. Sadly, that exam was retired a few years ago.

 In August 2023, Microsoft announced a new foundational certification for C# alongside a free 35-hour online course. You can read more about how to qualify for the certification at the following link:

 https://www.freecodecamp.org/learn/foundational-c-sharp-with-microsoft/

 C# certification signup: https://aka.ms/learningseries/csharp/signup

 Explore Polyglot Notebooks

 Complete the following online-only section to explore how you can use Polyglot Notebooks with its .NET Interactive engine:

 https://github.com/markjprice/cs13net9/blob/main/docs/ch01-polyglot-notebooks.md

 Windows development

 This book is about modern cross-platform development. But what about graphical user interface (GUI) development especially for Windows?

 You can read an article discussing this at the following link:

 https://visualstudiomagazine.com/articles/2024/02/13/desktop-dev.aspx

 C# versus other languages

 Even Microsoft does not use C# and .NET for all its own development needs. You can read an interesting discussion about C# and Rust at the following link:

 https://www.reddit.com/r/dotnet/comments/1aezqmg/comment/ko8lnf2/

 The key quote at the preceding Reddit link is this:

 “There’s been a lot of hype around Rust, and for good reason. But it’s a system language. It’s not like Microsoft is about to go rewrite millions and millions of lines of code and toss out C# (for anyone getting nervous [image:]). They’re just being pragmatic and using an effective tool for the job.”

 Free computer science course

 Harvard CS50: Introduction to Computer Science: https://pll.harvard.edu/course/cs50-introduction-computer-science

 .NET newsletters

 There are email newsletters that you can subscribe to get daily or weekly updates, hints, and tips. Some of the better ones include the following:

 	Milan Jovanovic’s The .NET Weekly: https://www.milanjovanovic.tech/blog

 	C# Digest: https://csharpdigest.net/

 	Alvin Ashcraft’s The Morning Dew: https://www.alvinashcraft.com/

 	Mukesh’s .NET Newsletter: https://newsletter.codewithmukesh.com/

 	JetBrains’ dotInsights: https://www.jetbrains.com/lp/dotinsights-monthly/

 Exercise 1.2 – Practice exercises

 The following practice exercises will go deeper into the topics for this chapter.

 Practice C# anywhere with a browser

 You don’t need to download and install VS Code or even Visual Studio to write C#. You can start coding online at any of the following links:

 	SharpLab: https://sharplab.io/

 	C# Online Compiler | .NET Fiddle: https://dotnetfiddle.net/

 	W3Schools C# Online Compiler: https://www.w3schools.com/cs/cs_compiler.php

 Alpha versions of .NET

 You can (but probably shouldn’t) download future versions of .NET, including alpha versions from the following link:

 https://github.com/dotnet/sdk/blob/main/documentation/package-table.md

 Warning! Alpha versions are designed to be used only internally by Microsoft employees. Beta versions (official previews) are designed to be used externally and become available from mid-February each year.

 For more about using .NET 10 with this book, please see the following link: https://github.com/markjprice/cs13net9/blob/main/docs/dotnet10.md.

 Exercise 1.3 – Test your knowledge

 Try to answer the following questions, remembering that although most answers can be found in this chapter, you should do some online research or code writing to answer others:

 	Is Visual Studio better than VS Code?

 	Are .NET 5 and later versions better than .NET Framework?

 	What is .NET Standard, and why is it still important?

 	Why can a programmer use different languages (for example, C# and F#) to write applications that run on .NET?

 	What is a top-level program, and how do you access any command-line arguments?

 	What is the name of the entry point method of a .NET console app, and how should it be explicitly declared if you are not using the top-level program feature?

 	What namespace is the Program class defined in with a top-level program?

 	Where would you look for help for a C# keyword?

 	Where would you look first for solutions to common programming problems?

 	What should you do after getting AI to write code for you?

 Appendix, Answers to the Test Your Knowledge Questions, is available to download from a link in the README file in the GitHub repository: https://github.com/markjprice/cs13net9.

 Exercise 1.4 – Explore topics

 A printed book is a curated experience. I have tried to find the right balance of topics to include in this book. Other content that I have written can be found in the GitHub repository for this book.

 I believe that this book covers all the fundamental knowledge and skills a C# and .NET developer should have or be aware of. Some longer examples are best included as links to Microsoft documentation or third-party article authors.

 Use the links on the following page to learn more details about the topics covered in this chapter:

 https://github.com/markjprice/cs13net9/blob/main/docs/book-links.md#chapter-1---hello-c-welcome-net

 Summary

 In this chapter, we:

 	Set up your development environment.

 	Discussed the similarities and differences between modern .NET, .NET Core, .NET Framework, Xamarin, and .NET Standard in an online article.

 	Used Visual Studio and VS Code with the .NET SDK CLI to create a couple of simple console apps, grouped in a solution.

 	Learned how to download the solution code for this book from its GitHub repository.

 	Learned how to find help. This could be in the traditional way, by using help command switches, documentation, and articles, or the modern way, by having a conversation with coding expert AI or using an AI-based tool to perform “grunt work.”

 In the next chapter, you will learn how to “speak” C#.

 Learn more on Discord

 To join the Discord community for this book – where you can share feedback, ask questions to the author, and learn about new releases – follow the QR code below:

 https://packt.link/csharp13dotnet9

 [image:]

 Leave a Review!

 Thank you for purchasing this book from Packt Publishing—we hope you enjoy it! Your feedback is invaluable and helps us improve and grow. Once you’ve completed reading it, please take a moment to leave an Amazon review; it will only take a minute, but it makes a big difference for readers like you.

 Scan the QR or visit the link to receive a free ebook of your choice.

 https://packt.link/NzOWQ

 [image: A qr code with black squares Description automatically generated]

 2

 Speaking C#

 This chapter is all about the basics of the C# programming language. Over the course of this chapter, you’ll learn how to write statements using the grammar of C#, as well as be introduced to some of the common vocabulary words that you will use every day. In addition to this, by the end of the chapter, you’ll feel confident in knowing how to temporarily store and work with information in your computer’s memory.

 This chapter covers the following topics:

 	Introducing the C# language

 	Discovering your C# compiler version

 	Understanding C# grammar and vocabulary

 	Working with variables

 	Exploring more about console apps

 Introducing the C# language

 This part of the book is about the C# language—the grammar and vocabulary that you will use every day to write the source code for your applications.

 Programming languages have many similarities to human languages, except that in programming languages, you can make up your own words, just like Dr. Seuss!

 In a book written by Dr. Seuss in 1950, If I Ran the Zoo, he states this:

 “And then, just to show them, I’ll sail to Ka-Troo And Bring Back an It-Kutch, a Preep, and a Proo, A Nerkle, a Nerd, and a Seersucker, too!”

 C# language versions and features

 This part of the book covers the C# programming language and is written primarily for beginners, so it covers the fundamental topics that all developers need to know, including declaring variables, storing data, and how to define your own custom data types.

 This book covers features of the C# language from version 1 up to the latest version, C# 13. You can read a summary of what’s new in C# 13 at the following link:

 https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-13

 If you already have some familiarity with older versions of C# and are excited to find out about the new features in the most recent versions of C#, I have made it easier for you to jump around by listing language versions and their important new features below, along with the chapter number and topic title where you can learn about them.

 You can read this information in the GitHub repository at the following link: https://github.com/markjprice/cs13net9/blob/main/docs/ch02-features.md.

 Understanding C# standards

 Over the years, Microsoft has submitted a few versions of C# to ECMA standards bodies. Microsoft made C# open source in 2014. You can read the latest C# standard document at the following link: https://learn.microsoft.com/en-us/dotnet/csharp/specification/. More practically useful than the ECMA standards are the public GitHub repositories for making the work on C# and related technologies as open as possible, as shown in Table 2.1:

 	
 Description

 	
 Link

 	
 C# language design

 	
 https://github.com/dotnet/csharplang

 	
 Compiler implementation

 	
 https://github.com/dotnet/roslyn

 	
 Standard to describe the language

 	
 https://github.com/dotnet/csharpstandard

 Table 2.1: Public GitHub repositories for C#

 Discovering your C# compiler version

 The .NET language compiler for C# and Visual Basic, also known as Roslyn, along with a separate compiler for F#, is distributed as part of the .NET SDK. To use a specific version of C#, you must have at least that version of the .NET SDK installed, as shown in Table 2.2:

 	
 .NET SDK

 	
 Roslyn compiler

 	
 Default C# language

 	
 1.0.4

 	
 2.0–2.2

 	
 7.0

 	
 1.1.4

 	
 2.3–2.4

 	
 7.1

 	
 2.1.2

 	
 2.6–2.7

 	
 7.2

 	
 2.1.200

 	
 2.8–2.10

 	
 7.3

 	
 3.0

 	
 3.0–3.4

 	
 8.0

 	
 5.0

 	
 3.8

 	
 9.0

 	
 6.0

 	
 4.0

 	
 10.0

 	
 7.0

 	
 4.4

 	
 11.0

 	
 8.0

 	
 4.8

 	
 12.0

 	
 9.0

 	
 4.12

 	
 13.0

 Table 2.2: .NET SDK versions and their C# compiler versions

 When you create class libraries, you can choose to target .NET Standard as well as versions of modern .NET. They have default C# language versions, as shown in Table 2.3:

 	
 .NET Standard

 	
 C#

 	
 2.0

 	
 7.3

 	
 2.1

 	
 8.0

 Table 2.3: .NET Standard versions and their default C# compiler versions

 Although you must have a minimum version of the .NET SDK installed to have access to a specific compiler version, the projects that you create can target older versions of .NET and still use a modern compiler version. For example, if you have the .NET 9 SDK or later installed, then you can use C# 13 language features in a console app that targets .NET 8.

 How to output the SDK version

 Let’s see what .NET SDK and C# language compiler versions you have available:

 	On Windows, start Windows Terminal or Command Prompt. On macOS, start Terminal.

 	To determine which version of the .NET SDK you have available, enter the following command:
 dotnet --version

 	Note that the version at the time of publishing is 9.0.100, indicating that it is the initial version of the SDK without any bug fixes or new features yet, as shown in the following output:
 9.0.100

 Enabling a specific language version compiler

 Developer tools like Visual Studio and the dotnet command-line interface assume that you want to use the latest major version of a C# language compiler by default. Before C# 8 was released, C# 7 was the latest major version and was used by default.

 To use the improvements in a C# point release like 7.1, 7.2, or 7.3, you had to add a <LangVersion> configuration element to the project file, as shown in the following markup:

 <LangVersion>7.3</LangVersion>

 After the release of C# 13 with .NET 9, if Microsoft releases a C# 13.1 compiler and you want to use its new language features, then you will have to add a configuration element to your project file, as shown in the following markup:

 <LangVersion>13.1</LangVersion>

 Potential values for the <LangVersion> are shown in Table 2.4:

 	
 <LangVersion>

 	
 Description

 	
 7, 7.1, 7.2, 7.3, 8, 9, 10, 11, 12, 13

 	
 Entering a specific version number will use that compiler if it has been installed.

 	
 latestmajor

 	
 Uses the highest major number, for example, 7.0 in August 2019, 8 in October 2019, 9 in November 2020, 10 in November 2021, 11 in November 2022, 12 in November 2023, and 13 in November 2024.

 	
 latest

 	
 Uses the highest major and highest minor number, for example, 7.2 in 2017, 7.3 in 2018, 8 in 2019, and perhaps 13.1 in the first half of 2025.

 	
 preview

 	
 Uses the highest available preview version, for example, 14 in mid-July 2025 with .NET 10 Preview 6 installed.

 Table 2.4: LangVersion settings for a project file

 Using preview C# compiler versions

 In February 2025, Microsoft is likely to release the first public preview of .NET 10 with the C# 14 compiler. You will be able to install its SDK from the following link:

 https://dotnet.microsoft.com/en-us/download/dotnet/10.0

 Warning! The link will give a 404 Missing resource error until February 2025, so do not bother using it until then!

 After you’ve installed a .NET 10 SDK preview, you will be able to use it to create new projects and explore the new language features in C# 14.

 After creating a new project, you must edit the .csproj file and add the <LangVersion> element set to preview to use the preview C# 14 compiler, as shown highlighted in the following markup:

 <Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net10.0</TargetFramework>
 <LangVersion>preview</LangVersion>
 </PropertyGroup>
</Project>

 Good Practice: You should only set <LangVersion> to preview for exploration, not production projects, because it is not supported by Microsoft and it is more likely to have bugs. Microsoft makes previews available because they want to hear feedback from developers like you. In this way, you can be a part of C#’s development and improvement.

 Switching the C# compiler for .NET 9 to a future version

 .NET 9 comes with the C# 13 compiler but that does not mean that you are stuck with the C# 13 compiler. Once the .NET 10 SDK is made generally available in November 2025, you will be able to get the best of both worlds.

 You can use the .NET 10 SDK and its C# 14 compiler while your projects continue to target .NET 9. To do so, set the target framework to net9.0 and add a <LangVersion> element set to 14, as shown highlighted in the following markup:

 <Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net9.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 <LangVersion>14</LangVersion>
 </PropertyGroup>
</Project>

 The preceding project targets net9.0, so it is supported until May 2026 when run on a monthly patched version of the .NET 9 runtime. If the preceding project is built using .NET 10 SDK, then it can have the <LangVersion> set to 14, meaning C# 14.

 If you target net10.0, which new projects will by default if you have installed the .NET 10 SDK, then the default language will be C# 14 so it would not need to be explicitly set.

 In February 2026, Microsoft is likely to release the first preview of .NET 11, and in November 2026, it will likely release .NET 11 for general availability in production. You will be able to install its SDK from the following link and explore C# 15 in the same way as described above for C# 14 with .NET 10:

 https://dotnet.microsoft.com/en-us/download/dotnet/11.0

 Again, the preceding link is for future use! It will give a 404 Missing resource error until February 2026, so do not bother using the preceding link until then.

 Warning! Some C# language features depend on changes in the underlying .NET libraries. Even if you use the latest SDK with the latest compiler, you might not be able to use all the new language features while targeting an older version of .NET. For example, C# 11 introduced the required keyword, but it cannot be used in a project that targets .NET 6 because that language feature requires new attributes that are only available in .NET 7. Luckily, the compiler will warn you if you try to use a C# feature that is not supported. Just be prepared for that eventuality.

 Showing the compiler version

 We will start by writing code that shows the compiler version:

 	If you’ve completed Chapter 1, Hello, C#! Welcome, .NET!, then you will already have a cs13net9 folder. If not, then you’ll need to create it.

 	Use your preferred code editor to create a new project, as defined in the following list:
 	Project template: Console App [C#] / console

 	Project file and folder: Vocabulary

 	Solution file and folder: Chapter02

 	Do not use top-level statements: Cleared

 	Enable native AOT publish: Cleared

 Good Practice: If you have forgotten how, or did not complete the previous chapter, then step-by-step instructions for creating a solution with multiple projects are given in Chapter 1, Hello, C#! Welcome, .NET!.

 	In the Vocabulary project, in Program.cs, after the comment, add a statement to show the C# version as an error, as shown in the following code:
 #error version

 	Run the console app:
 	If you are using Visual Studio, then navigate to Debug | Start Without Debugging. When prompted to continue and run the last successful build, click No.

 	If you are using VS Code, then in a terminal for the Vocabulary folder, enter the dotnet run command. Note that we are expecting a compiler error, so do not panic when you see it!

 	Note that the compiler version and the language version appear as compiler error message number CS8304, as shown in Figure 2.1:

 [image:]
 Figure 2.1: A compiler error that shows the C# language version

 The error message in the VS Code PROBLEMS window or Visual Studio Error List window says Compiler version: '4.12.0...' with language version default (13.0).

 	Comment out the statement that causes the error, as shown in the following code:
 // #error version

 	Note that the compiler error messages disappear.

 Understanding C# grammar and vocabulary

 Let’s start by looking at the basics of the grammar and vocabulary of C#. Throughout this chapter, you will create multiple console apps, with each one showing related features of the C# language.

 Understanding C# grammar

 The grammar of C# includes statements and blocks. To document your code, you can use comments.

 Good Practice: Comments should not be the only way that you document your code. Choosing sensible names for variables and functions, writing unit tests, and creating actual documents are other ways to document your code.

 Statements

 In English, we indicate the end of a sentence with a period. A sentence can be composed of multiple words and phrases, with the order of words being part of the grammar. For example, in English, we say “the black cat.”

 The adjective, black, comes before the noun, cat. However, French grammar has a different order; the adjective comes after the noun: “le chat noir.” What’s important to take away from this is that the order matters.

 C# indicates the end of a statement with a semicolon. A statement can be composed of multiple types, variables, and expressions made up of tokens. Each token is separated by white space or some other recognizably different token, like an operator, for example, = or +.

 For example, in the following statement, decimal is a type, totalPrice is a variable, and subtotal + salesTax is an expression:

 decimal totalPrice = subtotal + salesTax;

 The expression is made up of an operand named subtotal, an operator +, and another operand named salesTax. The order of operands and operators matters because the order affects the meaning and result.

 Comments

 Comments are the primary method of documenting your code to enhance the understanding of how it works, for other developers to read, or for you to read even when you come back to it months later.

 In Chapter 4, Writing, Debugging, and Testing Functions, you will learn about XML comments that start with three slashes, ///, and work with a tool to generate web pages to document your code.

 You can add comments to explain your code using a double slash, //. The compiler will ignore everything after the // until the end of the line, as shown in the following code:

 // Sales tax must be added to the subtotal.
decimal totalPrice = subtotal + salesTax;

 To write a multiline comment, use /* at the beginning and */ at the end of the comment, as shown in the following code:

 /*
This is a
multi-line comment.
*/

 Although /* */ is mostly used for multiline comments, it is also useful for commenting in the middle of a statement, as shown in the following code:

 decimal totalPrice = subtotal /* for this item */ + salesTax;

 Good Practice: Well-designed code, including function signatures with well-named parameters and class encapsulation, can be somewhat self-documenting. When you find yourself putting too many comments and explanations in your code, ask yourself: can I rewrite, aka refactor, this code to make it more understandable without long comments?

 Your code editor has commands to make it easier to add and remove comment characters, as shown in the following list:

 	Visual Studio: Navigate to Edit | Advanced | Comment Selection or Uncomment Selection.

 	VS Code: Navigate to Edit | Toggle Line Comment or Toggle Block Comment.

 	Rider: Navigate to Code | Comment with Line Comment or Comment with Block Comment.

 Good Practice: You comment code by adding descriptive text above or after code statements. You comment out code by adding comment characters before or around statements to make them inactive. Uncommenting means removing the comment characters.

 Blocks

 In English, we indicate a new paragraph by starting a new line. C# indicates a block of code with the use of curly brackets, { }.

 Blocks start with a declaration to indicate what is being defined. For example, a block can define the start and end of many language constructs, including namespaces, classes, methods, or statements like foreach.

 You will learn more about namespaces, classes, and methods later in this chapter and subsequent chapters, but to briefly introduce some of those concepts now:

 	A namespace contains types like classes to group them together.

 	A class contains the members of an object, including methods.

 	A method contains statements that implement an action that an object can take.

 Code editors like Visual Studio, Rider, and VS Code provide a handy feature to collapse and expand blocks by toggling the arrow symbol pointing down or right when you move your mouse cursor over the left margin of the code, as shown in Figure 2.2:

 [image:]
 Figure 2.2: Code editors with expanded and collapsed blocks

 Regions

 You can define your own labeled regions around any statements you want and then most code editors will allow you to collapse and expand them in the same way as blocks, as shown in the following code:

 #region Three variables that store the number 2 million.
int decimalNotation = 2_000_000;
int binaryNotation = 0b_0001_1110_1000_0100_1000_0000;
int hexadecimalNotation = 0x_001E_8480;
#endregion

 In this way, regions can be treated as commented blocks that can be collapsed to show a summary of what the block does.

 I will use #region blocks throughout the solution code in the GitHub repository, especially for the early chapters before we start defining functions that act as natural collapsible regions, but I won’t show them in the print book to save space. Use your own judgment to decide if you want to use regions in your own code.

 Examples of statements and blocks

 In a simple console app that does not use the top-level program feature, I’ve added some comments to the statements and blocks, as shown in the following code:

 using System; // A semicolon indicates the end of a statement.
namespace Basics
{ // An open brace indicates the start of a block.
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!"); // A statement.
 }
 }
} // A close brace indicates the end of a block.

 Note that C# uses a brace style where both the open and close braces are on their own line and are at the same indentation level, as shown in the following code:

 if (x < 3)
{
 // Do something if x is less than 3.
}

 Other languages like JavaScript use curly braces but format them differently. They put the open curly brace at the end of the declaration statement, as shown in the following code:

 if (x < 3) {
 // Do something if x is less than 3.
}

 You can use whatever style you prefer because the compiler does not care.

 Sometimes, to save vertical space in a print book, I use the JavaScript brace style, but mostly I stick with the C# brace style. I use two spaces instead of the more common four spaces for indenting because my code will be printed in a book and therefore has a narrow width available.

 More Information: The official coding style conventions can be found at the following link: https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions.

 Regardless of any official guidelines, I recommend that you conform to whatever standards have been adopted by your development team, unless you are a solo developer, in which case as long as your code compiles, you can use any conventions you like. Be kind to your future self, though, by being consistent one way or the other!

 Good Practice: The brace style used in the Microsoft official documentation is the most commonly used for C#. For example, see the for statement, as found at the following link: https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/iteration-statements.

 Formatting code using white space

 White space includes the space, tab, and newline characters. You can use white space to format your code however you like because extra white space has no effect on the compiler.

 Warning! Unless a step-by-step instruction tells the reader to enter code, code examples are written to be read and understood, not typed into a code editor.

 The following four statements are all equivalent. Since all four statements are equivalent, they all have the same variable name, and therefore cannot be all declared in the same code block, so please do not try to type this code unless you also change the three sum variable names:

 int sum = 1 + 2; // Most developers would prefer this format.
int
sum=1+
2; // One statement over three lines.
int sum= 1 +2;int sum=1+2; // Two statements on one line.

 The only white space character required in the preceding statements is one between int and sum to tell the compiler they are separate tokens. Any single white space character (for example, a space, tab, or newline) would be acceptable.

 More Information: You can read the formal definition of C# white space at the following link: https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/lexical-structure#634-white-space.

 Understanding C# vocabulary

 The C# vocabulary is made up of keywords, symbol characters, and types.

 Some of the predefined, reserved keywords that you will see in this book and use frequently include using, namespace, class, static, int, string, double, bool, if, switch, break, while, do, for, foreach, this, and true.

 Warning! The this keyword can be used in multiple ways, including to refer to the current instance of an object, to call a constructor on the current object instance, and to define an indexer. Examples of all three will be covered in Chapter 5, Building Your Own Types with Object-Oriented Programming.

 Some of the symbol characters that you will see are ", ', +, -, *, /, %, @, and $.

 “Bracket” symbols include the following:

 	() are called parentheses. They are used to call a function, define an expression or condition, and cast between types.

 	{} are called braces (aka curly brackets). They are used to define blocks and perform object and collection initialization.

 	[] are called brackets (aka square brackets). They are used to access items in an array or collection, and around attributes decorating elements of code.

 	<> are called angle brackets. They are used for generic types, in XML and HTML files, and individually as less than or greater than tokens in an expression.

 There are other contextual keywords that only have a special meaning in a specific context, like and, or, not, record, and init.

 However, that still means that there are only about 100 actual C# keywords in the language.

 Good Practice: C# keywords use all lowercase. Although you can use all lowercase for your own type names, you should not. With C# 11 and later, the compiler will give a warning if you do, as shown in the following output: Warning CS8981 The type name 'person' only contains lower-cased ascii characters. Such names may become reserved for the language.

 If you want to use a C# keyword to name a variable, then you can do so by prefixing it with the @ symbol, as shown in the following code:

 // Prefix with @ to use a C# keyword as a variable name.
strin0g @class = "A poorly named variable!";
int @if = 5;

 Good Practice: Although you can use C# keywords for variable names, you should avoid doing this because it is poor practice. For multiple C# versions, Microsoft has wanted to add a new keyword, field, to the language, but they are reluctant to do so because some developers are likely to have variables named field and this would cause a breaking change to those projects.

 Comparing programming languages to human languages

 The English language has more than 250,000 distinct words, so how does C# get away with only having about 100 keywords? Moreover, why is C# so difficult to learn if it has only 0.0416% of the number of words in the English language?

 One of the key differences between a human language and a programming language is that developers need to be able to define the new “words” with new meanings. Apart from the (approximately) 100 keywords in the C# language, this book will teach you about some of the hundreds of thousands of “words” that other developers have defined, but you will also learn how to define your own “words.”

 Programmers all over the world must learn English because most programming languages use English words such as “if” and “break.” There are programming languages that use other human languages, such as Arabic, but they are rare. If you are interested in learning more, this YouTube video shows a demonstration of an Arabic programming language: https://www.youtube.com/watch?v=EwYIZBL4sAU.

 Changing the color scheme for C# syntax

 By default, Visual Studio and VS Code show C# keywords in blue to make them easier to differentiate from other code, which defaults to black. Both tools allow you to customize the color scheme.

 In Visual Studio:

 	Navigate to Tools | Options.

 	In the Options dialog box, in the Environment section, select Fonts and Colors, and then select the display items that you would like to customize. You can also search for the section instead of browsing for it.

 In VS Code:

 	Navigate to File | Preferences | Theme | Color Theme. It is in the Code menu on macOS.

 	Select a color theme. For reference, I’ll use the Light+ (default light) color theme so that the screenshots look better in a printed book.

 In Rider, navigate to File | Settings | Editor | Color Scheme.

 Help for writing correct code

 Plain text editors such as Notepad don’t help you write correct English. Likewise, Notepad won’t help you write the correct C# either.

 Microsoft Word can help you write English by highlighting spelling mistakes with red squiggles, with Word saying that “icecream” should be ice-cream or ice cream, and grammatical errors with blue squiggles, such as a sentence should have an uppercase first letter.

 Similarly, Visual Studio and VS Code’s C# extension helps you write C# code by highlighting spelling mistakes, such as the method name needing to be WriteLine with an uppercase L, and grammatical errors, such as statements that must end with a semicolon.

 The C# extension constantly watches what you type and gives you feedback by highlighting problems with colored squiggly lines, like that of Microsoft Word.

 Let’s see it in action:

 	In Program.cs, change the L in the WriteLine method to lowercase.

 	Delete the semicolon at the end of the statement.

 	In VS Code, navigate to View | Problems; in Visual Studio, navigate to View | Error List; or in Rider, navigate to View | Tool Windows | Problems, and note that a red squiggle appears under the code mistakes and details are shown, as you can see in Figure 2.3:

 [image:]
 Figure 2.3: The Error List window showing two compile errors

 	Fix the two coding errors.

 Importing namespaces

 System is a namespace, which is like an address for a type. To refer to someone’s location exactly, you might use Oxford.HighStreet.BobSmith, which tells us to look for a person named Bob Smith on the High Street in the city of Oxford.

 System.Console.WriteLine tells the compiler to look for a method named WriteLine in a type named Console in a namespace named System.

 To simplify our code, the Console App project template for every version of .NET before 6.0 added a statement at the top of the code file to tell the compiler to always look in the System namespace for types that haven’t been prefixed with their namespace, as shown in the following code:

 using System; // Import the System namespace.

 We call this importing the namespace. The effect of importing a namespace is that all available types in that namespace will be available to your program without needing to enter the namespace prefix. All available types in that namespace will be seen in IntelliSense while you write code.

 Implicitly and globally importing namespaces

 Traditionally, every .cs file that needs to import namespaces would have to start with using statements to import those namespaces. Namespaces like System and System.Linq are needed in almost all .cs files, so the first few lines of every .cs file often had at least a few using statements, as shown in the following code:

 using System;
using System.Linq;
using System.Collections.Generic;

 When creating websites and services using ASP.NET Core, there are often dozens of namespaces that each file would have to import.

 C# 10 introduced a new keyword combination and .NET SDK 6 introduced a new project setting that work together to simplify importing common namespaces.

 The global using keyword combination means you only need to import a namespace in one .cs file and it will be available throughout all .cs files instead of having to import the namespace at the top of every file that needs it. You could put global using statements in the Program.cs file, but I recommend creating a separate file for those statements named something like GlobalUsings.cs with the contents being all your global using statements, as shown in the following code:

 global using System;
global using System.Linq;
global using System.Collections.Generic;

 Good Practice: As developers get used to this new C# feature, I expect one naming convention for this file to become the de facto standard. As you are about to see, the related .NET SDK feature uses a similar naming convention.

 Any projects that target .NET 6 or later, and therefore use the C# 10 or later compiler, generate a <ProjectName>.GlobalUsings.g.cs file in the obj\Debug\net9.0 folder to implicitly globally import some common namespaces like System. The specific list of implicitly imported namespaces depends on which SDK you target, as shown in Table 2.5:

 	
 SDK

 	
 Implicitly imported namespaces

 	
 Microsoft.NET.Sdk

 	
 System

 System.Collections.Generic

 System.IO

 System.Linq

 System.Net.Http

 System.Threading

 System.Threading.Tasks

 	
 Microsoft.NET.Sdk.Web

 	
 Same as Microsoft.NET.Sdk, plus:

 System.Net.Http.Json

 Microsoft.AspNetCore.Builder

 Microsoft.AspNetCore.Hosting

 Microsoft.AspNetCore.Http

 Microsoft.AspNetCore.Routing

 Microsoft.Extensions.Configuration

 Microsoft.Extensions.DependencyInjection

 Microsoft.Extensions.Hosting

 Microsoft.Extensions.Logging

 	
 Microsoft.NET.Sdk.Worker

 	
 Same as Microsoft.NET.Sdk, plus:

 Microsoft.Extensions.Configuration

 Microsoft.Extensions.DependencyInjection

 Microsoft.Extensions.Hosting

 Microsoft.Extensions.Logging

 Table 2.5: .NET SDKs and their implicitly imported namespaces

 Let’s see the current autogenerated implicit imports file:

 	In Solution Explorer, toggle on the Show All Files button, and note the compiler-generated bin and obj folders are now visible.

 	In the Vocabulary project, expand the obj folder, expand the Debug folder, expand the net9.0 folder, and then open the file named Vocabulary.GlobalUsings.g.cs.

 The naming convention for this file is <ProjectName>.GlobalUsings.g.cs. Note the g for generated to differentiate it from developer-written code files.

 	Remember that this file is automatically created by the compiler for projects that target .NET 6 and later and that it imports some commonly used namespaces, including System.Threading, as shown in the following code:
 // <autogenerated />
global using global::System;
global using global::System.Collections.Generic;
global using global::System.IO;
global using global::System.Linq;
global using global::System.Net.Http;
global using global::System.Threading;
global using global::System.Threading.Tasks;

 	Close the Vocabulary.GlobalUsings.g.cs file.

 	In Solution Explorer, open the Vocabulary.csproj project file, and then add additional entries to the project file to control which namespaces are implicitly imported, as shown highlighted in the following markup:
 <Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net9.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 </PropertyGroup>
 <ItemGroup>
 <Using Remove="System.Threading" />
 <Using Include="System.Numerics" />
 <Using Include="System.Console" Static="true" />
 <Using Include="System.Environment" Alias="Env" />
 </ItemGroup>
</Project>

 Note that <ItemGroup> is different from <ImportGroup>. Be sure to use the correct one! Also, note that the order of elements in a project group or item group does not matter. For example, <Nullable> can be before or after <ImplicitUsings>.

 	Save the changes to the project file.

 	Expand the obj folder, expand the Debug folder, expand the net9.0 folder, and open the file named Vocabulary.GlobalUsings.g.cs.

 	Note that this file now imports System.Numerics instead of System.Threading, the Environment class has been imported and aliased to Env, and we have statically imported the Console class, as shown highlighted in the following code:
 // <autogenerated />
global using global::System;
global using global::System.Collections.Generic;
global using global::System.IO;
global using global::System.Linq;
global using global::System.Net.Http;
global using global::System.Numerics;
global using global::System.Threading.Tasks;
global using Env = global::System.Environment;
global using static global::System.Console;

 	In Program.cs, add a statement to output a message from the computer and note that because we statically imported the Console class, we can call its methods like WriteLine without prefixing them with Console, and we can reference the Environment class using its alias, Env, as shown in the following code:
 WriteLine($"Computer named {Env.MachineName} says \"No.\"");

 	Run the project and note the message, as shown in the following output:
 Computer named DAVROS says "No."

 Your computer name will be different unless you name your computers after characters from Doctor Who like I do.

 You can disable the implicitly imported namespaces feature for all SDKs by removing the <ImplicitUsings> element completely from the project file, or changing its value to disable, as shown in the following markup:

 <ImplicitUsings>disable</ImplicitUsings>

 Good Practice: You might choose to do this if you want to manually create a single file with all the global using statements instead of potentially having one generated automatically and others created manually. But my recommendation is to leave the feature enabled and modify the project file to change what is included in the auto-generated class file in the obj folder hierarchy.

 Verbs are methods

 In English, verbs are doing or action words, like “run” and “jump.” In C#, doing or action words are called methods. There are hundreds of thousands of methods available to C#. In English, verbs change how they are written based on when in time the action happens. For example, Amir was jumping in the past, Beth jumps in the present, they jumped in the past, and Charlie will jump in the future.

 In C#, methods such as WriteLine change how they are called or executed based on the specifics of the action. This is called overloading, which we’ll cover in more detail in Chapter 5, Building Your Own Types with Object-Oriented Programming. But for now, consider the following example:

 // Outputs the current line terminator.
// By default, this is a carriage-return and line feed.
Console.WriteLine();
// Outputs the greeting and the current line terminator.
Console.WriteLine("Hello Ahmed");
// Outputs a formatted number and date and the current line terminator.
Console.WriteLine(
 "Temperature on {0:D} is {1}°C.", DateTime.Today, 23.4);

 When I show code snippets without numbered step-by-step instructions, I do not expect you to enter them as code, so they won’t execute out of context.

 A different and not quite exact analogy is that some verbs are spelled the same but have different meanings depending on the context, for example, you can lose a game, lose your place in a book, or lose your keys.

 Nouns are types, variables, fields, and properties

 In English, nouns are names that refer to things. For example, Fido is the name of a dog. The word “dog” tells us the type of thing that Fido is, and so to order Fido to fetch a ball, we would use his name.

 In C#, their equivalents are types, variables, fields, and properties. For example:

 	Animal and Car are types; they are nouns for categorizing things.

 	Head and Engine might be fields or properties; they are nouns that belong to Animal and Car.

 	Fido and Bob are variables; they are nouns for referring to a specific object.

 There are tens of thousands of types available to C#, though have you noticed how I didn’t say, “There are tens of thousands of types in C#”? The difference is subtle but important. The language of C# only has a few keywords for types, such as string and int, and strictly speaking, C# doesn’t define any types. Keywords such as string that look like types are aliases, which represent types provided by the platform on which C# runs.

 It’s important to know that C# cannot exist alone; after all, it’s a language that runs on variants of .NET. In theory, someone could write a compiler for C# that uses a different platform, with different underlying types. In practice, the platform for C# is .NET, which provides tens of thousands of types to C#, including System.Int32, which is the C# keyword alias that int maps to, as well as many more complex types, such as System.Xml.Linq.XDocument.

 It’s worth taking note that the term type is often confused with class. Have you ever played the parlor game Twenty Questions, also known as Animal, Vegetable, or Mineral? In the game, everything can be categorized as an animal, vegetable, or mineral. In C#, every type can be categorized as a class, struct, enum, interface, or delegate. You will learn what these mean in Chapter 6, Implementing Interfaces and Inheriting Classes. As an example, the C# keyword string is a class, but int is a struct. So, it is best to use the term type to refer to both.

 Revealing the extent of the C# vocabulary

 We know that there are more than 100 keywords in C#, but how many types are there? Let’s write some code to find out how many types (and their methods) are available to C# in our simple console app.

 Don’t worry about exactly how this code works for now, but know that it uses a technique called reflection:

 	Comment out all the existing statements in Program.cs.

 	We’ll start by importing the System.Reflection namespace at the top of the Program.cs file so that we can use some of the types in that namespace like Assembly and TypeName, as shown in the following code:
 using System.Reflection; // To use Assembly, TypeName, and so on.

 Good Practice: We could use the implicit imports and global using features to import this namespace for all .cs files in this project, but since there is only one file, it is better to import the namespace in the one file in which it is needed.

 	Write statements to get the compiled console app and loop through all the types that it has access to, outputting the names and number of methods each has, as shown in the following code:
 // Get the assembly that is the entry point for this app.
Assembly? myApp = Assembly.GetEntryAssembly();
// If the previous line returned nothing then end the app.
if (myApp is null) return;
// Loop through the assemblies that my app references.
foreach (AssemblyName name in myApp.GetReferencedAssemblies())
{
 // Load the assembly so we can read its details.
 Assembly a = Assembly.Load(name);
 // Declare a variable to count the number of methods.
 int methodCount = 0;
 // Loop through all the types in the assembly.
 foreach (TypeInfo t in a.DefinedTypes)
 {
 // Add up the counts of all the methods.
 methodCount += t.GetMethods().Length;
 }
 // Output the count of types and their methods.
 WriteLine("{0:N0} types with {1:N0} methods in {2} assembly.",
 arg0: a.DefinedTypes.Count(),
 arg1: methodCount,
 arg2: name.Name);
}

 N0 is uppercase N followed by the digit zero. It is not uppercase N followed by uppercase O. It means “format a number (N) with zero (0) decimal places.”

 	Run the project. You will see the actual number of types and methods that are available to you in the simplest application when running on your operating system (OS). The number of types and methods displayed will be different depending on the OS that you are using, as shown in the following output on Windows:
 0 types with 0 methods in System.Runtime assembly.
41 types with 639 methods in System.Console assembly.
112 types with 1,190 methods in System.Linq assembly.

 Why does the System.Runtime assembly contain zero types? This assembly is special because it contains only type-forwarders rather than actual types. A type-forwarder represents a type that has been implemented outside of .NET or for some other advanced reason.

 	Add statements to the top of the file (after importing the System.Reflection namespace) to declare some variables, as shown in the following code:
 // Declare some unused variables using types in
// additional assemblies to make them load too.
System.Data.DataSet ds = new();
HttpClient client = new();

 	Run the console app again and view the results, which should look like the following output:
 0 types with 0 methods in System.Runtime assembly.
406 types with 7,139 methods in System.Data.Common assembly.
425 types with 4,681 methods in System.Net.Http assembly.
41 types with 639 methods in System.Console assembly.
112 types with 1,190 methods in System.Linq assembly.

 Now, you have a better sense of why learning C# is a challenge – because there are so many types and methods to learn. Methods are only one category of a member that a type can have, and you and other programmers are constantly defining new types and members!

 Example of asking ChatGPT to explain code

 The code we wrote in the Vocabulary project is a good example of when you might want to ask ChatGPT to explain something. If you enter a prompt of “Explain the following code:” followed by the code, here’s what it responded with:

 “This C# code performs an analysis of the assemblies (essentially libraries or modules) referenced by the current application. It tallies up the total number of types and methods in each referenced assembly.

 Let’s break down the code in more detail:

 	System.Reflection namespace is used to work with assemblies, modules, types, methods, and so on, at runtime.

 	The System.Data.DataSet and HttpClient instances are declared but not used. The comment implies that these are declared to ensure their respective assemblies are loaded for the subsequent analysis. Creating instances of classes from certain assemblies can cause those assemblies to be loaded into memory.

 	Assembly.GetEntryAssembly() gets the assembly that is the entry point of the application.

 	If myApp is null (meaning there’s no entry assembly, which should be impossible in a normally running .NET app), the application exits.

 	The foreach loop iterates over each assembly name in the referenced assemblies of the entry point assembly.

 	Assembly.Load(name) loads an assembly given the assembly name. This allows you to interact with the assembly programmatically.

 	A counter variable, methodCount, is declared and initialized to 0. This is used to count the total number of methods in the assembly.

 	Another nested foreach loop then iterates over each type in the assembly.

 	For each type, it gets the number of methods (t.GetMethods().Length) and adds it to the methodCount.

 	Finally, the number of types and their methods in the assembly are output to the console using WriteLine(). The {0:N0} format specifier in the string is a placeholder for a number (0 refers to the argument index, N is for number format, and 0 after N specifies the number of decimal places).

 So, in essence, this script counts how many types and methods exist in each assembly referenced by the application. This might be useful to understand the complexity or size of the dependencies the application has.”

 And now back to the flesh and blood, Mark. That’s a pretty good explanation with no mistakes or hallucinations!

 Good Practice: Tools like GitHub Copilot and ChatGPT are especially useful for programmers when they are learning new things. And a good programmer is always learning new things! These tools are not just for writing code for you. They can explain existing code written by others and even suggest improvements.

 Working with variables

 All applications process data. Data comes in, data is processed, and then data goes out.

 Data usually comes into our program from files, databases, or user input, and it can be put temporarily into variables, which will be stored in the memory of the running program. When the program ends, the data in memory is lost. Data is usually output to files and databases, or to the screen or a printer. When using variables, you should think about, firstly, how much space the variable takes up in the memory, and, secondly, how fast it can be processed.

 We control this by picking an appropriate type. You can think of simple common types such as int and double as being different-sized storage boxes, where a smaller box would take less memory but may not be as fast at being processed; for example, adding 16-bit numbers might not be processed as quickly as adding 64-bit numbers on a 64-bit operating system. Some of these boxes may be stacked close by, and some may be thrown into a big heap further away.

 Naming things and assigning values

 There are naming conventions for things, and it is a good practice to follow them, as shown in Table 2.6:

 	
 Naming convention

 	
 Examples

 	
 Used for

 	
 Camel case

 	
 cost, orderDetail, and dateOfBirth

 	
 Local variables and private fields

 	
 Title case, aka Pascal case

 	
 String, Int32, Cost, DateOfBirth, and Run

 	
 Types, non-private fields, and other members like methods

 Table 2.6: Naming conventions and what they should be used for

 Some C# programmers like to prefix the names of private fields with an underscore, for example, _dateOfBirth instead of dateOfBirth. The naming of private members of all kinds is not formally defined because they will not be visible outside the class, so writing them either with or without an underscore prefix is valid.

 Good Practice: Following a consistent set of naming conventions will enable your code to be easily understood by other developers (and yourself in the future!).

 The following code block shows an example of declaring a named local variable and assigning a value to it with the = symbol. You should note that you can output the name of a variable using a keyword introduced in C# 6, nameof:

 // Let the heightInMetres variable become equal to the value 1.88.
double heightInMetres = 1.88;
Console.WriteLine($"The variable {nameof(heightInMetres)} has the value
{heightInMetres}.");

 Warning! The message in double quotes in the preceding code wraps onto a second line because the width of a printed page is too narrow. When entering a statement like this in your code editor, type it all in a single line.

 In C# 12 and later, nameof can now access instance data from a static context. You will learn the difference between instance and static data in Chapter 5, Building Your Own Types with Object-Oriented Programming.

 Literal values

 When you assign to a variable, you often, but not always, assign a literal value. But what is a literal value? A literal is a notation that represents a fixed value. Data types have different notations for their literal values, and over the next few sections, you will see examples of using literal notation to assign values to variables.

 More Information: You can read the formal definition of literals in the C# language specification: https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/lexical-structure#645-literals.

 Storing text

 For text, a single letter, such as an A, is stored as a char type.

 Good Practice: Actually, it can be more complicated than that. Egyptian Hieroglyph A002 (U+13001) needs two System.Char values (known as surrogate pairs) to represent it: \uD80C and \uDC01. Do not always assume one char equals one letter or you could introduce hard-to-notice bugs into your code.

 A char is assigned using single quotes around the literal value, or assigning the return value of a function call, as shown in the following code:

 char letter = 'A'; // Assigning literal characters.
char digit = '1';
char symbol = '$';
char userChoice = GetChar(); // Assigning from a fictitious function.

 For text, multiple letters, such as Bob, are stored as a string type and are assigned using double quotes around the literal value, or by assigning the return value of a function call or constructor, as shown in the following code:

 string firstName = "Bob"; // Assigning literal strings.
string lastName = "Smith";
string phoneNumber = "(215) 555-4256";
// Assigning a string returned from the string class constructor.
string horizontalLine = new('-', count: 74); // 74 hyphens.
// Assigning a string returned from a fictitious function.
string address = GetAddressFromDatabase(id: 563);
// Assigning an emoji by converting from Unicode.
string grinningEmoji = char.ConvertFromUtf32(0x1F600);

 Outputting emojis

 To output emojis at a command prompt on Windows, you must use Windows Terminal because Command Prompt does not support emojis, and set the output encoding of the console to use UTF-8, as shown in the following code:

 Console.OutputEncoding = System.Text.Encoding.UTF8;
string grinningEmoji = char.ConvertFromUtf32(0x1F600);
Console.WriteLine(grinningEmoji);

 Verbatim strings

 An escape character is a special character in programming and text processing that is used to introduce an escape sequence. Escape sequences allow the representation of characters that are difficult or impossible to include directly in a string. These sequences often start with a backslash, \, followed by one or more characters.

 When storing text in a string variable, you can include escape sequences, which represent special characters like tabs and newlines using a backslash, as shown in the following code:

 string fullNameWithTabSeparator = "Bob\tSmith";

 But what if you are storing the path to a file on Windows, and one of the folder names starts with a T, as shown in the following code?

 string filePath = "C:\televisions\sony\bravia.txt";

 The compiler will convert the \t into a tab character and you will get errors!

 You must prefix it with the @ symbol to use a verbatim literal string, as shown in the following code:

 string filePath = @"C:\televisions\sony\bravia.txt";

 With C# 13 and later, you can represent the ESC character (Unicode U+001B) using the character literal escape sequence \e, as shown in the following code:

 // C# 13 or later.
char esc = '\e';
// C# 12 or earlier.
char esc = '\u001b';

 In the past, you might have used \u001b or \x1b. However, using \x1b was not recommended because any valid hexadecimal digits following 1b would be incorrectly interpreted as part of the escape sequence.

 Raw string literals

 Introduced in C# 11, raw string literals are convenient for entering any arbitrary text without needing to escape the contents. They make it easy to define literals containing other languages like XML, HTML, or JSON.

 Raw string literals start and end with three or more double-quote characters, as shown in the following code:

 string xml = """
 <person age="50">
 <first_name>Mark</first_name>
 </person>
 """;

 Why three or more double-quote characters? This is for scenarios where the content itself needs to have three double-quote characters; you can then use four double-quote characters to indicate the beginning and end of the content. Where the content needs to have four double-quote characters, you can then use five double-quote characters to indicate the beginning and end of the content. And so on.

OEBPS/Images/B22322_02_03.png
Of Fle fdt View Gt Pojct Buld Debig Tet Awbze Took Ertensons Window Hep | hptetz —

5 - G ous][y

BB vocabuiy

T 7T e g s T
2 |17 tervor vorsion
Consele MritelineC

e s 1/[© 2 ro][4, 0 orsng | © oesmge) i s] s o
7 Code Description Project File. Line _ Suppression State.
o opaied oy rogames s b

‘Console doss not contin s
ooz Coniiti st ot sot Vocabulay Progmes s

o]

5 Seuton Choptr02 (1 o1 1 project)

4 63 vocabulry
b 48 Dependenies

OEBPS/Images/Image21405.png
<PACKTD

OEBPS/Images/B22322_01_08.png
©-0|B-SBB| 9 - - [oww | [ayew

Progrmes = X

D Abcuthnionment | % Aboutyenvionment rogram
& 1 namespaue AbvulHyEndrvmment

internal. class Progran
i

static void Main(stringl] args)
i

Console WriteLine(Nanespace: (0)",

Fle Edt Viw Gt Pojct Buld Debug et Andhe Tooks Edtemsions Window Hop | O Seach -

- @ Aboumemionment - B AboutEnvonment * D

Console Mrsteline(Environment CurrentDirectory)
Console MriteLine(Enyironsent OSVersion.VersionString);

typeof(progran) Naespace 77 “<nills);

Chapterdt ® - o x
@ GubCoplor 12 & | paeview

- ©
oo 09 T+ 8 0-=06 W £
| [seoenscton piorer ey »

| Soluton Crapta01" 2 of 2 prjects)
Py
|
b e
- e
LR rele
prtomn

) Microsot Visol Sudio D X

C:\cs13net9\Chapter8l\AboutHyEnvironnent\bin\Debug\net9. 8
Hicrosoft Windows NT 10.0.26100.0
Namespace: AboutMyEnvironment

G - o x

OEBPS/Images/B22322_01_03.png
Version | Support 2023 2024 2025 2026 2027 2028

NETE | TS
.NET7 STS

NET8 TS |

.NET9 | STS . |

| NET10| TS | ! ! N
sTs B

WNET 11
.NET 9 released in November 2024

OEBPS/Images/B22322_01_17.png
0Q Ele Edt Vew Gt Pojct Buld Debug Test Auye Tooks Exensons Mindow Help hpeot = B X
ie-o|@g-sB@|9- [Debug_-|[any cpu. - [Heliocs -] P Hellocs - > 5 < | B3| B

[EDrietocs | Foretocs Pt - I+ @d o -=08

Search Solution Bplorer Ctl)
R Soluion Chopter01’ 2 of 2 projects)

7 Cnancspace Hellocs
s[4

s B £ > 6 Aboutiyenvionment

w | e accept Wl e soesTon M P

n public string lame 1 get; set; _
public decinal Price { get; set; } e e
public int Quantity { get; set; b cx productes
public string Description { get; set; } b o prognmes

public Product(string nase, decinal price, int quantity, string description)
i

Nase = nane;
Price = price;

Quantity = quantity;
Description = description;

public override string ToString()
1

L Ges ™ s cur

0% 5 6

OEBPS/toc.xhtml

 Contents

 		Preface

 		Where to find the code solutions

 		What this book covers

 		What you need for this book

 		Downloading the color images of this book

 		Conventions

 		Get in touch

 		Hello, C#! Welcome, .NET!

 		Introducing this book and its contents

 		Getting code solutions for this book

 		.NET terms used in this book

 		The structure and style of this book

 		Topics covered by this book

 		Topics covered by Apps and Services with .NET 8

 		Topics covered by Tools and Skills for .NET 8

 		Finding all my books

 		Setting up your development environment

 		Choosing the appropriate tool and application type for learning

 		VS Code for cross-platform development

 		GitHub Codespaces for development in the cloud

 		Visual Studio for general development

 		What I used

 		Deploying cross-platform

 		Downloading and installing Visual Studio

 		Keyboard shortcuts for Visual Studio

 		Downloading and installing VS Code

 		Installing other extensions

 		Understanding VS Code versions

 		Keyboard shortcuts for VS Code

 		Understanding .NET

 		Understanding .NET support

 		Understanding end of life (EOL)

 		Understanding .NET support phases

 		Understanding .NET runtime and .NET SDK versions

 		Listing and removing versions of .NET

 		Understanding intermediate language

 		Comparing .NET technologies

 		Building console apps using Visual Studio

 		Writing code using Visual Studio

 		Compiling and running code using Visual Studio

 		Understanding the compiler-generated folders and files

 		Understanding top-level programs

 		Requirements for top-level programs

 		Implicitly imported namespaces

 		Revealing the hidden code by throwing an exception

 		Revealing the namespace for the Program class

 		Adding a second project using Visual Studio

 		Building console apps using VS Code

 		Writing code using VS Code

 		Compiling and running code using the dotnet CLI

 		Adding a second project using VS Code

 		Summary of steps for VS Code

 		Summary of other project types used in this book

 		Making good use of the GitHub repository for this book

 		Understanding the solution code on GitHub

 		Raising issues with the book

 		Giving me feedback

 		Avoiding common mistakes

 		Downloading solution code from the GitHub repository

 		Using Git with VS Code and the command prompt

 		Cloning the book solution code repository

 		Looking for help

 		Microsoft Learn documentation and Ask Learn

 		Documentation links in this book

 		Getting help from the dotnet tool

 		Getting definitions of types and their members

 		Configuring inline aka inlay hints

 		Looking for answers on Stack Overflow

 		Searching for answers using Google

 		Getting help on Discord and other chat forums

 		Searching the .NET source code

 		Source code in documentation

 		Official .NET blog, standups, and news

 		Watching Scott Hanselman’s videos

 		AI tools like ChatGPT and GitHub Copilot

 		ChatGPT example

 		GitHub Copilot for programmers

 		Disabling tools when they get in the way

 		Practicing and exploring

 		Exercise 1.1 – Online material

 		Current versions of .NET

 		Upgrade to a new .NET version

 		freeCodeCamp and C# certification

 		Explore Polyglot Notebooks

 		Windows development

 		C# versus other languages

 		Free computer science course

 		.NET newsletters

 		Exercise 1.2 – Practice exercises

 		Practice C# anywhere with a browser

 		Alpha versions of .NET

 		Exercise 1.3 – Test your knowledge

 		Exercise 1.4 – Explore topics

 		Summary

 		Speaking C#

 		Introducing the C# language

 		C# language versions and features

 		Understanding C# standards

 		Discovering your C# compiler version

 		How to output the SDK version

 		Enabling a specific language version compiler

 		Using preview C# compiler versions

 		Switching the C# compiler for .NET 9 to a future version

 		Showing the compiler version

 		Understanding C# grammar and vocabulary

 		Understanding C# grammar

 		Statements

 		Comments

 		Blocks

 		Regions

 		Examples of statements and blocks

 		Formatting code using white space

 		Understanding C# vocabulary

 		Comparing programming languages to human languages

 		Changing the color scheme for C# syntax

 		Help for writing correct code

 		Importing namespaces

 		Implicitly and globally importing namespaces

 		Verbs are methods

 		Nouns are types, variables, fields, and properties

 		Revealing the extent of the C# vocabulary

 		Example of asking ChatGPT to explain code

 		Working with variables

 		Naming things and assigning values

 		Literal values

 		Storing text

 		Outputting emojis

 		Verbatim strings

 		Raw string literals

 		Raw interpolated string literals

 		Summarizing options for storing text

 		Storing numbers

 		Storing whole numbers

 		Improving legibility by using digit separators

 		Using binary or hexadecimal notation

 		Exploring whole numbers

 		Storing real numbers

 		Writing code to explore number sizes

 		Comparing double and decimal types

 		Special real number values

 		New number types and unsafe code

 		Storing Booleans

 		Storing any type of object

 		Storing dynamic types

 		Declaring local variables

 		Specifying the type of a local variable

 		Inferring the type of a local variable

 		What does new do?

 		Using target-typed new to instantiate objects

 		Getting and setting the default values for types

 		Exploring more about console apps

 		Displaying output to the user

 		Formatting using numbered positional arguments

 		Rider and its warnings about boxing

 		Formatting using interpolated strings

 		Understanding format strings

 		Custom number formatting

 		Getting text input from the user

 		When does ReadLine return null?

 		Simplifying the usage of the console

 		Importing a static type for a single file

 		Importing a static type for all code files in a project

 		Getting key input from the user

 		Passing arguments to a console app

 		Setting options with arguments

 		Handling platforms that do not support an API

 		Practicing and exploring

 		Exercise 2.1 – Online material

 		Understanding async and await

 		Explore Spectre

 		Exercise 2.2 – Practice exercises

 		Explore number sizes and ranges

 		Exercise 2.3 – Test your knowledge

 		Test your knowledge of number types

 		Exercise 2.4 – Explore topics

 		Summary

 		Controlling Flow, Converting Types, and Handling Exceptions

 		Operating on variables

 		Understanding binary operators

 		Understanding unary operators

 		Understanding ternary operators

 		Exploring unary operators

 		Exploring binary arithmetic operators

 		Assignment operators

 		Null-coalescing operators

 		Exploring logical operators

 		Exploring conditional logical operators

 		Exploring bitwise and binary shift operators

 		Miscellaneous operators

 		Understanding selection statements

 		Branching with the if statement

 		Why you should always use braces with if statements

 		Pattern matching with the if statement

 		Branching with the switch statement

 		Adding a new item to a project using Visual Studio

 		Pattern matching with the switch statement

 		Simplifying switch statements with switch expressions

 		Understanding iteration statements

 		Looping with the while statement

 		Looping with the do statement

 		Looping with the for statement

 		Looping with the foreach statement

 		Understanding how foreach works internally

 		Storing multiple values in an array

 		Working with single-dimensional arrays

 		Working with multi-dimensional arrays

 		Working with jagged arrays

 		List pattern matching with arrays

 		Trailing commas

 		Understanding inline arrays

 		Summarizing arrays

 		Casting and converting between types

 		Casting numbers implicitly and explicitly

 		How negative numbers are represented in binary

 		Converting with the System.Convert type

 		Rounding numbers and the default rounding rules

 		Taking control of rounding rules

 		Converting from any type to a string

 		Converting from a binary object to a string

 		Base64 for URLs

 		Parsing from strings to numbers or dates and times

 		Avoiding Parse exceptions by using the TryParse method

 		Understanding the Try method naming convention

 		Handling exceptions

 		Wrapping error-prone code in a try block

 		Catching all exceptions

 		Catching specific exceptions

 		Catching with filters

 		Checking for overflow

 		Throwing overflow exceptions with the checked statement

 		Disabling compiler overflow checks with the unchecked statement

 		Practicing and exploring

 		Exercise 3.1 – Online material

 		Returning result types versus throwing exceptions

 		C# 101 notebooks

 		Exercise 3.2 – Practice exercises

 		Loops and overflow

 		Practice loops and operators

 		Practice exception handling

 		Exercise 3.3 – Test your knowledge

 		Test your knowledge of operators

 		Exercise 3.4 – Explore topics

 		Summary

 		Writing, Debugging, and Testing Functions

 		Writing functions

 		Exploring top-level programs, functions, and namespaces

 		What is automatically generated for a local function?

 		Defining a partial Program class with a static function

 		What is automatically generated for a static function?

 		Times table example

 		A brief aside about arguments and parameters

 		Writing a function that returns a value

 		Converting numbers from cardinal to ordinal

 		Calculating factorials with recursion

 		Documenting functions with XML comments

 		Using lambdas in function implementations

 		Debugging during development

 		Creating code with a deliberate bug

 		Setting a breakpoint and starting debugging

 		Using Visual Studio

 		Using VS Code

 		Navigating with the debugging toolbar

 		Debugging windows

 		Stepping through code

 		Using the VS Code integrated terminal during debugging

 		Customizing breakpoints

 		Hot reloading during development

 		Hot reloading using Visual Studio

 		Hot reloading using VS Code and dotnet watch

 		Unit testing

 		Understanding types of testing

 		Creating a class library that needs testing

 		Writing unit tests

 		Running unit tests using Visual Studio

 		Running unit tests using VS Code

 		Fixing the bug

 		Specifying multiple parameter values

 		Throwing and catching exceptions in functions

 		Understanding usage errors and execution errors

 		Commonly thrown exceptions in functions

 		Throwing exceptions using guard clauses

 		Understanding the call stack

 		Where to catch exceptions

 		Rethrowing exceptions

 		Implementing the tester-doer and try patterns

 		Practicing and exploring

 		Exercise 4.1 – online material

 		Logging during development and runtime

 		Exercise 4.2 – practice exercises

 		Writing functions with debugging and unit testing

 		Exercise 4.3 – test your knowledge

 		Exercise 4.4 – explore topics

 		Summary

 		Building Your Own Types with Object-Oriented Programming

 		Talking about OOP

 		Building class libraries

 		Creating a class library

 		Understanding file-scoped namespaces

 		Defining a class in a namespace

 		Understanding type access modifiers

 		Understanding members

 		Importing a namespace to use a type

 		Instantiating a class

 		Inheriting from System.Object

 		Avoiding a namespace conflict with a using alias

 		Renaming a type with a using alias

 		Storing data in fields

 		Defining fields

 		Types for fields

 		Member access modifiers

 		Setting and outputting field values

 		Setting field values using object initializer syntax

 		Storing a value using an enum type

 		Storing multiple values using an enum type

 		Changing an enum base type for performance

 		Storing multiple values using collections

 		Understanding generic collections

 		Making a field static

 		Making a field constant

 		Making a field read-only

 		Requiring fields to be set during instantiation

 		Initializing fields with constructors

 		Defining multiple constructors

 		Setting required fields with a constructor

 		Working with methods and tuples

 		Returning values from methods

 		Defining and passing parameters to methods

 		Overloading methods

 		Passing optional parameters

 		Naming parameter values when calling methods

 		Mixing optional and required parameters

 		Controlling how parameters are passed

 		Passing a variable number of parameters

 		Understanding ref returns

 		Combining multiple returned values using tuples

 		Naming the fields of a tuple

 		Aliasing tuples

 		Deconstructing tuples

 		Deconstructing other types using tuples

 		Implementing functionality using local functions

 		Splitting classes using partial

 		Partial methods

 		Controlling access with properties and indexers

 		Defining read-only properties

 		Defining settable properties

 		Partial properties

 		Limiting flags enum values

 		Defining indexers

 		Pattern matching with objects

 		Pattern-matching flight passengers

 		Enhancements to pattern matching in modern C#

 		Working with record types

 		Init-only properties

 		Defining record types

 		Equality of record types

 		Equality of other types

 		Positional data members in records

 		Defining a primary constructor for a class

 		Practicing and exploring

 		Exercise 5.1 – online material

 		Pattern matching

 		Exercise 5.2 – practice exercises

 		Practice access modifiers

 		Exercise 5.3 – test your knowledge

 		Exercise 5.4 – explore topics

 		Summary

 		Implementing Interfaces and Inheriting Classes

 		Setting up a class library and console application

 		Static methods and overloading operators

 		Implementing functionality using methods

 		Implementing functionality using operators

 		Making types safely reusable with generics

 		Working with non-generic types

 		Working with generic types

 		Raising and handling events

 		Calling methods using delegates

 		Examples of delegate use

 		Status: It’s complicated

 		Defining and handling delegates

 		Defining and handling events

 		Implementing interfaces

 		Common interfaces

 		Comparing objects when sorting

 		Comparing objects using a separate class

 		Implicit and explicit interface implementations

 		Defining interfaces with default implementations

 		Working with null values

 		Making a value type nullable

 		Understanding null-related initialisms

 		Understanding nullable reference types

 		Controlling the nullability warning check feature

 		Disabling null and other compiler warnings

 		Declaring non-nullable variables and parameters

 		Checking for null

 		Checking for null in method parameters

 		Inheriting from classes

 		Extending classes to add functionality

 		Hiding members

 		Understanding the this and base keywords

 		Overriding members

 		Inheriting from abstract classes

 		Choosing between an interface and an abstract class

 		Preventing inheritance and overriding

 		Understanding polymorphism

 		Casting within inheritance hierarchies

 		Implicit casting

 		Explicit casting

 		Avoiding casting exceptions

 		Using is to check a type

 		Using as to cast a type

 		Inheriting and extending .NET types

 		Inheriting exceptions

 		Extending types when you can’t inherit

 		Using static methods to reuse functionality

 		Using extension methods to reuse functionality

 		Method chaining or fluent style

 		Summarizing custom type choices

 		Categories of custom types and their capabilities

 		Mutability and records

 		Comparing inheritance and implementation

 		Reviewing illustrative code

 		Practicing and exploring

 		Exercise 6.1 – Online material

 		Managing memory with reference and value types

 		Writing better code

 		Exercise 6.2 – Practice creating an inheritance hierarchy

 		Exercise 6.3 – Test your knowledge

 		Exercise 6.4 – Explore topics

 		Summary

 		Packaging and Distributing .NET Types

 		The road to .NET 9

 		.NET Standard-compatible frameworks

 		Checking your .NET SDKs for updates

 		Understanding .NET components

 		Assemblies, NuGet packages, and namespaces

 		What is a namespace?

 		Dependent assemblies

 		Microsoft .NET project SDKs

 		PropertyGroup element

 		ItemGroup element

 		Label and Condition attributes

 		Namespaces and types in assemblies

 		NuGet packages

 		Package sources

 		Understanding frameworks

 		Importing a namespace to use a type

 		Relating C# keywords to .NET types

 		Mapping C# aliases to .NET types

 		Understanding native-sized integers

 		Revealing the location of a type

 		Sharing code with legacy platforms using .NET Standard

 		Understanding defaults for class libraries with different SDKs

 		Creating a .NET Standard class library

 		Controlling the .NET SDK

 		Mixing SDKs and framework targets

 		Publishing your code for deployment

 		Creating a console app to publish

 		Understanding dotnet commands

 		Getting information about .NET and its environment

 		Managing projects using the dotnet CLI

 		Publishing a self-contained app

 		Publishing a single-file app

 		Reducing the size of apps using app trimming

 		Controlling where build artifacts are created

 		Native ahead-of-time compilation

 		Limitations of native AOT

 		Reflection and native AOT

 		Requirements for native AOT

 		Enabling native AOT for a project

 		Building a native AOT project

 		Publishing a native AOT project

 		Packaging your libraries for NuGet distribution

 		Referencing a NuGet package

 		Fixing dependencies

 		Packaging a library for NuGet

 		Publishing a package to a public NuGet feed

 		Publishing a package to a private NuGet feed

 		Exploring NuGet packages with a tool

 		Testing your class library package

 		Working with preview features

 		Requiring preview features

 		Enabling preview features

 		Method interceptors

 		Practicing and exploring

 		Exercise 7.1 – Online material

 		Experimental MSBuild editor

 		Improving performance in .NET

 		Decompiling .NET assemblies

 		Porting from .NET Framework to modern .NET

 		Exercise 7.2 – Practice exercises

 		Creating source generators

 		Explore PowerShell

 		Exercise 7.3 – Test your knowledge

 		Exercise 7.4 – Explore topics

 		Summary

 		Working with Common .NET Types

 		Working with numbers

 		Working with big integers

 		Multiplying big integers

 		Working with complex numbers

 		Working with tensors

 		Generating random numbers for games and similar apps

 		Generating random numbers with the Random class

 		New random methods in .NET 8 and later

 		Generating GUIDs

 		Working with text

 		Getting the length of a string

 		Getting the characters of a string

 		Splitting a string

 		Getting part of a string

 		Checking a string for content

 		Comparing string values

 		Joining, formatting, and other string members

 		Building strings efficiently

 		Working with characters

 		Searching in strings

 		Pattern matching with regular expressions

 		Checking for digits entered as text

 		Regular expression performance improvements

 		Understanding the syntax of a regular expression

 		Examples of regular expressions

 		Splitting a complex comma-separated string

 		Activating regular expression syntax coloring

 		Improving regular expression performance with source generators

 		Storing multiple objects in collections

 		Common features of all collections

 		Working with lists

 		Working with dictionaries

 		Sets, stacks, and queues

 		Collection add and remove methods

 		Sorting collections

 		Specialized collections

 		Read-only, immutable, and frozen collections

 		Initializing collections using collection expressions

 		Using the spread element

 		Good practice with collections

 		Presizing collections

 		Passing collections to methods

 		Returning collections from members

 		Working with spans, indexes, and ranges

 		Using memory efficiently using spans

 		Identifying positions with the Index type

 		Identifying ranges with the Range type

 		Using indexes, ranges, and spans

 		Using spans for efficient text handling

 		Practicing and exploring

 		Exercise 8.1 – online material

 		Working with network resources

 		Collection expressions

 		Exercise 8.2 – practice exercises

 		Regular expressions

 		Extension methods

 		Exercise 8.3 – test your knowledge

 		Exercise 8.4 – explore topics

 		Summary

 		Working with Files, Streams, and Serialization

 		Managing a filesystem

 		Handling cross-platform environments and filesystems

 		Managing drives

 		Managing directories

 		Managing files

 		Managing paths

 		Getting file information

 		Controlling how you work with files

 		Reading and writing with streams

 		Understanding abstract and concrete streams

 		Understanding storage streams

 		Understanding function streams

 		Understanding stream helpers

 		Building a stream pipeline

 		Writing to text streams

 		Writing to XML streams

 		Simplifying disposal by using the using statement

 		Compressing streams

 		Reading and writing with random access handles

 		Encoding and decoding text

 		Encoding strings as byte arrays

 		Encoding and decoding text in files

 		Serializing object graphs

 		Serializing as XML

 		Generating compact XML

 		Deserializing XML files

 		Serializing with JSON

 		High-performance JSON processing

 		Deserializing JSON files

 		JSON schema exporter

 		Controlling JSON processing

 		A warning about binary serialization using BinaryFormatter

 		Practicing and exploring

 		Exercise 9.1 – Online material

 		Working with tar archives

 		Migrating from Newtonsoft to new JSON

 		Exercise 9.2 – Practice exercises

 		Serializing as XML

 		Exercise 9.3 – Test your knowledge

 		Exercise 9.4 – Explore topics

 		Summary

 		Working with Data Using Entity Framework Core

 		Understanding modern databases

 		Understanding legacy Entity Framework

 		Using the legacy Entity Framework 6.3 or later

 		Understanding Entity Framework Core

 		Understanding Database First and Code First

 		Performance improvements in EF Core

 		Using a sample relational database

 		Using SQLite

 		Using SQL Server or other SQL systems

 		Setting up SQLite CLI tools for Windows

 		Setting up SQLite for macOS and Linux

 		Setting up EF Core in a .NET project

 		Creating a console app for working with EF Core

 		Creating the Northwind sample database for SQLite

 		If you are using Visual Studio

 		Managing the Northwind sample database with SQLiteStudio

 		Using the lightweight ADO.NET database providers

 		Choosing an EF Core database provider

 		Connecting to a named SQLite database

 		Defining the Northwind database context class

 		Defining EF Core models

 		Using EF Core conventions to define the model

 		Using EF Core annotation attributes to define the model

 		Using the EF Core Fluent API to define the model

 		Understanding data seeding with the Fluent API

 		Building EF Core models for the Northwind tables

 		Defining the Category and Product entity classes

 		Adding tables to the Northwind database context class

 		Setting up the dotnet-ef tool

 		Scaffolding models using an existing database

 		Reviewing the scaffolded code

 		Customizing the reverse engineering templates

 		Configuring preconvention models

 		Querying EF Core models

 		Filtering included entities

 		Filtering and sorting products

 		Getting the generated SQL

 		Logging EF Core

 		Filtering logs by provider-specific values

 		Logging with query tags

 		Getting a single entity

 		Pattern matching with Like

 		Generating a random number in queries

 		Defining global filters

 		SQL SELECT queries

 		Practicing and exploring

 		Exercise 10.1 – online materials

 		Loading and tracking patterns with EF Core

 		Modifying data with EF Core

 		Working with transactions

 		Exploring a Code First EF Core model

 		Exploring app secrets

 		NoSQL databases

 		Exercise 10.2 – practice exercises

 		Exporting data using different serialization formats

 		Exercise 10.3 – test your knowledge

 		Exercise 10.4 – explore topics

 		Summary

 		Querying and Manipulating Data Using LINQ

 		Writing LINQ expressions

 		Comparing imperative and declarative language features

 		LINQ components

 		Building LINQ expressions with the Enumerable class

 		LINQ in practice

 		Understanding deferred execution

 		Filtering entities using Where

 		Targeting a named method

 		Simplifying code by removing the explicit delegate instantiation

 		Targeting a lambda expression

 		Lambda expressions with default parameter values

 		Sorting and more

 		Sorting by a single property using OrderBy

 		Sorting by a subsequent property using ThenBy

 		Sorting by the item itself

 		Declaring a query using var or a specified type

 		Filtering by type

 		Working with sets and bags

 		Getting the index as well as items

 		Using LINQ with EF Core

 		Creating a console app for exploring LINQ to Entities

 		Building an EF Core model

 		Filtering and sorting sequences

 		Projecting sequences into new types

 		Joining, grouping, and lookups

 		Joining sequences

 		Group-joining sequences

 		Grouping for lookups

 		Practicing and exploring

 		Exercise 11.1 – Online material

 		Aggregating and paging sequences

 		Using multiple threads with parallel LINQ

 		Working with LINQ to XML

 		Creating your own LINQ extension methods

 		Design of the new LINQ methods in .NET 9

 		Exercise 11.2 – Practice querying with LINQ

 		Exercise 11.3 – Test your knowledge

 		Exercise 11.4 – Explore topics

 		Summary

 		Introducing Modern Web Development Using .NET

 		Understanding ASP.NET Core

 		Classic ASP.NET versus modern ASP.NET Core

 		Building websites using ASP.NET Core

 		Comparison of file types used in ASP.NET Core

 		Building websites using a content management system

 		Building web applications using SPA frameworks

 		Building web and other services

 		Building desktop and mobile apps

 		Mobile app platforms

 		.NET MAUI

 		Uno platform

 		Avalonia

 		Structuring projects

 		Structuring projects in a solution

 		Central package management

 		Building an entity model for use in the rest of the book

 		Creating the Northwind database

 		Creating a class library for entity models using SQLite

 		Creating a class library for a database context using SQLite

 		Customizing the model and defining an extension method

 		HasDefaultValue and HasDefaultValueSql

 		Registering the scope of a dependency service

 		Creating class libraries for entity models using SQL Server

 		Improving the class-to-table mapping

 		Testing the class libraries

 		Understanding web development

 		Understanding the Hypertext Transfer Protocol

 		Understanding the components of a URL

 		Using Google Chrome to make HTTP requests

 		Understanding client-side web development technologies

 		Practicing and exploring

 		Exercise 12.1 – Online material

 		Exercise 12.2 – Practice exercises

 		Troubleshooting web development

 		Exercise 12.3 – Test your knowledge

 		Know your webbreviations

 		Exercise 12.4 – Explore topics

 		Summary

 		Building Websites Using ASP.NET Core

 		Exploring ASP.NET Core

 		Architecture of ASP.NET Core

 		Creating an empty ASP.NET Core project

 		Testing and securing the website

 		Enabling stronger security and redirecting to a secure connection

 		Controlling the hosting environment

 		Enabling a website to serve static content

 		Creating a folder for static files and a web page

 		Enabling static and default files

 		Understanding MapStaticAssets

 		Understanding browser requests during development

 		History of Blazor

 		JavaScript and friends

 		Silverlight – C# and .NET using a plugin

 		WebAssembly – a target for Blazor

 		Blazor hosting models in .NET 7 and earlier

 		Unification of Blazor hosting models in .NET 8

 		Understanding Blazor components

 		What is the difference between Blazor and Razor?

 		Exploring Blazor static SSR

 		Enabling Blazor static SSR

 		Adding code to a Blazor static SSR page

 		Using shared layouts with Blazor static SSR pages

 		Creating a suppliers page

 		Configuring files included in an ASP.NET Core project

 		Project file build actions

 		Using Entity Framework Core with ASP.NET Core

 		Configuring Entity Framework Core as a service

 		Practicing and exploring

 		Exercise 13.1 – online material

 		Configuring services and the HTTP request pipeline

 		Enabling HTTP/3 and request decompression support

 		Introducing Bootstrap

 		Exercise 13.2 – practice exercises

 		Build a data-driven web page

 		Build web pages for functions

 		Exercise 13.3 – test your knowledge

 		Exercise 13.4 – explore topics

 		Summary

 		Building Interactive Web Components Using Blazor

 		Reviewing the Blazor Web App project template

 		Creating a Blazor Web App project

 		Reviewing Blazor routing, layouts, and navigation

 		How to define a routable page component

 		How to navigate routes and pass route parameters

 		How to use the navigation link component with routes

 		Understanding base component classes

 		Running the Blazor Web App project template

 		Building components using Blazor

 		Defining and testing a simple Blazor component

 		Using Bootstrap icons

 		Making the component a routable page component

 		Getting entities into a Blazor component

 		Abstracting a service for a Blazor component

 		Enabling streaming rendering

 		Defining forms using the EditForm component

 		Building a customer detail component

 		Building customer create, edit, and delete components

 		Testing the customer components

 		Practicing and exploring

 		Exercise 14.1 – Online material

 		Enhancing Blazor apps

 		Leveraging open source Blazor component libraries

 		Exercise 14.2 – Practice exercises

 		Creating a times table component

 		Creating a country navigation item

 		Exercise 14.3 – Test your knowledge

 		Exercise 14.4 – Explore topics

 		Summary

 		Building and Consuming Web Services

 		Building web services using ASP.NET Core

 		Understanding web service acronyms

 		Understanding HTTP requests and responses

 		ASP.NET Core Minimal APIs projects

 		Minimal APIs web service and native AOT compilation

 		Creating an ASP.NET Core Minimal API project

 		Reviewing the web service’s functionality

 		Route constraints

 		Short-circuit routes

 		Improved route tooling in ASP.NET Core 8 and later

 		Understanding endpoint route handler return types

 		Creating a web service for the Northwind database

 		Registering dependency services

 		In-memory, distributed, and hybrid caches

 		In-memory caching

 		Distributed caching

 		Hybrid caching

 		Creating data repositories with caching for entities

 		Configuring the customer repository

 		Specifying problem details

 		Documenting and trying out web services

 		Trying out GET requests using a browser

 		Making GET requests using HTTP/REST tools

 		Making other requests using HTTP/REST tools

 		Passing environment variables

 		Understanding the OpenAPI Specification

 		Enabling HTTP logging

 		Logging to the Windows-only Event Log

 		Support for logging additional request headers in W3CLogger

 		Consuming web services using HTTP clients

 		Understanding HttpClient

 		Configuring HTTP clients

 		Getting customers as JSON in a Blazor component

 		Starting multiple projects

 		If you are using Visual Studio

 		If you are using VS Code

 		Starting the web service and Blazor client projects

 		Practicing and exploring

 		Exercise 15.1 – Online material

 		Implementing advanced features for web services

 		Minimal APIs parameter binding

 		Refit client

 		Web service security using Microsoft Identity

 		Exercise 15.2 – Practice exercises

 		Creating and deleting customers with HttpClient

 		Exercise 15.3 – Test your knowledge

 		Exercise 15.4 – Explore topics

 		Summary

 		Epilogue

 		Next steps on your C# and .NET learning journey

 		Polishing your skills with design guidelines

 		Companion books to continue your learning journey

 		Other books to take your learning further

 		The tenth edition for .NET 10

 		Good luck!

 		Leave a Review!

 		Index

 Landmarks

 		

 Cover

 		

 Index

OEBPS/Images/blockquote-top.png

OEBPS/Images/B22322_01_11.png
0Q Fle €t View Gt fro Optiors

£0- 0|85 8|91 migsioniosure X W) bl ot gt (permentl e et
et [EL RS —

[SpEe—rT

o Ramove nwtad aurnce command n Sl 5

[yemamime
T ehambly S

a (3 Erbl e i fo dgnstis foaaed i “KTomg sy
| 915 sy for mplty vigerd bds
susing [] oo etintan

(0ot PPk e s
[P ———————

9 s s ety seves o v

€ ot sycvnouly (rpsmaris

[————

Whs dekd h rran U b show? v

OEBPS/Images/B22322_01_04.png
00 e Edt Vew Gt Popc Buld Debig Tet Ambme ook Eensons Window Mo [sochCi-Q P| Chptest — O X

| E-SBA| 9 - [ows |l | Dhocs > G- |G B L | 18 tveshare B

Tor more inforsation

1 E
Console.WriteLine(*Hello, World:

5 Souton Chapterot (1 o1 1 projec)
4 Hllocs
b 28 ependenies
< progmes

+ Addtc

OEBPS/Images/B22322_01_07.png
O Fle Edt Viw Gt Pojet Buld Debug Test Anshre Tooks Eensions Window Hop | O Sewch- Chapterdt ® - o x

©-0 B-SBE 9 oty | dy | bkecs D 6B @ A W7 B v Coion 18 R0 | PRV
st ~ ® Solution Explorer
Brnots B |26 - =)
@ 1 {7 See iipa/fua.m ercumatestemplae for wore Anformation S
3 | ConsoteuriteineCuetls, co | Seohsohson e)
lo'l throw new Exception(); I: 3 Solution Chapter01" (1 of 1 project
6 Moon Vsl sudobobu X v - o x

Hello, Ci!
Unhandled exception. Systen.Exception: Exception of type 'System.Exception! was thrown.
at Progran. <Hain>$(String[] args) in C:\cs13net9\Chapter0l\HelloCS\Progran.cs:Line 3

C:\cs13net9\Chapterd1\HelloCS\bin\Debug\net9.0\HelLoCS .exe (process 24ue) exited with code -532462766
(oxe0u3u352)
Press any key to close this window . . .|

OEBPS/Images/tip.png

OEBPS/Images/B22322_01_16.png
Email Valdtion n C# x

/chatopenai.com

Customize Zoom Waiting Re

Configuring Preferences for

UK Adevel grade infltion

QL Server and SQlte.

UK Monuments Protection P

[EERpS——

Mark Price.

Sure, here's a simple function using C# and regular expressions

tovalidate an email address:

conarp

ail)

OEBPS/Images/cover.png
EXPERT INSIGHT

C#13and .NET9

Modern Cross-Platform
Development Fundamentals

Start building websites and services with ASP.NET Core 9,
Blazor, and EF Core 9

Ninth Edition

Mark J. Price (quk'l')

OEBPS/Images/B22322_01_12.png
00 Bl [t Vew Gt ot fuid Dobug Tem A Took Gtemsons

Capeot = @

Mindow Help [sewch Cui) P

(00| @B E@| 9 - [vewa < [anycru <) [etocs | B eocs < D 6 - [BB B3 (T 18 tve Share
[systemunime [systeminiz2 - vanvsoe |} ad6-=00)
] — Sewch soton ot
500 " Converts the string representation of a number to its 32-bit signec [Solution ‘Chapterd" (2 of 2 projects)
o1 n = & ssounyemaonment
0 17 passmaters b 98 Sopendencs
0 e > cxprogames
s 77 "'h string containing a nusber to convert. o
s i
506 1/ Returns: bCE
507 " A 32-bit signed integer equivalent to the nusber contained in s. b = Progames
st "
509 11 excepions:
510 77 TiSystan ArgumsntialExcaption:
su 7
sz "
e 77 Tisysuen Formatexcaption:
su 7775 et i the commect format
s "
s 77 Tisyston.Overflontxcoption:
517 77 s represents nusber Less than Int32 Minvalue or greater than Int3
s publdc static Int33 parse(string 2;
s [public static Int32 Parso(ReadontySpancchars s, TFormatProvides? provic~
005 .0 " @ e ot P2 L e cau oe

OEBPS/Images/info.png

OEBPS/Images/B22322_01_14.png
© cotesmenenas x4

€ 5 C 0 8 gtubonser

i+ repoadotnet2frunime s anguage KIACKBypecodesiteadvsearch & 12 % % O @

=)) [Q emsiepodotmetiunime anguoece >+~ (on '@ I
Filter by 99 fills (140 ms) in _ dotnet/runtime X RAswe oo
'0 @ &) ~ @ ...tations/src/System/ComponentModel/DataAnnotations/EmailAddressAttribute.cs @ C# - 1 main

© tses o o

Jr— - ¢ gttt oty | stinenarget.riotd |

AT oo,

@ ocsions o . Aieoisgie - s

P 9 [T AR ——

© rackages o v e r—

o . a [

2 Show more match

paths

OEBPS/Images/B22322_01_01.png
PoRm

® T

@ =i
o reoueng
B

Prn® G000

¥ O [Proview] README s - ce13n

€ 5 G @ % githubdewmarkjprice/csianets

N |

0 cstines Gihub) Dooo

€D [Preview] READMEMA X Lulii}

IMPORTANTI Common Mistakes, Improvements, and Errata aka lit of corrections

C#13 and .NET 9 - Modern Cross-Platform
Development Fundamentals, Ninth Edition
Repository for thePackt Publishing book tited “C# 13 and NET - Modern Cross-pltiorm
Development Fundamentals by Mark) rice

Loyout U Q

OEBPS/Images/blockquote-bottom.png

OEBPS/Images/B22322_01_06.png
o

O Fle it Vew Gt PRt Buid Debig XML Tet Ame Took Eendons Widow Hep | O Sewh- Chapterot
©-0 @ -SBE| 9 ot | aycw - bwdecs- D 6 B8, B G Coplor 18 B | paeviow

BT r—— “ax
> n.-.,.« ot T + | 8 %0-=0@R- IE

Search oltion xlorer €]

|
naTpestrec/ouitTe =
«.,,';.Jif.,m,m?ﬂ"/ﬁwm..w, T | B
emticieorimpambton ogtacictsinges s
P : > 8 bopdecer
<Irepertyeensy) Blre
Lo
<sprosece> B
> Beso
> B
- c* pogames

w1 a1 s ow

0% | © Noisuesfound

OEBPS/Images/B22322_01_13.png
Visual Studio VS Code

Inline Hints Dotnet > Inlay Hints: Enable Inlay Hints For Parameters

Display all hints while pressing Alt+F1 (/] Display inline parameter name hints

olor hints

Display inline parameter name hints

Console.Writeline(fornat: "Value is {0}.", argo: 19.8);

OEBPS/Images/B22322_01_15.png
Learn / NET / APl browser / System / wv @ 2

String Class) | 1 ss35en1 ~ | runtime/src/libraries / System.Private Corelib / stc / System / String.cs (9

Reference @ Michalstrehovsky idef out DynamicDependencies that are not necessary (167209) @

Code | Blame 508 1ines (668 1oc) - 28. 18

Definition

Namespace: System 21/ The T foundation licenes hic file o yau under the NIT icense.

Represents text as a sequence of UTF-16 code units.

IndexOf(String, Int32, StringComparison)

o
Reports the zero-based index of the first occurrence of the specified string i the current
public sealed class String : ICloneable, ICompard String object, Parameters speify the starting search position in the current string and the type

Iconvertible, Tequatablecstrings, Tparsablecstrd fed sri
System. Collections.Generic. IEnumerable<char> of search to use for the specifed string.

w copy

public dnt Index0f (string value, int startindex, StringComparison
compardsonType);

OEBPS/Images/review1.png

OEBPS/Images/B22322_01_02.png
r
Visual
Studio] [Code

[Rider

s \
Any text

editor

<project>.csproj

Program.cs

*.cs

&

dotnet

»l dll/exe

OEBPS/Images/B22322_02_02.png
Visual Studio

// Loop through all the types in the assembly.

foreach (TypeInfo t in a.DefinedTypes)
{
// Add up the counts of all the methods.
methodCount += t.GetMethods() .Length;

}

// Loop through all the types in the assembly.

foreach (TypeInfo t in a.DefinedTypes) |

VS Code

77 Loop through all the types in the assembly.
foreach (TypeInfo t in a.DefinedTypes)
{
// Add up the counts of all the methods.
methodCount += t.GetMethods(). Length;
}

// Loop through all the types in the assembly.
foreach (TypeInfo t in a.DefinedTypes) -

OEBPS/Images/B22322_01_09.png
X Ele Edit Selection View Go Bun Ieminal ‘Welcome - Chapter0t-vscode - Visusl Studio Code DEO0® - o0 x

o X0 Wekcame
Bl - oot vscooe [, B O
= Start Walkthroughs
< Hetocs
o 3 new e @ Get Started with # De... [
= 0 opentie. —
> o
o openfelder. = Gorstarted with
© Progames 3 clone Git Repository.
Chapteroisn @ cerstatedvith wst
> outuNe Recent
@ Browse & Edit Remote.

> e
> NSpY DECOMPIED MEMBERS.

> soluTioN ExLORER & Getting Started with D.

[Acawite Toble Servical {Azuwite Quaewe Service) [Azueite Bio

OEBPS/Images/B22322_01_05.png
O Fe Edt Vew Gt Popa Buid Debig Test Awbae ook Edensions Window Hop | O Sexth- Chapterot ® - o x

©-0 @ 9« & | [oabug - [anycru < b s D - BB " G Coplot 1@ K | pReview.
i % - 8 [Soktm o com
Erocs -] Tt ae-s06& #

2 | Console.uritaLineCHello, Ct
E R Soluton Chape1" (1 of 1 proect)

) Microsoft Vsl Stucio Do X+ v - o x 4 wllocs.
b 28 Dependencs
Hello, Cit <= Progomes

Ci\csLinets\ChapterbL\eLLoCS\bin\Usbug\nats. O\HeLLoCs. axe
(process 7624) exited with code 6 (O
Press any key to close this window . .

OEBPS/Images/QR_Code281224304227278796.png

OEBPS/Images/review.png

OEBPS/Images/B22322_02_01.png
Psuh- cupwz @ - O x

O Fle Edt View Gt Pojr Buld Dcbug Test Ansbze ook Exensions Window Help
& G Copiot 18 B | praview.

©- 0 G- ERE - g Aoy @ ety - b oty - B - B BT,
Progamst 5 .o
oty] g e
[e sl o e et =
2| besmor version i
R . - - -
% -0 02 Aot 4 | ¥+ o o s ow
o ~ 9 x
entee Souton -1 [© 26w0rs | [A 0Warings || @ 0Messages %] [suia + intlisense - Searchfror s B
" Code Description Project File Line
Voubdoy Pogames 2
2

© 51029 o vension’
© CSa301 Complerversion 41202244287 (ba23ede). onqusgeversion: 130, Vowsbuary Program.s

OEBPS/Images/1.png

OEBPS/Images/B22322_01_10.png
- Pisanch ©0Tags

@ markjorice Update Northwind EntiyMod:

W code L
- docs t
o scipts t
D giignore I

[22322 Coverprg

0 resomEmd .

0 README

Q Gotofie ul[+

Locel cumpu;,'

&3 Clone.

HTTPS SSH GitHub CUI

e //githib.con/markfprice/csianers.git

Clone using the web URL
G Open with GitHub Desktop.

Open with Visual Studio

 oownioad 20 ‘

od

@

@

About &

Repository for the Packt Publishing book
titled "C# 13 and .NET 9 - Modern Cross-
Platform Development Fundamentals® by
Meark J. Price.

charp dotnet aspretcore dotnetcore

oo

M Readme
A Activity
t Tstars
®
¥

4watch

0forks

[——

OEBPS/Images/B22322_Free_PDF_QR.png

