

[image: Cover Image]

Microsoft® Excel® 2021 Programming

Pocket Primer

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and disc (the “Work”), you agree that this license grants permission to use the contents contained herein, including the disc, but does not give you the right of ownership to any of the textual content in the book / disc or ownership to any of the information or products contained in it. This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone involved in the creation, writing, or production of the companion disc, accompanying algorithms, code, or computer programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to ensure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs. The Work is sold “as is” without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book and/or disc, and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” vary from state to state and might not apply to the purchaser of this product.

Companion files are also available for downloading by writing to info@merclearning.com.

Microsoft® Excel® 2021 Programming

Pocket Primer

Julitta Korol

[image: Image]

Copyright ©2022 by Mercury Learning and Information LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display, or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

Mercury Learning and Information

22841 Quicksilver Drive

Dulles, VA 20166

info@merclearning.com

www.merclearning.com

800-232-0223

J. Korol. Microsoft® Excel 2021 Programming Pocket Primer.

ISBN: 978-1-68392-892-8

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2022941631

222324321 This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors. Companion files (figures and code listings) for this title are available by contacting info@merclearning.com. The sole obligation of Mercury Learning and Information to the purchaser is to replace the disc, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.

Contents

Acknowledgments

Introduction

Chapter 1 Excel Macros: A Quick Start in Excel VBA Programming

Macros and VBA

Excel Macro-Enabled File Formats

Macro Security Settings

Enabling the Developer Tab in Excel

Using the Built-In Macro Recorder

Planning a Macro

Recording a Macro

Editing Recorded Macros

Macro Comments

Cleaning up the Macro Code

Running a Macro

Testing and Debugging a Macro

Saving and Renaming a Macro

Printing Macro Code

Improving Your Recorded Macros

Creating a Master Macro

Various Methods of Running Macros

Running the Macro Using a Keyboard Shortcut

Running the Macro from the Quick Access Toolbar

Running the Macro from a Worksheet Button

Summary

Chapter 2 Excel Programming Environment: A Quick Overview of its Tools and Features (VBE)

Understanding the Project Explorer Window

Understanding the Properties Window

Understanding the Code Window

Setting the VBE Options

Syntax and Programming Assistance

List Properties/Methods

List Constants

Parameter Info

Quick Info

Complete Word

Indent/Outdent

Comment Block/Uncomment Block

Using the Object Browser

Locating Procedures with the Object Browser

Using the VBA Object Library

Using the Immediate Window

Obtaining Information in the Immediate Window

Working with Worksheet Cells and Ranges

Using the Range Property

Using the Cells Property

Using the Offset Property

Using the Resize Property

Using the End Property

Moving, Copying, and Deleting Cells

Working with Rows and Columns

Obtaining Information about the Worksheet

Entering Data and Formatting Cells

Returning Information Entered in a Worksheet

Finding Out about Cell Formatting

Working with Workbooks and Worksheets

Working with Windows

Working with the Excel Application

Summary

Chapter 3 Excel VBA Fundamentals: A Quick Reference to Writing VBA Code

Excel Objects, Properties, and Methods

Microsoft Excel Object Model

Writing Simple and Complex VBA Statements

Breaking Up Long VBA Statements

Saving Results of VBA Statements

Introducing Data Types

Using Variables

How to Create Variables

How to Declare Variables

Specifying the Data Type of a Variable

Assigning Values to Variables

Forcing Declaration of Variables

Understanding the Scope of Variables

Procedure-Level (Local) Variables

Module-Level Variables

Project-Level Variables

Lifetime of Variables

Finding a Variable Definition

Determining a Data Type of a Variable

Using Constants

Built-in Constants

Converting between Data Types

Using Static Variables in VBA Procedures

Using Object Variables in VBA Procedures

Using Specific Object Variables

Summary

Chapter 4 Excel VBA Procedures: A Quick Guide to Writing Function Procedures

Understanding Function Procedures

Creating a Function Procedure

Various Methods of Running Fnction Procedures

Running a Function Procedure from a Worksheet

Running a Function Procedure from Another VBA Procedure

Ensuring Availability of Your Custom Functions

Passing Arguments to Function Procedures

Specifying Argument Types

Passing Arguments by Reference and by Value

Using Optional Arguments

Testing a Function Procedure

Locating Built-In Functions

Getting to Know the MsgBox Function

Returning Values from the MsgBox Function

Getting to Know the InputBox Function

Determining and Converting Data Types

Using the InputBox Method

Summary

Chapter 5 Adding Decisions to Excel VBA Programs: A Quick Introduction to Conditional Statements

Relational and Logical Operators

Using If...Then Statement

Using If...Then...Else Statement

Using If...Then...ElseIf Statement

Nested If...Then Statements

Using the Select Case Statement

Using Is with the Case Clause

Specifying a Range of Values in a Case Clause

Specifying Multiple Expressions in a Case Clause

Writing a VBA Procedure with Multiple Conditions

Using Conditional Logic in Function Procedures

Summary

Chapter 6 Adding Repeating Actions to Excel VBA Programs: A Quick Introduction to Looping Statements

Introducing Looping Statements

Understanding Do...While and Do...Until Loops

Avoiding Infinite Loops

Executing a Procedure Line by Line

Understanding While...Wend Loop

Understanding For...Next Loop

Understanding For...Each...Next Loop

Exiting Loops Early

Using a Do...While Statement

Using Loops and Conditionals

Summary

Chapter 7 Storing Multiple Values in Excel VBA Programs: A Quick Introduction to Working with Arrays

Understanding Arrays

Declaring Arrays

Array Upper and Lower Bounds

Initializing and Filling an Array

Filling an Array Using Individual Assignment Statements

Filling an Array Using the Array Function

Filling an Array Using For...Next Loop

Using a One-Dimensional Array

Using a Two-Dimensional Array

Using a Dynamic Array

Using Array Functions

The Array Function

The IsArray Function

The Erase Function

The LBound and UBound Functions

Troubleshooting Errors in Arrays

Using the ParamArray Keyword

Data Entry with an Array

Sorting an Array with Excel

Summary

Chapter 8 Keeping Track of Multiple Values in Excel VBA Programs: A Quick Introduction to Creating and Using Collections

Working with Built-in Collections

Creating Your Own Collection

Adding Objects to a Custom Collection

Determining the Number of Items in Your Collection

Accessing Items in a Collection

Removing Items from a Collection

Updating Items in a Collection

Returning a Collection from a Function

Using Custom and Built-in Collections Together

Collections versus Arrays

Watching the Execution of Your VBA Procedures

Summary

Chapter 9 Excel Tools for Testing and Debugging: A Quick Introduction to Testing VBA Programs

Testing VBA Procedures

Stopping a Procedure

Using Breakpoints

When to Use a Breakpoint

Using the Immediate Window in Break Mode

Using the Stop and Assert Statements

Using the Watch Window

Removing Watch Expressions

Using Quick Watch

Using the Locals Windows and the Call Stack Dialog Box

Navigating with Bookmarks

Trapping Errors

Using the Err Object

Setting Error Trapping Options in a VBA Project

Stepping through VBA Procedures

Stepping Over a Procedure and Running to Cursor

Setting the Next Statement

Showing the Next Statement

Stopping and Resetting VBA Procedures

Terminating a Procedure Based on a Condition

Summary

Index

Acknowledgments

As years pass and we gain more and more knowledge on a particular subject there is a tendency to publish books for people who want to know it all. But the truth is that we really don’t have time to read all the printed pages when we are just getting started in a new subject. I thank my publisher, David Pallai, for continuing to publish this smaller book that serves as a starting point for anyone attempting to get into VBA programming in Excel. I hope that you as a reader of this primer book will appreciate this short book and find that the knowledge gained from its pages will not only allow you to continue your programming journey, but also take you places you never thought possible.

I’m also thankful to Jennifer Blaney for her expert management of this book project. I am grateful to the compositor, Swaradha Typesetting, for all of the composition efforts that gave this book the easy-to-follow look and feel.

Julitta Korol

Long Island, New York

August 2022

Introduction

I’ve been working with Excel since the very beginning. Database and application concepts were completely new to me, but the Excel interface made it a pleasure to work with almost daily. Step by step I acquired the skills of database management and then programming. I learned the latter by trial and error. When the first consulting opportunity came up to use my Excel skills, I found that I barely knew enough to get started. But challenges do not scare me. I was eager to learn on the job. My first Excel programming project was designing a custom quotation system for an automotive manufacturer. Despite my limited prior exposure to the programming concepts, I was able to deliver a system that automated a big chunk of work for that company. Another project automated several dozens of budget worksheets for a school district. How was I able to do this? I find reading and doing is the first step towards mastering a skill like programming. This book presents enough programming concepts to get you started tackling your own Excel challenges. This is not a book about using Excel. I assume you are already familiar with most tasks that you can achieve using Excel built-in commands. But if you are ready to look beyond the standard user interface, you have come to the right place and have made a decision that will bring a whole set of new possibilities to your Excel experience. So, let’s forget the menus for now. Do your own thing. Automating Excel is something everyone can do. With the right training, that is. This book’s purpose is to introduce you to the Excel built-in language, known as Visual Basic for Applications (VBA). With VBA you can begin delegating repetitive tasks to Excel while freeing your time for projects that are more fun to do. Besides, knowing how to program these days is a sought-after and lucrative skill.

This book was designed for someone like you who needs to master Excel programming fundamentals without spending too much time. Most of the time all you need is a short book to get you started. It’s less overwhelming to deal with a new subject in smaller chunks. The Programming Pocket Primer series will show you only the things you need to know to feel at home with VBA. What you learn in this book on Excel programming will apply to, say, Access programming. Just take a quick look my other book, the Microsoft Access 2021 Programming Pocket Primer, to see what I mean. How’s that for knowledge transfer? Learn in Excel and use it in Excel or other Microsoft 365 applications. I call this sweet learning.

If you are looking for in-depth knowledge of Excel programming (and have time to work through a 1,000-page book), then go ahead and try some of my more complete, programming titles available from Mercury Learning and Information.

Excel is about doing and so is this book. So do not try to read it while not at the computer. You can sit, stand, or lie down; it does not matter. But you do need to work with this book. Do the examples, read the explanations. Do this until it becomes easy to do without the step-by-step instructions. Do not skip anything as the concepts in later chapters build on material introduced earlier.

CHAPTER OVERVIEW

Before you get started, allow me to give you a short overview of the things you’ll be learning as you progress through this primer book. Microsoft Excel 2021 Programming Pocket Primer is divided into nine chapters that progressively introduce you to programming Microsoft Excel.

Chapter 1: Getting Started with Excel VBA–A Quick Start in Excel VBA Programming

In this chapter you learn how you can introduce automation into your Excel worksheets by simply using the built-in macro recorder. You learn about different phases of macro design and execution. You also learn about macro security.

Chapter 2: Excel Programming Environment–A Quick Overview of its Tools and Features

In this chapter you learn almost everything you need to know about working with the Visual Basic Editor window, commonly referred to as VBE. Some of the programming tools that are not covered here are discussed and used in Chapter 9.

Chapter 3: Excel VBA Fundamentals–A Quick Reference to Writing VBA Code

In this chapter you are introduced to the basic VBA concepts such as Microsoft Excel object model and its objects, properties, and methods. You also learn concepts that allow you to store various pieces of information for later use.

Chapter 4: Excel VBA Procedures–A Quick Guide to Writing Function Procedures

In this chapter you learn how to write and execute function procedures. You also learn how to provide additional information to your procedures before they are run. You are introduced to working with some useful built-in functions and methods that allow you to interact with you VBA procedure users.

Chapter 5: Adding Decisions to Excel VBA Programs–A Quick Introduction to Conditional Statements

In this chapter you learn how to control your program flow with several different decision-making statements.

Chapter 6: Adding Repeating Actions to Excel VBA Programs–A Quick Introduction to Looping Statements

In this chapter you learn how you can repeat certain groups of statements using procedure loops.

Chapter 7: Storing Multiple Values in Excel VBA Programs–A Quick Introduction to Working with Arrays

In this chapter you learn the concept of static and dynamic arrays, which you can use for holding various values. You also learn about built-in array functions.

Chapter 8: Keeping Track of Multiple Values in Excel VBA Programs–A Quick Introduction to Creating and Using Collections

In this chapter you learn the basic skills of using collections for tracking and maintaining data in your VBA procedures.

Chapter 9: Excel Tools for Testing and Debugging–A Quick Introduction to Testing VBA Programs

In this chapter you begin using built-in debugging tools to test your programming code and trap errors.

The above nine chapters will give you the fundamental techniques and concepts you will need in order to continue your Excel VBA learning path.
The skills obtained in this primer are very portable. They can be utilized in programming other Microsoft 365 applications that also use VBA as their native programming language such as Access, Word, PowerPoint, Outlook, and so on. And when you are ready to get more Excel VBA skills under your belt, you can jump right into Chapter 10 in my more complete book - Excel 2021 / Microsoft 365 Programming by Example also available from Mercury Learning and Information. (ISBN: 978-1-68392-886-7).

THE COMPANION FILES

The example files for all the hands-on activities in this book are available in the companion files. Replacement files may be downloaded by contacting the publisher at info@merclearning.com. Digital versions of this title are available at academiccourseware.com and other digital vendors.

Chapter 1

Excel Macros

A QUICK START IN EXCEL VBA PROGRAMMING

Visual Basic for Applications (VBA) is the programming language built into Microsoft Excel® and other Microsoft® 365® applications. By learning some basic VBA commands, you can start automating many of the mundane routine tasks that you perform in Excel. In this chapter, you acquire the fundamentals of VBA by recording macros and using the Visual Basic Editor to examine and edit the VBA code behind the recorded macro.

MACROS AND VBA

Macros are programs that store a series of commands. When you create a macro, you simply combine a sequence of keystrokes into a single command that you can later “play back.” Because macros can reduce the number of steps required to complete tasks, using macros can significantly decrease the time you spend creating, formatting, modifying, and printing your Excel worksheets. You can create macros by using Microsoft Excel’s built-in recording tool (Macro Recorder), or you can write them from scratch using Visual Basic Editor, a special development environment built into Excel. You can combine recorded macros with your own programming code to create unique VBA applications that meet your everyday needs. Whether you write or record your programming code in Excel, you’ll be utilizing the powerful programming language—Visual Basic for Applications—commonly known as VBA.

Microsoft Excel comes with dozens of built-in, time-saving features that allow you to work faster and smarter. Before you decide to automate a worksheet task with a recorded macro or programming code written from scratch, make sure there is not already a built-in feature that you can use to perform that task. Consider writing your own VBA code or recording a macro when you find yourself performing the same series of actions multiple times or when Excel does not provide a built-in tool to do the job.

Just by learning how to handle Excel’s macro recorder and use basic VBA statements and constructs to enhance your macros, you’ll be able to automate any part of your worksheet. For example, you can automate data entry by recording a macro that enters headings in a worksheet or replaces column titles with new labels. Adding a little bit of conditional logic to your VBA code will allow you to automatically check for duplicate entries in a specified range of your worksheet. With a macro, you can quickly apply formatting to several worksheets, as well as combine different formats, such as fonts, colors, borders, and shading. Macros will save you keystrokes when it comes to setting print areas, margins, headers, and footers, and selecting special options for printouts.

Excel Macro-Enabled File Formats

When a workbook contains programming code, it should be saved in one of the following macro-enabled file formats:

	Excel Macro-Enabled Workbook (.xlsm)

	Excel Binary Workbook (.xlsb)

	Excel Macro-Enabled Template (.xltm)

If you attempt to save the workbook in a file format that is incompatible with the type of content it includes, Excel will warn you with a message as shown in Figure 1.1.

[image: Image]

FIGURE 1.1 When a workbook contains programming code, you must save it in a macro-enabled file type instead of a regular .XLSX workbook file.

Macro Security Settings

Because macros can contain malicious code designed to put a virus on a user’s computer, it is important to understand different security settings that are available in Excel. It is also critical that you run up-to-date antivirus software on your computer. Antivirus software installed on your computer will scan the workbook file you are attempting to open if the file contains macros. The default macro security setting is to disable all macros with notification, as shown in Figure 1.2.

[image: Image]

FIGURE 1.2 The Macro Settings options in the Trust Center allow you to control how Excel should deal with macros when they are present in an open workbook. To open Trust Center’s Macro Settings, choose File | Options | Trust Center | Trust Center Settings and click the Macro Settings link.

Note that VBA macros are the macros you create using the Excel built-in language—VBA. You will be working with these macros throughout this book. Excel 4.0 macros are legacy Excel macros. Introduced in 1992, they are commonly referred to as XLM 4.0 macros. They are still in Excel for backward compatibility reasons. Using these macros is discouraged as they can hide malicious code in Excel formulas.

If VBA macros are present in a workbook you are trying to open, you will receive a security warning message just under the Ribbon, as shown in Figure 1.3.

[image: Image]

FIGURE 1.3 Upon opening a workbook with VBA macros, Excel brings up a security warning message.

To use the disabled components, you should click the Enable Content button on the message bar. This will add the workbook to the Trusted Documents list in your registry. The next time you open this workbook you will not be alerted to macros. If you need more information before enabling content, you can click the message text displayed in the security message bar to activate the Backstage View, where you will find an explanation of the active content that has been disabled, as shown in Figure 1.4. Clicking the Enable Content button in the Backstage View presents two options:

	Enable All Content

This option provides the same functionality as the Enable Content button in the security message bar. This will enable all the content and make it a trusted document.

	Advanced Options

This option brings up the Microsoft Office Security Options dialog shown in Figure 1.5. This dialog provides options for enabling content for the current session only.

[image: Image]

FIGURE 1.4 The Backstage View in Excel.

[image: Image]

FIGURE 1.5 Disabled macros can be enabled for the current session in the Microsoft Office Security Options dialog.

ENABLING THE DEVELOPER TAB IN EXCEL

To make it easy to work with macro-enabled workbooks while working with this book’s exercises, you will permanently trust your workbooks with recorded macros or VBA code by placing them in a folder on your local drive that you mark as trusted. Notice the Open the Trust Center hyperlink shown in Figure 1.5. This hyperlink will open the Trust Center dialog where you can set up a trusted folder. You can also activate the Trust Center by selecting File | Options.

Let’s take a few minutes now to set up your Excel application so you can run VBA macros on your computer without security prompts.

NOTE

Please note files for the “Hands-On” project may be found in the companion files.

[image: Image]Hands-On 1.1 Setting Up Excel for Macro Development

	Create a folder on your hard drive named C:\VBAPrimerExcel2021_ByExample.

	Launch Excel and open a blank workbook.

	Choose File | Options.

	In the Excel Options dialog, click Customize Ribbon. In the Main Tabs listing on the right-hand side, select Developer as illustrated in Figure 1.6 and click OK. The Developer tab should now be visible in the Ribbon.

	In the Code group of the Developer tab on the Ribbon, click the Macro Security button, as shown in Figure 1.7. The Trust Center dialog appears as depicted in Figure 1.2.

	In the left pane of the Trust Center dialog, click Trusted Locations. The Trusted Locations dialog already shows several predefined trusted locations that were created when you installed Excel. For this book, we will add a custom location to this list.

	Click the Add new location button.

	In the Path text box, type the name of the folder you created in Step 1 of this Hands-On as shown in Figure 1.8.

	Click OK to close the Microsoft Office Trusted Location dialog.

	Notice that the Trusted Locations list in the Trust Center now includes the C:\VBAPrimerExcel2021_ByExample folder as a trusted location. Files placed in a trusted location can be opened without being checked by the Trust Center security feature.

	Click OK to close the Trust Center dialog box.

Your Excel application is now set up for easy macro development as well as opening files containing macros. You should save all the files created in the book’s Hands-On exercises into your trusted C:\VBAPrimerExcel2021_ByExample folder.

[image: Image]

FIGURE 1.6 To enable the Developer tab on the Ribbon, use the Excel Options dialog and select Customize Ribbon.

[image: Image]

FIGURE 1.7 Use the Macro Security button in the Code group on the Developer tab to customize the macro security settings.

[image: Image]

FIGURE 1.8 Designating a Trusted Location folder for this book’s programming examples.

USING THE BUILT-IN MACRO RECORDER

In this section, we will go through the process of recording several short macros that perform data entry and formatting tasks in an Excel worksheet. You will learn how to plan your macros, record your keystrokes, edit, and improve your recorded macro code, run your macros, and learn basic troubleshooting techniques that will get you back on track in case you encounter errors while running your macros. You will also learn how to save your macros, rename them, combine them, and print them.

Planning a Macro

Before you create a macro, take a few minutes to consider what you want to do. The easiest way to plan your macro is to manually perform all the actions that the macro needs to do. As you enter the keystrokes, write them down on a piece of paper exactly as they occur. Don’t leave anything out. Like a voice recorder, Excel’s macro recorder records every action you perform. If you do not plan your macro prior to recording, you may end up with unnecessary actions that will not only slow it down but also require more editing later to make it work as intended. Although it’s easier to edit a macro than it is to erase unwanted passages from a voice recording, performing only the actions you want recorded will save you editing time and trouble later.

Suppose you are asked to programmatically create the worksheet depicted in Figure 1.9. No worries. Getting started is very easy with the macro recorder. Let’s begin by identifying the tasks required to complete this worksheet.

	
	

	Task 1
	Insert a new sheet into a workbook and name it Employee Wages.

	Task 2
	Enter column headings into first row of the worksheet and apply required formatting (column size, font styles).

	Task 3
	Enter employee data (Full Name, Hourly Rate, Hours Worked).

	Task 4 and 5
	Enter formulas to fill in the employee First and Last Name columns.

	Task 6
	Enter formulas to calculate employee total wages.

	Task 7
	Apply formatting to the completed worksheet.

Instead of recording one macro to complete your assignment, you will create a separate macro for each task. This approach will give you a chance to learn how to combine code from several simpler macros and how to create a master macro. Let’s get started.

[image: Image]

FIGURE 1.9 A sample worksheet to be created and formatted with the help of the Excel built-in macro recorder.

[image: Image]Hands-On 1.2 Getting Things Ready for Macro Recording

	Open a new workbook and save it as Chap01_ExcelPrimer.xlsm in your trusted VBAPrimerExcel2021_ByExample folder. You must save the file in the macro-enabled file format (.xlsm) to allow for storing macros. Keep this file open as you will use it to record all the macros in this chapter.

Recording a Macro

Before you record a macro, you need to decide whether you want to record the positioning of the active cell. If you want the macro to always start in a specific location on the worksheet, turn on the macro recorder first and then select the cell you want to start in. If the location of the active cell does not matter, select a single cell first and then turn on the macro recorder.

[image: Image]Hands-On 1.3 Inserting and Naming a Worksheet (Macro Task 1)

	Choose Developer | Record Macro.

	In the Record Macro dialog box, enter the name Insert_NewSheet for the macro, as shown in Figure 1.10. Do not dismiss this dialog box until you are instructed to do so.

[image: Image] Naming Macros

If you forget to enter a name for the macro, Excel assigns a default name, such as Macro1, Macro2, and so on. Macro names can contain letters, numbers, and the underscore character, but the first character must be a letter. For example, Report1 is a correct macro name, while 1Report is not. Spaces are not allowed. If you want a space between the words, use the underscore.

	Select This Workbook in the Store macro in list box.

[image: Image] Storing Macros

Excel allows you to store macros in three locations:

	Personal Macro Workbook—Macros stored in this location will be available each time you work with Excel. You can find the Personal Macro Workbook in the XLStart folder. If this workbook doesn’t already exist, Excel creates it the first time you select this option.

	New Workbook—Excel will place the macro in a new workbook.

	This Workbook—The macro will be stored in the workbook you are currently using.

[image: Image]

FIGURE 1.10 When you record a new macro, you must name it. In the Record Macro dialog box, you can also supply a shortcut key, a storage location, and a description for your macro.

	In the Description box, enter the following text: Insert and rename a worksheet.

	Choose OK to close the Record Macro dialog box.

The Stop Recording button shown in Figure 1.11 appears in the status bar. Do not click this button until you are instructed to do so. When this button appears in the status bar, the workbook is in the recording mode.

[image: Image]

FIGURE 1.11 The Stop Recording button in the status bar indicates that the macro recording mode is active.

The Stop Recording button remains in the status bar while you record your macro. Only the actions finalized by pressing Enter or clicking OK are recorded. If you press the Esc key or click Cancel before completing the entry, the macro recorder does not record that action.

	Add a new sheet to the current workbook. You can do this by either right clicking the Sheet1 tab and choosing Insert | Worksheet | OK, or simply clicking the plus button to the right of the Sheet1 tab.

	Rename the new sheet Employee Wages.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording. When you stop the macro recorder, the status bar displays a button that allows you to record another macro (see Figure 1.12).

[image: Image]

FIGURE 1.12 Excel status bar with the macro recording button turned off.

You have now recorded your first macro. Excel has written all the necessary statements to execute the actions you performed. Let’s continue recording all the remaining actions to complete the tasks that we defined earlier. After that you will have a chance to review the recorded macro code and try out your macros.

[image: Image]Hands-On 1.4 Inserting Column Headings and Applying Formatting (Macro Task 2)

	Choose View | Macros | Record Macro (or you may click the Begin recording button located in the status bar).

	Enter Insert_Headings as the name for your macro.

	Ensure that This Workbook is selected in the Store macro in list box.

	Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are being recorded.

	Select cell A1 and enter the first heading: Employee Name.

	Move to cell B1 and enter: First Name.

	Enter the remaining headings in cells C1: F1 (Last Name, Hourly Rate, Hours Worked, Total Wages).

	Select A1:F1 and apply the bold formatting to the selection by pressing the B button in the Font group of the Ribbon’s Home tab.

	With the range A1:F1 still selected, choose Home | Cells | Format | Autofit Column Width.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording.

You have just recorded your second macro. The Employee Wages worksheet should now have the required headings in Row 1.

[image: Image] Using Relative or Absolute References in Macros

The Excel macro recorder can record your actions using absolute or relative cell references (see Figure 1.13).

	To have your macro execute the recorded action in a specific cell, no matter what cell is selected during the execution of the macro, use absolute cell addressing. Absolute cell references have the following form: A1, C5, etc. By default, the Excel macro recorder uses absolute references. Before you begin to record a new macro, make sure the Use Relative References option is not selected when you click the Macros button as shown in Figure 1.13.

	To have your macro perform the action in any cell, be sure to select the Use Relative References option before you choose the Record Macro option. Relative cell references have the following form: A1, C5, etc. The Excel macro recorder will continue to use relative cell references until you exit Microsoft Excel or click the Use Relative References option again.

	During the process of recording your macro, you may use both methods of cell addressing. For example, you may select a specific cell (e.g., A4), perform an action, and then choose another cell relative to the selected cell (e.g., C9, which is located five rows down and two columns to the right of the currently active cell A4). Relative references automatically adjust when you copy them, and absolute references don’t.

[image: Image]

FIGURE 1.13 Excel macro recorder can record your actions using absolute or relative cell references. To make your selection, use the Macros drop-down on the Ribbon’s View tab.

[image: Image]Hands-On 1.5 Entering Employee Data (Macro Task 3)

	Choose View | Macros | Record Macro (or you may click the Begin recording button located in the status bar).

	Enter Insert_EmployeeData as the name for your macro.

	Ensure that This Workbook is selected in the Store macro in list box.

	Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are being recorded.

	Enter employee data in columns A, D, and E as shown in Figure 1.9. Leave the First Name, Last Name, and Total Wages columns blank as they will be filled in later.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording.

You have just recorded the third macro. The static data entry has been completed. We will now proceed to record macros that use formulas to fill the remaining columns of the worksheet.

[image: Image]Hands-On 1.6 Entering Formulas to Fill in Employee First Name (Macro Task 4)

	Choose View | Macros | Record Macro (or you may click the Begin recording button, located in the status bar).

	Enter Get_FirstName as the name for your macro.

	Ensure that This Workbook is selected in the Store macro in list box.

	Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are being recorded.

	Enter the following formula in cell B2:

=LEFT(A2,FIND(" ", A2)-1)

	Copy the formula down to cells B3:B7 by dragging the selection handle in the bottom right corner of cell B2.

Excel fills in the first names of all employees.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording.

You have just recorded a macro that makes use of a formula to retrieve employee first names from their full name. The next macro will populate the last name column using another formula.

[image: Image]Hands-On 1.7 Entering Formulas to Fill in Employee Last Name (Macro Task 5)

	Choose View | Macros | Record Macro (or you may click the Begin recording button located in the status bar).

	Enter Get_LastName as the name for your macro.

	Ensure that This Workbook is selected in the Store macro in list box.

	Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are being recorded.

	Enter the following formula in cell C2:

=RIGHT(A2,LEN(A2)-FIND(" ", A2))

	Copy the formula down to cells C3:C7 by dragging the selection handle in the bottom right corner of cell C2.

Excel fills in the last names of all employees.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording.

You have just recorded a macro that makes use of a formula to retrieve employee last names from their full name. We have one more column to fill in before we can apply the final formatting to this worksheet.

[image: Image]Hands-On 1.8 Entering Formulas to Calculate Employee Total Wages (Macro Task 6)

	Choose View | Macros | Record Macro (or you may click the Begin recording button located in the status bar).

	Enter CalculateWages as the name for your macro.

	Ensure that This Workbook is selected in the Store macro in list box.

	Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are being recorded.

	Select cells F2:F7 and type the formula shown here. Press Ctrl+Enter to ensure that formula is entered into the selected range F2:F7.

=D2*E2

	Apply Currency format to cells F2:F7.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording.

In the next macro you will complete the worksheet by applying desired formatting.

[image: Image]Hands-On 1.9 Applying Table Format (Macro Task 7)

	Choose View | Macros | Record Macro (or you may click the Begin recording button located in the status bar).

	Enter FormatTable as the name for your macro.

	Ensure that This Workbook is selected in the Store macro in list box.

	Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are being recorded.

	Select all data in the Employee Wages worksheet and choose Home | Styles | Format as a Table. Select any of the predefined table styles from the drop-down.

	Select cell A1.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording.

You have now completed recording a set of macros that create and format a worksheet. Now that Excel has given us some code to work with, let’s locate and examine it.

Editing Recorded Macros

Before you can modify your macro, you must find the location where the macro recorder placed its code. As you recall, when you turned on the macro recorder, you selected ThisWorkbook for the location. To find the location of your macros, you will use the Macro dialog box as instructed in Hands-On 1.10.

[image: Image]Hands-On 1.10 Examining the Macro Code

	Choose View | Macros | View Macros.

You should see all seven macros you recorded earlier (see Figure 1.14).

[image: Image]

FIGURE 1.14 In the Macro dialog box, you can select a macro to run, debug (Step Into), edit, or delete. You can also set macro options.

	Select the Insert_NewSheet macro name and click the Edit button.

Excel opens a special window called Visual Basic Editor (also known as VBE), as shown in Figure 1.15. This window is your VBA programming environment. Using the keyboard shortcut Alt+F11, you can quickly switch between the Microsoft Excel application window and the Visual Basic Editor window. Now take a moment and try switching between both windows. When you are done, ensure that you are back in the VBE window.

	Close the Visual Basic Editor window by using the key combination Alt+Q or choosing File | Close and Return to Microsoft Excel.

Don’t worry if the Visual Basic Editor window seems a bit confusing right now. As you work with the recorded macros and start writing your own VBA procedures from scratch, you will become familiar with all the elements of this screen.

	In the Microsoft Excel application window, choose Developer | Visual Basic to switch again to the programming environment.

[image: Image]

FIGURE 1.15 The Visual Basic Editor window is used for editing macros as well as writing new procedures in the Visual Basic for Applications language.

Notice the menu bar and toolbar in the Visual Basic Editor window look different from those in the Microsoft Excel window. As you can see, there
is no Ribbon interface. The Visual Basic Editor uses the old Excel style menu bar and toolbar, which provide tools required for programming and testing your recorded macros as well as VBA procedures that you can write from scratch. As you work through the individual chapters of this book, you will feel very comfortable in using these tools.

The main part of the Visual Basic Editor window is a docking surface for various windows that you will find extremely useful while creating and testing your VBA procedures.

In Figure 1.15 you can see three windows that are docked in the Visual Basic Editor window: the Project Explorer window, the Properties window, and the Code window.

The Project Explorer window that appears in the left panel shows an open Modules folder. Excel records your macro actions in special worksheets called Module1, Module2, and so on. These modules are stored in the Modules folder. Later in this book, you will also use modules to write the code of your own VBA procedures from scratch. A module resembles a blank document in Microsoft Word.

The Properties window displays the properties of the object that is currently selected in the Project Explorer window. In Figure 1.15, the Module1 object is selected in the Project - VBAProject window, and therefore the Properties - Module1 window displays the properties of Module1. Notice that the only available property for the module is the Name property. You can use this property to change the name of Module1 to a more meaningful name.

[image: Image] Macro or Procedure?

Contents

	Cover Page

	Half-Title Page

	License, Disclaimer

	Title Page

	Copyright Page

	Contents

	Acknowledgments

	Introduction

	Chapter 1 Excel Macros: A Quick Start in Excel VBA Programming

	Macros and VBA

	Enabling the Developer Tab in Excel

	Using the Built-In Macro Recorder

	Improving Your Recorded Macros

	Creating a Master Macro

	Various Methods of Running Macros

	Summary

	Chapter 2 Excel Programming Environment: A Quick Overview of its Tools and Features (VBE)

	Understanding the Project Explorer Window

	Understanding the Properties Window

	Understanding the Code Window

	Setting the VBE Options

	Syntax and Programming Assistance

	Using the Object Browser

	Using the VBA Object Library

	Using the Immediate Window

	Working with Worksheet Cells and Ranges

	Working with Rows and Columns

	Entering Data and Formatting Cells

	Working with Workbooks and Worksheets

	Working with Windows

	Working with the Excel Application

	Summary

	Chapter 3 Excel VBA Fundamentals: A Quick Reference to Writing VBA Code

	Excel Objects, Properties, and Methods

	Microsoft Excel Object Model

	Writing Simple and Complex VBA Statements

	Saving Results of VBA Statements

	Introducing Data Types

	Using Variables

	Using Constants

	Converting between Data Types

	Using Static Variables in VBA Procedures

	Using Object Variables in VBA Procedures

	Summary

	Chapter 4 Excel VBA Procedures: A Quick Guide to Writing Function Procedures

	Understanding Function Procedures

	Various Methods of Running Fnction Procedures

	Ensuring Availability of Your Custom Functions

	Passing Arguments to Function Procedures

	Testing a Function Procedure

	Locating Built-In Functions

	Getting to Know the MsgBox Function

	Getting to Know the InputBox Function

	Using the InputBox Method

	Summary

	Chapter 5 Adding Decisions to Excel VBA Programs: A Quick Introduction to Conditional Statements

	Relational and Logical Operators

	Using If...Then Statement

	Using If...Then...Else Statement

	Using If...Then...ElseIf Statement

	Nested If...Then Statements

	Using the Select Case Statement

	Writing a VBA Procedure with Multiple Conditions

	Using Conditional Logic in Function Procedures

	Summary

	Chapter 6 Adding Repeating Actions to Excel VBA Programs: A Quick Introduction to Looping Statements

	Introducing Looping Statements

	Understanding Do...While and Do...Until Loops

	Avoiding Infinite Loops

	Executing a Procedure Line by Line

	Understanding While...Wend Loop

	Understanding For...Next Loop

	Understanding For...Each...Next Loop

	Exiting Loops Early

	Using a Do...While Statement

	Using Loops and Conditionals

	Summary

	Chapter 7 Storing Multiple Values in Excel VBA Programs: A Quick Introduction to Working with Arrays

	Understanding Arrays

	Using a One-Dimensional Array

	Using a Two-Dimensional Array

	Using a Dynamic Array

	Using Array Functions

	Troubleshooting Errors in Arrays

	Using the ParamArray Keyword

	Data Entry with an Array

	Sorting an Array with Excel

	Summary

	Chapter 8 Keeping Track of Multiple Values in Excel VBA Programs: A Quick Introduction to Creating and Using Collections

	Working with Built-in Collections

	Collections versus Arrays

	Watching the Execution of Your VBA Procedures

	Summary

	Chapter 9 Excel Tools for Testing and Debugging: A Quick Introduction to Testing VBA Programs

	Testing VBA Procedures

	Stopping a Procedure

	Using Breakpoints

	Using the Immediate Window in Break Mode

	Using the Stop and Assert Statements

	Using the Watch Window

	Using Quick Watch

	Using the Locals Windows and the Call Stack Dialog Box

	Navigating with Bookmarks

	Trapping Errors

	Stepping through VBA Procedures

	Terminating a Procedure Based on a Condition

	Summary

	Index

	Cover

	i

	ii

	iii

	iv

	v

	vi

	vii

	viii

	ix

	x

	xi

	xii

	xiii

	xiv

	xv

	xvi

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

	11

	12

	13

	14

	15

	16

	17

	18

	19

	20

	21

	22

	23

	24

	25

	26

	27

	28

	29

	30

	31

	32

	33

	34

	35

	36

	37

	38

	39

	40

	41

	42

	43

	44

	45

	46

	47

	48

	49

	50

	51

	52

	53

	54

	55

	56

	57

	58

	59

	60

	61

	62

	63

	64

	65

	66

	67

	68

	69

	70

	71

	72

	73

	74

	75

	76

	77

	78

	79

	80

	81

	82

	83

	84

	85

	86

	87

	88

	89

	90

	91

	92

	93

	94

	95

	96

	97

	98

	99

	100

	101

	102

	103

	104

	105

	106

	107

	108

	109

	110

	111

	112

	113

	114

	115

	116

	117

	118

	119

	120

	121

	122

	123

	124

	125

	126

	127

	128

	129

	130

	131

	132

	133

	134

	135

	136

	137

	138

	139

	140

	141

	142

	143

	144

	145

	146

	147

	148

	149

	150

	151

	152

	153

	154

	155

	156

	157

	158

	159

	160

	161

	162

	163

	164

	165

	166

	167

	168

	169

	170

	171

	172

	173

	174

	175

	176

	177

	178

	179

	180

	181

	182

	183

	184

	185

	186

	187

	188

	189

	190

	191

	192

	193

	194

	195

	196

	197

	198

	199

	200

	201

	202

	203

	204

	205

	206

	207

	208

	209

	210

	211

	212

	213

	214

	215

	216

	217

	218

	219

	220

	221

	222

	223

	224

	225

	226

	227

	228

	229

	230

	231

	232

	233

	234

	235

	236

	237

	238

	239

	240

	241

	242

	243

	244

	245

	246

	247

	248

	249

	250

	251

	252

	253

	254

	255

	256

	257

	258

	259

	260

	261

	262

OEBPS/images/Chap01_Excel21_15.jpg
Microsoft Visual Basic for Applications - Chap01_ExcelPrimer.xism - [ModuleT (Code)] - o X
:4 File Edit View |nsert Format Debug Run Jools Add-Ins Window Help -8 X
EE-E s aBN9 > 0 e EFE *|Qacol |
0o R R
> n m|® %3(F
| [Insert_NewSheet v
— |

Option Explicit

Sub Insert_NewSheet ()
'
Insert_NewSheet Macro

'
' Insert and rename a worksheet
'

Sheets.Add After:=ActiveSheet
Sheets ("Sheet2") .Select

Sheets ("Sheet2") .Name
End Sub

"Employee Wages"

Sub Insert_Headings()
'

' Inserrt_Headings Macro
'

Range ("Al1") .Select
ActiveCell.FormulaR1Cl
Range ("B1") .Select
ActiveCell.FormulaR1Cl
Range ("C1") .Select
ActiveCell.FormulaR1Cl

Modulel Module v Range ("D1") .Select
Alphabetic _ Categorized ActiveCell.FormulaR1C1l
) Modulel Range ("E1") .Select

ActiveCell.FormulaR1Cl
Range ("F1") .Select
ActiveCell.FormulaR1Cl
Range ("Al:F1") .Select

End Sub

"Employee Name"
"First Name"
"Last Name"
"Hourly Rate"
"Hours Worked"

"Total Wages"

Selection.Font.Bold = True
Selection.Columns.AutoFit

=5 -

OEBPS/images/Chap01_Excel21_14.jpg
Macro ? X

Macro name:
CalculateWages x Run
a
FormatTable Step Into
Get_FirstName
Get_LastName Edit

Inserrt_Headings
Insert_EmployeeData

Insert_NewSheet Create
Delete
Options...
- Opf
Macros in: | All Open Workbooks L2

Description

OEBPS/images/Chap01_Excel21_13.jpg
File Home Insert Pagelayout Formulas Data Review View Developer Help

& 5 Q g&\ {INewWindow [@ 0 %
Sheet | Workbook | Show | Zoom 100% Zoomto ~SAmangeAl [D (fon
Viewv | Views~ % Selection = ¥ Freeze Panes~ [] | [y | Windows v
Zoom Wadow E View Macros
Al v X Vv ﬁc Employee Name 8 Record Macro..
S
A A | 2 ‘ € \ z ‘ Use Relative References B Use Relative References

Use relative references so that
macros are recorded with actions
relative to the initial selected cell.

For instance, if you record a macro
in cell A1 which moves the cursor
to A3 with this option turned on,
running the resulting macro in cell
J6 would move the cursor to J8.

If this option was turned off when
the macro was recorded, running it
in cell J6 would move the cursor to
A3,

OEBPS/images/Chap01_Excel21_12.jpg
16

« | Sheet1 | Employee Wages | (3

Ready mAccessibility. Investigate

No macros are currently recording. Click to begin recording a new macro.

OEBPS/images/Chap01_Excel21_11.jpg
16

« Sheet1 @

Ready [Y% Accessibility: Good to go

A macro is currently recording. Click to stop recording.

OEBPS/images/Chap01_Excel21_10.jpg
Record Macro ?

Macro name:

l Insert_NewSheet

Shortcut key:
Ctrl+ \:I

Store macro in:

’ This Workbook

Description:

Insert and rename a worksheetl

OK Cancel

OEBPS/images/cover.jpg
EXCE 2021
PAROGRAMMING

OEBPS/images/Chap01_Excel21_2.jpg
Trust Center

Trusted Publishers Macro Settings

Trusted Locations

O Disable VBA macros without notification
Trusted Documents

® |Disgble VBA macros with notification

Trusted Add-in Catalogs O Disable VBA macros except digitally signed macros

Add-ins O Enable VBA macros (not recommended; potentially dangerous code can run)

ActiveX Settings
() Enable Excel 4.0 macros when VBA macros are enabled

Protected View Developer Macro Settings

Message Bar ([Trust access to the VBA project object model
External Content
File Block Settings
Privacy Options

Form-based Sign-in

OEBPS/images/Chap01_Excel21_1.jpg
Microsoft Excel X

The following features cannot be saved in macro-free workbooks:

o « VB project
To save a file with these features, click No, and then choose a macro-enabled file type in the File Type list.

To continue saving as a macro-free workbook, click Yes.

OEBPS/images/sidebar.jpg
SIDEBAR

OEBPS/images/bho.jpg

OEBPS/images/Chap01_Excel21_8.jpg
Microsoft Office Trusted Location
Warning: This location will be treated as a trusted source for opening files. If you
change or add a location, make sure that the new location is secure.

Path:
|C:\VBAPrimerF_xceI2021_ByExampIe\

Browse...

[:] Subfolders of this location are also trusted

Description:

Date and Time Created: 5/13/2022 6:04 PM

oK Cancel

OEBPS/images/Chap01_Excel21_7.jpg
Home

Visual Macros
Basic

Insert Page Layout

BB Use Relative References | 00
A\ Macro Security ins
code
Macro Security

Customize the macro security
settings.

Excel COM
Add-ins Add-ins

addin

£ Search (Al

53 b

Insert

Formulas Data Review View Developer Help

B 086

] properties

[E) view Code
[E! Run Dislog
Controls

OEBPS/images/Chap01_Excel21_9.jpg
€

Last Name [l Hourly Rate

D

E

F

Hours Worked B8 Total WagesEd

2 |James Rogers James Rogers 15 7 $105.00
3 |Martha Lambert Martha Lambert 13.4 6 $80.40
4 |Eugene Zelnik Eugene Zelnik 21.42 10 $214.20
5 |Enrique Martinez Enrique Martinez 16.5 11 $181.50
6 |Wanda Pasterniak Wanda Pasterniak 35 21 $735.00
7 |Bruce Smith Bruce Smith 28.33 14 $396.62,
8

OEBPS/images/Chap01_Excel21_4.jpg
TestMacro_Demo

Downloads

| & Upload | l & Share ‘ ‘ @ Copy path ‘ ‘ = Open file location

Security Warning

Active content might contain malware and other security hazards. If
you trust the contents of the file, you may enable this active
content:

@ Enable Content + disabled in Trust Center
Enable allowed active content (make this a
Trusted Document)

Advanced Options

Select which active content should be enabled.
This content will be enabled for this session only.

Frotect vwOrknook
Control what types of changes people can make to this workbook.

Protect
Workbook v

OEBPS/images/Chap01_Excel21_3.jpg
KH AutoSave

TestMacro_Demoxism ~ 0

File Home Insert Page layout Formulas Data

v 0 X Calibri vy
Q- F\D M~

Julitta Korol K ® &

Review View Developer Help I Comments
% [EH Conditional Formatting v

B o [@
B I U~AA Alignment =~ Number [Format as Table ¥ Cells Editing = Analyze
A Qv A~ & * [iZZ Cell Styles v ¥ b4 Data
Undo Clipboard 15 Font & Styles Analysis
@ SECURITY WARNING Macros have been disabled. Enable Content
AL vii|X Vv f
4 A B ¢ |ENpis[TE F G | H I J |k L M
1 |
L]
2]
3]
4
Sheet1 @ i q »
Ready [F@® % Accessibility: Good to go

B B O -———+

OEBPS/images/Chap01_Excel21_6.jpg
Excel Options

General
Formulas
Data
Proofing
Save
Language
Accessibility

Advanced

Quick Access Toolbar
Add-ins

Trust Center

D Customize the Ribbon.

Choose commands from:®

Customize the Ribbon:®

[Popular Commands

[Main Tabs

'Y Add or Remove Filters
Al Chart Types... [Create Chart]

Borders

Calculate Now

Center

Conditional Formatting

Copy

Custom Sort...

cut

Decrease Font Size

Delete Cells...

Delete Sheet Columns

Delete Sheet Rows

Email

Fill Color

Font

Font Color

Font Size

Format Cells

Format Painter

Freeze Panes

" Increase Font Size

B Insert Cells...

Insert Function...

Insert Picture

Insert Sheet Columns

Insert Sheet Rows

Insert Table

Add >>

<< Remove

Main Tabs
@ @ Background Removal
© @Home
8 Undo
8 Clipboard
® Font
8 Alignment
® Number
B Styles
B Cells
Editing
® Analysis
& @nsert
® ODraw
@ @Page Layout
® @Formulas
& @Data
& @Review

& @View

(L]

OEBPS/images/Chap01_Excel21_5.jpg
Microsoft Office Security Options

O Security Alert - Macros

Macros have been disabled. Macros might contain malware or other security hazards. Do
not enable this content unless you trust the source of this file.

Warning: It is not possible to determine that this content came from a trustworthy
source. You should leave this content disabled unless the content provides critical
functionality and you trust its source.

More information

File Path: C:\Users\Julitta\Downloads\TestMacro_Demo.xlsm

O Help protect me from unknown content (recommended)

o Enable content for this session

Open the Trust Center

OEBPS/images/Excel-Pocket_0001.jpg
MERCURY LEARNING AND INFORMATION
Dulles, Virginia
Boston, Massachusetts
New Delhi

