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Introduction


I’ve been working with Excel since the very beginning. Database and application concepts were completely new to me, but the Excel interface made it a pleasure to work with almost daily. Step by step I acquired the skills of database management and then programming. I learned the latter by trial and error. When the first consulting opportunity came up to use my Excel skills, I found that I barely knew enough to get started. But challenges do not scare me. I was eager to learn on the job. My first Excel programming project was designing a custom quotation system for an automotive manufacturer. Despite my limited prior exposure to the programming concepts, I was able to deliver a system that automated a big chunk of work for that company. Another project automated several dozens of budget worksheets for a school district. How was I able to do this? I find reading and doing is the first step towards mastering a skill like programming. This book presents enough programming concepts to get you started tackling your own Excel challenges. This is not a book about using Excel. I assume you are already familiar with most tasks that you can achieve using Excel built-in commands. But if you are ready to look beyond the standard user interface, you have come to the right place and have made a decision that will bring a whole set of new possibilities to your Excel experience. So, let’s forget the menus for now. Do your own thing. Automating Excel is something everyone can do. With the right training, that is. This book’s purpose is to introduce you to the Excel built-in language, known as Visual Basic for Applications (VBA). With VBA you can begin delegating repetitive tasks to Excel while freeing your time for projects that are more fun to do. Besides, knowing how to program these days is a sought-after and lucrative skill.

This book was designed for someone like you who needs to master Excel programming fundamentals without spending too much time. Most of the time all you need is a short book to get you started. It’s less overwhelming to deal with a new subject in smaller chunks. The Programming Pocket Primer series will show you only the things you need to know to feel at home with VBA. What you learn in this book on Excel programming will apply to, say, Access programming. Just take a quick look my other book, the Microsoft Access 2021 Programming Pocket Primer, to see what I mean. How’s that for knowledge transfer? Learn in Excel and use it in Excel or other Microsoft 365 applications. I call this sweet learning.

If you are looking for in-depth knowledge of Excel programming (and have time to work through a 1,000-page book), then go ahead and try some of my more complete, programming titles available from Mercury Learning and Information.

Excel is about doing and so is this book. So do not try to read it while not at the computer. You can sit, stand, or lie down; it does not matter. But you do need to work with this book. Do the examples, read the explanations. Do this until it becomes easy to do without the step-by-step instructions. Do not skip anything as the concepts in later chapters build on material introduced earlier.



CHAPTER OVERVIEW


Before you get started, allow me to give you a short overview of the things you’ll be learning as you progress through this primer book. Microsoft Excel 2021 Programming Pocket Primer is divided into nine chapters that progressively introduce you to programming Microsoft Excel.

Chapter 1: Getting Started with Excel VBA–A Quick Start in Excel VBA Programming

In this chapter you learn how you can introduce automation into your Excel worksheets by simply using the built-in macro recorder. You learn about different phases of macro design and execution. You also learn about macro security.

Chapter 2: Excel Programming Environment–A Quick Overview of its Tools and Features

In this chapter you learn almost everything you need to know about working with the Visual Basic Editor window, commonly referred to as VBE. Some of the programming tools that are not covered here are discussed and used in Chapter 9.

Chapter 3: Excel VBA Fundamentals–A Quick Reference to Writing VBA Code

In this chapter you are introduced to the basic VBA concepts such as Microsoft Excel object model and its objects, properties, and methods. You also learn concepts that allow you to store various pieces of information for later use.

Chapter 4: Excel VBA Procedures–A Quick Guide to Writing Function Procedures

In this chapter you learn how to write and execute function procedures. You also learn how to provide additional information to your procedures before they are run. You are introduced to working with some useful built-in functions and methods that allow you to interact with you VBA procedure users.

Chapter 5: Adding Decisions to Excel VBA Programs–A Quick Introduction to Conditional Statements

In this chapter you learn how to control your program flow with several different decision-making statements.

Chapter 6: Adding Repeating Actions to Excel VBA Programs–A Quick Introduction to Looping Statements

In this chapter you learn how you can repeat certain groups of statements using procedure loops.

Chapter 7: Storing Multiple Values in Excel VBA Programs–A Quick Introduction to Working with Arrays

In this chapter you learn the concept of static and dynamic arrays, which you can use for holding various values. You also learn about built-in array functions.

Chapter 8: Keeping Track of Multiple Values in Excel VBA Programs–A Quick Introduction to Creating and Using Collections

In this chapter you learn the basic skills of using collections for tracking and maintaining data in your VBA procedures.

Chapter 9: Excel Tools for Testing and Debugging–A Quick Introduction to Testing VBA Programs

In this chapter you begin using built-in debugging tools to test your programming code and trap errors.

The above nine chapters will give you the fundamental techniques and concepts you will need in order to continue your Excel VBA learning path.
The skills obtained in this primer are very portable. They can be utilized in programming other Microsoft 365 applications that also use VBA as their native programming language such as Access, Word, PowerPoint, Outlook, and so on. And when you are ready to get more Excel VBA skills under your belt, you can jump right into Chapter 10 in my more complete book - Excel 2021 / Microsoft 365 Programming by Example also available from Mercury Learning and Information. (ISBN: 978-1-68392-886-7).




THE COMPANION FILES


The example files for all the hands-on activities in this book are available in the companion files. Replacement files may be downloaded by contacting the publisher at info@merclearning.com. Digital versions of this title are available at academiccourseware.com and other digital vendors.








Chapter 1

Excel Macros

A QUICK START IN EXCEL VBA PROGRAMMING


Visual Basic for Applications (VBA) is the programming language built into Microsoft Excel® and other Microsoft® 365® applications. By learning some basic VBA commands, you can start automating many of the mundane routine tasks that you perform in Excel. In this chapter, you acquire the fundamentals of VBA by recording macros and using the Visual Basic Editor to examine and edit the VBA code behind the recorded macro.



MACROS AND VBA


Macros are programs that store a series of commands. When you create a macro, you simply combine a sequence of keystrokes into a single command that you can later “play back.” Because macros can reduce the number of steps required to complete tasks, using macros can significantly decrease the time you spend creating, formatting, modifying, and printing your Excel worksheets. You can create macros by using Microsoft Excel’s built-in recording tool (Macro Recorder), or you can write them from scratch using Visual Basic Editor, a special development environment built into Excel. You can combine recorded macros with your own programming code to create unique VBA applications that meet your everyday needs. Whether you write or record your programming code in Excel, you’ll be utilizing the powerful programming language—Visual Basic for Applications—commonly known as VBA.

Microsoft Excel comes with dozens of built-in, time-saving features that allow you to work faster and smarter. Before you decide to automate a worksheet task with a recorded macro or programming code written from scratch, make sure there is not already a built-in feature that you can use to perform that task. Consider writing your own VBA code or recording a macro when you find yourself performing the same series of actions multiple times or when Excel does not provide a built-in tool to do the job.

Just by learning how to handle Excel’s macro recorder and use basic VBA statements and constructs to enhance your macros, you’ll be able to automate any part of your worksheet. For example, you can automate data entry by recording a macro that enters headings in a worksheet or replaces column titles with new labels. Adding a little bit of conditional logic to your VBA code will allow you to automatically check for duplicate entries in a specified range of your worksheet. With a macro, you can quickly apply formatting to several worksheets, as well as combine different formats, such as fonts, colors, borders, and shading. Macros will save you keystrokes when it comes to setting print areas, margins, headers, and footers, and selecting special options for printouts.



Excel Macro-Enabled File Formats


When a workbook contains programming code, it should be saved in one of the following macro-enabled file formats:


	Excel Macro-Enabled Workbook (.xlsm)

	Excel Binary Workbook (.xlsb)

	Excel Macro-Enabled Template (.xltm)



If you attempt to save the workbook in a file format that is incompatible with the type of content it includes, Excel will warn you with a message as shown in Figure 1.1.


[image: Image]

FIGURE 1.1 When a workbook contains programming code, you must save it in a macro-enabled file type instead of a regular .XLSX workbook file.






Macro Security Settings


Because macros can contain malicious code designed to put a virus on a user’s computer, it is important to understand different security settings that are available in Excel. It is also critical that you run up-to-date antivirus software on your computer. Antivirus software installed on your computer will scan the workbook file you are attempting to open if the file contains macros. The default macro security setting is to disable all macros with notification, as shown in Figure 1.2.


[image: Image]

FIGURE 1.2 The Macro Settings options in the Trust Center allow you to control how Excel should deal with macros when they are present in an open workbook. To open Trust Center’s Macro Settings, choose File | Options | Trust Center | Trust Center Settings and click the Macro Settings link.



Note that VBA macros are the macros you create using the Excel built-in language—VBA. You will be working with these macros throughout this book. Excel 4.0 macros are legacy Excel macros. Introduced in 1992, they are commonly referred to as XLM 4.0 macros. They are still in Excel for backward compatibility reasons. Using these macros is discouraged as they can hide malicious code in Excel formulas.

If VBA macros are present in a workbook you are trying to open, you will receive a security warning message just under the Ribbon, as shown in Figure 1.3.


[image: Image]

FIGURE 1.3 Upon opening a workbook with VBA macros, Excel brings up a security warning message.



To use the disabled components, you should click the Enable Content button on the message bar. This will add the workbook to the Trusted Documents list in your registry. The next time you open this workbook you will not be alerted to macros. If you need more information before enabling content, you can click the message text displayed in the security message bar to activate the Backstage View, where you will find an explanation of the active content that has been disabled, as shown in Figure 1.4. Clicking the Enable Content button in the Backstage View presents two options:


	Enable All Content

This option provides the same functionality as the Enable Content button in the security message bar. This will enable all the content and make it a trusted document.



	Advanced Options

This option brings up the Microsoft Office Security Options dialog shown in Figure 1.5. This dialog provides options for enabling content for the current session only.





[image: Image]

FIGURE 1.4 The Backstage View in Excel.




[image: Image]

FIGURE 1.5 Disabled macros can be enabled for the current session in the Microsoft Office Security Options dialog.







ENABLING THE DEVELOPER TAB IN EXCEL


To make it easy to work with macro-enabled workbooks while working with this book’s exercises, you will permanently trust your workbooks with recorded macros or VBA code by placing them in a folder on your local drive that you mark as trusted. Notice the Open the Trust Center hyperlink shown in Figure 1.5. This hyperlink will open the Trust Center dialog where you can set up a trusted folder. You can also activate the Trust Center by selecting File | Options.

Let’s take a few minutes now to set up your Excel application so you can run VBA macros on your computer without security prompts.



NOTE


Please note files for the “Hands-On” project may be found in the companion files.




[image: Image]Hands-On 1.1    Setting Up Excel for Macro Development



	Create a folder on your hard drive named C:\VBAPrimerExcel2021_ByExample.

	Launch Excel and open a blank workbook.

	Choose File | Options.

	In the Excel Options dialog, click Customize Ribbon. In the Main Tabs listing on the right-hand side, select Developer as illustrated in Figure 1.6 and click OK. The Developer tab should now be visible in the Ribbon.

	In the Code group of the Developer tab on the Ribbon, click the Macro Security button, as shown in Figure 1.7. The Trust Center dialog appears as depicted in Figure 1.2.

	In the left pane of the Trust Center dialog, click Trusted Locations. The Trusted Locations dialog already shows several predefined trusted locations that were created when you installed Excel. For this book, we will add a custom location to this list.

	Click the Add new location button.

	In the Path text box, type the name of the folder you created in Step 1 of this Hands-On as shown in Figure 1.8.

	Click OK to close the Microsoft Office Trusted Location dialog.

	Notice that the Trusted Locations list in the Trust Center now includes the C:\VBAPrimerExcel2021_ByExample folder as a trusted location. Files placed in a trusted location can be opened without being checked by the Trust Center security feature.

	Click OK to close the Trust Center dialog box.




Your Excel application is now set up for easy macro development as well as opening files containing macros. You should save all the files created in the book’s Hands-On exercises into your trusted C:\VBAPrimerExcel2021_ByExample folder.


[image: Image]

FIGURE 1.6 To enable the Developer tab on the Ribbon, use the Excel Options dialog and select Customize Ribbon.




[image: Image]

FIGURE 1.7 Use the Macro Security button in the Code group on the Developer tab to customize the macro security settings.
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FIGURE 1.8 Designating a Trusted Location folder for this book’s programming examples.






USING THE BUILT-IN MACRO RECORDER


In this section, we will go through the process of recording several short macros that perform data entry and formatting tasks in an Excel worksheet. You will learn how to plan your macros, record your keystrokes, edit, and improve your recorded macro code, run your macros, and learn basic troubleshooting techniques that will get you back on track in case you encounter errors while running your macros. You will also learn how to save your macros, rename them, combine them, and print them.



Planning a Macro


Before you create a macro, take a few minutes to consider what you want to do. The easiest way to plan your macro is to manually perform all the actions that the macro needs to do. As you enter the keystrokes, write them down on a piece of paper exactly as they occur. Don’t leave anything out. Like a voice recorder, Excel’s macro recorder records every action you perform. If you do not plan your macro prior to recording, you may end up with unnecessary actions that will not only slow it down but also require more editing later to make it work as intended. Although it’s easier to edit a macro than it is to erase unwanted passages from a voice recording, performing only the actions you want recorded will save you editing time and trouble later.

Suppose you are asked to programmatically create the worksheet depicted in Figure 1.9. No worries. Getting started is very easy with the macro recorder. Let’s begin by identifying the tasks required to complete this worksheet.



	
	



	Task 1
	Insert a new sheet into a workbook and name it Employee Wages.



	Task 2
	Enter column headings into first row of the worksheet and apply required formatting (column size, font styles).



	Task 3
	Enter employee data (Full Name, Hourly Rate, Hours Worked).



	Task 4 and 5
	Enter formulas to fill in the employee First and Last Name columns.



	Task 6
	Enter formulas to calculate employee total wages.



	Task 7
	Apply formatting to the completed worksheet.





Instead of recording one macro to complete your assignment, you will create a separate macro for each task. This approach will give you a chance to learn how to combine code from several simpler macros and how to create a master macro. Let’s get started.


[image: Image]

FIGURE 1.9 A sample worksheet to be created and formatted with the help of the Excel built-in macro recorder.





[image: Image]Hands-On 1.2    Getting Things Ready for Macro Recording



	Open a new workbook and save it as Chap01_ExcelPrimer.xlsm in your trusted VBAPrimerExcel2021_ByExample folder. You must save the file in the macro-enabled file format (.xlsm) to allow for storing macros. Keep this file open as you will use it to record all the macros in this chapter.







Recording a Macro


Before you record a macro, you need to decide whether you want to record the positioning of the active cell. If you want the macro to always start in a specific location on the worksheet, turn on the macro recorder first and then select the cell you want to start in. If the location of the active cell does not matter, select a single cell first and then turn on the macro recorder.



[image: Image]Hands-On 1.3    Inserting and Naming a Worksheet (Macro Task 1)



	Choose Developer | Record Macro.

	In the Record Macro dialog box, enter the name Insert_NewSheet for the macro, as shown in Figure 1.10. Do not dismiss this dialog box until you are instructed to do so.


[image: Image] Naming Macros


If you forget to enter a name for the macro, Excel assigns a default name, such as Macro1, Macro2, and so on. Macro names can contain letters, numbers, and the underscore character, but the first character must be a letter. For example, Report1 is a correct macro name, while 1Report is not. Spaces are not allowed. If you want a space between the words, use the underscore.



	Select This Workbook in the Store macro in list box.


[image: Image] Storing Macros


Excel allows you to store macros in three locations:


	Personal Macro Workbook—Macros stored in this location will be available each time you work with Excel. You can find the Personal Macro Workbook in the XLStart folder. If this workbook doesn’t already exist, Excel creates it the first time you select this option.

	New Workbook—Excel will place the macro in a new workbook.

	This Workbook—The macro will be stored in the workbook you are currently using.





[image: Image]

FIGURE 1.10 When you record a new macro, you must name it. In the Record Macro dialog box, you can also supply a shortcut key, a storage location, and a description for your macro.





	In the Description box, enter the following text: Insert and rename a worksheet.

	Choose OK to close the Record Macro dialog box.

The Stop Recording button shown in Figure 1.11 appears in the status bar. Do not click this button until you are instructed to do so. When this button appears in the status bar, the workbook is in the recording mode.

[image: Image]

FIGURE 1.11 The Stop Recording button in the status bar indicates that the macro recording mode is active.



The Stop Recording button remains in the status bar while you record your macro. Only the actions finalized by pressing Enter or clicking OK are recorded. If you press the Esc key or click Cancel before completing the entry, the macro recorder does not record that action.



	Add a new sheet to the current workbook. You can do this by either right clicking the Sheet1 tab and choosing Insert | Worksheet | OK, or simply clicking the plus button to the right of the Sheet1 tab.

	Rename the new sheet Employee Wages.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording. When you stop the macro recorder, the status bar displays a button that allows you to record another macro (see Figure 1.12).

[image: Image]

FIGURE 1.12 Excel status bar with the macro recording button turned off.



You have now recorded your first macro. Excel has written all the necessary statements to execute the actions you performed. Let’s continue recording all the remaining actions to complete the tasks that we defined earlier. After that you will have a chance to review the recorded macro code and try out your macros.








[image: Image]Hands-On 1.4    Inserting Column Headings and Applying Formatting (Macro Task 2)



	Choose View | Macros | Record Macro (or you may click the Begin recording button located in the status bar).

	Enter Insert_Headings as the name for your macro.

	Ensure that This Workbook is selected in the Store macro in list box.

	Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are being recorded.

	Select cell A1 and enter the first heading: Employee Name.

	Move to cell B1 and enter: First Name.

	Enter the remaining headings in cells C1: F1 (Last Name, Hourly Rate, Hours Worked, Total Wages).

	Select A1:F1 and apply the bold formatting to the selection by pressing the B button in the Font group of the Ribbon’s Home tab.

	With the range A1:F1 still selected, choose Home | Cells | Format | Autofit Column Width.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording.



You have just recorded your second macro. The Employee Wages worksheet should now have the required headings in Row 1.



[image: Image] Using Relative or Absolute References in Macros


The Excel macro recorder can record your actions using absolute or relative cell references (see Figure 1.13).


	To have your macro execute the recorded action in a specific cell, no matter what cell is selected during the execution of the macro, use absolute cell addressing. Absolute cell references have the following form: $A$1, $C$5, etc. By default, the Excel macro recorder uses absolute references. Before you begin to record a new macro, make sure the Use Relative References option is not selected when you click the Macros button as shown in Figure 1.13.

	To have your macro perform the action in any cell, be sure to select the Use Relative References option before you choose the Record Macro option. Relative cell references have the following form: A1, C5, etc. The Excel macro recorder will continue to use relative cell references until you exit Microsoft Excel or click the Use Relative References option again.

	During the process of recording your macro, you may use both methods of cell addressing. For example, you may select a specific cell (e.g., $A$4), perform an action, and then choose another cell relative to the selected cell (e.g., C9, which is located five rows down and two columns to the right of the currently active cell $A$4). Relative references automatically adjust when you copy them, and absolute references don’t.





[image: Image]

FIGURE 1.13 Excel macro recorder can record your actions using absolute or relative cell references. To make your selection, use the Macros drop-down on the Ribbon’s View tab.





[image: Image]Hands-On 1.5    Entering Employee Data (Macro Task 3)



	Choose View | Macros | Record Macro (or you may click the Begin recording button located in the status bar).

	Enter Insert_EmployeeData as the name for your macro.

	Ensure that This Workbook is selected in the Store macro in list box.

	Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are being recorded.

	Enter employee data in columns A, D, and E as shown in Figure 1.9. Leave the First Name, Last Name, and Total Wages columns blank as they will be filled in later.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording.

You have just recorded the third macro. The static data entry has been completed. We will now proceed to record macros that use formulas to fill the remaining columns of the worksheet.






[image: Image]Hands-On 1.6    Entering Formulas to Fill in Employee First Name (Macro Task 4)



	Choose View | Macros | Record Macro (or you may click the Begin recording button, located in the status bar).

	Enter Get_FirstName as the name for your macro.

	Ensure that This Workbook is selected in the Store macro in list box.

	Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are being recorded.

	Enter the following formula in cell B2:


=LEFT(A2,FIND(" ", A2)-1)







	Copy the formula down to cells B3:B7 by dragging the selection handle in the bottom right corner of cell B2.

Excel fills in the first names of all employees.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording.

You have just recorded a macro that makes use of a formula to retrieve employee first names from their full name. The next macro will populate the last name column using another formula.






[image: Image]Hands-On 1.7    Entering Formulas to Fill in Employee Last Name (Macro Task 5)



	Choose View | Macros | Record Macro (or you may click the Begin recording button located in the status bar).

	Enter Get_LastName as the name for your macro.

	Ensure that This Workbook is selected in the Store macro in list box.

	Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are being recorded.

	Enter the following formula in cell C2:


=RIGHT(A2,LEN(A2)-FIND(" ", A2))






	Copy the formula down to cells C3:C7 by dragging the selection handle in the bottom right corner of cell C2.

Excel fills in the last names of all employees.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording.

You have just recorded a macro that makes use of a formula to retrieve employee last names from their full name. We have one more column to fill in before we can apply the final formatting to this worksheet.





[image: Image]Hands-On 1.8    Entering Formulas to Calculate Employee Total Wages (Macro Task 6)



	Choose View | Macros | Record Macro (or you may click the Begin recording button located in the status bar).

	Enter CalculateWages as the name for your macro.

	Ensure that This Workbook is selected in the Store macro in list box.

	Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are being recorded.

	Select cells F2:F7 and type the formula shown here. Press Ctrl+Enter to ensure that formula is entered into the selected range F2:F7.


=D2*E2





	Apply Currency format to cells F2:F7.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording.

In the next macro you will complete the worksheet by applying desired formatting.






[image: Image]Hands-On 1.9    Applying Table Format (Macro Task 7)



	Choose View | Macros | Record Macro (or you may click the Begin recording button located in the status bar).

	Enter FormatTable as the name for your macro.

	Ensure that This Workbook is selected in the Store macro in list box.

	Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are being recorded.

	Select all data in the Employee Wages worksheet and choose Home | Styles | Format as a Table. Select any of the predefined table styles from the drop-down.

	Select cell A1.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording.

You have now completed recording a set of macros that create and format a worksheet. Now that Excel has given us some code to work with, let’s locate and examine it.







Editing Recorded Macros


Before you can modify your macro, you must find the location where the macro recorder placed its code. As you recall, when you turned on the macro recorder, you selected ThisWorkbook for the location. To find the location of your macros, you will use the Macro dialog box as instructed in Hands-On 1.10.



[image: Image]Hands-On 1.10    Examining the Macro Code



	Choose View | Macros | View Macros.

You should see all seven macros you recorded earlier (see Figure 1.14).

[image: Image]

FIGURE 1.14 In the Macro dialog box, you can select a macro to run, debug (Step Into), edit, or delete. You can also set macro options.




	Select the Insert_NewSheet macro name and click the Edit button.

Excel opens a special window called Visual Basic Editor (also known as VBE), as shown in Figure 1.15. This window is your VBA programming environment. Using the keyboard shortcut Alt+F11, you can quickly switch between the Microsoft Excel application window and the Visual Basic Editor window. Now take a moment and try switching between both windows. When you are done, ensure that you are back in the VBE window.

	Close the Visual Basic Editor window by using the key combination Alt+Q or choosing File | Close and Return to Microsoft Excel.

Don’t worry if the Visual Basic Editor window seems a bit confusing right now. As you work with the recorded macros and start writing your own VBA procedures from scratch, you will become familiar with all the elements of this screen.

	In the Microsoft Excel application window, choose Developer | Visual Basic to switch again to the programming environment.

[image: Image]

FIGURE 1.15 The Visual Basic Editor window is used for editing macros as well as writing new procedures in the Visual Basic for Applications language.







Notice the menu bar and toolbar in the Visual Basic Editor window look different from those in the Microsoft Excel window. As you can see, there
is no Ribbon interface. The Visual Basic Editor uses the old Excel style menu bar and toolbar, which provide tools required for programming and testing your recorded macros as well as VBA procedures that you can write from scratch. As you work through the individual chapters of this book, you will feel very comfortable in using these tools.

The main part of the Visual Basic Editor window is a docking surface for various windows that you will find extremely useful while creating and testing your VBA procedures.

In Figure 1.15 you can see three windows that are docked in the Visual Basic Editor window: the Project Explorer window, the Properties window, and the Code window.

The Project Explorer window that appears in the left panel shows an open Modules folder. Excel records your macro actions in special worksheets called Module1, Module2, and so on. These modules are stored in the Modules folder. Later in this book, you will also use modules to write the code of your own VBA procedures from scratch. A module resembles a blank document in Microsoft Word.

The Properties window displays the properties of the object that is currently selected in the Project Explorer window. In Figure 1.15, the Module1 object is selected in the Project - VBAProject window, and therefore the Properties - Module1 window displays the properties of Module1. Notice that the only available property for the module is the Name property. You can use this property to change the name of Module1 to a more meaningful name.
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