
		
			[image: Cover.png]
		

	
		
			Hands-On Computer Vision with Detectron2

			Develop object detection and segmentation models with a code and visualization approach

			Van Vung Pham

			[image: Logo

Description automatically generated]

			BIRMINGHAM—MUMBAI

			Hands-On Computer Vision with Detectron2

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Publishing Product Manager: Dhruv J. Kataria

			Content Development Editor: Shreya Moharir

			Technical Editor: Rahul Limbachiya

			Copy Editor: Safis Editing

			Project Coordinator: Farheen Fathima

			Proofreader: Safis Editing

			Indexer: Pratik Shirodkar

			Production Designer: Jyoti Chauhan

			Marketing Coordinators: Shifa Ansari, Vinishka Kalra

			First published: April 2023

			Production reference: 1290323

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-80056-162-5

			www.packtpub.com

			To my father, Pham Van Hung, and my mother, Pham Thi Doai, for their sacrifices and love. To my loving wife, Thi Hong Hanh Le, for her unwavering support during this exciting and also time-consuming endeavor, and my children, Le Tra My Pham and Le Ha Chi Pham, for checking on me about my progress, and to my little one, Liam Le Pham, who was born while I was writing this book and brought new excitement and source of energy for me to complete it.

			Foreword

			I have known and worked with Van Vung Pham for more than 10 years and was also his academic advisor for his doctoral degree. Vung won several data visualization, computer vision, and machine learning challenges during his Ph.D. program, including using Detectron2 to detect and classify road damage. In this book, Hands-On Computer Vision with Detectron2, Vung takes you on a learning journey that starts with common computer vision tasks. He then walks you through the steps for developing computer vision applications using stunning deep-learning models with simple code by utilizing pre-trained models on the Detectron2 Model Zoo.

			Existing models, trained on huge datasets, and for the most common object types, can meet common computer vision tasks. However, this book also focuses on developing computer vision applications on a custom domain for specific business requirements. For this, Vung provides the steps to collect and prepare data, train models, and fine-tune models on brain tumor datasets for object detection and instance segmentation tasks to illustrate how to develop computer vision applications on custom business domains.

			In his presentations and examples, Vung provides code that can be conveniently executed on Google Colab and visualizations to help illustrate theoretical concepts. The ability to execute the code on Google Colab helps eliminate the burden of hardware and software setup, so you can get started quickly and conveniently. The visualizations allow you to easily grasp complicated computer vision concepts, better understand deep learning architectures for computer vision tasks, and become an expert in this area.

			Beyond developing deep learning models for computer vision tasks, you will learn how to deploy the trained models to various environments. Vung explains different model formats, such as TorchScript and ONNX formats, and their respective execution platforms and environments, such as C++ servers, web browsers, or mobile and edge devices.

			Become a developer and an expert in developing and deploying computer vision applications with Detectron2.

			– Tommy Dang

			iDVL director and assistant professor, Texas Tech University

			Contributors

			About the author

			Van Vung Pham is a passionate research scientist in machine learning, deep learning, data science, and data visualization. He has years of experience and numerous publications in these areas. He is currently working on projects that use deep learning to predict road damage from pictures or videos taken from roads. One of the projects uses Detectron2 and Faster R-CNN to predict and classify road damage and achieve state-of-the-art results for this task. Dr. Pham obtained his Ph.D. from the Computer Science Department, at Texas Tech University, Lubbock, Texas, USA. He is currently an assistant professor at the Computer Science Department, Sam Houston State University, Huntsville, Texas, USA.

			I want to thank the people who have been close and supported me, especially my wife, Hanh, my parents, my children, and my Ph.D. advisor (Dr. Tommy Dang from Texas Tech University).

			About the reviewers

			Yiqiao Yin is a senior data scientist at an S&P 500 company LabCorp, developing AI-driven solutions for drug diagnostics and development. He has a BA in mathematics and a BSc in finance from the University of Rochester. He was a PhD student in statistics at Columbia University and has a wide range of research interests in representation learning: feature learning, deep learning, computer vision, and natural language processing. He has held professional positions as an enterprise-level data scientist at EURO STOXX 50 company Bayer, a quantitative researcher at AQR, working on alternative quantitative strategies to portfolio management and factor-based trading, and an equity trader at T3 Trading on Wall Street.

			Nikita Dalvi is a highly skilled and experienced technical professional, currently pursuing a master’s degree in computing and data science at Sam Houston State University. With a background in information and technology, she has honed her skills in programming languages such as Java and Python over the past five years, having worked with prestigious organizations such as Deloitte and Tech Mahindra. Driven by her passion for programming, she has taught herself new languages and technologies over the years and stayed up to date with the latest industry trends and best practices.

		

	
		
			Table of Contents

			Preface

			Part 1: Introduction to Detectron2

			1

			An Introduction to Detectron2 and Computer Vision Tasks

			Technical requirements

			Computer vision tasks

			Object detection

			Instance segmentation

			Keypoint detection

			Semantic segmentation

			Panoptic segmentation

			An introduction to Detectron2 and its architecture

			Introducing Detectron2

			Detectron2 architecture

			Detectron2 development environments

			Cloud development environment for Detectron2 applications

			Local development environment for Detectron2 applications

			Connecting Google Colab to a local development environment

			Summary

			2

			Developing Computer Vision Applications Using Existing Detectron2 Models

			Technical requirements

			Introduction to Detectron2’s Model Zoo

			Developing an object detection application

			Getting the configuration file

			Getting a predictor

			Performing inferences

			Visualizing the results

			Developing an instance segmentation application

			Selecting a configuration file

			Getting a predictor

			Performing inferences

			Visualizing the results

			Developing a keypoint detection application

			Selecting a configuration file

			Getting a predictor

			Performing inferences

			Visualizing the results

			Developing a panoptic segmentation application

			Selecting a configuration file

			Getting a predictor

			Performing inferences

			Visualizing the results

			Developing a semantic segmentation application

			Selecting a configuration file and getting a predictor

			Performing inferences

			Visualizing the results

			Putting it all together

			Getting a predictor

			Performing inferences

			Visualizing the results

			Performing a computer vision task

			Summary

			Part 2: Developing Custom Object Detection Models

			3

			Data Preparation for Object Detection Applications

			Technical requirements

			Common data sources

			Getting images

			Selecting an image labeling tool

			Annotation formats

			Labeling the images

			Annotation format conversions

			Converting YOLO datasets to COCO datasets

			Converting Pascal VOC datasets to COCO datasets

			Summary

			4

			The Architecture of the Object Detection Model in Detectron2

			Technical requirements

			Introduction to the application architecture

			The backbone network

			Region Proposal Network

			The anchor generator

			The RPN head

			The RPN loss calculation

			Proposal predictions

			Region of Interest Heads

			The pooler

			The box predictor

			Summary

			5

			Training Custom Object Detection Models

			Technical requirements

			Processing data

			The dataset

			Downloading and performing initial explorations

			Data format conversion

			Displaying samples

			Using the default trainer

			Selecting the best model

			Evaluation metrics for object detection models

			Selecting the best model

			Inferencing thresholds

			Sample predictions

			Developing a custom trainer

			Utilizing the hook system

			Summary

			6

			Inspecting Training Results and Fine-Tuning Detectron2’s Solvers

			Technical requirements

			Inspecting training histories with TensorBoard

			Understanding Detectron2’s solvers

			Gradient descent

			Stochastic gradient descent

			Momentum

			Variable learning rates

			Fine-tuning the learning rate and batch size

			Summary

			7

			Fine-Tuning Object Detection Models

			Technical requirements

			Setting anchor sizes and anchor ratios

			Preprocessing input images

			Sampling training data and generating the default anchors

			Generating sizes and ratios hyperparameters

			Setting pixel means and standard deviations

			Preparing a data loader

			Calculating the running means and standard deviations

			Putting it all together

			Summary

			8

			Image Data Augmentation Techniques

			Technical requirements

			Image augmentation techniques

			Why image augmentations?

			What are image augmentations?

			How to perform image augmentations

			Detectron2’s image augmentation system

			Transformation classes

			Augmentation classes

			The AugInput class

			Summary

			9

			Applying Train-Time and Test-Time Image Augmentations

			Technical requirements

			The Detectron2 data loader

			Applying existing image augmentation techniques

			Developing custom image augmentation techniques

			Modifying the existing data loader

			Developing the MixUp image augmentation technique

			Developing the Mosaic image augmentation technique

			Applying test-time image augmentation techniques

			Summary

			Part 3: Developing a Custom Detectron2 Model for Instance Segmentation Tasks

			10

			Training Instance Segmentation Models

			Technical requirements

			Preparing data for training segmentation models

			Getting images, labeling images, and converting annotations

			Introduction to the brain tumor segmentation dataset

			The architecture of the segmentation models

			Training custom segmentation models

			Summary

			11

			Fine-Tuning Instance Segmentation Models

			Technical requirements

			Introduction to PointRend

			Using existing PointRend models

			Training custom PointRend models

			Summary

			Part 4: Deploying Detectron2 Models into Production

			12

			Deploying Detectron2 Models into Server Environments

			Technical requirements

			Supported file formats and runtimes

			Development environments, file formats, and runtimes

			Exporting PyTorch models using the tracing method

			When the tracing method fails

			Exporting PyTorch models using the scripting method

			Mixing tracing and scripting approaches

			Deploying models using a C++ environment

			Deploying custom Detectron2 models

			Detectron2 utilities for exporting models

			Exporting a custom Detectron2 model

			Summary

			13

			Deploying Detectron2 Models into Browsers and Mobile Environments

			Technical requirements

			Deploying Detectron2 models using ONNX

			Introduction to ONNX

			Exporting a PyTorch model to ONNX

			Loading an ONNX model to the browser

			Exporting a custom Detectron2 model to ONNX

			Developing mobile computer vision apps with D2Go

			Introduction to D2Go

			Using existing D2Go models

			Training custom D2Go models

			Model quantization

			Summary

			Index

			Other Books You May Enjoy

		

	


		
			Preface

			Computer vision takes part and has become a critical success factor in many modern businesses such as automobile, robotics, manufacturing, and biomedical image processing – and its market is growing rapidly. This book will help you explore Detectron2. It is the next-generation library that provides cutting-edge computer vision algorithms. Many research and practical projects at Facebook (now Meta) use it as a library to support computer vision tasks. Its models can be exported to TorchScript and Open Neural Network Exchange (ONNX) format for deployments into server production environments (such as C++ runtime), browsers, and mobile devices.

			By utilizing code and visualizations, this book will guide you on using existing models in Detectron2 for computer vision tasks (object detection, instance segmentation, key-point detection, semantic detection, and panoptic segmentation). It also covers theories and visualizations of Detectron2’s architectures and how each module in Detectron2 works. This book walks you through two complete hands-on, real-life projects (preparing data, training models, fine-tuning models, and deployments) for object detection and instance segmentation of brain tumors using Detectron2.

			The data preparation section discusses common sources of datasets for computer vision applications and tools to collect and label data. It also describes common image data annotation formats and codes to convert from different formats to the one Detectron2 supports. The training model section guides the steps to prepare the configuration file, load pre-trained weights for transfer learning (if necessary), and modify the default trainer to meet custom business requirements.

			The fine-tuning model section includes inspecting training results using TensorBoard and optimizing Detectron2 solvers. It also provides a primer to common and cutting-edge image augmentation techniques and how to use existing Detectron2 image augmentation techniques or to build and apply custom image augmentation techniques at training and testing time. There are also techniques to fine-tune object detection models, such as computing appropriate configurations for generating anchors (sizes and ratios of the anchors) or means or standard deviations of the pixel values from custom datasets. For instance segmentation task, this book also discusses the use of PointRend to improve the quality of the boundaries of the detected instances.

			This book also covers steps for deploying Detectron2 models into production and developing Detectron2 applications for mobile devices. Specifically, it provides the model formats and platforms that Detectron2 supports, such as TorchScript and ONNX formats. It provides the code to convert Detectron2 into these formats models using tracing and scripting approaches. Additionally, code snippets illustrate how to deploy Detectron2 models into C++ and browser environments. Finally, this book also discusses D2Go, a platform to train, fine-tune, and quantize computer visions so they can be deployable to mobile and edge devices with low-computation resource awareness.

			Through this book, you will find that Detectron2 is a valuable framework for anyone looking to build robust computer vision applications.

			Who this book is for

			If you are a deep learning application developer, researcher, or software developer with some prior knowledge about deep learning, this book is for you to get started and develop deep learning models for computer vision applications. Even if you are an expert in computer vision and curious about the features of Detectron2, or you would like to learn some cutting-edge deep learning design patterns, you will find this book helpful. Some HTML, Android, and C++ programming skills are advantageous if you want to deploy computer vision applications using these platforms.

			What this book covers

			Chapter 1, An Introduction to Detectron2 and Computer Vision Tasks, introduces Detectron2, its architectures, and the computer vision tasks that Detectron2 can perform. Additionally, this chapter provides the steps to set up environments for developing computer vision applications using Detectron2.

			Chapter 2, Developing Computer Vision Applications Using Existing Detectron2 Models, guides you through the steps to develop applications for computer vision tasks using state-of-the-art models in the Detectron2 Model Zoo. Thus, you can quickly develop practical computer vision applications without having to train custom models.

			Chapter 3, Data Preparation for Object Detection Applications, discusses the steps to prepare data for training models using Detectron2. Additionally, this chapter covers the techniques to convert standard annotation formats to the data format required by Detectron2 in case the existing datasets come in different formats.

			Chapter 4, The Architecture of the Object Detection Model in Detectron2, dives deep into the architecture of Detectron2 for the object detection task. This chapter is essential for understanding common terminologies when designing deep neural networks for vision systems.

			Chapter 5, Training Custom Object Detection Models, provides steps to prepare data, train an object detection model, select the best model, and perform inferencing object detection tasks. Additionally, it details the development process of a custom trainer by extending the default trainer and incorporating a hook into the training process.

			Chapter 6, Inspecting Training Results and Fine-Tuning Detectron2's Solver, covers the steps to use TensorBoard to inspect training histories. It utilizes the codes and visualizations approach for explaining the concepts behind Detectron2’s solvers and their hyperparameters. The related concepts include gradient descent, Stochastic gradient descent, momentum, and variable learning rate optimizers.

			Chapter 7, Fine-Tuning Object Detection Models, explains how Detectron2 processes its inputs and provides codes to analyze the ground-truth boxes from a training dataset and find appropriate values for the anchor sizes and ratio configuration parameters. Additionally, this chapter provides the code to calculate the input image pixels' means and standard deviations from the training dataset in a rolling manner. The rolling calculations of these hyperparameters are essential if the training dataset is large and does not fit in the memory.

			Chapter 8, Image Data Augmentation Techniques, introduces Detectron2’s image augmentation system with three main components: Transformation, Augmentation, and AugInput. It describes classes in these components and how they work together to perform image augmentation while training Detectron2 models.

			Chapter 9, Applying Train-Time and Test-Time Image Augmentations, introduces the steps to apply these existing classes to training. This chapter also explains how to modify existing codes to implement custom techniques that need to load data from different inputs. Additionally, this chapter details the steps for applying image augmentations during test time to improve accuracy.

			Chapter 10, Training Instance Segmentation Models, covers the steps to construct a dataset in the format supported by Detectron2 and train a model for a segmentation task. This chapter also utilizes the codes and visualizations approach to explain the architecture of an object segmentation application developed using Detectron2.

			Chapter 11, Fine-Tuning Instance Segmentation Models, introduces PointRend, a project inside Detectron2 that helps improve the sharpness of the object’s boundaries. This chapter also covers the steps to use existing PointRend models and to train custom models using PointRend.

			Chapter 12, Deploying Detectron2 Models into Server Environments, walks you through the steps in an export process to convert Detectron2 models into deployable artifacts. This chapter then provides the steps to deploy the exported models into the server environments.

			Chapter 13, Deploying Detectron2 Models into Browsers and Mobile Environments, introduces the ONNX framework. It is extremely helpful when deploying Detectron2 models into browsers or mobile environments is needed. This chapter also describes D2Go for training, quantizing lightweight models extremely useful for deploying into mobile or edge devices.

			To get the most out of this book

			Detectron2, D2Go, and PyTorch are under active development, and therefore Detectron2 or D2Go may not be compatible with the PyTorch version you have or that Google Colab provides by default. The source code is fully tested using the following versions on Google Colab:

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							Python 3.8 and 3.9

						
							
							Google Colab

						
					

					
							
							PyTorch 1.13

						
							
					

					
							
							CUDA: cu116

						
							
					

					
							
							Detectron2 (commit 3ed6698)

						
							
					

					
							
							D2Go (commit 1506551)

						
							
					

				
			

			Chapter 1 of this book also provides installation instructions and information you need to start. Additionally, this book provides Code in Action videos where you can view the Python and commit versions of all the packages being used.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Note that some less important portions of the codes are truncated inside the book for space efficiency and legibility. Therefore, simply copying and pasting codes from the book may lead to execution errors. It is recommended to follow the complete code found in the book’s GitHub repository, detailed in the following section.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-Detectron2. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Code in Action

			The Code in Action videos for this book can be viewed at http://bit.ly/40DJdpd.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Mount the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

			A block of code is set as follows:

			
html, body, #map {
 height: 100%;
 margin: 0;
 padding: 0
}

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

			Any command-line input or output is written as follows:

			
$ mkdir css
$ cd css

			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Select System info from the Administration panel.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Hands-On Computer Vision with Detectron2, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application. 

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			 

			
				
					[image: https://packt.link/free-ebook/9781800561625]
				

			

			https://packt.link/free-ebook/9781800561625

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	


		
			Part 1: Introduction to Detectron2

			This first part introduces Detectron2, its architectures, and the computer vision tasks that Detectron2 can perform. In other words, it discusses why we need computer vision applications and what computer vision tasks Detectron2 can perform. Additionally, this part provides the steps to set up environments for developing computer vision applications using Detectron2 locally or on the cloud using Google Colab. Also, it guides you through the steps to build applications for computer vision tasks using state-of-the-art models in Detectron2. Specifically, it discusses the existing and pre-trained models in Detectron2’s Model Zoo and the steps to develop applications for object detection, instance segmentation, key-point detection, semantic segmentation, and panoptic segmentation using these models. 

			The first part covers the following chapters:

			
					Chapter 1, An Introduction to Detectron2 and Computer Vision Tasks

					Chapter 2, Developing Computer Vision Applications Using Existing Detectron2 Models

			

		

		
			
			

		

		
			
			

		

	


		
			1

			An Introduction to Detectron2 and Computer Vision Tasks

			This chapter introduces Detectron2, its architectures, and the computer vision (CV) tasks that Detectron2 can perform. In other words, this chapter discusses what CV tasks Detectron2 can perform and why we need them. Additionally, this chapter provides the steps to set up environments for developing CV applications using Detectron2 locally or on the cloud using Google Colab.

			By the end of this chapter, you will understand the main CV tasks (e.g, object detection, instance segmentation, keypoint detection, semantic segmentation, and panoptic segmentation); know how Detectron2 works and what it can do to help you tackle CV tasks using deep learning; and be able to set up local and cloud environments for developing Detectron2 applications.

			Specifically, this chapter covers the following topics:

			
					Computer vision tasks

					Introduction to Detectron2 and its architecture

					Detectron2 development environments

			

			Technical requirements

			Detectron2 CV applications are built on top of PyTorch. Therefore, a compatible version of PyTorch is expected to run the code examples in this chapter. Later sections of this chapter will provide setup instructions specifically for Detectron2. All the code, datasets, and respective results are available on the GitHub page of the book at https://github.com/PacktPublishing/Hands-On-Computer-Vision-with-Detectron2. It is highly recommended to download the code and follow along.

			Computer vision tasks

			Deep learning achieves state-of-the-art results in many CV tasks. The most common CV task is image classification, in which a deep learning model gives a class label for a given image. However, recent advancements in deep learning allow computers to perform more advanced vision tasks. There are many of these advanced vision tasks. 

			However, this book focuses on more common and important ones, including object detection, instance segmentation, keypoint detection, semantic segmentation, and panoptic segmentation. It might be challenging for readers to differentiate between these tasks. Figure 1.1 depicts the differences between them. This section outlines what they are and when to use them, and the rest of the book focuses on how to implement these tasks using Detectron2. Let’s get started!

			
				
					[image: ﻿Figure 1.1: Common computer vision tasks]
				

			

			Figure 1.1: Common computer vision tasks

			Object detection

			Object detection generally includes object localization and classification. Specifically, deep learning models for this task predict where objects of interest are in an image by applying the bounding boxes around these objects (localization). Furthermore, these models also classify the detected objects into types of interest (classification).

			One example of this task is specifying people in pictures and applying bounding boxes to the detected humans (localization only), as shown in Figure 1.1 (b). Another example is to detect road damage from a recorded road image by providing bounding boxes to the damage (localization) and further classifying the damage into types such as longitudinal cracks, traverse cracks, alligator cracks, and potholes (classification).

			Instance segmentation

			Like object detection, instance segmentation also involves object localization and classification. However, instance segmentation takes things one step further while localizing the detected objects of interest. 

			Specifically, besides classification, models for this task localize the detected objects at the pixel level. In other words, it identifies all the pixels of each detected object. Instance segmentation is needed in applications that require shapes of the detected objects in images and need to track every individual object. Figure 1.1 (c) shows the instance segmentation result on the input image in Figure 1.1 (a). Specifically, besides the bounding boxes, every pixel of each person is also highlighted.

			Keypoint detection

			Besides detecting objects, keypoint detection also indicates important parts of the detected objects called keypoints. These keypoints describe the detected object’s essential trait. This trait is often invariant to image rotation, shrinkage, translation, or distortion. For instance, the keypoints of humans include the eyes, nose, shoulders, elbows, hands, knees, and feet. Keypoint detection is important for applications such as action estimation, pose detection, or face detection. Figure 1.1 (d) shows the keypoint detection result on the input image in Figure 1.1 (a). Specifically, besides the bounding boxes, it highlights all keypoints for every detected individual.

			Semantic segmentation

			A semantic segmentation task does not detect specific instances of objects but classifies each pixel in an image into some classes of interest. For instance, a model for this task classifies regions of images into pedestrians, roads, cars, trees, buildings, and the sky in a self-driving car application. This task is important when providing a broader view of groups of objects with different classes (i.e., a higher level of understanding of the image). Specifically, if individual class instances are in one region, they are grouped into one mask instead of having a different mask for each individual.

			One example of the application of semantic segmentation is to segment the images into foreground objects and background objects (e.g., to blur the background and provide a more artistic look for a portrait image). Figure 1.1 (e) shows the semantic segmentation result on the input image in Figure 1.1 (a). Specifically, the input picture is divided into regions classified as things (people or front objects) and background objects such as the sky, a mountain, dirt, grass, and a tree.

			Panoptic segmentation

			Panoptic literally means “everything visible in the image”. In other words, it can be viewed as combining common CV tasks such as instance segmentation and semantic segmentation. It helps to show the unified and global view of segmentation. Generally, it classifies objects in an image into foreground objects (that have proper geometries) and background objects (that do not have appropriate geometries but are textures or materials).

			Examples of foreground objects include people, animals, and cars. Likewise, examples of background objects include the sky, dirt, trees, mountains, and grass. Different from semantic segmentation, panoptic segmentation does not group consecutive individual objects of the same class into one region. Figure 1.1 (f) shows the panoptic segmentation result on the input image in Figure 1.1 (a). 

			Specifically, it looks similar to the semantic segmentation result, except it highlights the individual instances separately.

			Important note – other CV tasks

			There are other advanced CV projects developed on top of Detectron2, such as DensePose and PointRend. However, this book focuses on developing CV applications for the more common ones, including object detection, instance segmentation, keypoint detection, semantic segmentation, and panoptic segmentation in Chapter 2. Furthermore, Part 2 and Part 3 of this book further explore developing custom CV applications for the two most important tasks (object detection and instance segmentation). There is also a section that describes how to use PointRend to improve instance segmentation quality. Additionally, it is relatively easy to expand the code for other tasks once you understand these tasks.

			Let’s get started by getting to know Detectron2 and its architecture!

			An introduction to Detectron2 and its architecture

			Detectron2 is Facebook (now Meta) AI Research’s open source project. It is a next-generation library that provides cutting-edge detection and segmentation algorithms. Many research and practical projects at Facebook use it as a library to support implementing CV tasks. The following sections introduce Detectron2 and provide an overview of its architecture.

			Introducing Detectron2

			Detectron2 implements state-of-the-art detection algorithms, such as Mask R-CNN, RetinaNet, Faster R-CNN, RPN, TensorMask, PointRend, DensePose, and more. The question that immediately comes to mind after this statement is, why is it better if it re-implements existing cutting-edge algorithms? The answer is that Detectron2 has the advantages of being faster, more accurate, modular, customizable, and built on top of PyTorch.

			Specifically, it is faster and more accurate because while reimplementing the cutting-edge algorithms, there is the chance that Detectron2 will find suboptimal implementation parts or obsolete features from older versions of these algorithms and re-implement them. It is modular, or it divides its implementation into sub-parts. The parts include the input data, backbone network, region proposal heads, and prediction heads (the next section covers more information about these components). It is customizable, meaning its components have built-in implementations, but they can be customized by calling new implementations. Finally, it is built on top of PyTorch, meaning that many developer resources are available online to help develop applications with Detectron2.

			Furthermore, Detectron2 provides pre-trained models with state-of-the-art detection results for CV tasks. These models were trained with many images on high computation resources at the Facebook research lab that might not be available in other institutions. 

			These pre-trained models are published on its Model Zoo and are free to use: https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md.

			These pre-trained models help developers develop typical CV applications quickly without collecting, preparing many images, or requiring high computation resources to train new models. However, suppose there is a need for developing a CV task on a specific domain with a custom dataset. In that case, these existing models can be the starting weights, and the whole Detectron2 model can be trained again on the custom dataset.

			Finally, we can convert Detectron2 models into deployable artifacts. Precisely, we can convert Detectron2 models into standard file formats of standard deep learning frameworks such as TorchScript, Caffe2 protobuf, and ONNX. These files can then be deployed to their corresponding runtimes, such as PyTorch, Caffe2, and ONNX Runtime. Furthermore, Facebook AI Research also published Detectron2Go (D2Go), a platform where developers can take their Detectron2 development one step further and create models optimized for mobile devices.

			In summary, Detectron2 implements cutting-edge detection algorithms with the advantage of being fast, accurate, modular, and built on top of PyTorch. Detectron2 also provides pre-trained models so users can get started and quickly build CV applications with state-of-the-art results. It is also customizable, so users can change its components or train CV applications on a custom business domain. Furthermore, we can export Detectron2 into scripts supported by standard deep learning framework runtimes. Additionally, initial research called Detectron2Go supports developing Detectron2 applications for edge devices.

			In the next section, we will look into Detectron2 architecture to understand how it works and the possibilities of customizing each of its components.

			Detectron2 architecture

			
				
					[image: Figure 1.2: The main components of Detectron2]
				

			

			Figure 1.2: The main components of Detectron2

			Detectron2 has a modular architecture. Figure 1.2 depicts the four main modules in a standard Detectron2 application. The first module is for registering input data (Input Data). 

			The second module is the backbone to extract image features (Backbone), followed by the third one for proposing regions with and without objects to be fed to the next training stage (Region Proposal). Finally, the last module uses appropriate heads (such as detection heads, instance segmentation heads, keypoint heads, semantic segmentation heads, or panoptic heads) to predict the regions with objects and classify detected objects into classes. Chapter 3 to Chapter 5 discuss these components for building a CV application for object detection tasks, and Chapter 10 and Chapter 11 detail these components for segmentation tasks. The following sections briefly discuss these components in general.

			The input data module

			The input data module is designed to load data in large batches from hard drives with optimization techniques such as caching and multi-workers. Furthermore, it is relatively easy to plug data augmentation techniques into a data loader for this module. Additionally, it is designed to be customizable so that users can register their custom datasets. The following is the typical syntax for assigning a custom dataset to train a Detectron2 model using this module:

			
DatasetRegistry.register(
    'my_dataset',
    load_my_dataset
)

			The backbone module

			The backbone module extracts features from the input images. Therefore, this module often uses a cutting-edge convolutional neural network such as ResNet or ResNeXt. This module can be customized to call any standard convolutional neural network that performs well in an image classification task of interest. Notably, this module has a great deal of knowledge about transfer learning. Specifically, we can use those pre-trained models here if we want to use a state-of-the-art convolution neural network that works well with large image datasets such as ImageNet. Otherwise, we can choose those simple networks for this module to increase performance (training and prediction time) with the accuracy trade-off. Chapter 2 will discuss selecting appropriate pre-trained models on the Detectron2 Model Zoo for common CV tasks.

			The following code snippet shows the typical syntax for registering a custom backbone network to train the Detectron2 model using this module:

			
@BACKBONE_REGISTRY.register()
class CustomBackbone(Backbone):
    pass

			The region proposal module

			The next module is the region proposal module (Region Proposal). This module accepts the extracted features from the backbone and predicts or proposes image regions (with location specifications) and scores to indicate whether the regions contain objects (with objectness scores). The objectness score of a proposed region may be 0 (for not having an object or being background) or 1 (for being sure that there is an object of interest in the predicted region). Notably, this object score is not about the probability of being a class of interest but simply whether the region contains an object (of any class) or not (background).

			This module is set with a default Region Proposal Network (RPN). However, replacing this network with a custom one is relatively easy. The following is the typical syntax for registering a custom RPN to train the Detectron2 model using this module:

			
@ROI_BOX_HEAD_REGISTRY.register()
class CustomBoxHead(nn.Module):
    pass

			Region of interest module

			The last module is the place for the region of interest (RoI) heads. Depending on the CV tasks, we can select appropriate heads for this module, such as detection heads, segmentation heads, keypoint heads, or semantic segmentation heads. For instance, the detection heads accept the region proposals and the input features of the proposed regions and pass them through a fully connected network, with two separate heads for prediction and classification. Specifically, one head is used to predict bounding boxes for objects, and another is for classifying the detected bounding boxes into corresponding classes.

			On the other hand, semantic segmentation heads also use convolutional neural network heads to classify each pixel into one of the classes of interest. The following is the typical syntax for registering custom region of interest heads to train the Detectron2 model using this module:

			
@ROI_HEAD_REGISTRY.register()
class CustomHeads(StandardROIHeads):
    pass

			Now that you have an understanding of Detectron2 and its architecture, let's prepare development environments for developing Detectron2 applications.

			Detectron2 development environments

			Now, we understand the advanced CV tasks and how Detectron2 helps to develop applications for these tasks. It is time to start developing Detectron2 applications. This section provides steps to set up Detectron2 development environments on the cloud using Google Colab, a local environment, or a hybrid approach connecting Google Colab to a locally hosted runtime.

			Cloud development environment for Detectron2 applications

			Google Colab or Colaboratory (https://colab.research.google.com) is a cloud platform that allows you to write and execute Python code from your web browser. It enables users to start developing deep learning applications with zero configuration because most common machine learning and deep learning packages, such as PyTorch and TensorFlow, are pre-installed. Furthermore, users will have access to GPUs free of charge. Even with the free plan, users have access to a computation resource that is relatively better than a standard personal computer. Users can pay a small amount for Pro or Pro+ with higher computation resources if needed. Additionally, as its name indicates, it is relatively easy to collaborate on Google Colab, and it is easy to share Google Colab files and projects.

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		




















































	

OEBPS/Fonts/MinionPro-Bold.otf


OEBPS/image/B16704_01_02.jpg
Input Data

Examples:
- ResNet
- ResNeXt

Backbone

Region Proposal

- Objectness
- Locations

A2

Region of Interest Heads

Examples:

- Detection Heads

- Instance Segmentation Heads
- Keypoint Heads

- Semantic Segmentation Heads






OEBPS/Fonts/MyriadPro-Semibold.otf


OEBPS/image/Packt_Logo_New.png
<PACKD





OEBPS/toc.xhtml


		

		Contents



			

						Hands-On Computer Vision with Detectron2



						Foreword



						Contributors



						About the author



						About the reviewers



						Preface

					

								Who this book is for



								What this book covers



								To get the most out of this book



								Download the example code files



								Code in Action



								Conventions used



								Get in touch



								Share Your Thoughts



								Download a free PDF copy of this book



					



				



						Part 1: Introduction to Detectron2



						Chapter 1: An Introduction to Detectron2 and Computer Vision Tasks

					

								Technical requirements



								Computer vision tasks

							

										Object detection



										Instance segmentation



										Keypoint detection



										Semantic segmentation



										Panoptic segmentation



							



						



								An introduction to Detectron2 and its architecture

							

										Introducing Detectron2



										Detectron2 architecture



							



						



								Detectron2 development environments

							

										Cloud development environment for Detectron2 applications



										Local development environment for Detectron2 applications



										Connecting Google Colab to a local development environment



							



						



								Summary



					



				



						Chapter 2: Developing Computer Vision Applications Using Existing Detectron2 Models

					

								Technical requirements



								Introduction to Detectron2’s Model Zoo



								Developing an object detection application

							

										Getting the configuration file



										Getting a predictor



										Performing inferences



										Visualizing the results



							



						



								Developing an instance segmentation application

							

										Selecting a configuration file



										Getting a predictor



										Performing inferences



										Visualizing the results



							



						



								Developing a keypoint detection application

							

										Selecting a configuration file



										Getting a predictor



										Performing inferences



										Visualizing the results



							



						



								Developing a panoptic segmentation application

							

										Selecting a configuration file



										Getting a predictor



										Performing inferences



										Visualizing the results



							



						



								Developing a semantic segmentation application

							

										Selecting a configuration file and getting a predictor



										Performing inferences



										Visualizing the results



							



						



								Putting it all together

							

										Getting a predictor



										Performing inferences



										Visualizing the results



										Performing a computer vision task



							



						



								Summary



					



				



						Part 2: Developing Custom Object Detection Models



						Chapter 3: Data Preparation for Object Detection Applications

					

								Technical requirements



								Common data sources



								Getting images



								Selecting an image labeling tool



								Annotation formats



								Labeling the images



								Annotation format conversions

							

										Converting YOLO datasets to COCO datasets



										Converting Pascal VOC datasets to COCO datasets



							



						



								Summary



					



				



						Chapter 4: The Architecture of the Object Detection Model in Detectron2

					

								Technical requirements



								Introduction to the application architecture



								The backbone network



								Region Proposal Network

							

										The anchor generator



										The RPN head



										The RPN loss calculation



										Proposal predictions



							



						



								Region of Interest Heads

							

										The pooler



										The box predictor



							



						



								Summary



					



				



						Chapter 5: Training Custom Object Detection Models

					

								Technical requirements



								Processing data

							

										The dataset



										Downloading and performing initial explorations



										Data format conversion



										Displaying samples



							



						



								Using the default trainer



								Selecting the best model

							

										Evaluation metrics for object detection models



										Selecting the best model



										Inferencing thresholds



										Sample predictions



							



						



								Developing a custom trainer



								Utilizing the hook system



								Summary



					



				



						Chapter 6: Inspecting Training Results and Fine-Tuning Detectron2’s Solvers

					

								Technical requirements



								Inspecting training histories with TensorBoard



								Understanding Detectron2’s solvers

							

										Gradient descent



										Stochastic gradient descent



										Momentum



										Variable learning rates



							



						



								Fine-tuning the learning rate and batch size



								Summary



					



				



						Chapter 7: Fine-Tuning Object Detection Models

					

								Technical requirements



								Setting anchor sizes and anchor ratios

							

										Preprocessing input images



										Sampling training data and generating the default anchors



										Generating sizes and ratios hyperparameters



							



						



								Setting pixel means and standard deviations

							

										Preparing a data loader



										Calculating the running means and standard deviations



							



						



								Putting it all together



								Summary



					



				



						Chapter 8: Image Data Augmentation Techniques

					

								Technical requirements



								Image augmentation techniques

							

										Why image augmentations?



										What are image augmentations?



										How to perform image augmentations



							



						



								Detectron2’s image augmentation system

							

										Transformation classes



										Augmentation classes



										The AugInput class



							



						



								Summary



					



				



						Chapter 9: Applying Train-Time and Test-Time Image Augmentations

					

								Technical requirements



								The Detectron2 data loader



								Applying existing image augmentation techniques



								Developing custom image augmentation techniques

							

										Modifying the existing data loader



										Developing the MixUp image augmentation technique



										Developing the Mosaic image augmentation technique



							



						



								Applying test-time image augmentation techniques



								Summary



					



				



						Part 3: Developing a Custom Detectron2 Model for Instance Segmentation Tasks



						Chapter 10: Training Instance Segmentation Models

					

								Technical requirements



								Preparing data for training segmentation models

							

										Getting images, labeling images, and converting annotations



										Introduction to the brain tumor segmentation dataset



							



						



								The architecture of the segmentation models



								Training custom segmentation models



								Summary



					



				



						Chapter 11: Fine-Tuning Instance Segmentation Models

					

								Technical requirements



								Introduction to PointRend



								Using existing PointRend models



								Training custom PointRend models



								Summary



					



				



						Part 4: Deploying Detectron2 Models into Production



						Chapter 12: Deploying Detectron2 Models into Server Environments

					

								Technical requirements



								Supported file formats and runtimes

							

										Development environments, file formats, and runtimes



										Exporting PyTorch models using the tracing method



										When the tracing method fails



										Exporting PyTorch models using the scripting method



										Mixing tracing and scripting approaches



										Deploying models using a C++ environment



							



						



								Deploying custom Detectron2 models

							

										Detectron2 utilities for exporting models



										Exporting a custom Detectron2 model



							



						



								Summary



					



				



						Chapter 13: Deploying Detectron2 Models into Browsers and Mobile Environments

					

								Technical requirements



								Deploying Detectron2 models using ONNX

							

										Introduction to ONNX



										Exporting a PyTorch model to ONNX



										Loading an ONNX model to the browser



										Exporting a custom Detectron2 model to ONNX



							



						



								Developing mobile computer vision apps with D2Go

							

										Introduction to D2Go



										Using existing D2Go models



										Training custom D2Go models



										Model quantization



							



						



								Summary



					



				



						Index

					

								Why subscribe?



					



				



						Other Books You May Enjoy

					

								Packt is searching for authors like you



								Share Your Thoughts



								Download a free PDF copy of this book



					



				



			



		

		

		Landmarks



			

						Cover



						Table of Contents



						Index



			



		

	





OEBPS/Fonts/MinionPro-Regular.otf


OEBPS/Fonts/CourierStd.otf


OEBPS/Fonts/MinionPro-BoldIt.otf


OEBPS/Fonts/CourierStd-Bold.otf


OEBPS/Fonts/MinionPro-It.otf


OEBPS/Fonts/MyriadPro-Light.otf


OEBPS/image/Cover.png
Hands-On
Computer Vision
with Detectron2

Develop object detection and segmentation
models with a code and visualization approach

at Texas Tech University

VAN VUNG PHAM
Foreword by Tommy Dang, iDVL director and assistant professor





OEBPS/Fonts/MyriadPro-Regular.otf


OEBPS/image/B16704_QR_Free_PDF.jpg





OEBPS/image/B16704_01_01.jpg
(b) Object Detection (c) Instance Segmentation

(d) Key-point Detection (e) Semantic Segmentation (f) Panoptic Segmentation





OEBPS/Fonts/MyriadPro-SemiboldIt.otf


