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            Es sind die wahrhaft widerspenstigen Nüsse, von denen Stewart in seinem neuen Buch berichtet. Mathematische Rätsel, an denen sich die abstraktesten Köpfe seit Jahrzehnten, Jahrhunderten oder sogar Jahrtausenden die Zähne ausbeißen. Weil ab und zu doch jemand die Lösung findet. Wie 1993 der Brite Andrew Wiles nach einem langen Forscherleben für Fermats letzten Satz, der aus dem 17. Jahrhundert stammt. Um Rätsel wie dieses, die meisten aber bislang ungelöst, geht es in Ian Stewarts neuem Buch: die großen mathematische Probleme, von denen jeder, der sich für Mathematik interessiert, schon mal gehört hat, ob es die Goldbach’sche, die Riemann’sche, die Kepler’sche oder Poincarés Vermutung ist, um die Quadratur des Kreises oder das Drei-Körper-Problem geht. Stewart erklärt nicht nur die Gleichung, er erzählt auch die oft spannende Geschichte hinter der Entdeckung, die jedes dieser Probleme darstellt. Ein Wissensvergnügen nicht nur für Mathematik-Fans.

         

		
	
		
			
				
					Vita
				

			
			
            Ian Stewart, geboren 1945, ist der beliebteste Mathematik-Professor Großbritanniens und hat auch in Deutschland eine wachsende Fangemeinde. Seit Jahrzehnten bemüht er sich erfolgreich, seine Wissenschaft zu popularisieren. Er studierte in Cambridge und promovierte an der Universität Warwick. Dort ist er Professor für Mathematik und Direktor des Mathematics Awareness Center. Seit 2001 ist Stewart zudem Mitglied der Royal Society. Zuletzt bei Rowohlt erschienen: «Welt-Formeln. 17 mathematische Gleichungen, die Geschichte machten» (2014); «Professor Stewarts mathematische Schätze» (2012/2013); «Professor Stewarts mathematisches Sammelsurium» (2011).

         
		
	
		
			
			 
			
				
					Impressum
				

			 
			 
			
            Veröffentlicht im Rowohlt Verlag, Reinbek bei Hamburg, September 2015

            Copyright © 2015 by Rowohlt Verlag GmbH, Reinbek bei Hamburg

            Die britische Originalausgabe erschien 2013 bei Profile Books, London, unter dem Titel «The Great Mathematical Problems» Copyright © Joat Enterprises, 2013

            
            Redaktion Heiner Höfener

            Umschlaggestaltung ZERO Werbeagentur, München

            Umschlagabbildung FinePic, München

            
            Bitstream Vera is a trademark of Bitstream Inc.

            
            ISBN 978-3-644-03001-5

            
             

            Hinweis: Die Seitenverweise beziehen sich auf die Printausgabe.

         

			 

			Schrift Droid Serif Copyright © 2007 by Google Corporation

			Schrift Open Sans Copyright © by Steve Matteson, Ascender Corp

			 

			Dieses Werk ist urheberrechtlich geschützt, jede Verwertung bedarf der Genehmigung des Verlages.

			 

			Die Nutzung unserer Werke für Text- und Data-Mining im Sinne von § 44b UrhG behalten wir uns explizit vor.


			
			
		
	
		
			
			 
			
				
					Hinweise des Verlags
				

			 
			Abhängig vom eingesetzten Lesegerät kann es zu unterschiedlichen Darstellungen des vom Verlag freigegebenen Textes kommen.

			 

			Alle angegebenen Seitenzahlen beziehen sich auf die Printausgabe.

			 

			Im Text enthaltene externe Links begründen keine inhaltliche Verantwortung des Verlages, sondern sind allein von dem jeweiligen Dienstanbieter zu verantworten. Der Verlag hat die verlinkten externen Seiten zum Zeitpunkt der Buchveröffentlichung sorgfältig überprüft, mögliche Rechtsverstöße waren zum Zeitpunkt der Verlinkung nicht erkennbar. Auf spätere Veränderungen besteht keinerlei Einfluss. Eine Haftung des Verlags ist daher ausgeschlossen.

			 

			 

			www.rowohlt.de


		
		
	Inhaltsübersicht
	Widmung
	Motto
	Vorwort
	Kapitel 1 Große Probleme
	Kapitel 2 Primgebiet
	Kapitel 3 Rätselhaftes PI
	Kapitel 4 Geheimnisvolle Kartierung
	Kapitel 5 Sphärensymmetrie
	Kapitel 6 Aus Alt mach Neu
	Kapitel 7 Zu schmaler Rand
	Kapitel 8 Orbitales Chaos
	Kapitel 9 Primzahlenmuster
	Kapitel 10 Welche Form hat die Kugel?
	Kapitel 11 Nicht alle können einfach sein
	Kapitel 12 Fluides Denken
	Kapitel 13 Das Quantenrätsel
	Kapitel 14 Diophantische Träume
	Kapitel 15 Komplexe Schleifen
	Kapitel 16 Wohin als Nächstes?
	Kapitel 17 Zwölf für die Zukunft	Das Brocard-Problem
	Ungerade perfekte Zahlen
	Das Collatz-Problem
	Existenz von perfekten Quadern
	Die Lonely Runner Conjecture (Einsame-Läufer-Vermutung)
	Conways Thrackle-Hypothese
	Irrationalität der Euler-Konstanten
	Reelle quadratische Zahlkörper
	Langtons Ameise
	Die Hadamard-Matrix-Vermutung
	Die Fermat-Catalan-Gleichung
	Die abc-Vermutung


	Anhang	Glossar
	Abbildungsnachweis
	Namenverzeichnis




               Für Jay Mandel und Jill Bialosky,

               mit kosmischer Dankbarkeit

            

               Wir müssen wissen. Wir werden wissen.

               David Hilbert

               Vortrag über mathematische Probleme 1930 anlässlich der Verleihung der Ehrenbürgerschaft von Königsberg.[1]

            

               Vorwort

            Mathematik ist ein riesiges, ständig wachsendes, sich ständig veränderndes Fachgebiet. Unter den unzähligen Fragen, die sich Mathematiker stellen und in den meisten Fällen auch beantworten, stechen einige aus dem Rest hervor: exponierte Gipfel, die die niedrigen Gebirgsausläufer überragen. Das sind die wirklich großen Fragen, die schwierigen und herausfordernden Probleme, für deren Lösung jeder Mathematiker seinen rechten Arm hergeben würde. Etliche blieben Jahrzehnte, manche Jahrhunderte, einige wenige ein paar Jahrtausende lang ungelöst. Etliche müssen noch bezwungen werden. Fermats letzter Satz war 350 Jahre lang ein Rätsel, bis Andrew Wiles nach siebenjähriger Plackerei die Lösung fand. Die Poincaré-Vermutung blieb mehr als ein Jahrhundert lang offen, bis sie von dem exzentrischen mathematischen Genie Grigori Perelman gelöst wurde, der sämtliche akademische Ehren und einen 1-Million-Dollar-Preis für seine Arbeit ablehnte. Die Riemann-Hypothese stellt Mathematiker in aller Welt seit 150 Jahren vor ein Rätsel.
Die letzten Rätsel der Mathematik enthalten eine Auswahl der wirklich großen Fragen, die die Mathematik in radikal neue Richtungen gelenkt haben. Das Buch beschreibt ihre Ursprünge, erklärt, warum sie so wichtig sind, und stellt sie in den Kontext von Mathematik und Naturwissenschaften insgesamt. Es enthält gelöste wie ungelöste Probleme, die mehr als 2000 Jahre mathematischer Entwicklung überspannen, doch sein Hauptgewicht liegt auf Fragen, die entweder heute noch offen sind oder in den vergangenen 50 Jahren gelöst wurden.
Ein Grundziel der Mathematik besteht darin, die grundlegende Einfachheit scheinbar komplexer Fragen offenzulegen. Das mag jedoch nicht immer offensichtlich sein, da die mathematische Konzeption von «einfach» auf vielen speziellen und schwierigen Vorstellungen beruht. Ein wichtiges Merkmal dieses Buches besteht darin, die tiefgreifende Einfachheit von Konzepten zu betonen und Komplexitäten zu vermeiden – oder sie zumindest klar zu erklären.
Die Mathematik ist neuer und vielfältiger, als die meisten sich vorstellen. Einer groben Schätzung zufolge liegt die Zahl der forschenden Mathematiker weltweit bei etwa hunderttausend, und sie produzieren jedes Jahr mehr als zwei Millionen Seiten neuer mathematischer Erkenntnisse. Keine «neuen Zahlen», darum geht es dabei eigentlich nicht. Keine «neuen Rechnungen» wie die bereits existierenden, nur umfassender. Eine algebraische Berechnung, die unlängst von rund 25 Mathematikern durchgeführt wurde, wurde als eine «Berechnung in der Größe von Manhattan» beschrieben. Das stimmte jedoch nicht ganz, sondern war eher untertrieben. Die Antwort hatte die Größe von Manhattan; die eigentliche Berechnung war deutlich umfangreicher. Das ist eindrucksvoll, doch es ist die Qualität, die zählt, nicht die Quantität. Diese gigantische Berechnung erfüllt diesen Anspruch in beiderlei Hinsicht, denn sie liefert wertvolle Grundlageninformation über eine Symmetriegruppe, die in der Quantenphysik offenbar und in der Mathematik definitiv eine wichtige Rolle spielt. Brillante Mathematik kann eine einzige Zeile lang sein oder eine ganze Enzyklopädie füllen, je nachdem, was das Problem verlangt.
Wenn wir an Mathematiker denken, kommen uns spontan endlose Seiten voller Symbole und Formeln in den Sinn. Diese zwei Millionen Seiten enthalten jedoch im Allgemeinen mehr Worte als Symbole. Die Worte dienen dazu, den Hintergrund des Problems, die Argumentationslinie, die Bedeutung der Berechnungen und ihre Stellung im ständig wachsenden Gebäude der Mathematik zu erklären. Wie der große Carl Friedrich Gauß um 1800 bemerkte, sind das Wesen der Mathematik «Bedeutungen, keine Bezeichnungen». Dennoch ist die Alltagssprache, in der mathematische Ideen ausgedrückt werden, die der Symbole. Viele veröffentlichte Forschungsartikel enthalten mehr Symbole als Worte. Formeln sind von einer Präzision, an die Worte nicht immer heranreichen können.
Dennoch ist es oft möglich, die dahinter stehenden Ideen zu erklären, ohne viele Symbole zu gebrauchen. Das Buch Die letzten Rätsel der Mathematik sieht darin sein Leitprinzip. Es illustriert, was Mathematiker tun, wie sie denken und warum ihre Themen interessant und wichtig sind. Vor allem beleuchtet es, wie sich heutige Mathematiker den Herausforderungen stellen, die ihnen ihre Vorgänger hinterlassen haben, während die großen Rätsel der Vergangenheit eines nach dem anderen dank der mächtigen Techniken der Gegenwart sich geschlagen geben und damit die Mathematik und die Naturwissenschaften der Zukunft verändern. Die Mathematik gehört zu den größten Errungenschaften der Menschheit, und ihre großen Probleme – ob gelöst oder ungelöst – haben ihre erstaunliche Schaffenskraft in der Vergangenheit über Jahrtausende geleitet und stimuliert und werden dies auch in Zukunft tun.

               Kapitel 1 Große Probleme

            Fernsehprogramme über Mathematiker sind rar, gute noch seltener. Eines der besten, was Sehbeteiligung und Zuschauerinteresse wie auch Inhalt anging, war «Fermats letzter Satz». Das Programm wurde 1996 von John Lynch für die populäre BBC-Wissenschaftsreihe Horizon produziert. Simon Singh, der an der Produktion beteiligt war, verwandelte die Geschichte in einen spektakulären Bestseller.[1] Auf einer Webseite betonte er, dass der überwältigende Erfolg des Programms eine große Überraschung war:

               Es waren 50 Minuten, in denen Mathematiker über Mathematik redeten, was kein auf der Hand liegendes Rezept für einen TV-Blockbuster ist, doch das Resultat war ein Programm, das die Phantasie des Publikums gefangen nahm und das viel Beifall von den Kritikern erhielt. Das Programm gewann den BAFTA für die beste Dokumentation, einen Priz Italia, andere internationale Preise und eine Emmy-Nomierung – das beweist, dass Mathematik genauso emotional und packend sein kann wie irgendein anderes Fach auf der Welt.

            
Ich denke, für den Erfolg des Fernsehprogramms wie auch des Buches gibt es mehrere Gründe, und sie haben Konsequenzen für die Geschichten, die ich hier erzählen möchte. Um die Diskussion stringent zu halten, werde ich mich auf die Fernsehdokumentation konzentrieren.
Fermats letzter Satz ist eines der wirklich großen mathematischen Probleme; es erwuchs aus einer scheinbar harmlosen Bemerkung, die einer der führenden Mathematiker des 17. Jahrhunderts an den Rand eines klassischen Lehrbuchs gekritzelt hatte. Das Problem erlangte notorische Berühmtheit, weil niemand beweisen konnte, was Pierre de Fermats Randnotiz behauptete, und trotz aller Bemühungen sehr kluger Leute blieb dies über 300 Jahre der Stand der Dinge. Als der britische Mathematiker Andrew Wiles das Problem daher 1995 schließlich knackte, war die Größe dieser Leistung für jedermann offensichtlich. Man musste nicht einmal wissen, um welches Problem es sich handelte, geschweige denn, wie er es gelöst hatte. Es war das mathematische Äquivalent der Erstbesteigung des Mount Everest.
Neben ihrer Bedeutung für die Mathematik spielte bei Wiles’ Lösung auch der human touch eine entscheidende Rolle. Im Alter von zehn Jahren packte ihn das Problem dermaßen, dass er sich entschloss, Mathematiker zu werden und es zu lösen. Er führte den ersten Teil seines Plans aus und ging so weit, sich auf Zahlentheorie zu spezialisieren, das allgemeine Gebiet, zu dem Fermats letzter Satz gehört. Je mehr er jedoch über die reale Mathematik lernte, desto unmöglicher erschien ihm das ganze Unterfangen. Fermats letzter Satz war eine verblüffende Kuriosität, eine isolierte Frage der Art, wie sie sich jeder Zahlentheoretiker ohne auch nur den Schimmer eines überzeugenden Beweises ausdenken konnte. Dieser Satz passte nicht in irgendeine Schublade mit einem Satz effizienter Lösungstechniken. In einem Brief an Heinrich Olbers hatte der große Gauß das Problem abgetan: «Ich gestehe, dass das Fermat’sche Theorem als isolirter Satz für mich wenig Interesse hat, denn es lassen sich eine Menge solcher Sätze leicht aufstellen, die man weder beweisen, noch widerlegen kann.»[2] Wiles kam zu dem Schluss, sein Kindheitstraum sei unrealistisch gewesen, und legte Fermat zunächst einmal ad acta. Doch dann gelang anderen Mathematikern wunderbarerweise ein Durchbruch, der das Problem mit einem Kernthema der Zahlentheorie verknüpfte, einem Thema, für das Wiles bereits Experte war. In für ihn untypischer Weise hatte Gauß die Bedeutung des Problems unterschätzt und nicht erkannt, dass es sich mit einem grundlegenden, wenn auch scheinbar in keinem Zusammenhang stehenden Gebiet der Mathematik verknüpfen ließ.
Nachdem diese Verbindung hergestellt war, konnte Wiles nun an Fermats Rätsel arbeiten und gleichzeitig seine Forschung an der modernen Zahlentheorie vorantreiben. Noch besser war: Sollte die Sache mit Fermat nicht gelingen, so würde doch alles Wichtige, was er bei dem Versuch, den Satz zu beweisen, herausfand, aufgrund seiner eigenen Bedeutung publizierbar sein. Daher nahm sich Wiles Fermats Problem wieder vor und begann sich ernsthaft Gedanken darüber zu machen. Nach sieben Jahren besessener Forschung, die er privat und insgeheim durchführte – eine in der Mathematik ungewöhnliche Vorsichtsmaßnahme –, kam er zu der Überzeugung, die Lösung gefunden zu haben. Unter einem obskuren Titel, der niemanden täuschte, hielt er auf einer renommierten Zahlentheoriekonferenz eine Reihe von Vorträgen.[3] Die aufregende Nachricht machte in den Medien wie auch in Mathematikerkreisen rasch die Runde: Fermats letzter Satz war bewiesen worden.
Der Beweis war eindrucksvoll und elegant, voller guter Ideen. Leider entdeckten Experten rasch eine ernste Lücke in seiner Logik. Bei Versuchen, große ungelöste Probleme zu knacken, passiert so etwas leider deprimierend häufig, und fast immer erweist es sich als fatal. Doch dieses eine Mal war das Schicksal gnädig. Mit Hilfe seines früheren Studenten Richard Taylor gelang es Wiles, die Lücke zu überbrücken, den Beweis zu reparieren und seine Lösung zu komplettieren. Die emotionale Belastung, die ihm zusetzte, wurde den Zuschauern des Programms lebhaft vor Augen geführt: Es muss die einzige Gelegenheit gewesen sein, bei der ein Mathematiker vor der Kamera in Tränen ausbrach, als er sich die traumatischen Ereignisse und den schließlichen Triumph nochmals in Erinnerung rief.
Ihnen ist vielleicht aufgefallen, dass ich Ihnen nicht gesagt habe, wie Fermats letzter Satz eigentlich lautet. Das war Absicht; wir werden an geeigneter Stelle darauf zurückkommen. Soweit es den Erfolg der Fernsehsendung betrifft, spielt das kaum eine Rolle. Tatsächlich haben Mathematiker sich niemals sehr dafür interessiert, ob das Theorem, das Fermat an den Rand des Buches kritzelte, stimmt oder nicht, weil von der Antwort nichts wirklich Wichtiges abhängt. Warum also die ganze Aufregung? Weil sehr viel von der Unfähigkeit der mathematischen Gemeinschaft abhängt, die Antwort zu finden. Es ist nicht nur ein Schlag in die Magengrube unseres Selbstbewusstseins: Es heißt, dass den existierenden mathematischen Theorien etwas Wichtiges fehlt. Zudem ist der Satz sehr leicht zu erklären; das trägt zu seiner Aura des Geheimnisvollen bei. Wie kann etwas, das so einfach erscheint, sich als so schwierig herausstellen?
Auch wenn Mathematikern die Antwort nicht wirklich wichtig war, sorgte es sie sehr, dass sie diese Antwort nicht kannten. Noch wichtiger war ihnen, eine Methode zu finden, die das Problem lösen konnte, denn das würde sicherlich nicht nur Licht auf die Fermat’sche Frage werfen, sondern auch auf eine ganze Palette anderer Fragen. Das ist bei großen mathematischen Problemen häufig der Fall: Nicht die Resultate selbst, sondern die Lösungsmethoden sind das, was wirklich zählt. Natürlich spielt das tatsächliche Resultat manchmal auch eine wichtige Rolle; das hängt davon ab, welche Konsequenzen es hat.
Wiles’ Lösung ist viel zu kompliziert und technisch fürs Fernsehen; die Details können tatsächlich nur Spezialisten verstehen.[4] Der Beweis birgt, wie wir noch sehen werden, tatsächlich eine hübsche mathematische Geschichte, doch jeder Versuch, diese im Fernsehen zu erklären, würde sofort den Verlust eines Großteils der Zuschauer bedeutet haben. Stattdessen konzentrierte sich die Sendung vernünftigerweise auf eine persönlichere Frage: Wie ist es, wenn man ein notorisch schwieriges mathematisches Problem anpackt, auf dem eine Menge historischer Ballast lastet? Die Zuschauer erfuhren, dass es eine kleine, aber entschlossene, in der ganzen Welt verstreute Gruppe von Mathematikern gab, denen ihr Forschungsgebiet sehr am Herzen lag, die miteinander sprachen, ihre Arbeiten austauschten und einen Großteil ihres Lebens damit verbrachten, unser mathematisches Wissen zu mehren. Ihr emotionales Engagement und ihr sozialer Zusammenhalt kamen deutlich herüber. Das waren keine cleveren Automaten, sondern wirkliche Menschen, die sich für ihr Fach begeistern konnten. Das war die Botschaft.
Die drei wichtigsten Gründe für den phänomenalen Erfolg des Programms sind daher folgende: ein bedeutendes Problem, ein Held mit einer wunderbaren, berührenden Geschichte und eine unterstützende Gruppe emotional beteiligter Menschen. Doch ich vermute, es gab einen vierten, nicht ganz so angemessenen Grund. Die meisten Nichtmathematiker hören nur selten von neuen Entwicklungen auf diesem Gebiet, und das aus einer ganzen Reihe verständlicher Gründe: Sie sind sowieso nicht besonders an diesem Thema interessiert, Zeitungen behandeln nur selten mathematische Themen, und wenn sie es doch tun, dann häufig auf drollige oder triviale Weise, und offenbar wird nicht viel im Alltag von dem beeinflusst, was Mathematiker im stillen Kämmerlein tun. Allzu häufig wird die Schulmathematik als abgeschlossenes Buch präsentiert, in dem es auf jede Frage eine Antwort gibt. Schüler können leicht zu der Überzeugung kommen, dass etwas Neues in der Mathematik so selten ist wie ein weißer Rabe.
Aus dieser Perspektive war die große Neuigkeit nicht, dass Fermats letzter Satz bewiesen worden war. Vielmehr, dass endlich jemand etwas Neues in der Mathematik gemacht hatte. Da es Mathematiker mehr als 300 Jahre gekostet hatte, eine Lösung zu finden, kamen viele Zuschauer unterbewusst zu dem Schluss, dass der Durchbruch das erste neue Stück Mathematik war, das in den letzten 300 Jahren entdeckt worden war. Ich behaupte nicht, dass sie dies explizit annahmen. Diese Position ist nicht haltbar, sobald man sich so offensichtliche Fragen stellt wie: «Warum steckt die Regierung so viel Geld in die Mathematik an Universitäten?» Unterbewusst war dies jedoch eine verbreitete Grundeinstellung, die nicht weiter hinterfragt wurde. Sie ließ Wiles’ Leistung noch größer erscheinen.
Eines der Ziele dieses Buches ist es, zu zeigen, dass die mathematische Forschung blüht und ständig neue Entdeckungen gemacht werden. Man hört nicht viel darüber, weil der größte Teil für Nichtspezialisten zu technisch ist, weil die Medien alles scheuen, was intellektuell fordernder als die TV-Serie X Factor ist und weil die Anwendungen mathematischer Erkenntnisse bewusst unter der Decke gehalten werden, um das Publikum nicht zu alarmieren. «Was? Mein iPhone basiert auf höherer Mathematik? Wie soll ich mich bei Facebook einloggen, wenn ich durch meine Matheprüfungen gefallen bin?»
Historisch erwächst mathematischer Fortschritt häufig aus Entdeckungen auf anderen Gebieten. Als Isaac Newton seine Bewegungsgesetze und sein Gravitationsgesetz entwickelte, wischte er das Problem, das Sonnensystem zu verstehen, damit nicht vom Tisch. Ganz im Gegenteil mussten sich Mathematiker auf einmal mit einer ganzen neuen Palette von Fragen beschäftigen: Ja, wir kennen die Gesetze, aber was folgt aus ihnen? Newton erfand die Infinitesimalrechnung, um diese Frage zu beantworten, doch seine neue Methode hatte ebenfalls Grenzen. Oft formuliert sie die Frage anders, statt die Antwort zu liefern. Sie verwandelt das Problem in eine spezielle Art von Formel, eine sogenannte Differenzialgleichung, deren Lösung die Antwort liefert. Aber die Gleichung muss man erst einmal lösen. Dennoch war die Infinitesimalrechnung ein brillanter Start. Sie zeigte uns, dass Antworten möglich waren, und gab uns ein effizientes Werkzeug an die Hand, sie zu suchen; diese Methode führt uns auch mehr als 300 Jahre später noch zu wichtigen Erkenntnissen.
Als das gesammelte mathematische Wissen der Menschheit wuchs, begann eine zweite Inspirationsquelle bei der Schaffung von noch mehr Wissen eine zunehmend wichtige Rolle zu spielen: der interne Bedarf in der Mathematik selbst. Wenn man beispielsweise weiß, wie man algebraische Gleichungen ersten, zweiten, dritten und vierten Grades löst, bedarf es nicht vieler Phantasie, nach dem fünften Grad zu fragen. (Der Grad ist im Grunde ein Maß für die Komplexität, aber man muss nicht einmal das wissen, um diese offensichtliche Frage zu stellen.) Wenn sich ein Problem der Lösung so entzieht, wie es der Fall war, macht diese Tatsache allein Mathematiker nur noch entschlossener, eine Antwort zu finden, ob das Ergebnis nun nützliche Anwendungen hat oder nicht.
Damit will ich nicht sagen, dass Anwendbarkeit keine Rolle spielt. Doch wenn ein bestimmtes Element in der Mathematik bei Fragen über die Physik von Wellen – Meereswellen, Schwingungen, Schall, Licht – immer wieder auftaucht, dann lohnt es sich zweifellos, dieses Element um seiner selbst willen zu untersuchen. Man muss nicht im Voraus genau wissen, wie eine neue Idee genutzt werden könnte: Das Thema Wellen taucht in so vielen wichtigen Gebieten so häufig auf, dass bedeutende neue Erkenntnisse sicherlich für irgendetwas von Nutzen sind. In diesem Fall schließt dieses «etwas» Radio, Fernsehen und Radar ein.[5] Wenn jemand eine neue Möglichkeit entdeckt, den Wärmefluss zu verstehen, und eine brillante neue Technik entwickelt, für die es leider noch keine richtige mathematische Grundlage gibt, dann ist es sinnvoll, das Ganze als mathematisches Problem zu betrachten. Selbst wenn man sich keine Bohne für Wärmefluss interessiert, könnten die Resultate durchaus anderweitig Anwendung finden. Die Fourier-Analyse, die aus diesem Forschungsansatz erwuchs, ist wahrscheinlich die nützlichste mathematische Einzelidee, die jemals entwickelt wurde. Sie bildet die Grundlage der modernen Telekommunikation, ermöglicht moderne Kameras, hilft, alte Filme und Tonaufnahmen wiederherzustellen, und das FBI benutzt eine moderne Erweiterung der Methode zur Speicherung von Fingerabdrücken.[6]
Nach einigen tausend Jahren eines derartigen Austauschs zwischen dem externen Einsatz von Mathematik und ihrer inneren Struktur sind diese beiden Aspekte des Faches inzwischen so eng verwoben, dass es so gut wie unmöglich ist, sie auseinanderzudividieren. Die geistigen Haltungen, die dahinter stehen, lassen sich hingegen leichter unterscheiden und haben zu einer groben Einteilung der Mathematik in «reine» und «angewandte» geführt. Das ist als provisorischer Weg, mathematische Ideen in eine intellektuelle Landschaft einzubetten, durchaus akzeptabel, aber keine besonders präzise Beschreibung des Faches selbst. Bestenfalls unterscheidet sie zwei Enden eines kontinuierlichen Spektrums mathematischer Arbeitsweisen. Schlimmstenfalls verdreht sie, welche Teile des Faches nützlich sind und woher die Ideen stammen. Wie bei allen wissenschaftlichen Disziplinen ist das, was der Mathematik ihre Macht verleiht, die Kombination aus abstrakter Logik und Inspiration aus der Außenwelt – eines speist sich aus dem anderen. Es ist nicht nur unmöglich, diese beiden Stränge auseinanderzudividieren, es ist auch sinnlos.
Die meisten der wirklich wichtigen mathematischen Probleme, die großen Probleme, um die es in diesem Buch geht, sind durch eine Art intellektuelle Nabelschau innerhalb des Faches erwachsen. Der Grund dafür ist einfach: Es handelt sich um mathematische Probleme. Die Mathematik erscheint oft als Sammlung isolierter Gebiete, die alle ihre eigene Technik aufweisen: Algebra, Geometrie, Trigonometrie, Analysis, Kombinatorik, Wahrscheinlichkeitsrechnung. In der Regel wird sie auch so unterrichtet: Ein jedes Thema in einem einzigen, wohldefinierten Gebiet anzusiedeln, hilft Schülern, das Material in ihrem Kopf zu ordnen. Es ist eine vernünftige erste Näherung an die Struktur der Mathematik, vor allem seit langem etablierter Mathematik. An der vordersten Front der Forschung bricht diese saubere Trennung jedoch oft zusammen. Es ist nicht nur so, dass die Grenzen zwischen den Hauptgebieten der Mathematik verschwommen sind. Sie existieren in Wirklichkeit gar nicht.
Jedem Mathematiker in der Forschung ist klar, dass sich bei jedem Problem, an dem er arbeitet, jederzeit und in unvorhersehbarer Weise herausstellen kann, dass es zur Weiterarbeit Ideen aus einem scheinbar in keinem Zusammenhang stehenden Gebiet bedarf. Tatsächlich kombinieren neuartige Forschungsansätze häufig mehrere Gebiete. Beispielsweise geht es bei meiner eigenen Forschung vorwiegend um Musterbildung in dynamischen Systemen, Systemen, die sich nach bestimmten Regeln in Abhängigkeit von der Zeit verändern. Ein typisches Beispiel ist die Art und Weise, in der sich Tiere bewegen. Ein trabendes Pferd wiederholt ständig dieselbe Folge von Beinbewegungen, und es gibt dabei ein klares Muster: Die Beine treffen in diagonal verknüpften Paaren auf dem Boden auf, zuerst das Bein links vorne und das Bein rechts hinten, dann die beiden anderen. Ist dies ein Problem, bei dem es um Muster geht, was bedeuten würde, dass die geeigneten Methoden aus der Gruppentheorie kommen, der Mathematik von Symmetrien? Oder ist es ein Problem, bei dem es um Dynamik geht, in welchem Fall Differenzialgleichungen nach Newton’scher Art zum Einsatz kommen?
Die Antwort lautet, dass es per definitionem beides sein muss. Es ist nicht ihre Schnittmenge, die dem Material entspräche, das sie gemeinsam haben – im Grunde nichts. Vielmehr ist es ein neues «Gebiet», das die zwei traditionellen Sparten der Mathematik überspannt. Es ist wie eine Brücke über einen Fluss, der zwei Länder trennt; sie verbindet beide, gehört aber zu keinem von ihnen. Diese Brücke ist jedoch keine schmale Fahrbahn, sie ist in ihrer Größe jedem der beiden Länder vergleichbar. Und was noch wichtiger ist, die eingesetzten Methoden sind nicht auf die beiden Länder beschränkt. Tatsächlich hat praktisch jede Vorlesung in Mathematik, die ich jemals gehört habe, irgendwann in meiner Forschung eine Rolle gespielt. In der Vorlesung über die Galois-Theorie, die ich als junger Student in Cambridge gehört habe, ging es darum, wie man eine algebraische Gleichung fünften Grades löst (oder um es genauer zu sagen, warum wir eine solche Gleichung nicht lösen können). Meine Vorlesung in Graphentheorie beschäftigte sich mit Netzwerken, Punkten, die durch Linien verbunden sind. Ich habe nie eine Vorlesung über dynamische Systeme belegt, weil ich über Algebra promoviert habe, doch im Lauf der Jahre habe ich die Grundlagen aufgeschnappt, vom Fließgleichgewicht bis zum Chaos. Galois-Theorie, Graphen-Theorie und dynamische Systeme: drei verschiedene Gebiete. So nahm ich jedenfalls bis 2011 an, als ich zu verstehen versuchte, wie sich chaotische Dynamik in einem Netzwerk dynamischer Systeme aufspüren lässt, und ein entscheidender Schritt basierte auf Dingen, die ich 45 Jahre zuvor in meiner Galois-Vorlesung gelernt hatte.
Mathematik ist daher nicht mit einer politischen Karte der Welt vergleichbar, bei der jedes Spezialgebiet klar begrenzt und jedes Land eindeutig von seinen Nachbarn zu unterscheiden ist, weil es rosa, grün oder hellblau eingefärbt ist. Sie ähnelt eher einer natürlichen Landschaft, in der man niemals wirklich sagen kann, wo das Tal endet und das Hügelland beginnt oder wo der Wald in Busch- und Grassavanne übergeht, wo in jede Art von Gelände Seen eingebettet sind und Flüsse die schneebedeckten Berghänge mit den fernen, tief gelegenen Meeren verbinden. Diese sich ständig verändernde mathematische Landschaft besteht jedoch nicht aus Gestein, Wasser und Pflanzen, sondern aus Ideen; sie wird nicht von Geographie, sondern von Logik zusammengehalten. Und es ist eine dynamische Landschaft, die sich verändert, wenn neue Ideen und Methoden entdeckt bzw. gefunden werden. Wichtige Konzepte mit weitreichenden Folgen sind wie Berggipfel, und vielseitig einsetzbare Techniken sind wie breite Flüsse, die Reisende über die fruchtbaren Ebenen tragen. Je deutlicher definiert die Landschaft wird, desto leichter ist es, noch unbestiegene Gipfel oder unerforschtes Gelände zu entdecken, das das Fortkommen behindert. Im Lauf der Zeit erlangen einige der Gipfel und Hindernisse Kultstatus. Das sind die großen Probleme.
Was macht ein großes mathematisches Problem groß? Intellektuelle Tiefe in Kombination mit Einfachheit und Eleganz. Und es muss wirklich schwierig zu knacken sein. Jeder kann einen Hügel besteigen; der Everest ist eine völlig andere Sache. Ein großes Problem ist gewöhnlich leicht zu erklären, auch wenn die dazu erforderlichen Fachbegriffe elementar oder hoch spezialisiert sein können. Die Aussagen von Fermats letztem Satz und dem Vier-Farben-Problem leuchten jedermann, der mit der Schulmathematik vertraut ist, sofort ein. Im Gegensatz dazu ist es unmöglich, die Hodge-Vermutung oder die Massenlücken-Hypothese zu erklären, ohne komplexe Konzepte von der vordersten Front der Forschung einzubeziehen – Letztere geht schließlich auf die Quantenfeldtheorie zurück. Für diejenigen, die auf solchen Gebieten zu Hause sind, ist die Aussage der Frage, um die es geht, einfach und natürlich. Sie umfasst keinen seitenlangen dichten und undurchdringlichen Text. Dazwischen liegen Probleme, die etwa auf dem Niveau des Mathematik-Grundstudiums angesiedelt sind, wenn man sie vollständig verstehen will. Ein allgemeineres Gefühl für das Wesentliche des Problems – woher es stammt, warum es wichtig ist, was wir mit der Lösung anfangen könnten – ist gewöhnlich jedem interessierten Leser zugänglich, und das ist es, was ich ihm bieten möchte. Ich gebe zu, dass die Hodge-Vermutung in dieser Hinsicht eine harte Nuss ist, da sie sehr technisch und abstrakt ist. Sie gehört jedoch zu den sieben mathematischen Millennium-Problemen des Clay Institute, auf deren Lösung ein 1-Million-Dollar-Preis ausgesetzt ist, daher möchte ich keinesfalls darauf verzichten.
Große Probleme sind kreativ: Sie helfen, neue mathematische Erkenntnisse zu schaffen. 1900 hielt David Hilbert auf dem Internationalen Mathematikerkongress in Paris einen Vortrag, in dem er die 23 wichtigsten Probleme in der Mathematik auflistete. Fermats letzter Satz war nicht darunter, doch er erwähnte ihn in der Einleitung. Wenn ein renommierter Mathematiker einige der aus seiner Sicht großen Probleme aufzählt, hören ihm andere Mathematiker aufmerksam zu. Die Probleme stünden nicht auf der Liste, wenn sie nicht wichtig und schwierig zu lösen wären. Es ist natürlich, die Herausforderung anzunehmen und zu versuchen, sie zu knacken. Seitdem war die Lösung eines der von Hilbert genannten Probleme immer ein guter Weg, sich seine mathematischen Sporen zu verdienen. Viele dieser Probleme sind zu speziell, um sie hier vorzustellen, viele sind Programme mit offenem Ende, statt spezifische Probleme zu sein, und mehrere werden später noch abgehandelt. Sie verdienen jedoch eine Erwähnung, daher finden Sie eine kurze Zusammenfassung in den Anmerkungen.[7]
Das ist es, was ein großes mathematisches Problem groß macht. Was es zu einem Problem macht, ist selten entscheidend dafür, wie die Antwort lauten sollte. Bei praktisch allen großen Problemen haben die Mathematiker eine sehr klare Vorstellung davon, wie die Antwort lauten sollte – oder hatten sie, wenn die Antwort inzwischen bekannt ist. Die Formulierung des Problems enthält tatsächlich häufig die erwartete Antwort. Alles, was als Vermutung beschrieben wird, ist genau das: eine plausible Mutmaßung, die auf einer Vielzahl von Hinweisen basiert. Die meisten gut untersuchten Vermutungen stellen sich schließlich als korrekt heraus, wenn auch nicht alle. Ältere Begriffe wie Hypothese haben dieselbe Bedeutung, und in Fermats Fall wird (genauer gesagt, wurde) der Ausdruck «Satz» missbraucht – ein Satz oder Theorem verlangt einen Beweis, aber genau das fehlte, bis Wiles ihn lieferte.
Ein Beweis ist genau die Anforderung, die große Probleme problematisch macht. Jeder, der einigermaßen kompetent ist, kann ein paar Berechnungen durchführen, ein offensichtliches Muster erkennen und dessen Essenz in einer prägnanten Aussage zusammenfassen. Mathematiker verlangen mehr als das: Sie bestehen auf einem vollständigen, logisch makellosen Beweis. Oder, wenn sich die Antwort als negativ herausstellen sollte, auf einer Widerlegung. Die verführerische Kraft eines großen Problems lässt sich nicht richtig einschätzen, ohne die entscheidende Rolle des Beweises in der Mathematik zu würdigen. Jeder kann eine plausible Vermutung anstellen. Was schwierig ist, ist zu beweisen, dass sie richtig ist. Oder falsch.
Das Konzept des mathematischen Beweises hat sich im Lauf der Geschichte verändert; die Anforderungen an die Logik sind im Allgemeinen höher geworden. Es hat viele hoch intellektuelle philosophische Diskussionen über das Wesen des Beweises gegeben, und diese haben viele wichtige Fragen aufgeworfen. Für den Begriff «Beweis» sind präzise logische Definitionen von «Beweis» vorgeschlagen und eingeführt worden. Die Definition, die wir im Grundstudium verwenden, lautet: Ein Beweis beginnt mit einer Sammlung von Grundsätzen, sogenannten Axiomen. Die Axiome sind so etwas wie die Regeln des Spiels. Andere Axiome sind möglich, doch sie führen zu anderen Spielen. Der antike griechische Geometer Euklid war es, der diesen Ansatz in die Mathematik einführte, und er ist noch heute gültig. Wenn man sich auf die Axiome geeinigt hat, entspricht ein Beweis einer Aussage einer Reihe von Schritten, von denen jeder entweder eine logische Folge der Axiome oder zuvor bewiesener Aussagen ist oder beides. Tatsächlich erkundet der Mathematiker ein logisches Labyrinth, dessen Kreuzungen Aussagen und dessen Gänge gültige logische Herleitungen (Deduktionen) sind. Ein Beweis ist ein Weg durch das Labyrinth, der von Axiomen ausgeht. Und er beweist die Aussage, bei der er endet.
Dieses hübsche saubere Beweiskonzept ist jedoch nicht die ganze Geschichte. Es ist nicht einmal der wichtigste Teil der Geschichte. Es ist so, als sage man, eine Symphonie sei eine Folge von Noten, die den Regeln der Harmonie unterliegen. Bei dieser Aussage fehlt die ganze Kreativität. Sie sagt uns nicht, wie man Beweise findet, oder auch nur, wie man die Beweise anderer Leute überprüft. Sie sagt uns nicht, welche Örtlichkeiten im Labyrinth wichtig sind. Sie sagt uns nicht, welche Wege elegant und welche hässlich sind, welche wichtig und welche unwichtig sind. Es ist eine formale, mechanische Beschreibung eines Prozesses, der viele andere Aspekte aufweist, vor allem eine menschliche Dimension. Beweise werden von Menschen entdeckt, und die Forschung in der Mathematik ist nicht nur Sache einer Schritt-für-Schritt-Logik.
Wenn man die formale Definition eines Beweises wörtlich nimmt, kann dies zu Beweisen führen, die praktisch unlesbar sind, weil man die meiste Zeit damit verbringt, sich minutiös mit jeder logischen Kleinigkeit auseinanderzusetzen, während einem das Ergebnis praktisch bereits ins Gesicht starrt. Daher kürzen praktizierende Mathematiker die ganze Sache ab und lassen alles aus, was Routine oder offensichtlich ist. Sie machen deutlich, dass da eine Lücke ist, indem sie Standardausdrücke verwenden wie «es lässt sich leicht zeigen» oder «Routineberechnungen besagen». Was sie nicht tun, jedenfalls nicht bewusst, ist, sich an einer logischen Schwierigkeit vorbeizudrücken und so zu tun, als gebe es sie nicht. Tatsächlich wird ein kompetenter Mathematiker ausdrücklich darauf hinweisen, welche Teile der Argumentation logisch auf schwachen Füßen stehen, und er wird die meiste Zeit darauf verwenden zu erklären, wie man sie ausreichend standfest machen kann. Das Ergebnis ist, dass ein Beweis in der Praxis eine mathematische Geschichte mit eigenem Erzählfluss ist. Sie hat einen Anfang, eine Mitte und ein Ende. Oft hat sie auch Nebenhandlungen, die sich aus der Haupthandlung ergeben und von denen jede ihre eigene Auflösung hat. Der britische Mathematiker Christopher Zeeman meinte einmal, ein Theorem sei ein intellektueller Ruhepunkt. Man kann anhalten, wieder Atem schöpfen und das Empfinden genießen, etwas Definitives zu haben. Die Nebenhandlung zurrt einen losen Faden in der Hauptgeschichte fest. Auch in anderer Hinsicht ähneln Beweise Geschichten: Sie verfügen oft über einen oder mehrere Hauptcharaktere – natürlich eher Ideen als Personen –, deren komplexes Wechselspiel schließlich zur Lösung führt.
Wie die Definition aus dem Grundstudium besagt, beginnt ein Beweis mit einer oder mehreren klar formulierten Annahmen, zieht daraus in kohärenter und strukturierter Weise logische Schlüsse und endet mit dem, was auch immer man beweisen will. Aber ein Beweis ist nicht nur eine Liste von Deduktionen, und Logik ist nicht das einzige Kriterium. Ein Beweis ist eine Geschichte, die Leuten erzählt und von diesen Leuten – die einen Großteil ihres Lebens damit verbracht haben, zu lernen, wie man solche Geschichten liest und Fehler oder Ungereimtheiten findet – logisch auseinandergenommen wird: Menschen, deren Hauptziel es ist, nachzuweisen, dass der Geschichtenerzähler falsch liegt, und die die unheimliche Gabe besitzen, Schwächen zu erkennen und auf ihnen herumzuhämmern, bis sie in einer Staubwolke zusammenbrechen. Wenn irgendein Mathematiker behauptet, er habe ein bedeutendes Problem gelöst, sei es eines der großen Probleme oder ein anderes würdiges, aber weniger herausgehobenes Problem, ist der professionelle Reflex nicht, «hurra!» zu rufen und eine Flasche Champagner zu öffnen, sondern zu versuchen, ihn zu widerlegen.
Das mag negativ klingen, doch der Beweis ist das einzige zuverlässige Werkzeug, das Mathematiker haben, um sicherzustellen, dass das, was sie sagen, korrekt ist. Da Forscher diese Art von Reaktion erwarten, verbringen sie viel Zeit mit dem Versuch, ihre eigenen Ideen und Beweise zu widerlegen. Auf diese Weise ist es weniger peinlich. Wenn eine Geschichte diese Art kritischer Beurteilung überstanden hat, verwandelt sich der Konsens rasch in Zustimmung, und an diesem Punkt erhält der Schöpfer des Beweises das Lob sowie die Anerkennung und Belohnung, die ihm zustehen. Jedenfalls läuft die Sache gewöhnlich so ab, wenn es auch vielleicht für die Beteiligten nicht immer so aussieht. Wenn man in einer Sache mittendrin steckt, ist die eigene Sicht dessen, was da gerade abläuft, möglicherweise eine andere als die eines unparteiischeren Beobachters.
Wie lösen Mathematiker Probleme? Zu dieser Frage gibt es nur wenige strenge wissenschaftliche Untersuchungen. Die moderne Bildungsforschung, die auf den Kognitionswissenschaften beruht, konzentriert sich weitgehend auf die Erziehung bis zum Highschool-Level. Einige Studien befassen sich mit der Lehre im Grundstudium Mathematik, doch das sind nur wenige. Es gibt bedeutende Unterschiede zwischen dem Lernen und Lehren von bereits vorhandenem mathematischen Wissen und der Schaffung neuen mathematischen Wissens. Viele von uns können ein Musikinstrument spielen, doch deutlich weniger sind in der Lage, ein Konzert oder auch nur einen Popsong zu schreiben.
Wenn es um Kreativität auf höchstem Niveau geht, stammt viel von dem, was wir wissen – oder zu wissen meinen –, aus Introspektion. Einen der ersten ernsthaften Versuche, herauszufinden, wie Mathematiker denken, unternahm Jacques Hadamard in seinem Buch The Psychology of Invention in the Mathematical Field, das 1945 erschien.[8] Hadamard interviewte führende Mathematiker und Naturwissenschaftler seiner Tage und bat sie zu beschreiben, wie sie dachten, wenn sie an schwierigen Problemen arbeiteten. Was sich ganz klar herauskristallisierte, war die entscheidende Rolle einer Eigenschaft, die man mangels eines besseren Ausdrucks als «Intuition» bezeichnen muss. Eine unbewusste Facette ihres Verstandes lenkte ihre Gedanken. Ihre kreativsten Erkenntnisse erwuchsen nicht aus einer schrittweisen logischen Ableitung, sondern aus plötzlichen wilden Sprüngen. Eine der detailliertesten Beschreibungen dieses scheinbar unlogischen Ansatzes zur Lösung einer logischen Frage lieferte der französische Mathematiker Henry Poincaré, Ende des 19./Anfang des 20. Jahrhunderts einer der führenden Köpfe seiner Disziplin. Poincaré beschäftigte sich mit zahlreichen Gebieten der Mathematik, gründete mehrere neue Gebiete und veränderte andere radikal. Er spielt in mehreren späteren Kapiteln eine wichtige Rolle. Zudem schrieb er populäre Wissenschaftsbücher, und diese breite Erfahrung half ihm möglicherweise, einen tieferen Einblick in seine eigenen Gedankengänge zu gewinnen. Wie dem auch sei, Poincaré war fest davon überzeugt, dass bewusstes logisches Denken nur ein Teil des kreativen Prozesses war. Ja, es gab Phasen, in denen es unabdingbar war: bei der Entscheidung, worum es bei dem Problem eigentlich ging, und bei der systematischen Verifizierung der Antwort. Aber dazwischen hatte Poincaré oft das Gefühl, sein Gehirn arbeite weiter an dem Problem, ohne ihn zu informieren, und das in einer Weise, die er einfach nicht begreifen konnte.
Bei seiner Analyse des kreativen Prozesses unterschied er drei Schlüsselstadien: Präparation (Vorbereitung), Inkubation (Bebrütung) und Illumination (Erleuchtung). Die Vorbereitung besteht aus dem bewussten logischen Bemühen, das Problem zu erfassen, es zu präzisieren und mit konventionellen Methoden anzugehen. Diese Stadien hielt Poincaré für essenziell: Es bringt das Unterbewusste in Gang und liefert Rohmaterial, mit dem dieses arbeiten kann. Zur Inkubation kommt es, wenn man aufhört, über das Problem nachzudenken, und etwas anderes macht. Das Unterbewusste beginnt nun, oft recht wilde Ideen miteinander zu kombinieren, bis es im Dunkeln zu dämmern beginnt. Mit etwas Glück führt dies zur Erleuchtung: Ihr Unterbewusstsein klopft Ihnen auf die Schulter, und in Ihrem Kopf wird das sprichwörtliche Licht angeknipst.
Diese Art von Kreativität ähnelt einem Drahtseilakt. Auf der einen Seite wird man kein schwieriges Problem lösen, wenn man sich nicht mit dem Gebiet vertraut macht, zu dem es offenbar gehört – zusammen mit vielen anderen Gebieten, die vielleicht damit verknüpft sind oder auch nicht, nur für den Fall, dass sie es tatsächlich sind. Auf der anderen Seite gilt: Wenn alles, was man tut, darin besteht, sich im üblichen Denken zu verfangen und Wege einzuschlagen, die andere schon erfolglos ausprobiert haben, gerät man in eine geistige Spurrille und entdeckt nichts Neues. Daher besteht der Trick darin, eine Menge zu wissen, es bewusst zusammenzuführen und sein Gehirn wochenlang auf Trab zu halten … und die Frage dann beiseitezulegen. Der intuitive Teil des Verstandes macht sich dann an die Arbeit, reibt Ideen aneinander, um zu sehen, ob Funken fliegen, und sagt uns Bescheid, wenn er etwas gefunden hat. Das kann in jedem Moment passieren: Poincaré erkannte plötzlich die Lösung eines Problems, das ihn seit Monaten beschäftigt hatte, als er aus einem Bus stieg. Dem autodidaktischen indischen Mathematiker Srinivasa Ramanujan, der ein Talent für bemerkenswerte Formeln hatte, fielen seine Ideen oft im Traum ein. Archimedes saß dem Vernehmen nach in der Badewanne, als er die Lösung für das Problem fand, den Goldgehalt einer Königskrone zu bestimmen, ohne sie zu zerstören.
Poincaré betonte, dass ein Fortschritt ohne die anfängliche Phase der Vorbereitung unwahrscheinlich sei. Das Unterbewusstsein, insistierte er, braucht viel Stoff zum Nachdenken, anderenfalls kann die zufällige Kombination von Ideen, die schließlich zu einer Lösung führt, nicht zustande kommen. Aus Perspiration erwächst Inspiration. Er muss auch gewusst haben – denn jeder schöpferische Mathematiker weiß dies –, dass dieser einfache dreistufige Prozess selten nur ein einziges Mal durchlaufen wird. Die Lösung eines Problems erfordert oft mehr als nur einen einzigen Durchbruch. Die Inkubationsphase für eine Idee kann von einem sekundären Prozess der Präparation, Inkubation und Illumination für etwas unterbrochen werden, das nötig ist, damit die erste Idee funktioniert. Die Lösung eines jeden Problems, das den Schweiß der Edlen wert ist, sei es groß oder nicht, umfasst in der Regel viele derartige Sequenzen, die ineinander verschachtelt sind wie Benoît Mandelbrots Fraktale. Man löst ein Problem, indem man es in Unterprobleme aufspaltet, und wiegt sich dann in der Hoffnung, dass man, wenn man diese Unterprobleme lösen kann, die Resultate zusammenführen und das Hauptproblem lösen kann. Dann arbeitet man an den Unterproblemen. Manchmal löst man eines von ihnen, manchmal gelingt es nicht, und man muss umdenken. Manchmal spaltet sich ein Unterproblem in mehrere Teile auf. Es kann ganz schön anstrengend sein, auch nur den Plan nicht aus den Augen zu verlieren.
Ich habe das Wirken des Unterbewussten als «Intuition» bezeichnet. Dies ist einer der verführerischen Begriffe wie «Instinkt», der häufig gebraucht wird, obwohl er keine wirkliche reale Bedeutung hat. Es ist ein Name für etwas, dessen Präsenz wir erkennen, das wir aber nicht verstehen. Mathematische Intuition ist die Fähigkeit des Geistes, Form und Struktur zu spüren, Muster zu entdecken, die wir nicht bewusst wahrnehmen können. Der Intuition fehlt die Kristallklarheit des bewussten logischen Denkens, doch das gleicht sie aus, indem sie unsere Aufmerksamkeit auf Dinge lenkt, die wir bewusst niemals in unsere Überlegungen einbezogen hätten. Neurowissenschaftler beginnen gerade erst zu verstehen, wie das Gehirn viel einfachere Aufgaben durchführt. Wie auch immer Intuition funktioniert, sie muss darauf basieren, wie das Gehirn gebaut ist und mit der Außenwelt in Wechselwirkung tritt.
Oft besteht der Schlüsselbeitrag der Intuition darin, uns auf schwache Punkte eines Problems aufmerksam zu machen, Stellen, an denen sich ein Angriff lohnen könnte. Ein mathematischer Beweis ist wie eine Schlacht, oder wenn man eine weniger kriegerische Metapher vorzieht, wie ein Schachspiel. Sobald ein potenzieller Schwachpunkt entdeckt ist, kann der technische Zugriff des Mathematikers auf die Maschinerie der Mathematik ins Spiel gebracht werden, um ihn auszunutzen. Wie Archimedes, der sich einen festen Punkt wünschte, um die Erde aus den Angeln zu heben, braucht der forschende Mathematiker eine Möglichkeit, bei dem Problem den Hebel anzusetzen. Eine Schlüsselidee kann es «aufschließen», es für Standardmethoden zugänglich machen. Danach ist alles nur noch eine Frage der Technik.
Mein Lieblingsbeispiel für diese Art von Hebelansatz ist ein Rätsel, das keine intrinsische mathematische Bedeutung hat, aber eine wichtige Botschaft überbringt. Nehmen wir an, Sie haben ein Schachbrett mit 64 Feldern sowie einen Vorrat von Dominosteinen genau der richtigen Größe, um zwei benachbarte Felder auf dem Brett abzudecken. Dann ist es einfach, das ganze Brett mit 32 Dominosteinen abzudecken. Aber nun stellen Sie sich vor, dass zwei diagonal gegenüberliegende Ecken des Brettes fehlen, wie in Abbildung 1. Lassen sich die verbliebenen 62 Quadrate mit 31 Dominosteinen abdecken? Wenn Sie es ausprobieren, scheint nichts zu funktionieren. Auf der anderen Seite fällt es schwer einzusehen, dass so etwas unmöglich sein sollte. Bis Ihnen klar wird, dass jeder Dominostein, ganz gleich, wie man ihn anordnet, ein schwarzes und ein weißes Quadrat abdecken muss. Das ist Ihr Hebel, nun müssen Sie ihn nur noch einsetzen. Es impliziert, dass jede von Dominosteinen bedeckte Region dieselbe Zahl von schwarzen und weißen Quadraten enthält. Aber diagonal gegenüberliegende Seiten haben dieselbe Farbe; wenn man also zwei entfernt (in diesem Fall zwei weiße), führt dies zu einer Form, bei der es zwei schwarze Felder mehr gibt als weiße. Daher lässt sich eine solche Form nicht abdecken. Die Beobachtung, dass es eine Farbkombination gibt, die jeder Dominostein abdeckt, ist der Schwachpunkt des Rätsels. Dieser Punkt bietet Ihnen einen Ansatzpunkt, um den Hebel Ihrer Logik anzusetzen und zu betätigen. Wenn Sie ein mittelalterlicher Baron wären, der ein Schloss angreift, wäre dies der Schwachpunkt in der Mauer – die Stelle, wo Sie die Schleuderkraft ihrer Wurfmaschine konzentrieren oder einen Tunnel graben sollten, um sie zu unterminieren.

               Abbildung 1: Kann man das ausgeschnittene Schachbrett mit Dominosteinen bedecken, von denen jeder zwei Quadrate abdeckt (oben rechts)? Wenn man die Dominosteine einfärbt (unten rechts) und zählt, wie viele schwarze und weiße Quadrate es gibt, ist die Antwort klar.


            
Die mathematische Forschung unterscheidet sich in einer wichtigen Hinsicht von einer Schlacht. Jedes Territorium, das Sie einmal eingenommen haben, bleibt auf immer das Ihre. Sie entschließen sich vielleicht, Ihre Bemühungen auf etwas anderes zu konzentrieren, doch nachdem ein Theorem einmal bewiesen ist, verschwindet es nicht wieder. Auf diese Weise machen Mathematiker Fortschritte bei einem Problem, selbst wenn es ihnen nicht gelingt, es zu lösen. Sie beweisen eine neue Tatsache, die dann von jedermann in jedem beliebigen Kontext benutzt werden kann. Der Startpunkt für einen erneuten Angriff auf ein uraltes Problem erwächst aus einem zuvor unbemerkten Juwel, das halb vergraben in einem formlosen Haufen schlecht sortierter Fakten liegt. Und das ist einer der Gründe, warum neue mathematische Erkenntnisse um ihrer selbst willen wichtig sein können, selbst wenn man ihren Wert nicht auf den ersten Blick erkennt. Diese neue Mathematik ist ein weiteres Stück Land, das erobert wurde, eine weitere Waffe im Waffenarsenal. Ihre Zeit kommt möglicherweise noch – aber sie wird sicherlich nicht kommen, wenn diese Erkenntnis als «nutzlos» erachtet und vergessen wird oder niemals die Chance hat zu entstehen, weil sich niemand vorstellen kann, welchen Zweck sie einmal erfüllen könnte.

               Kapitel 2 Primgebiet

               Die Goldbach-Hypothese

            Einige der großen Rätsel tauchen schon sehr früh im Mathematikunterricht auf, auch wenn wir es gar nicht bemerken. Schon kurz nach der Bekanntschaft mit dem Multiplizieren begegnet uns das Konzept der Primzahl. Einige Zahlen erhält man durch Multiplikation zweier kleinerer Zahlen miteinander, 6 = 2 × 3 zum Beispiel. Andere, wie die 5, lassen sich nicht auf diese Weise aufteilen. Wir können höchstens 5 = 1 × 5 schreiben, was aber keine Aufteilung in kleinere Zahlen bedeutet. Zahlen, die man aufteilen kann, nennt man zusammengesetzt, die anderen prim. Primzahlen scheinen so einfach zu sein. Sobald man ganze Zahlen miteinander multiplizieren kann, versteht man, was eine Primzahl ist. Primzahlen sind die Grundbausteine der ganzen Zahlen, und sie tauchen überall in der Mathematik auf. Sie sind aber auch sehr geheimnisvoll und scheinen nahezu zufällig verteilt. Ohne Zweifel sind Primzahlen ein Rätsel. Vielleicht liegt es an ihrer Definition, weniger daran, was sie sind, als was sie nicht sind. Andererseits sind sie für die Mathematik grundlegend, sodass wir nicht einfach verschreckt unsere Waffen strecken und aufgeben können. Wir müssen uns mit den Primzahlen arrangieren und ihre tiefsten Geheimnisse aufspüren.
Einige Eigenschaften liegen auf der Hand. Mit Ausnahme der kleinsten Primzahl, 2, sind alle Primzahlen ungerade. Mit Ausnahme der 3 kann ihre Quersumme kein Vielfaches von 3 sein. Außer 5 können sie nicht mit 5 enden. Von diesen und einigen subtileren Regeln abgesehen kann man einer Zahl nicht einfach ansehen, ob sie eine Primzahl ist. Es gibt zwar Formeln für Primzahlen, aber zum größten Teil sind sie trügerisch: Sie bringen keine nützlichen, neuen Einsichten in Primzahlen, sie stellen lediglich clevere Umformulierungen der Definition dar. Primzahlen sind wie Menschen: Sie sind Individualisten und halten sich nicht an Normen.
Im Lauf der Jahrtausende haben Mathematiker ihr Wissen über Primzahlen allmählich vermehrt, und ganz gelegentlich wird eines ihrer großen Geheimnisse gelüftet. Und doch bleiben viele Fragen unbeantwortet. Einige sind grundlegend und einfach zu stellen; andere erscheinen eher esoterisch. In diesem Kapitel wird diskutiert, was wir über diese aufregenden, aber grundlegenden Zahlen wissen. Zunächst werden einige grundlegende Fakten dargestellt, insbesondere die Primfaktorzerlegung, also wie man eine gegebene Zahl als Produkt von Primzahlen darstellt. Schon dieses vertraute Verfahren führt zu Schwierigkeiten, sobald wir nach wirklich effektiven Methoden zum Auffinden der Faktoren suchen. Überraschenderweise ist es offenbar relativ leicht, eine Zahl als prim nachzuweisen, aber sollte sie zusammengesetzt sein, ist das Auffinden der Primfaktoren häufig sehr viel schwerer.
Nachdem wir die Grundlagen abgearbeitet haben, werden wir uns dem berühmtesten ungelösten Problem widmen, der 250 Jahre alten Goldbach-Hypothese. Der jüngste Fortschritt in dieser Frage ist dramatisch, aber immer noch nicht entscheidend. Ein paar weitere Fragen sollen einen kurzen Überblick über das geben, was es immer noch auf diesem reichhaltigen, aber schwer zu bändigenden Gebiet der Mathematik zu entdecken gibt.
Primzahlen und Primzahlzerlegung sind aus der Schulmathematik vertraut, doch werden die meisten interessanten Primzahleigenschaften auf diesem Niveau nicht vermittelt, und erst recht wird nichts bewiesen. Dafür gibt es gute Gründe: Selbst die Beweise für anscheinend offensichtliche Eigenschaften sind überraschend schwierig. Stattdessen lernen Schüler ein paar einfache Methoden, mit Primzahlen zu rechnen; dabei liegt die Betonung auf dem Rechnen mit relativ kleinen Zahlen. Daher ist unsere frühe Erfahrung mit Primzahlen ein wenig irreführend.
Schon die alten Griechen kannten einige der grundlegenden Eigenschaften von Primzahlen und konnten sie auch beweisen. Primzahlen und Faktoren sind das Hauptthema im großen Geometrieklassiker, dem VII. Buch von Euklids Die Elemente. Dieses spezielle Buch enthält eine geometrische Darstellung der arithmetischen Operationen Multiplikation und Division. Die Griechen arbeiteten lieber mit Längen von Strecken als mit Zahlen, aber es ist leicht, ihre Ergebnisse in die Sprache der Zahlen zu übersetzen. Euklid beweist mit großer Sorgfalt Behauptungen, die selbstverständlich scheinen: Zum Beispiel beweist die Proposition 16 von Buch VII, dass das Resultat einer Multiplikation nicht von der Reihenfolge der Zahlen abhängt, die multipliziert werden. Also ab = ba, ein Grundgesetz der Algebra.
In der Schulmathematik benutzt man Primzahlen, um den größten gemeinsamen Teiler zweier Zahlen zu finden. Um zum Beispiel den größten gemeinsamen Teiler von 135 und 630 zu ermitteln, zerlegen wir sie in Primzahlen:

               135 = 33 × 5     630 = 2 × 32 × 5 × 7

            
Dann nehmen wir für jede Primzahl die höchste Potenz, die in beiden Zerlegungen vorkommt, und erhalten 32 × 5. Ausmultipliziert ergibt das 45: das ist der größte gemeinsame Teiler. Das Verfahren erweckt den Eindruck, als brauche man Primzahlen, um den größten gemeinsamen Teiler zu ermitteln. Eigentlich geht die Logik aber genau umgekehrt. Proposition 2 in Buch VII stellt eine Methode vor, wie man den größten gemeinsamen Teiler zweier Zahlen findet, ohne sie in Faktoren zu zerlegen. Das funktioniert, indem man sukzessive die kleinere von der größeren Zahl abzieht, wobei man den Prozess so lange wiederholt, bis kein Rest mehr bleibt. Für 135 und 630, ein typisches Beispiel für eher kleine Zahlen, laufen die Verfahrensschritte folgendermaßen ab. Man ziehe 135 wiederholt von 630 ab:

               630 – 135 = 495

               695 – 135 = 360

               360 – 135 = 225

               225 – 135 = 90

            
Nun ist 90 kleiner als 135, deswegen wechselt man nun zu den beiden Zahlen 135 und 90:

               135 – 90 =45

            
Nun ist 45 kleiner als 90, also wechselt man zu 45 und 90:

               90 – 45 = 45

               45 – 45 = 0

            
Deswegen ist 45 der größte gemeinsame Teiler von 135 und 630.
Das Verfahren funktioniert, weil es in jedem Schritt das ursprüngliche Zahlenpaar durch ein einfacheres Paar (eine der Zahlen ist kleiner) ersetzt, das denselben größten gemeinsamen Teiler hat. Am Ende geht die eine Zahl in der anderen genau auf, und damit kommt man zum Schluss. Heutzutage nennt man eine ausformulierte Rechenmethode, die garantiert eine Lösung für ein Problem findet, einen «Algorithmus». Deshalb heißt Euklids Verfahren heute Euklidischer Algorithmus. Logisch gesehen geht er der Primfaktorzerlegung voraus. Euklid benutzt seinen Algorithmus gerade, um grundlegende Eigenschaften von Primzahlfaktoren (oder kurz Primfaktoren) zu beweisen; genauso macht man es heutzutage in Mathematikvorlesungen an der Uni.
Euklids Proposition 30 ist für die ganze Unternehmung entscheidend. In heutiger Sprache ausgedrückt, besagt sie: Wenn eine Primzahl das Produkt zweier Zahlen – das ist das, was man bekommt, wenn man sie multipliziert – teilt, dann teilt sie auch wenigstens eine der Zahlen. Proposition 32 stellt fest, dass jede Zahl entweder prim ist oder einen Primfaktor enthält. Nimmt man beide Propositionen zusammen, lässt sich leicht ableiten, dass jede Zahl das Produkt von Primzahlen ist und diese Zerlegung abgesehen von der Reihenfolge, in der die Primzahlen aufgeschrieben werden, eindeutig ist. Zum Beispiel:

               60 = 2 × 2 × 3 × 5 = 2 × 3 × 2 × 5 = 5 × 3 × 2 × 2

            
und so fort; aber der einzige Weg, 60 zu erhalten, besteht darin, die erste Zerlegung zu variieren. Es gibt zum Beispiel keine Zerlegung wie 60 = 7 × irgendetwas. Dass überhaupt eine Zerlegung in Faktoren existiert, sichert Proposition 32. Ist die Zahl prim, dann stopp. Falls nicht, finde man einen Primfaktor, teile dadurch und mache mit der kleineren Zahl, die dabei herauskommt, weiter. Die Eindeutigkeit ergibt sich aus Proposition 30. Gäbe es zum Beispiel eine Zerlegung der Art 60 = 7 × irgendetwas, dann müsste 7 eine der Zahlen 2, 3 oder 5 teilen, was nicht der Fall ist.
An dieser Stelle muss ich einen kleinen, aber wichtigen Punkt klären: den Sonderstatus der Zahl 1. Nach der bisherigen Definition ist 1 ganz klar eine Primzahl: Wenn man versucht, sie zu zerlegen, kommt man bestenfalls auf 1 = 1 × 1, wobei keine kleineren Zahlen auftreten. Diese Interpretation macht allerdings für die folgende Theorie Schwierigkeiten; deswegen haben die Mathematiker in den letzten ein oder zwei Jahrhunderten eine zusätzliche Einschränkung eingeführt. Die Zahl 1 ist so besonders, dass sie weder als prim noch als zusammengesetzt betrachtet wird. Stattdessen gilt sie als ein Exemplar der dritten Art, als Einheit. Ein Grund dafür, die 1 als Spezialfall statt als Primzahl zu behandeln, liegt darin, dass mit der 1 als Primzahl die Eindeutigkeit verloren ginge. Schon 1 × 1 = 1 zeigt ja das Versagen, und 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 = 1 stößt uns mit der Nase darauf. Wir könnten auch die Eindeutigkeit umdeuten, indem wir sagen «eindeutig bis auf zusätzliche Faktoren 1», aber das wäre nur eine andere Art auszudrücken, dass die 1 besonders ist.
An einer anderen Stelle, in Proposition 20 in Buch VII, beweist Euklid eine weitere Grundtatsache: «Primzahlen gibt es mehr als irgendeine feste Anzahl von Primzahlen.» Das heißt, die Anzahl der Primzahlen ist unendlich. Es ist ein herrlicher Satz mit einem klugen Beweis, aber er öffnete eine Büchse der Pandora. Wenn es immer größere Primzahlen, aber keine Regelmäßigkeit gibt, wie können wir dann ihre Gestalt beschreiben?
Wir müssen uns dieser Frage stellen, weil wir die Primzahlen nicht ignorieren können. Sie sind wesentliche mathematische Landschaftsformen. Besonders in der Zahlentheorie sind sie üblich und nützlich. Dieses Gebiet der Mathematik beschäftigt sich mit den Eigenschaften ganzer Zahlen. Das mag etwas simpel klingen, tatsächlich aber ist die Zahlentheorie eines der tiefgründigsten und schwierigsten Gebiete der Mathematik. Später wird es jede Menge Belege für diese Behauptung geben. Im Jahr 1801 schrieb Gauß, der führende Zahlentheoretiker seiner Zeit – und vermutlich einer der führenden Mathematiker aller Zeiten, vielleicht sogar der größte von allen – ein Lehrbuch der Zahlentheorie für Fortgeschrittene, die Disquisitiones Arithmeticae («Untersuchungen über höhere Arithmetik»). Unter all den hochklassigen Themen, so führte er aus, sollte man zwei grundsätzliche Dinge nicht aus den Augen verlieren: «Das Problem, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen, (gehört) zu den wichtigsten und nützlichsten der ganzen Arithmetik.»
In der Schule wird gewöhnlich ein einziger Weg, die Primfaktoren einer Zahl zu finden, gelehrt: Man versuche alle möglichen Faktoren der Reihe nach, bis einer genau aufgeht. Hat man keinen gefunden, der kleiner ist als die Quadratwurzel der ursprünglichen Zahl – genauer: die größte ganze Zahl, die kleiner oder gleich dieser Quadratwurzel ist –, dann ist die Zahl prim. Andernfalls findet man einen Faktor und wiederholt das Ganze für die entstehende kleinere Zahl. Nur Primzahlen als Teiler zu testen, ist effizienter, aber dafür muss man über eine Liste von Primzahlen verfügen. Bei der Quadratwurzel hört man auf, weil der kleinste Faktor einer zusammengesetzten Zahl nicht größer als ihre Quadratwurzel sein kann. Dieses Verfahren ist jedoch hoffnungslos ineffizient, wenn die Zahlen groß sind. Lautet die Zahl zum Beispiel

               1080813321843836712253

            
dann erhält man als Primfaktorzerlegung

               13929010429 × 77594408257

            
und man müsste die ersten 624401249 Primzahlen durchprobieren, um den kleineren der beiden Faktoren zu finden. Mit einem Computer ist das natürlich ziemlich einfach, aber wenn wir mit einer 100-stelligen Zahl anfangen, die zufällig das Produkt zweier 50-stelliger Zahlen ist, und dann systematisch die aufeinander folgenden Primzahlen durchprobieren, wird die Welt untergehen, bevor der Computer die Antwort findet.
Allerdings sind Computer heutzutage im Allgemeinen in der Lage, 100-stellige Zahlen zu zerlegen. Mein Computer findet die Primfaktoren von 1099 + 1 (das ist eine 1 mit 98 Nullen und einer 1 am Anfang und am Ende) in weniger als einer Sekunde. Diese Zahl ist das Produkt von 13 Primzahlen (eine taucht zweimal auf), deren kleinste 7 ist und deren größte

               141122524877886182282233539317796144938305111168717

            
lautet. Wenn ich aber den Computer 10199 + 1, eine Zahl mit 200 Stellen, zerlegen lasse, schwitzt er über Jahre, ohne zum Ergebnis zu kommen. Gleichwohl ist die Berechnung für die 100 Stellen eindrucksvoll. Was das Geheimnis ist? Effizientere Verfahren als das Ausprobieren aller möglichen Primfaktoren.
Inzwischen wissen wir viel mehr als Gauß über sein erstes Problem (Primzahltest) und viel weniger über sein zweites (Primzahlzerlegung), als uns lieb ist. Allgemein anerkannt ist, dass ein Primzahltest einfacher ist als die Ermittlung der Primfaktoren. Für Nichtmathematiker erscheint das in der Regel überraschend, denn sie haben als Primzahltest in der Schule dieselbe Methode wie zur Zerlegung gelernt: dass man alle möglichen Teiler durchprobiert. Es gibt aber clevere Methoden für den Nachweis der Primzahleigenschaft, bei denen man nicht so vorgehen muss. Damit kann man ebenfalls nachweisen, dass eine Zahl zusammengesetzt ist, ohne auch nur einen der Faktoren zu finden. Man muss nur zeigen, dass sie den Primzahltest nicht besteht.
Der Urvater aller heutigen Primzahltests ist der «kleine» Fermat’sche Satz, nicht zu verwechseln mit dem «großen», Fermats letztem Satz, Kapitel 7. Der kleine Satz stützt sich auf die modulare Arithmetik, manchmal auch Uhrenarithmetik genannt, weil die Zahlen wie auf einem Ziffernblatt herumwandern. Man wähle eine Zahl – auf einer Uhr mit zwölf Stunden wäre das die 12 – und nenne sie Modulus. In jeder folgenden Rechnung mit ganzen Zahlen darf man nun Vielfache der 12 durch null ersetzen. Zum Beispiel ist 5 × 5 = 1 zum Modulus 12 (man sagt «modulo 12»), weil 5 × 5 = 25 = 2 × 12 + 1 ist. Modulare Arithmetik ist sehr hübsch, weil fast alle üblichen Regeln der Arithmetik immer noch gelten. Der Hauptunterschied besteht darin, dass man nicht immer Zahlen durch einander teilen kann, auch dann nicht, wenn sie nicht null sind. Die modulare Arithmetik ist auch deshalb nützlich, weil sie den Umgang mit Fragen der Teilbarkeit erleichtert: Welche Zahlen lassen sich durch den Modulus teilen, und wie groß ist der Rest, wenn sie nicht teilbar sind? Gauß hat die modulare Arithmetik in seinen Disquisitiones Arithmeticae eingeführt, und heutzutage ist sie in Computerwissenschaften und Physik, im Ingenieurswesen und natürlich in der Mathematik weit verbreitet.
Fermats kleiner Satz besagt: Wenn man eine Primzahl p als Modulus hat und eine beliebige Zahl a, die kein Vielfaches von p ist, wählt, dann ist die (p-1)te Potenz an a gleich 1 modulo p. Zum Beispiel p = 17 und a = 3. Dann erhält man beim Teilen von 316 durch 17 laut Theorem den Rest 1. Hier zum Nachweis

               316 = 43046721 = 2532160 × 17 + 1

            
Niemand bei Verstand würde auf diese Weise mit einer, sagen wir, 100-stelligen Primzahl rechnen. Zum Glück gibt es eine schlaue und schnelle Methode, diese Art Rechnung durchzuführen. Der Witz besteht darin, dass der Modulus, mit dem man gestartet ist, dann, wenn das Ergebnis nicht 1 ist, zusammengesetzt ist. Auf diese Weise bietet Fermats kleiner Satz die Grundlage für einen effizienten Primzahltest, der eine notwendige Bedingung dafür angibt, dass die untersuchte Zahl eine Primzahl ist.
Leider ist der Test nicht hinreichend. Auch viele zusammengesetzte Zahlen bestehen den Test; man nennt sie Carmichael-Zahlen. Die kleinste ist 561, und im Jahr 2003 bewiesen Red Alford, Andrew Granville und Carl Pomerance zu aller Erstaunen, dass es unendlich viele solche Zahlen gibt. Das Erstaunen galt weniger der bewiesenen Tatsache als solcher als vielmehr dem Beweis. Die drei konnten zeigen, dass es wenigstens x2/7 viele Carmichael-Zahlen gibt, die kleiner oder gleich x sind, wenn x nur groß genug ist.
Es gibt jedoch hoch entwickelte Varianten des Fermat’schen Satzes, die man in eigene Primzahltests umwandeln kann, zum Beispiel den, der 1976 von Gary Miller veröffentlicht wurde. Unglücklicherweise fußt der Beweis seiner Gültigkeit auf einem der ungelösten großen Rätsel, der verallgemeinerten Riemann-Hypothese, Kapitel 9. Im Jahr 1980 wandelte Michael Rabin Millers Test in eine Wahrscheinlichkeitsaussage um und damit in einen Test, der gelegentlich versagen könnte. Auch wenn die Ausnahmen, wenn überhaupt, sehr selten vorkommen, kann man sie nicht gänzlich ausschließen. Der effizienteste deterministische (also mit Sicherheit zuverlässige) Test ist bis heute der Adleman-Pomerance-Rumly-Test, der nach Leonard Adleman, Carl Pomerance und Robert Rumely benannt ist. Er bedient sich zahlentheoretischer Ideen, die mit Fermats Theorem verwandt, aber höher entwickelt sind.
Ich erinnere mich noch lebhaft an den Brief eines hoffnungsfrohen Amateurs, der eine Variante des Durchprobierens vorschlug. Man versuche alle möglichen Teiler, beginne aber mit der Quadratwurzel und arbeite abwärts. Mit dieser Methode kommt man manchmal schneller zur richtigen Antwort als mit der üblichen, aber letztendlich hat sie die gleichen Probleme wie die übliche, wenn die Zahlen immer größer und größer werden. Wenn Sie es mit meinem Beispiel oben, der 1080813321843836712253 versuchen, dann ist die Quadratwurzel ungefähr 32875725419 und man müsste 794582971 viele Primzahlteiler ausprobieren, bevor man auf den ersten richtigen stößt. Das ist noch schlimmer, als hätte man in der üblichen Richtung gesucht.
1956 wiederholte der berühmte Logiker Kurt Gödel in einem Brief an John von Neumann Gauß’ Anliegen. Er stellte die Frage, ob man die Methode des Durchprobierens verbessern könnte und, wenn ja, um wie viel. Von Neumann widmete sich der Frage nicht, aber andere antworteten im Laufe der Jahre auf Gödel, indem sie praktikable Methoden zum Aufspüren von Primzahlen mit bis zu 100, manchmal noch mehr Stellen fanden. Diese Methoden, deren bekannteste das sogenannte quadratische Sieb ist, sind seit etwa 1980 bekannt. Allerdings sind die meisten von ihnen probabilistisch, oder aber sie sind im folgenden Sinne ineffizient.
Wie wächst die Laufzeit eines Computeralgorithmus mit der Größe des Inputs? Beim Primzahltesten ist nicht die Zahl selbst die Eingabelänge, sondern die Anzahl ihrer Stellen. Die Kernunterscheidung bei solchen Fragen ist die zwischen zwei Klassen von Algorithmen namens P und non-P. Wächst die Laufzeit wie eine feste Potenz der Eingabelänge, dann nennt man den Algorithmus Klasse P, andernfalls non-P. Grob gesprochen, sind Klasse P-Algorithmen nützlich, non-P-Algorithmen inpraktikabel; aber es gibt eine Grauzone zwischen den beiden, wo andere Überlegungen ins Spiel kommen. P steht für «polynomiale (Lauf-)Zeit», eine schicke Art, über Potenzen zu reden, und wir kehren zum Thema effizienter Algorithmen in Kapitel 11 zurück.
Gemessen am Standard der Klasse P schneidet das Ausprobieren sehr schlecht ab. In der Schule, wenn die Zahlen nicht mehr als zwei oder drei Stellen haben, geht das in Ordnung. Aber für 100-stellige Zahlen ist das Verfahren absolut hoffnungslos. Ganz klar gehört Ausprobieren in die Klasse non-P. Die Laufzeit wächst für eine n-stellige Zahl sogar wie 10n/2, also schneller als jede Potenz von n. Diese Art Wachstum, exponentiell genannt, ist richtig übel, rechnerisches Wolkenkuckucksheim gewissermaßen.
Bis in die 1980er Jahre waren außer probabilistischen und solchen mit unbewiesener Gültigkeit nur Primzahltests mit exponentieller Laufzeit bekannt. Im Jahr 1983 jedoch wurde ein Algorithmus entdeckt, der verlockend nah an der Grenze zum P-Land liegt: der bereits erwähnte Adleman-Pomerance-Rumly-Test. Eine verbesserte Variante von Henri Cohen und Hendrik Lenstra hat Laufzeit n hoch log(log(n)), wobei log den Logarithmus bezeichnet. Rein technisch kann log(log(n)) beliebig groß werden, demnach gehört der Algorithmus nicht in die Klasse P. Das hindert ihn aber nicht, praktikabel zu sein: Wenn n googolplex ist, also eine 1 mit 10100 Nullen, dann ist log(log(n)) ungefähr 231. Wie sagt doch der alte Witz: «Es ist bewiesen, dass log(log(n)) nach unendlich strebt, aber beobachtet worden ist es noch nie.»
Der erste Klasse-P-Primzahltest wurde 2002 von Manindra Agrawal und seinen Studenten Neeraj Kayal und Nitin Saxena, erfunden. Details dazu findet man in den Anmerkungen.[1] Sie konnten zeigen, dass die Laufzeit ihres Algorithmus höchstens wie n12 wächst; schon bald wurde das auf n7,5 verbessert. Doch obwohl der Algorithmus Klasse P ist, mithin als effizient eingestuft wird, zeigen sich seine Vorzüge nicht, bevor die Zahl n nicht wirklich richtig groß wird. Den Adleman-Pomerance-Rumly-Test schlägt dieser Test erst für Zahlen mit mehr als 101000 (zehn hoch tausend!) Stellen. Kein Computerspeicher, ja nicht einmal das bekannte Universum hat Raum für eine solch riesige Zahl. Doch da wir jetzt wissen, dass ein Klasse P-Algorithmus existiert, hat es Sinn, nach besseren zu suchen. Lenstra und Pomerance haben die Potenz von 7,5 auf 6 verbessert. Sollten verschiedene Annahmen über Primzahlen richtig sein, kann die Potenz sogar auf 3 vermindert werden; das sieht schon eher praktikabel aus.
Der interessanteste Aspekt an dem Agrawal-Kayal-Saxena-Algorithmus ist aber nicht das Resultat, sondern die Methode. Sie ist einfach – jedenfalls für Mathematiker –, aber neuartig. Die zugrunde liegende Idee ist eine Abwandlung von Fermats Satz, aber statt mit Zahlen zu arbeiten, benutzte Agrawals Team ein Polynom. Das ist eine Summe von Potenzen einer Variablen x, wie etwa 5x3 + 4x – 1. Man kann Polynome addieren, subtrahieren und multiplizieren, und die üblichen algebraischen Gesetze bleiben dabei gültig. Kapitel 3 erklärt Polynome im Detail.
Das ist wirklich eine hübsche Idee: Man erweitere die Perspektive der Überlegungen und überführe das Problem in eine neue gedankliche Umgebung. Es ist eine der Ideen, die so einfach sind, dass man ein Genie sein muss, um sie zu erkennen. Sie entwickelte sich aus einer Veröffentlichung von Agrawal und seinem Doktorvater Somenath Biswas im Jahr 1999, in der es um einen probabilistischen Primzahltest ging, der auf Fermats kleinem Satz in der Welt der Polynome beruhte. Agrawal war überzeugt, dass man den Wahrscheinlichkeitscharakter der Überlegung loswerden könne. Im Jahr 2001 machten seine Studenten eine, wenn auch sehr technische, Schlüsselbeobachtung. Auf ihrer Spur geriet die Gruppe in tiefe zahlentheoretische Wasser, doch letztlich ließ sich alles auf ein einziges Hindernis zurückführen: die Existenz einer Primzahl p, sodass p – 1 einen ausreichend großen Teiler hat. Nachfragen unter Kollegen und Internetrecherchen führten zu einem Satz, den Etienne Fouvry im Jahr 1985 mit Hilfe tiefgründiger technischer Mittel bewiesen hatte. Genau das brauchten sie, um die Funktionsfähigkeit ihres Algorithmus zu beweisen, und so passte schließlich der letzte Stein ins Puzzle.
Als die Zahlentheorie noch brav in ihrem Elfenbeinturm residierte, hätte all das niemand sonst aufgeregt. Doch während der letzten 20 Jahre sind Primzahlen in der Kryptographie, der Wissenschaft der Geheimcodes, wichtig geworden. Codes werden nicht nur vom Militär gebraucht, auch Wirtschaftsunternehmen haben Geheimnisse. Im Internetzeitalter haben wir das alle: Wir wollen nicht, dass Kriminelle Zugriff auf unsere Bankkonten, Kreditkarten oder – im Zuge der Zunahme von Identitätsdiebstahl – den Namen unserer Katze bekommen. Andererseits ist das Internet so praktisch beim Bezahlen von Rechnungen, dem Abschluss von Versicherungen und Buchen von Reisen, dass wir das Risiko, dass sensible private Informationen in falsche Hände geraten, eingehen müssen.
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