

 [image: cover.png]

 Unity 3D Game Development

 Designed for passionate game developers—Engineered to build professional games

 Anthony Davis

 Travis Baptiste

 Russell Craig

 Ryan Stunkel

 [image:]

 BIRMINGHAM—MUMBAI

 Unity 3D Game Development

 Copyright © 2022 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Senior Publishing Product Manager: Manish Nainani

 Acquisition Editor – Peer Reviews: Saby Dsilva

 Project Editor: Rianna Rodrigues

 Content Development Editor: Grey Murtagh

 Copy Editor: Safis Editing

 Technical Editor: Srishty Bhardwaj

 Proofreader: Safis Editing

 Indexer: Subalakshmi Govindhan

 Presentation Designer: Rajesh Shirsath

 First published: August 2022

 Production reference: 1190822

 Published by Packt Publishing Ltd.

 Livery Place

 35 Livery Street

 Birmingham

 B3 2PB, UK.

 ISBN 978-1-80107-614-2

 www.packt.com

 Contributors

 About the authors

 [image:]Anthony Davis is a Senior Technical Artist with Accelerate Solutions, living in Orlando, Florida. Before working with Unity, he worked in several verticals, ranging from being a military veteran and a gymnastics coach to starting an indie game development studio, and a few things in between. His work in independent and freelance work lent to a great many hats learning all facets of game development. In his free time, he plays Dungeons and Dragons, attempts art, and plans for his next project.

 I’d like to thank my entire family for allowing space to work on this. Tica, thank you for keeping everything moving forward. Jehryn and Kember, thank you for understanding that sometimes I had to work on this instead of playing games with you. Mohss, I thought about you the whole time making this. I hope this serves you well for your own game projects.

 [image:]Travis Baptiste: Artist, life-long learner, and recreational gamer are a few of the terms that can be used to describe Travis. After his time in the military, Travis attended Full Sail University, where he studied Game Art. Since graduating in 2015, he has worked as a freelance 3D modeler while homeschooling his two children. Between servicing clients and personal projects, Travis has kept his 3D talents sharp across multiple programs.

 My family, thank you for your understanding at the times I have to work. To my sons, I hope that this experience can further inspire you both to pursue your own goals in spite of hardships. To my wife, Almira, thank you for the support. The late nights of work were much easier with the help you have provided with the kids. Thank you, David Nguyen, for the life guidance and being in my corner. Thank you, Anthony, for the opportunity. I am grateful that I had the chance to work with you on this.

 [image:]Russell Craig is a Senior Software Engineer at Unity Technologies. At the time of writing, he has 10 years of professional Unity simulation experience in the areas of application development, product hardware/firmware simulation, sensor simulation, medical training simulation, and AR/VR development. A speaker at Unite and jack of all trades in all things Unity, Russell spends his free time with his wife and children, building computers, playing video games, and modifying cars.

 I would like to thank my family, friends, and coworkers for putting up with my hectic schedule.

 [image:]Ryan Stunkel is a professional sound designer for video games who runs his contracting studio, Blipsounds, out of Austin, Texas. In addition to Blipsounds, Ryan is a teacher and mentor to a community of sound designers through the Blipsounds YouTube channel. He has traveled the world sharing his knowledge on video game sound design for Google, PAX, and Schools.

 About the reviewers

 Ģirts Ķesteris is the Studio Lead @HyperVR Games and also freelance XR/Unity software engineer at Ubiquity Inc. He is a lecturer in the development of 3D interactive environments (also covering Unity game engine) at Vidzemes Augstskola / Vidzeme University of Applied Sciences (part-time), and an indie game developer at NYAARGH! (self-employed). He has extensive experience with Unity at multiple companies.

 Thanks to my wife for her patience and support!

 Montica “Tica” Sansook (she/her) is a Asian-American serial entrepreneur, speaker, game artist, and content creator. Tica serves as the Co-Founder of Defy Esports Bar, an esports nightlife venue, and Defy Games, an indie game development studio. She has graduated twice from Full Sail University with Entertainment Business Masters of Science and Game Art Bachelors of Science. Her vast and varied career experiences have ranged from creative brand and business development within gaming to community management of content creators and professional esports organizations. Tica takes great joy and fulfillment from supporting others through mentorship, diversity advocacy, and consulting. She loves encouraging people to explore their potential and spotlighting her colleagues’ accomplishments. On her journey, she wishes to be a positive influence in nurturing the ecosystem of the gaming industry for the better.

 Preface

 This book is a thorough run through the design and development of a 3D environment puzzle game made in Unity. We go through the design, creation, and implementation of characters, environment, UI, sound, and game mechanics.

 Who is this book for?

 This book is especially good for anyone who has an interest in making 3D games but hasn’t started their journey yet. We cover the fundamentals all the way up to some advanced topics.

 Secondarily, this book would help anyone who has already started their journey and wants to learn other parts of game development as we cover a broad range of skills and knowledge throughout the book.

 What this book covers

 Part 1 – Plan and Design

 Chapter 1, A Primer to the Third Dimension, takes a ride through 3D terminology and the initial jargon of what the book will go through.

 Chapter 2, Design and Prototype, starts the user down the design rabbit hole and ends with installing Unity to create your first project.

 Chapter 3, Programming, lays down the foundation of programming. This chapter leans in on the power of C# (C Sharp) by explaining the basics of logic and the initial use of Visual Studio.

 Part 2 – Build

 Chapter 4, Characters, goes over designing 3D characters while thinking about how they will be used for rigging and animations.

 Chapter 5, Environment, walks you through thinking about the environment for your game as well as what we did to design and build our environment.

 Chapter 6, Interactions and Mechanics, takes the time to break down how mechanics need to be thought about and what interaction is for the user, while also covering the programming needed for the interactions in our project.

 Chapter 7, Rigid Bodies and Physics Interactions, adds complexity to the interaction with physics and more advanced programming concepts.

 Chapter 8, User Interface and Menus, goes over Unity’s canvas component and how the overall game interface is developed on any project.

 Part 3 – Polish and Refine

 Chapter 9, Visual Effects, dives into how the visual effects systems can be worked with to add a further emotional connection to your world. This is done by explaining the foundation of rendering and the systems surrounding it.

 Chapter 10, Sound Effects, blasts in with explaining the sound systems within Unity as well as setting a solid foundation of sound design.

 Chapter 11, Build and Test, teaches you how Unity builds a final executable game and explains testing methods to root out bugs that you can squash to make a better product.

 Chapter 12, Finishing Touches, looks to be a toolbox of utility for making your game as polished as it can be. We go over what we used to polish our project. This is including specific particle systems, lighting, art defining, and advanced sound polish.

 Bonus Chapter, Other Unity Tools!, is a chapter going over some of the services Unity has to offer just in case this book inspires you to work on a project that we haven’t been able to cover, such as multiplayer or mixed-reality requirements.

 To get the most out of this book

 	Pay attention to this book not as a tutorial but as many tools being used to develop a 3D game. We’re only going over a few simple examples. Take the logic out as something to apply to your projects as much as possible.

 	Be prepared to take your own notes on the topics that are being covered. We ramp up the difficulty in programming quite a bit during the physics portion.

 	Ask questions in the Discord, which is attached to the book through a QR code.

 Download the example code files

 The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/Unity-3D-Game-Development. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Download the color images

 We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781801076142_ColorImages.pdf.

 Conventions used

 There are a number of text conventions used throughout this book.

 CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Mount the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

 A block of code is set as follows:

 void OnStartGameButtonPressed()
 {
 SetPlayerEnabled(true);
 Cursor.lockState = CursorLockMode.Locked;
 Cursor.visible = false;
 this.gameObject.SetActive(false);
 }

 Bold: Indicates a new term, an important word, or words that you see on the screen. For instance, words in menus or dialog boxes, also appear in the text like this. For example: “Select System info from the Administration panel.”

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

 Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

 Share your thoughts

 Once you’ve read Unity 3D Game Development, we’d love to hear your thoughts! Scan the QR code below to go straight to the Amazon review page for this book and share your feedback.

 [image:]

 https://packt.link/r/1801076146

 Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

 Contents

 	Contributors

 	About the authors

 	About the reviewers

 	Preface

 	Who is this book for?

 	What this book covers

 	Part 1 – Plan and Design

 	Part 2 – Build

 	Part 3 – Polish and Refine

 	To get the most out of this book

 	Get in touch

 	Share your thoughts

 	A Primer to the Third Dimension

 	Goal of this book

 	Coming around to 3D

 	Coordinate systems

 	Vectors

 	Cameras

 	Faces, edges, vertices, and meshes

 	Materials, textures, and shaders

 	Rigidbody physics

 	Collision detection

 	The Unity interface

 	Scene view and hierarchy

 	Inspector

 	The Project window

 	Game view

 	Package Manager

 	Essential Unity concepts

 	Assets

 	Scenes

 	GameObjects

 	Components

 	Scripts

 	Prefabs

 	Packages

 	Summary

 	Design and Prototype

 	Game design fundamentals

 	Game design document

 	Deliberate decisions

 	Iterative production

 	Concepting

 	Your first Unity project

 	Unity Hub

 	Choosing a version

 	Choosing a template

 	Scriptable rendering pipeline

 	Built-In Rendering

 	Universal Rendering

 	High-Definition Rendering

 	Prototyping

 	Wireframing or paper creation

 	Grayboxing

 	Proof of Concept (PoC)

 	Minimum Viable Product (MVP)

 	Vertical slice

 	Summary

 	Programming

 	Setting up the environment

 	The Unity environment

 	Fundamentals

 	Variables

 	Data types

 	Int

 	Float

 	String

 	GameObject

 	Programming logic

 	If statements

 	While loops

 	For loops

 	Choosing between for and while

 	Methods

 	Summary

 	Characters

 	Design and concept

 	Asking why

 	Concept time!

 	Rigging

 	Animation-first thinking

 	Deformation

 	Hierarchy

 	Bones or joints

 	Forward Kinematics/Inverse Kinematics

 	Constraints

 	Deformers

 	Controls

 	Physics-based animation

 	Human Inverse Kinematics (HIK) system

 	Animation

 	Character controllers

 	Built-in character controller

 	Rigidbody character controller

 	Scripting your character’s movement

 	Initial setup in Unity

 	Idling

 	Code entry point

 	RequireComponent

 	Update code

 	Methods

 	Summary

 	Join us on Discord!

 	Environment

 	Sketching

 	Mood boards

 	Staging

 	Blocking it out

 	Unity terrain

 	Creating a terrain

 	Terrain settings

 	Terrain painting

 	Painting trees

 	Painting details

 	3D geometry

 	ProBuilder

 	Premade basic shapes

 	Summary

 	Interactions and Mechanics

 	Game loops

 	Mechanics toolbox

 	Resource management

 	Risk versus reward

 	Spatial awareness

 	Collection

 	Research

 	Limitations

 	Design and implementation

 	Our project

 	The stairs

 	Design

 	Implementation

 	The rings

 	Design

 	Implementation

 	Tight spaces

 	Design

 	Implementation

 	Interactive volumes

 	Design

 	Implementation

 	Summary

 	Rigid Bodies and Physics Interaction

 	The Rigidbody component

 	Mass

 	Angular Drag

 	Use Gravity boolean

 	Is Kinematic boolean

 	Interpolate

 	Collision detection

 	Continuous

 	Continuous Speculative

 	Constraints

 	Info

 	Telekinesis and physics interaction

 	Rocks Falling

 	Design

 	Implementation

 	The Broken Pedestal

 	Design

 	Implementation

 	The Final Puzzle

 	Design

 	Implementation

 	Summary

 	User Interface and Menus

 	User interface

 	Diegetic – Narrative Yes, Internal Yes

 	Non-diegetic – Narrative No, Internal No

 	Spatial – Narrative No, Internal Yes

 	Meta – Narrative Yes, Internal No

 	UI elements

 	Main menu

 	Inventory systems

 	Health representation

 	Item interaction system

 	UI in our project

 	Main menu

 	Escape menu

 	Spatial tooltip

 	Unity UI

 	Unity canvas system

 	Rect transform

 	Canvas component

 	Canvas Scaler

 	Graphic Raycaster Component

 	Unity UI objects

 	Implementation

 	Main menu implementation

 	Journal implementation

 	Interaction UI implementation

 	Summary

 	Visual Effects

 	Visual effects overview

 	Shader Graph

 	Setup

 	Creation

 	Lit Shader Graph

 	Sprite Lit Shader Graph

 	Sprite Unlit Shader Graph

 	Unlit Shader Graph

 	Shader Graph interface

 	Master Stack

 	Blackboard

 	Graph Inspector

 	Main Preview

 	Nodes

 	Commonly used nodes

 	Add

 	Color

 	Lerp

 	Multiply

 	Sample Texture 2D

 	Saturate

 	Split

 	UV

 	Vectors

 	Particle Systems

 	Shuriken

 	VFX Graph

 	Nodes

 	Summary

 	Sound Effects

 	Sound… design?

 	The five elements of sound design

 	Source

 	Envelopes

 	Attack

 	Release

 	Pitch

 	Frequency

 	Layering

 	Designing for scale

 	Our project’s sound design and implementation

 	Getting our first sound to play

 	Organization

 	Music

 	2D sounds

 	3D sounds

 	Using 3D sounds

 	Audio listener part I

 	3D sound settings

 	Audio listener part II

 	Adding 3D ambient sounds to the game

 	Filling out our ambient sounds

 	2D ambience

 	Triggering sound through player interaction

 	Triggering sound through Unity events

 	Rotating puzzle sounds

 	Tree puzzle

 	Summary

 	Build and Test

 	Building with Unity

 	Target platform

 	Architecture

 	Server Build

 	Copy PDB files

 	Create Visual Studio Solution

 	Development Build

 	Autoconnect Profiler

 	Deep Profiling Support

 	Script Debugging

 	Scripts Only Build

 	Compression Method

 	Testing

 	Functional testing

 	Performance testing

 	Unity profiler

 	Memory Profiler

 	Frame debugger

 	Physics debugger and Profiler module

 	Playtesting

 	Soak testing

 	Localization testing

 	User experience, or UX

 	Branding

 	Design

 	Usability

 	Initial problem

 	First puzzle

 	Introduction to a secondary mechanic

 	Final puzzle

 	Summary

 	Finishing Touches

 	Overview

 	Asset finalization

 	Stylized pass on assets

 	Detail normals

 	Architecture cleanup

 	Texture blending

 	Environment clutter

 	Detail meshes

 	Effects

 	Stair blocker

 	Shuriken system – stair blocker particles layer

 	VFX Graph – Myvari’s telekinesis

 	Cinematics

 	Secondary animation

 	Lighting

 	3D form

 	Providing mood

 	Gameplay design

 	Unity lighting

 	Mixed lighting

 	Light probes

 	Reflection probe

 	Sound polish

 	Triggering sound through animation events

 	Tagging animations with events for sound

 	Randomized sounds

 	Randomized pitch

 	Summary

 	Bonus: Other Unity Tools!

 	Unity Gaming Services

 	Multiplayer tools

 	Creation

 	Connection

 	Communication

 	XR plugin

 	Machine Learning Agents

 	Bolt visual scripting

 	Flow Graphs

 	State Graphs

 	Live Editing

 	Debugging and Analysis

 	Codebase Compatibility

 	Summary

 	Other Books You May Enjoy

 	Index

 Landmarks

 	
 Cover

 	
 Index

 1

 A Primer to the Third Dimension

 Welcome!

 It’s a pleasure to have you join us on this journey to learn the fundamentals of 3D game development. Firstly, we will introduce you to the team who wrote this book.

 	Travis Bapiste (3D Artist) directed the art, modeled every model in the game, rigged the character, and helped define the design of the story.

 	Russell Craig (Sr. Software Engineer) created the scripts for the mechanics.

 	Ryan Stunkel (Sound designer) created and implemented all the sounds throughout the project.

 	Anthony Davis (Sr. Technical Artist) wrote the book, managed the project, built effects and shaders, and polished the project.

 Ensuring we brought out the best of our collective experience of over 50 years (with 4 brains behind every page in this book) was a roller-coaster (and too much fun!) each day. We’ve spent over six months and two revisions to the entire book (as well as hundreds of GIFs that we have exchanged during the process) to include the most suitable use-cases that explain new concepts and, most importantly, offer a teaching approach that works. In the end, we believe we’ve successfully created a book that would have shaped the trajectory of our careers in game development and pushed us ahead by at least 3-5 years.

 This book will equip you with all the tools you’ll need to start building; however, you might need more support and advice en-route to turn your ideas into creations.

 That’s where our Discord server comes into play. It introduces the element of interactivity for us to connect, read the book together and have a conversation about your 3D game projects. I am available on Discord more than ever to ensure you get through with the book with ease, so please feel free to come say hi and ask any questions!

 Don’t forget to drop in your quick intro in the channel #introduce-yourself when you join in: https://packt.link/unity3dgamedev

 [image:]

 Well, let’s get started!

 Goal of this book

 Our goal with this book is to enable every reader to build the right mindset to think about 3D games, and then show them all the steps we took to create ours. An absolute beginner is welcome to work through this book, however the topics may ramp up in difficulty quite quickly. Though difficult, if you stick with it, you will have taken multiple steps towards mastery in game development. The main target audience for this book is those with some prior knowledge in game development, though regardless of your experience, we hope to create an enjoyable learning journey for you. The concepts we will cover soon become complex with characters, programming, design patterns, and more that we’ll learn.

 To make the best use of the book, I’d recommend you follow the approach below:

 	Read through the chapters, deliberately taking breaks to think about the concepts.

 	When something is brand new, check our project in GitHub to see if viewing it in action can help explain it further. If it doesn’t, take to Google to do your own research on it.

 	If something isn’t available in the project, send me a message over Discord or seek help from peers in the community server—the link is shared above.

 	Move on to the next section and repeat!

 This approach will allow you to take ownership over the areas you struggle with; once you have gone through the process, you can seek help from peers. The problems that you encounter may also be encountered by others. Solving them and bringing them to the Discord or having your peers help with the solution emboldens the overall knowledge of the community.

 This book is designed for you to read through our approach and then look into the project to understand all the underpinnings. It’s more important to understand the design of why we did what we did first. We take time to go over fundamentals of the Unity interface as well, but tech can be learned over time with plenty of resources online.

 Some things you will not find in here are how to model characters, rig, or animate them. We speak very little about this process as that is its own training. We do go over why we designed our character the way we did, to help you on your journey to do the same. The project has all the animations and cinematics in it, so the final products are available to see the results of our work. This approach is a strong way to learn, and we teach you why things are done the way that they are. This way, you get to see the end result, and you’re allowed to be creative and give your own thought to design, as well as work through the process on your own with new tools while working your way through the chapters.

 Lastly, before we sink our teeth into the content, we’d like to advise you to open the GitHub repo, navigate to the Builds folder, and play it for yourself. This will help you to see what our small team put together in its complete form. After playing it through, you can visualize what we went through while building this project from the start.

 Let’s dive into what topics we will cover in this chapter:

 	Coming around to 3D

 	Essential Unity concepts

 	The Unity interface

 Let’s get started by familiarizing ourselves with the basic components of 3D game development.

 Coming around to 3D

 We will be going over a basic understanding of 3D work within this section. From coordinate systems to the makeup of how the 3D model is rendered, we will only go surface-level to ensure that you fully understand the foundations as you progress through this journey. By reading through this, you will gain a strong understanding of how Unity displays items.

 Coordinate systems

 3D coordinate systems are not all the same in each 3D application! As is demonstrated in Figure 1.1, Unity is a left-handed world coordinate system with +y facing upward. Looking at Figure 1.1, you can visualize the difference between left-handed and right-handed systems.

 [image:]
 Figure 1.1: Coordinate systems

 While we work within these coordinate systems, you will see the positions of objects represented in an array of three values within parentheses as follows:

 (0, 100, 0)

 This represents (x, y, z) respectively. This is a good habit to get into as programming utilizes very similar syntax when writing positions within scripts. When we talk about position, it is commonly referred to as the transform inside whichever Digital Content Creator (DCC) you’re using. In Unity, the transform holds position, rotation, and scale.

 Now we understand the world coordinates, (x, y, z), and that those coordinates each start at 0, represented by (0, 0, 0). In Figure 1.2 below, where the colored lines meet is (0, 0, 0) in the world. The cube has its own transform, which encompasses that object’s transform, rotation, and scale. Keep in mind that transform holds the local position, rotation, and scale. World transforms are calculated from this following their hierarchy.

 [image:]
 Figure 1.2: 3D coordinate system

 The cube in Figure 1.2 is at (1, 1.5, 2). This is called world space as the item’s transform is being represented through the world’s coordinates starting from (0, 0, 0).

 [image:]
 Figure 1.3: World space vs local space
 Now that we know the cube’s transform is in relation to the world (0, 0, 0), we will go over the parent-child relationship that describes the local space. In Figure 1.3 above, the sphere is a child of the cube. The sphere’s local position is (0, 1, 0) in relation to the cube. Interestingly, if you now move the cube, the sphere will follow as it’s only offset from the cube and its transforms will remain (0, 1, 0) in relation to the cube.

 Vectors

 Traditionally, a vector is a unit that has more than one element with a direction. In a 3D setting, a Vector3 will look very similar to what we’ve worked with so far. (0, 0, 0) is a Vector3! Vectors are used in very many solutions for game elements and logic. Usually, the developer will normalize vectors so, that way, the magnitude will always equal 1. This allows the developer to work with the data very easily as 0 is the start, 0.5 is halfway, and 1 is the end of the vector.

 Cameras

 Cameras are incredibly useful components! They humbly show us their perspective, which allows our players to experience what we are trying to convey to them. As you may have guessed, a camera also has a transform, just like all GameObjects (which we will describe later in the chapter) in the hierarchy. Cameras also have several parameters that can be changed to obtain different visual effects.

 Different game elements and genres use cameras in different ways. For example, the game Resident Evil uses static cameras to give a sense of tension, not knowing what’s outside the window or around the corner, while Tomb Raider pulls the camera in close while the player character Lara goes through caverns, giving a sense of intimacy and emotional understanding, with her face looking uncomfortable in tight spaces.

 Cameras are essential to the experience you will be creating for your users. Take time to play with them and learn compositional concepts to maximize the push of emotions in the player’s experience.

 Faces, edges, vertices, and meshes

 3D objects are made up of multiple parts, as seen in Figure 1.4. Vertices, represented by the green circles, are points in space relative to the world (0, 0, 0). Each object has a list of these vertices and their corresponding connections.

 Two vertices connected make an edge, represented by a red line. A face is made when either three or four edges connect to make a triangle or a quad. Sometimes quads are called a plane when not connected to any other faces. When all of these parts are together, you have a mesh.

 [image:]
 Figure 1.4: Vertices, edges, faces, and meshes

 Materials, textures, and shaders

 Now that you know what a mesh is comprised of in all DCC tools, let’s look into how Unity displays that mesh to you. At the base level is a shader. Shaders can be thought of as small programs, which have their own language and run on the GPU, so Unity can render the objects in your scene on your screen. You can think of the shader as a large template for materials to be created.

 The next level up is materials. A material is a set of attributes that are defined by the shader to be manipulated, which helps show what the object looks like. Each rendering pipeline will have separate shaders: Built-in, Universal Rendering Pipeline (URP), or High Definition Rendering Pipeline. For this book, we are using the second option, which is also the most widely used: URP.

 Figure 1.5 shows an example of a material using the URP’s Standard Lit shader. This allows us to manipulate surface options, inputs for that surface, and some advanced options. For now, let’s just talk about Base Map, the first item in the Surface Inputs section. The term Base Map is being used here as a combination of the Diffuse/Albedo and Tint. Diffuse/Albedo is used to define the base color (red) that will be applied to the surface—in this case, white.

 If you placed a texture into this map by either dragging a texture onto the square (green) to the left of the base map or clicking on the circle (blue) in between the box and the name, after that, you can tint the surface with the color if there need to be any adjustments.

 [image:]
 Figure 1.5: Base material attributes

 Figure 1.6 shows a simple example of what a cube would look like with a tint, texture, and the same texture with the tint changed. As we progress through the book, we will unlock more and more functions of materials, shaders, and textures.

 [image:]
 Figure 1.6: Tint and texture base color

 Textures can provide incredible detail for your 3D model.

 When creating a texture, the resolution is an important consideration. The first part of the resolution that needs to be understood is “power of 2” sizes. Powers of 2 are as follows:

 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, etc.

 These numbers represent the pixel size for both width and height. There are cases where you may need to mix the sizes as long as they fit the power of 2 scale. Examples are:

 	256×256

 	1024×1024

 	256×1024 (this is less common to see, but is valid)

 The second consideration regarding resolution is the size itself. The easiest way to work through this consideration is by thinking about how large the 3D object will be on your screen. If you have a 1920x1080 screen resolution, that is 1920 pixels wide by 1080 pixels tall. If the object in question is only going to take up 10% of the screen and will rarely be seen any closer, you may consider a 256x256 texture. By contrast, if you are making an emotional, character-driven game where emotions and facial expressions matter, you may want a 4096x4096 or 4K texture on just the face during those cutscenes.

 Rigidbody physics

 Unity assumes that every GameObject does not need to be evaluated every frame for physics. Unity uses Nvidia’s PhysX engine for its physics simulations. To get any calculated physics responses, the GameObject needs a Rigidbody component added.

 By adding the Rigidbody component to the GameObject, you are then adding some properties to the GameObject seen in the inspector in Figure 1.7 below.

 [image:]
 Figure 1.7: Rigidbody

 One Unity unit of mass is equal to 1 kg of mass. This affects the physics decisions upon collisions. Drag units add friction, reducing the velocity over time. Angular drag is similar but constrained to only rotation speed. Use Gravity either turns gravity on or off, equal to standard Earth gravity (0, -9.81, 0) so the mass makes sense! Sometimes you may not want to use Earth gravity, so you can change the physics settings to make the gravity what you would like.

 A thorough explanation of Rigidbody will be worked through in Chapter 7, Rigidbodies and Physics Interaction. We will be using Rigidbodies in the creation of characters as well as environments and interactive gameplay.

 Collision detection

 A GameObject with a Rigidbody without any colliders will not fully utilize the physics and with gravity turned on will just fall through the world. There are quite a few colliders to play with to best suit your games’ needs. In Figure 1.8 below, you can see that there are separate colliders for 2D. These use a different physics system from 3D. If you are using 2D only for your game, make sure to run with the 2D colliders.

 [image:]
 Figure 1.8: Collider component options

 You are also welcome to add multiple colliders—with the basic options seen in Figure 1.8 above—to an object to best suit the shape of the GameObject. It is very common to see colliders on empty GameObjects that are children of the primary object, to allow the easy transformation of the colliders. We will see this in practice in Chapter 4, Characters, and Chapter 5, Environment.

 The Unity interface

 The interface for Unity is separated into several major components. In Figure 1.9 below, we will go over the scene (red) and the items within its interface as well as how to manipulate their properties in the inspector (orange). Then we will go into items that aren’t active in the scene but are available to add in the project window (yellow). Finally, we will go over the game view (green) and the package manager (separate from Figure 1.9).

 [image:]
 Figure 1.9: Overall interface

 Scene view and hierarchy

 The scene view and hierarchy work in tandem. The hierarchy is how the scene will be rendered when the game is played. The scene view allows you to manipulate the GameObjects and their values in real time. Furthermore, when the editor is in Play mode, the game can make changes to the GameObjects in the hierarchy.

 When the GameObjects are being manipulated in Play mode, to include if you change them yourself in the scene view, after you stop the game, the GameObjects will revert to their original state before play has started.

 [image:]
 Figure 1.10: Scene and hierarchy

 In Figure 1.10 above, there is a lot of information that can be seen right away. On the left, in the hierarchy, you can see that there are objects in the scene. These objects all have a transform, which places them in the world. If you double-click on an item or click on an item, put your mouse in the scene view, and then press f, you will then focus on that GameObject, which puts the item centered on the scene’s viewport.

 When you have an item selected, you can see that at the object’s pivot point—usually the center of the object—there is a tool showing colored arrows. The tool allows you to position the GameObject in space. You can also position the object on a plane by selecting the little square in between two axes.

 In the upper right of Figure 1.10, you will see a camera gizmo. This little gizmo will allow you easily orient the viewport camera to the front, sides, top, bottom, or change it to an isometric camera or perspective with a single click.

 Now that you have seen the item in the scene, selected by left-clicking in the scene or the hierarchy, you may want to change some properties or add components to that GameObject. This is where the inspector comes into play.

 Inspector

 To manipulate a GameObject’s value, when you select the GameObject in the scene or hierarchy, the inspector will update to show you the viable options to change per GameObject.

 [image:]
 Figure 1.11: Inspector window

 The inspector window in Figure 1.11 shows that a good amount of this item has been chosen. At the top, the name is Cube and the blue cube to the left denotes a prefab data type. You are able to make changes to the prefab itself by clicking the Open button just below the name. This will create a new scene view that shows the prefab only. When you make changes to the prefab, it will make a change to all instanced prefabs in any scene that is referencing it.

 The transform component shows the position, rotation, and scale of the prefab in the scene.

 The mesh filter shows the vertices, edges, and faces that make up that polygon.

 Below that is the mesh renderer. This component will allow the rendering of the mesh rendered in the mesh filter component. We can set the material here and other options that pertain to this item’s specific lighting and probes, which we will cover in Chapter 12, Final Touches.

 Now, below this is a collider and a Rigidbody. These work in tandem and help this object to react to physics in real time, according to the settings on the components.

 We’ve talked a lot about items in the scene and their properties, but where are they housed outside of the scene if they’re only referenced items? The Project window will answer this question.

 The Project window

 Here you will find assets that will be instanced in the scene or used as a component to fully realize the game you are building.

 [image:]
 Figure 1.12: Project window

 This window is the physical representation of the GameObjects that are referenced. All of the items in the assets folder seen in Figure 1.12 are physically on your hard drive. Unity makes meta files that house all of the properties of the items.

 The interesting thing about having the raw files in the Project window is that you can make changes to the items and when you focus on the Unity project (click on the Unity app), it will readjust the meta files and reload the items in the scene. This makes it so that, you can iterate on scripts and art faster!

 We’ve looked at the GameObjects in the scene, placed them by manipulating the transforms, and know where the GameObjects were referenced from. Now we should look at the game view to know how the game itself looks.

 Game view

 The game view is similar to the scene view; however, it follows the rules that are built in the scene view. The game will automatically render scene content through the main camera unless you define a different camera to render through.

 [image:]
 Figure 1.13: Game view

 You can see that this looks very similar to the scene window, but the top has different options. At the top left, we can see the Display dropdown. This allows us to change cameras if we have multiple in the scene. The ratio is to the right of that, which is helpful to look at so you can target certain devices. Scale, to the right of the screen ratio, is helpful to quickly make the window larger or zoom in for debugging. Maximize On Play will maximize the screen on play to take advantage of the full screen. Mute Audio mutes the game’s audio. Stats will give a small overview of the stats in the game view.

 Later on in this project, during optimization, we will go through profiling for a much more in-depth way to look at what may be causing issues within the gameplay in terms of memory usage and other optimization opportunities.

 [image:]
 Figure 1.14: Game statistics

 Continuing on to the right is Gizmos. This is a set of items that show in the game view in Figure 1.14, which you might now want to see. In this menu, you are able to turn them off or on depending on your needs.

 Package Manager

 Your Unity ID will house the packages you’ve bought from the Unity Asset Store as well as the packages you may have on your hard drive or GitHub! You can use the package manager to import the packages into your project.

 You can get to these packages under Window > Package Manager as seen in Figure 1.15 below.

 [image:]
 Figure 1.15: Package Manager path

 After you open the package manager, you will initially be shown what packages are in the project. You can change the top-left dropdown to see what is standard in Unity or what packages you have bought in the Unity Asset Store.

 [image:]
 Figure 1.16: Package Manager

 By choosing Unity Registry, you’ll see a list of the Unity tested packages that come free and are part of the Unity platform, available if you need them. You can read up on every package in the documents that are provided via the link on the right-hand side labeled View documentation when you click on a package on the left.

 If you select In Project, it will show you what packages are already installed with the current project that is loaded. This is helpful when you want to uninstall a package that may not be needed.

 My Assets are the assets that you’ve bought or the project you are on and those associated with your Unity ID as paid for previously.

 Built-in is standard with any project. You may need to enable or disable a built-in package depending on what your needs are. Explore them and disable what is not needed; a tidy project now leads to less optimization later.

 Essential Unity concepts

 In the first section, we already went over some Unity concepts. We will go over them in a bit more detail here as you’ve read previously where several of these might be used. Unity houses a very modular focus on the items that are housed within the game development environment.

 Assets

 Unity treats every file as an asset; everything including a 3D model, a texture file, a sprite, a particle system, and so on. In your project, you will have an Assets folder as the base folder to house all of your project items. These could be textures, 3D models, particle systems, materials, shaders, animations, sprites, and the list goes on. As we add more to our project, the Assets folder should be organized and ready to grow. It is strongly recommended to keep your folder structure organized so that you or your team aren’t wasting time trying to find that one texture item that was left in a random folder by accident.

 Scenes

 A scene houses all of the gameplay logic, GameObjects, cinematics, and everything else that your game will reference to render or interact with.

 Scenes are also used to cut up gameplay sections to bring down the load times. If you imagine trying to load every single asset on a modern game every time you loaded it up, it would take way too much precious gaming time.

 GameObjects

 Most assets that are referenced in a scene will be a GameObject (GO). There are some instances in which an asset can only be a component of a GO. The one common factor that you will see with all GOs is that they have the Transform component. As we read at the beginning of this chapter, a transform holds the local position, rotation, and scale. World transforms are calculated from this following their hierarchy. GOs can have a long list of components connected to give functionality or data to be used in scripts for mechanics to grow.

 Components

 GOs have the ability to house multiple pieces of functionality attached as “components.” Each component has its own unique properties. The entire list of components you can add is fairly extensive, as you can see in Figure 1.17 below.

 [image:]
 Figure 1.17: Component list

 Each of these sections has smaller subsections. We will go over quite a few of them in this book. When you add an asset to the scene hierarchy that requires components, Unity will add them by default. An example of this default action happening is when you drag a 3D mesh into the hierarchy, the GOs will have a mesh renderer component attached to the object automatically.

 Scripts

 One component that is often used on a GameObject is a script. This is where all of the logic and mechanics will be built onto your GameObjects. Whether you want to change the color, jump, change the time of day, or collect an item, you will need to add that logic in a script on the object.

 In Unity, the primary language is C# (pronounced “C sharp”). This is a strongly typed programming language, meaning that there must be a type assigned to any variable that is being manipulated.

 We will be using scripts in a multitude of ways and I know you are excited to get right into coding, but first, we need to get into other Unity standard processes.

 Prefabs

 Utilizing the modular and strong object-oriented nature of Unity, we can put together a grouping of items with default values set on their components, which can be instanced in the scene at any time and house their own values.

 To make a prefab, you drag a GameObject from the hierarchy in the scene to the asset browser. It will create a new prefab as well as turning that GameObject into the newly created prefab. It will also turn blue by default in the hierarchy as seen in Figure 1.18.

 [image:]
 Figure 1.18: Prefab in hierarchy

 Packages

 To take the modular components to a whole new level, Unity can take a package with all of its dependencies and export them out so you can bring them into other projects! Even better, you can sell your packages to other game developers from the Unity Asset Store!

 Now that you have a solid foundation in 3D and Unity terms, let’s open it up and go over the interface itself. The next section will be a look into all of the most common interface pieces of Unity.

 Summary

 Together, we went over several key areas to begin your journey in game development. In this chapter, we laid the foundation for what is to come by going over some fundamental features of three primary topics. For the third dimension, we went over the coordinate system, vectors, cameras, 3D meshes, and the basics of Rigidbody physics and collision detection. This was enough of the basics to allow us to get into Unity concepts, such as assets and GameObjects, followed by scripting in C# and prefab basics. To end this chapter, we went through a virtual tour of the Unity interface—scenes, the hierarchy, inspectors, and the package manager.

 In the next chapter, we will be going over design and prototyping fundamentals. This will allow you to follow along while we describe our thought processes for the project being created throughout this book. It will also lay the foundational knowledge for you to follow when you make your own projects, following your completion of this book.

OEBPS/Images/B17304_01_08.png
GBoxCalider -
O Box Collider 2D

9 Capsule Collider

0 Capsule Collider 2D
O circle Collider 2D

0, Composite Collider 2D
2 Edge Collider 2D

F Mesh Collider

4 Polygon Collider 2D
€ Sphere Collider

® Terrain Collider

OEBPS/Images/B17304_01_16.png
Maximize On Play Mute Audio Stats Gizmos ¥

Statistics
Audio:
Level: - 74.8 dB DSP load: 0.1%
Clipping: 0.0% Stream load: 0.0%
Graphics: 1177.7 FPS (0.8ms)

CPU: main 0.8ms render thread 0.5ms
Batches: 38 Saved by batching: 0

Tris: 4.2k Verts: 7.2k

Screen: 843x474 - 4.6 MB

SetPass calls: 6 Shadow casters: 20
Visible skinned meshes: 0 Animations: 0

OEBPS/Images/Davis1.png

OEBPS/Images/B17304_01_03.png

OEBPS/Images/blockquote-top.png

OEBPS/Images/Ryan1.png

OEBPS/Images/B17304_01_11.png
@ omote sampusets

= Tnspectdr.

Project Window

OEBPS/Images/B17304_01_04.png

OEBPS/Images/B17304_01_07.png
4 Rigidbody

Mass il

Drag 0
Angular Drag 0.05
Use Gravity v

Is Kinematic

Interpolate None
Collision Detection Discrete

Constraints
Info

L

OEBPS/Images/tip.png

OEBPS/Images/B17304_01_17.png
one - Unity 2020.1.21* <DX11>

rial Window Help

Panels >
Next Window Ctri+Tab
Previous Window Ctrl+ShiftsTab
Layouts >
Collaborate
Asset Store

T
Asset Management >

TextMeshPro 5

OEBPS/Images/B17304_01_12.png
lierarchy @ i # Scene o®@Game @ SH_Standardshader H Timeline

e G 2 @y @ BWE My O o (8w &~ @ uv Q5
& Chapterl_Bamplesetup
@ Main Camera ‘ -
@

: »
@ L}
@G_figure_1.6 i
G

[:

@ stage

9 Directional Uight
& Canvas

@ EventSystem
@ Cube.

OEBPS/Images/Image21713.png
<PACKTD

OEBPS/Images/cover.png
_ XPERTINSIGHT Ppackh

Unity

3D Game Development

Designed for passionate game developers—
Engineered to build professional games

Anthony Davis | Travis Baptiste | Russell Craig | Ryan Stunkel

OEBPS/Images/info.png

OEBPS/Images/B17304_01_14.png
M Project B Console @ Animation
Hv
* Favorites Assets.
O, Al Materials
O Al Models

v G Assets
@ Clayxels Clayeels ExampleAs. Matericls Prefabs Presets Scenes Saripts
mEditor
examples
B meshUtis
m Resources
B ExampleAssets
= Materials
 Prefabs
B Presets
B Scenes.
s Scripts
B Settings
s Textures
B Tree_Textures
s Tutorialinfo
B Packages.

OEBPS/Images/Russel1.png

OEBPS/Images/Travis1.png

OEBPS/Images/B17304_01_01.png
+y

Left-handed

+z

+X

+y

+z

Right-handed

+X

OEBPS/Images/blockquote-bottom.png

OEBPS/Images/B17304_01_05.png
Basic Lit Material 1 (Material)

Shader Universal Render Pipeline/Lit

Surface Options
Surface Inputs
ase Map
© Metallic Map
Smoothness
Source
©Normal Map
®Occlusion Map
Emission
Emission Map
Tiling
Offset

Advanced

B

@
Metallic Alpha
X1 Y1
X 0 Y 0

OEBPS/Images/B17304_01_13.png
© Inspector

@ v Ccube

" Tag Untagged

S Package Manager

A Transform

Position

Rotation

Scale

B cube (MeshFilter)
Mesh

B3 v MeshRenderer
Materials

Element 0

Lighting

Probes

Additional Sottings

& v Box Collider

Edit Collider

s Trigger

Material

Center

Size

& Rigidbody
M_1 (Material)
Shader

UV Editor

¥ Layer Default

5 (d Y 15 Z B
% @ Y 0 zZo
R X 12 v (02 z12

DIVE

Pl

None (Physic Material)
X 0 Y o zo
o v @

Universal Render Pipeline/Lit

Add Component

3 i

Static v

OEBPS/Images/B17304_QR.png

OEBPS/Images/B17304_01_15.png
dure Texture Colored Texture

a3

OEBPS/Images/B17304_01_09.png
v) Transform @ i i

Position X -19.16165 Y -7.051744 Z -12.67242
Rotation X0 Y o Zo
Scale X1 1 Z1
Add Component
Component
Effects >4
Event >
Layout >
Miscellaneous >
Navigation >
Physics 2D >
Physics >
Playables >
Rendering >
Scripts. >
Tilemap >
ul S

OEBPS/Images/B17304_01_02.png

OEBPS/Images/B17304_01_18.png
S Package Manager

+ v |Packages: Unity Registry ¥ Sort: Name ¥ v

In Project

My A

Buitin

20 Tiemap Edtor
Adaptve Performance

Adaptive Performance Samsung An.
Addressablos

Advertisement

Aembic

Analytics Library

Android Logeat

AR Foundation

ARCore XR Plugin

ARKit Face Tracking

ARKILXR Plugin

Burst

Ginemachine

Feitor Corautines.
Last update Jan 26, 21:47

428
302
317
100
a1s
100
119

185
349
107
335

3110
3110
3110
3110
138
263
100

2D Animation

Unity Technologies Inc.
Version 4.2.8 - January 11, 2021
View documentation - View changelog « View licenses

2D Animation provides allthe necessary tooling and runtime components for skeletal
‘animation using Sprites.

Registry Uity

install] Remove

OEBPS/Images/QR_Code89002272-1876859406.png

OEBPS/Images/B17304_01_06.png
No Texture Texture Colored Texture

Tint

OEBPS/Images/B17304_01_10.png
D) New Text (2)
£ New Text (3)
0 New Text (4)
g Cube

£ GameObject

