

[image: Cover Image]

DATA SCIENCE
FUNDAMENTALS

Pocket Primer

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and companion files (the “Work”), you agree that this license grants permission to use the contents contained herein, including the disc, but does not give you the right of ownership to any of the textual content in the book / disc or ownership to any of the information or products contained in it. This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone involved in the creation, writing, or production of the companion disc, accompanying algorithms, code, or computer programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to ensure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs. The Work is sold “as is” without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book and/or disc, and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” vary from state to state, and might not apply to the purchaser of this product.

Companion files for this title are available by writing to the publisher at info@merclearning.com.

DATA SCIENCE
FUNDAMENTALS

Pocket Primer

Oswald Campesato

[image: image]

Copyright ©2021 by MERCURY LEARNING AND INFORMATION LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION

22841 Quicksilver Drive

Dulles, VA 20166

info@merclearning.com

www.merclearning.com

800-232-0223

O. Campesato. Data Science Fundamentals Pocket Primer.

ISBN: 978-1-68392-733-4

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2021937777

212223321 This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.
For additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors.
Companion files (figures and code listings) for this title are available by contacting info@merclearning.com. The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the disc, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.

I’d like to dedicate this book to my parents-

may this bring joy and happiness into their lives.

Contents

Preface

Chapter 1 Working With Data

What are Datasets?

Data Preprocessing

Data Types

Preparing Datasets

Discrete Data Versus Continuous Data

“Binning” Continuous Data

Scaling Numeric Data via Normalization

Scaling Numeric Data via Standardization

What to Look for in Categorical Data

Mapping Categorical Data to Numeric Values

Working with Dates

Working with Currency

Missing Data, Anomalies, and Outliers

Missing Data

Anomalies and Outliers

Outlier Detection

What is Data Drift?

What is Imbalanced Classification?

What is SMOTE?

SMOTE Extensions

Analyzing Classifiers (Optional)

What is LIME?

What is ANOVA?

The Bias-Variance Trade-Off

Types of Bias in Data

Summary

Chapter 2 Intro to Probability and Statistics

What is a Probability?

Calculating the Expected Value

Random Variables

Discrete versus Continuous Random Variables

Well-Known Probability Distributions

Fundamental Concepts in Statistics

The Mean

The Median

The Mode

The Variance and Standard Deviation

Population, Sample, and Population Variance

Chebyshev’s Inequality

What is a P-Value?

The Moments of a Function (Optional)

What is Skewness?

What is Kurtosis?

Data and Statistics

The Central Limit Theorem

Correlation versus Causation

Statistical Inferences

Statistical Terms – RSS, TSS, R^2, and F1 Score

What is an F1 Score?

Gini Impurity, Entropy, and Perplexity

What is the Gini Impurity?

What is Entropy?

Calculating Gini Impurity and Entropy Values

Multidimensional Gini Index

What is Perplexity?

Cross-Entropy and KL Divergence

What is Cross-Entropy?

What is KL Divergence?

What’s their Purpose?

Covariance and Correlation Matrices

The Covariance Matrix

Covariance Matrix: An Example

The Correlation Matrix

Eigenvalues and Eigenvectors

Calculating Eigenvectors: A Simple Example

Gauss Jordan Elimination (Optional)

PCA (Principal Component Analysis)

The New Matrix of Eigenvectors

Well-Known Distance Metrics

Pearson Correlation Coefficient

Jaccard Index (or Similarity)

Local Sensitivity Hashing (Optional)

Types of Distance Metrics

What is Bayesian Inference?

Bayes’ Theorem

Some Bayesian Terminology

What is MAP?

Why Use Bayes’ Theorem?

Summary

Chapter 3 Linear Algebra Concepts

What is Linear Algebra?

What are Vectors?

The Norm of a Vector

The Inner Product of Two Vectors

The Cosine Similarity of Two Vectors

Bases and Spanning Sets

Three Dimensional Vectors and Beyond

What are Matrices?

Add and Multiply Matrices

The Determinant of a Square Matrix

Well-Known Matrices

Properties of Orthogonal Matrices

Operations Involving Vectors and Matrices

Gauss Jordan Elimination (Optional)

Covariance and Correlation Matrices

The Covariance Matrix

Covariance Matrix: An Example

The Correlation Matrix

Eigenvalues and Eigenvectors

Calculating Eigenvectors: A Simple Example

What is PCA (Principal Component Analysis)?

The Main Steps in PCA

The New Matrix of Eigenvectors

Dimensionality Reduction

Dimensionality Reduction Techniques

The Curse of Dimensionality

SVD (Singular Value Decomposition)

LLE (Locally Linear Embedding)

UMAP

t-SNE

PHATE

Linear Versus Non-Linear Reduction Techniques

Complex Numbers (Optional)

Complex Numbers on the Unit Circle

Complex Conjugate Root Theorem

Hermitian Matrices

Summary

Chapter 4 Introduction to Python

Tools for Python

easy_install and pip

virtualenv

Python Installation

Setting the PATH Environment Variable (Windows Only)

Launching Python on Your Machine

The Python Interactive Interpreter

Python Identifiers

Lines, Indentations, and Multi-Lines

Quotation and Comments in Python

Saving Your Code in a Module

Some Standard Modules in Python

The help() and dir() Functions

Compile Time and Runtime Code Checking

Simple Data Types in Python

Working with Numbers

Working with Other Bases

The chr() Function

The round() Function in Python

Formatting Numbers in Python

Unicode and UTF-8

Working with Unicode

Working with Strings

Comparing Strings

Formatting Strings in Python

Uninitialized Variables and the Value None in Python

Slicing and Splicing Strings

Testing for Digits and Alphabetic Characters

Search and Replace a String in Other Strings

Remove Leading and Trailing Characters

Printing Text without NewLine Characters

Text Alignment

Working with Dates

Converting Strings to Dates

Exception Handling in Python

Handling User Input

Command-Line Arguments

Precedence of Operators in Python

Python Reserved Words

Working with Loops in Python

Python For Loops

A For Loop with try/except in Python

Numeric Exponents in Python

Nested Loops

The split() Function with For Loops

Using the split() Function to Compare Words

Using the split() Function to Print Justified Text

Using the split() Function to Print Fixed Width Text

Using the split() Function to Compare Text Strings

Using the split() Function to Display Characters in a String

The join() Function

Python While Loops

Conditional Logic in Python

The break/continue/pass Statements

Comparison and Boolean Operators

The in/not in/is/is not Comparison Operators

The and, or, and not Boolean Operators

Local and Global Variables

Scope of Variables

Pass by Reference Versus Value

Arguments and Parameters

Using a While Loop to Find the Divisors of a Number

Using a While Loop to Find Prime Numbers

User-Defined Functions in Python

Specifying Default Values in a Function

Returning Multiple Values from a Function

Functions with a Variable Number of Arguments

Lambda Expressions

Recursion

Calculating Factorial Values

Calculating Fibonacci Numbers

Working with Lists

Lists and Basic Operations

Reversing and Sorting a List

Lists and Arithmetic Operations

Lists and Filter-related Operations

Sorting Lists of Numbers and Strings

Expressions in Lists

Concatenating a List of Words

The Python range() Function

Counting Digits, Uppercase, and Lowercase Letters

Arrays and the append() Function

Working with Lists and the split() Function

Counting Words in a List

Iterating Through Pairs of Lists

Other List-Related Functions

Working with Vectors

Working with Matrices

Queues

Tuples (Immutable Lists)

Sets

Dictionaries

Creating a Dictionary

Displaying the Contents of a Dictionary

Checking for Keys in a Dictionary

Deleting Keys from a Dictionary

Iterating Through a Dictionary

Interpolating Data from a Dictionary

Dictionary Functions and Methods

Dictionary Formatting

Ordered Dictionaries

Sorting Dictionaries

Python Multi Dictionaries

Other Sequence Types in Python

Mutable and Immutable Types in Python

The type() Function

Summary

Chapter 5 Introduction to NumPy

What is NumPy?

Useful NumPy Features

What are NumPy Arrays?

Working with Loops

Appending Elements to Arrays (1)

Appending Elements to Arrays (2)

Multiplying Lists and Arrays

Doubling the Elements in a List

Lists and Exponents

Arrays and Exponents

Math Operations and Arrays

Working with “-1” Sub-ranges with Vectors

Working with “-1” Sub-ranges with Arrays

Other Useful NumPy Methods

Arrays and Vector Operations

NumPy and Dot Products (1)

NumPy and Dot Products (2)

NumPy and the Length of Vectors

NumPy and Other Operations

NumPy and the reshape() Method

Calculating the Mean and Standard Deviation

Code Sample with Mean and Standard Deviation

Trimmed Mean and Weighted Mean

Working with Lines in the Plane (Optional)

Plotting Randomized Points with NumPy and Matplotlib

Plotting a Quadratic with NumPy and Matplotlib

What is Linear Regression?

What is Multivariate Analysis?

What about Non-Linear Datasets?

The MSE (Mean Squared Error) Formula

Other Error Types

Non-Linear Least Squares

Calculating the MSE Manually

Find the Best-Fitting Line in NumPy

Calculating MSE by Successive Approximation (1)

Calculating MSE by Successive Approximation (2)

Google Colaboratory

Uploading CSV Files in Google Colaboratory

Summary

Chapter 6 Introduction to Pandas

What is Pandas?

Pandas Options and Settings

Pandas Data Frames

Data Frames and Data Cleaning Tasks

Alternatives to Pandas

A Pandas Data Frame with a NumPy Example

Describing a Pandas Data Frame

Pandas Boolean Data Frames

Transposing a Pandas Data Frame

Pandas Data Frames and Random Numbers

Reading CSV Files in Pandas

The loc() and iloc() Methods in Pandas

Converting Categorical Data to Numeric Data

Matching and Splitting Strings in Pandas

Converting Strings to Dates in Pandas

Merging and Splitting Columns in Pandas

Combining Pandas Data Frames

Data Manipulation with Pandas Data Frames (1)

Data Manipulation with Pandas Data Frames (2)

Data Manipulation with Pandas Data Frames (3)

Pandas Data Frames and CSV Files

Managing Columns in Data Frames

Switching Columns

Appending Columns

Deleting Columns

Inserting Columns

Scaling Numeric Columns

Managing Rows in Pandas

Selecting a Range of Rows in Pandas

Finding Duplicate Rows in Pandas

Inserting New Rows in Pandas

Handling Missing Data in Pandas

Multiple Types of Missing Values

Test for Numeric Values in a Column

Replacing NaN Values in Pandas

Sorting Data Frames in Pandas

Working with groupby() in Pandas

Working with apply() and mapapply() in Pandas

Handling Outliers in Pandas

Pandas Data Frames and Scatterplots

Pandas Data Frames and Simple Statistics

Aggregate Operations in Pandas Data Frames

Aggregate Operations with the titanic.csv Dataset

Save Data Frames as CSV Files and Zip Files

Pandas Data Frames and Excel Spreadsheets

Working with JSON-based Data

Python Dictionary and JSON

Python, Pandas, and JSON

Useful One-line Commands in Pandas

What is Method Chaining?

Pandas and Method Chaining

Pandas Profiling

Summary

Chapter 7 Introduction to R

What is R?

Features of R

Installing R and RStudio

Variable Names, Operators, and Data Types in R

Assigning Values to Variables in R

Operators in R

Data Types in R

Working with Strings in R

Uppercase and Lowercase Strings

String-Related Tasks

Working with Vectors in R

Finding NULL Values in a Vector in R

Updating NA Values in a Vector in R

Sorting a Vector of Elements in R

Working with the Alphabet Variable in R

Working with Lists in R

Working with Matrices in R (1)

Working with Matrices in R (2)

Working with Matrices in R (3)

Working with Matrices in R (4)

Working with Matrices in R (5)

Updating Matrix Elements

Logical Constraints and Matrices

Working with Matrices in R (6)

Combining Vectors, Matrices, and Lists in R

Working with Dates in R

The seq Function in R

Basic Conditional Logic

Compound Conditional Logic

Working with User Input

A Try/Catch Block in R

Linear Regression in R

Working with Simple Loops in R

Working with Nested Loops in R

Working with While Loops in R

Working with Conditional Logic in R

Add a Sequence of Numbers in R

Check if a Number is Prime in R

Check if Numbers in an Array are Prime in R

Check for Leap Years in R

Well-formed Triangle Values in R

What are Factors in R?

What are Data Frames in R?

Working with Data Frames in R (1)

Working with Data Frames in R (2)

Working with Data frames in R (3)

Sort a Data Frame by Column

Reading Excel Files in R

Reading SQLITE Tables in R

Reading Text Files in R

Saving and Restoring Objects in R

Data Visualization in R

Working with Bar Charts in R (1)

Working with Bar Charts in R (2)

Working with Line Graphs in R

Working with Functions in R

Math-related Functions in R

Some Operators and Set Functions in R

The “Apply Family” of Built-in Functions

The dplyr Package in R

The Pipe Operator %>%

Working with CSV Files in R

Working with XML in R

Reading an XML Document into an R Data Frame

Working with JSON in R

Reading a JSON File into an R Data Frame

Statistical Functions in R

Summary Functions in R

Defining a Custom Function in R

Recursion in R

Calculating Factorial Values in R (Non-recursive)

Calculating Factorial Values in R (recursive)

Calculating Fibonacci Numbers in R (Non-recursive)

Calculating Fibonacci Numbers in R (Recursive)

Convert a Decimal Integer to a Binary Integer in R

Calculating the GCD of Two Integers in R

Calculating the LCM of Two Integers in R

Summary

Chapter 8 Regular Expressions

What are Regular Expressions?

Metacharacters in Python

Character Sets in Python

Working with “^” and “\”

Character Classes in Python

Matching Character Classes with the re Module

Using the re.match() Method

Options for the re.match() Method

Matching Character Classes with the re.search() Method

Matching Character Classes with the findAll() Method

Finding Capitalized Words in a String

Additional Matching Function for Regular Expressions

Grouping with Character Classes in Regular Expressions

Using Character Classes in Regular Expressions

Matching Strings with Multiple Consecutive Digits

Reversing Words in Strings

Modifying Text Strings with the re Module

Splitting Text Strings with the re.split() Method

Splitting Text Strings Using Digits and Delimiters

Substituting Text Strings with the re.sub() Method

Matching the Beginning and the End of Text Strings

Compilation Flags

Compound Regular Expressions

Counting Character Types in a String

Regular Expressions and Grouping

Simple String Matches

Pandas and Regular Expressions

Summary

Exercises

Chapter 9 SQL and NoSQL

What is an RDBMS?

A Four-Table RDBMS

The customers Table

The purchase_orders Table

The line_items Table

The item_desc Table

What is SQL?

What is DCL?

What is DDL?

Delete Vs. Drop Vs. Truncate

What is DQL?

What is DML?

What is TCL?

Data Types in MySQL

Working with MySQL

Logging into MySQL

Creating a MySQL Database

Creating and Dropping Tables

Manually Creating Tables for mytools.com

Creating Tables via a SQL Script for mytools.com (1)

Creating Tables via a SQL Script for mytools.com (2)

Creating Tables from the Command Line

Dropping Tables via a SQL Script for mytools.com

Populating Tables with Seed Data

Populating Tables from Text Files

Simple SELECT Statements

Select Statements with a WHERE Clause

Select Statements with GROUP BY Clause

Select Statements with a HAVING Clause

Working with Indexes in SQL

What are Keys in an RDBMS?

Aggregate and Boolean Operations in SQL

Joining Tables in SQL

Defining Views in MySQL

Entity Relationships

One-to-Many Entity Relationships

Many-to-Many Entity Relationships

Self-Referential Entity Relationships

Working with Subqueries in SQL

Other Tasks in SQL

Reading MySQL Data from Pandas

Export SQL Data to Excel

What is Normalization?

What are Schemas?

Other RDBMS Topics

Working with NoSQL

Create MongoDB Cellphones Collection

Sample Queries in MongoDB

Summary

Chapter 10 Data Visualization

What is Data Visualization?

Types of Data Visualization

What is Matplotlib?

Horizontal Lines in Matplotlib

Slanted Lines in Matplotlib

Parallel Slanted Lines in Matplotlib

A Grid of Points in Matplotlib

A Dotted Grid in Matplotlib

Lines in a Grid in Matplotlib

A Colored Grid in Matplotlib

A Colored Square in an Unlabeled Grid in Matplotlib

Randomized Data Points in Matplotlib

A Histogram in Matplotlib

A Set of Line Segments in Matplotlib

Plotting Multiple Lines in Matplotlib

Trigonometric Functions in Matplotlib

Display IQ Scores in Matplotlib

Plot a Best-Fitting Line in Matplotlib

Introduction to Sklearn (scikit-learn)

The Digits Dataset in Sklearn

The Iris Dataset in Sklearn (1)

Sklearn, Pandas, and the Iris Dataset

The Iris Dataset in Sklearn (2)

The Faces Dataset in Sklearn (Optional)

Working with Seaborn

Features of Seaborn

Seaborn Built-in Datasets

The Iris Dataset in Seaborn

The Titanic Dataset in Seaborn

Extracting Data from the Titanic Dataset in Seaborn (1)

Extracting Data from the Titanic Dataset in Seaborn (2)

Visualizing a Pandas Dataset in Seaborn

Data Visualization in Pandas

What is Bokeh?

Summary

Index

Preface

WHAT IS THE PRIMARY VALUE PROPOSITION FOR THIS BOOK?

This book contains a fast-paced introduction to as much relevant information about data analytics as possible that can be reasonably included in a book of this size. Please keep in mind the following point: this book is intended to provide you with a broad overview of many relevant technologies.

As such, you will be exposed to a variety of features of NumPy and Pandas, how to write regular expressions (with an accompanying chapter), and how to perform many data cleaning tasks. Keep in mind that some topics are presented in a cursory manner, which is for two main reasons. First, it’s important that you be exposed to these concepts. In some cases, you will find topics that might pique your interest, and hence motivate you to learn more about them through self-study; in other cases, you will probably be satisfied with a brief introduction. In other words, you can decide whether to delve into more detail regarding the topics in this book.

Second, a full treatment of all the topics that are covered in this book would significantly increase the size of this book.

However, it’s important for you to decide if this approach is suitable for your needs and learning style. If not, you can select one or more of the plethora of data analytics books that are available.

THE TARGET AUDIENCE

This book is intended primarily for people who have worked with Python and are interested in learning about several important Python libraries, such as NumPy and Pandas.

This book is also intended to reach an international audience of readers with highly diverse backgrounds. While many readers know how to read English, their native spoken language is not English. Consequently, this book uses standard English rather than colloquial expressions that might be confusing to those readers. As you know, many people learn by different types of imitation, which includes reading, writing, or hearing new material. This book takes these points into consideration to provide a comfortable and meaningful learning experience for the intended readers.

WHAT WILL I LEARN FROM THIS BOOK?

The first chapter contains a quick tour of basic Python 3, followed by a chapter that introduces you to data types and data cleaning tasks, such as working with datasets that contain different types of data and how to handle missing data. The third and fourth chapters introduce you to NumPy and Pandas (and many code samples).

The fifth chapter contains fundamental concepts in probability and statistics, such as mean, mode, and variance and correlation matrices. You will also learn about Gini impurity, entropy, and KL-divergence. You will also learn about eigenvalues, eigenvectors, and PCA (Principal Component Analysis).

The sixth chapter of this book delves into Pandas, followed by Chapter 7 about R programming. Chapter 8 covers regular expressions and provides with plenty of examples. Chapter 9 discusses both SQL and NoSQL, and then Chapter 10 discusses data visualization with numerous code samples for Matplotlib, Seaborn, and Bokeh.

WHY ARE THE CODE SAMPLES PRIMARILY IN PYTHON?

Most of the code samples are short (usually less than one page and sometimes less than half a page), and if need be, you can easily and quickly copy/paste the code into a new Jupyter notebook. For the Python code samples that reference a CSV file, you do not need any additional code in the corresponding Jupyter notebook to access the CSV file. Moreover, the code samples execute quickly, so you won’t need to avail yourself of the free GPU that is provided in Google Colaboratory.

If you do decide to use Google Colaboratory, you can avail yourself of many useful features of Colaboratory (e.g., the upload feature to upload existing Jupyter notebooks). If the Python code references a CSV file, make sure that you include the appropriate code snippet (as explained in Chapter 1) to access the CSV file in the corresponding Jupyter notebook in Google Colaboratory.

DO I NEED TO LEARN THE THEORY PORTIONS OF THIS BOOK?

Once again, the answer depends on the extent to which you plan to become involved in data analytics. For example, if you plan to study machine learning, then you will probably learn how to create and train a model, which is a task that is performed after data cleaning tasks. In general, you will probably need to learn everything that you encounter in this book if you are planning to become a machine learning engineer.

WHY DOES THIS BOOK INCLUDE SKLEARN MATERIAL?

The Sklearn material in this book is minimalistic because this book is not about machine learning. The Sklearn material is located in Chapter 6, where you will learn about some of the Sklearn built-in datasets. If you decide to delve into machine learning, you will have already been introduced to some aspects of Sklearn.

WHY IS A REGEX CHAPTER INCLUDED IN THIS BOOK?

Regular expressions are supported in multiple languages (including Java and JavaScript) and they enable you to perform complex tasks with very compact regular expressions. Regular expressions can seem arcane and too complex to learn in a reasonable amount of time. Chapter 2 contains some Pandas-based code samples that use regular expressions to perform tasks that might otherwise be more complicated.

If you plan to use Pandas extensively or you plan to work on NLP-related tasks, then the code samples in this chapter will be very useful for you because they are more than adequate for solving certain types of tasks, such as removing HTML tags. Moreover, your knowledge of RegEx will transfer instantly to other languages that support regular expressions.

GETTING THE MOST FROM THIS BOOK

Some programmers learn well from prose, others learn well from sample code (and lots of it), which means that there’s no single style that can be used for everyone.

Moreover, some programmers want to run the code first, see what it does, and then return to the code to delve into the details (and others use the opposite approach).

Consequently, there are various types of code samples in this book: some are short, some are long, and other code samples “build” from earlier code samples.

WHAT DO I NEED TO KNOW FOR THIS BOOK?

Current knowledge of Python 3.x is the most helpful skill. Knowledge of other programming languages (such as Java) can also be helpful because of the exposure to programming concepts and constructs. The less technical knowledge that you have, the more diligence will be required to understand the various topics that are covered.

If you want to be sure that you can grasp the material in this book, glance through some of the code samples to get an idea of how much is familiar to you and how much is new for you.

DOESN’T THE COMPANION FILES OBVIATE THE NEED FOR THIS BOOK?

The companion files contains all the code samples to save you time and effort from the error-prone process of manually typing code into a text file. In addition, there are situations in which you might not have easy access to the companion files. Furthermore, the code samples in the book provide explanations that are not available on the companion files.

DOES THIS BOOK CONTAIN PRODUCTION-LEVEL CODE SAMPLES?

The primary purpose of the code samples in this book is to show you Python-based libraries for solving a variety of data-related tasks in conjunction with acquiring a rudimentary understanding of statistical concepts. Clarity has higher priority than writing more compact code that is more difficult to understand (and possibly more prone to bugs). If you decide to use any of the code in this book in a production website, you should subject that code to the same rigorous analysis as the other parts of your code base.

WHAT ARE THE NON-TECHNICAL PREREQUISITES FOR THIS BOOK?

Although the answer to this question is more difficult to quantify, it’s important to have strong desire to learn about data science, along with the motivation and discipline to read and understand the code samples.

HOW DO I SET UP A COMMAND SHELL?

If you are a Mac user, there are three ways to do so. The first method is to use Finder to navigate to Applications > Utilities and then double click on the Utilities application. Next, if you already have a command shell available, you can launch a new command shell by typing the following command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on a Macbook from a command shell that is already visible simply by clicking command+n in that command shell, and your Mac will launch another command shell.

If you are a PC user, you can install Cygwin (which is open source: https://cygwin.com/) that simulates bash commands, or use another toolkit such as MKS (a commercial product). Please read the online documentation that describes the download and installation process. Note that custom aliases are not automatically set if they are defined in a file other than the main start-up file (such as .bash_login).

COMPANION FILES

All the code samples and figures in this book may be obtained by writing to the publisher at info@merclearning.com.

WHAT ARE THE NEXT STEPS AFTER FINISHING THIS BOOK?

The answer to this question varies widely, mainly because the answer depends heavily on your objectives. If you are interested primarily in NLP, then you can learn more advanced concepts, such as attention, transformers, and the BERT-related models.

If you are primarily interested in machine learning, there are some subfields of machine learning, such as deep learning and reinforcement learning (and deep reinforcement learning) that might appeal to you. Fortunately, there are many resources available, and you can perform an Internet search for those resources. One other point: the aspects of machine learning for you to learn depend on who you are. The needs of a machine learning engineer, data scientist, manager, student, or software developer are all different.

Oswald Campesato
April 2021

CHAPTER 1

WORKING WITH DATA

This chapter introduces you to data types, how to scale data values, and various techniques for handling missing data values. If most of the material in this chapter is new to you, be assured that it’s not necessary to understand everything in this chapter. It’s still a good idea to read as much material as you can absorb, and perhaps return to this chapter again after you have completed some of the other chapters in this book.

The first part of this chapter contains an overview of different types of data and an explanation of how to normalize and standardize a set of numeric values by calculating the mean and standard deviation of a set of numbers. You will see how to map categorical data to a set of integers and how to perform one-hot encoding.

The second part of this chapter discusses missing data, outliers, and anomalies, as well as some techniques for handling these scenarios. The third section discusses imbalanced data and the use of SMOTE (Synthetic Minority Oversampling Technique) to deal with imbalanced classes in a dataset.

The fourth section discusses ways to evaluate classifiers such as LIME and ANOVA. This section also contains details regarding the bias-variance trade-off and various types of statistical bias.

WHAT ARE DATASETS?

In simple terms, a dataset is a source of data (such as a text file) that contains rows and columns of data. Each row is typically called a data point, and each column is called a feature. A dataset can be in a range of formats: CSV (comma separated values), TSV (tab separated values), Excel spreadsheet, a table in an RDMBS (Relational Database Management Systems), a document in a NoSQL database, or the output from a Web service. Someone needs to analyze the dataset to determine which features are the most important and which features can be safely ignored to train a model with the given dataset.

A dataset can vary from very small (a couple of features and 100 rows) to very large (more than 1,000 features and more than one million rows). If you are unfamiliar with the problem domain, then you might struggle to determine the most important features in a large dataset. In this situation, you might need a domain expert who understands the importance of the features, their interdependencies (if any), and whether the data values for the features are valid. In addition, there are algorithms (called dimensionality reduction algorithms) that can help you determine the most important features. For example, PCA (Principal Component Analysis) is one such algorithm, which is discussed in more detail in Chapter 2.

Data Preprocessing

Data preprocessing is the initial step that involves validating the contents of a dataset, which involves making decisions about missing data, duplicate data, and incorrect data values:

	dealing with missing data values

	cleaning “noisy” text-based data

	removing HTML tags

	removing emoticons

	dealing with emojis/emoticons

	filtering data

	grouping data

	handling currency and date formats (i18n)

Cleaning data is done before data wrangling that involves removing unwanted data as well as handling missing data. In the case of text-based data, you might need to remove HTML tags and punctuation. In the case of numeric data, it’s less likely (though still possible) that alphabetic characters are mixed together with numeric data. However, a dataset with numeric features might have incorrect values or missing values (discussed later). In addition, calculating the minimum, maximum, mean, median, and standard deviation of the values of a feature obviously pertain only to numeric values.

After the preprocessing step is completed, data wrangling is performed, which refers to transforming data into a new format. You might have to combine data from multiple sources into a single dataset. For example, you might need to convert between different units of measurement (such as date formats or currency values) so that the data values can be represented in a consistent manner in a dataset.

Currency and date values are part of i18n (internationalization), whereas l10n (localization) targets a specific nationality, language, or region. Hard-coded values (such as text strings) can be stored as resource strings in a file called a resource bundle, where each string is referenced via a code. Each language has its own resource bundle.

DATA TYPES

Explicit data types exist in many programming languages, such as C, C++, Java, and TypeScript. Some programming languages, such as JavaScript and awk, do not require initializing variables with an explicit type: the type of a variable is inferred dynamically via an implicit type system (i.e., one that is not directly exposed to a developer).

In machine learning, datasets can contain features that have different types of data, such as a combination of one or more of the following:

	numeric data (integer/floating point and discrete/continuous)

	character/categorical data (different languages)

	date-related data (different formats)

	currency data (different formats)

	binary data (yes/no, 0/1, and so forth)

	nominal data (multiple unrelated values)

	ordinal data (multiple and related values)

Consider a dataset that contains real estate data, which can have as many as thirty columns (or even more), often with the following features:

	the number of bedrooms in a house: numeric value and a discrete value

	the number of square feet: a numeric value and (probably) a continuous value

	the name of the city: character data

	the construction date: a date value

	the selling price: a currency value and probably a continuous value

	the “for sale” status: binary data (either “yes” or “no”)

An example of nominal data is the seasons in a year. Although many (most?) countries have four distinct seasons, some countries have two distinct seasons. However, keep in mind that seasons can be associated with different temperature ranges (summer versus winter). An example of ordinal data is an employee’s pay grade: 1=entry level, 2=one year of experience, and so forth. Another example of nominal data is a set of colors, such as {Red, Green, Blue}.

An example of binary data is the pair {Male, Female}, and some datasets contain a feature with these two values. If such a feature is required for training a model, first convert {Male, Female} to a numeric counterpart, such as {0,1}. Similarly, if you need to include a feature whose values are the previous set of colors, you can replace {Red, Green, Blue} with the values {0,1,2}. Categorical data is discussed in more detail later in this chapter.

PREPARING DATASETS

If you have the good fortune to inherit a dataset that is in pristine condition, then data cleaning tasks (discussed later) are vastly simplified: in fact, it might not be necessary to perform any data cleaning for the dataset. On the other hand, if you need to create a dataset that combines data from multiple datasets that contain different formats for dates and currency, then you need to perform a conversion to a common format.

If you need to train a model that includes features that have categorical data, then you need to convert that categorical data to numeric data. For instance, the Titanic dataset contains a feature called “sex,” which is either male or female. As you will see later in this chapter, Pandas makes it extremely simple to “map” male to 0 and female to 1.

Discrete Data Versus Continuous Data

Discrete data is a set of values that can be counted, whereas continuous data must be measured. Discrete data can “reasonably” fit in a drop-down list of values, but there is no exact value for making such a determination. One person might think that a list of 500 values is discrete, whereas another person might think it’s continuous.

For example, the list of provinces of Canada and the list of states of the United States are discrete data values, but is the same true for the number of countries in the world (roughly 200) or for the number of languages in the world (more than 7,000)?

On the other hand, values for temperature, humidity, and barometric pressure are considered continuous. Currency is also treated as continuous, even though there is a measurable difference between two consecutive values. The smallest unit of currency for U.S. currency is one penny, which is 1/100th of a dollar (accounting-based measurements use the “mil,” which is 1/1,000th of a dollar).

Continuous data types can have subtle differences. For example, someone who is 200 centimeters tall is twice as tall as someone who is 100 centimeters tall; the same is true for 100 kilograms versus 50 kilograms. However, temperature is different: 80 degrees Fahrenheit is not twice as hot as 40 degrees Fahrenheit.

Furthermore, keep in mind that the meaning of the word “continuous” in mathematics is not necessarily the same as continuous in machine learning. In the former, a continuous function (let’s say in the 2D Euclidean plane) can have an uncountably infinite number of values. On the other hand, a feature in a dataset that can have more values than can be “reasonably” displayed in a drop-down list is treated as though it’s a continuous variable.

For instance, values for stock prices are discrete: they must differ by at least a penny (or some other minimal unit of currency), which is to say, it’s meaningless to say that the stock price changes by one-millionth of a penny. However, since there are so many possible stock values, it’s treated as a continuous variable. The same comments apply to car mileage, ambient temperature, and barometric pressure.

“Binning” Continuous Data

The concept of binning refers to subdividing a set of values into multiple intervals, and then treating all the numbers in the same interval as though they had the same value.

As a simple example, suppose that a feature in a dataset contains the age of people in a dataset. The range of values is approximately between 0 and 120, and we could bin them into 12 equal intervals, where each consists of 10 values: 0 through 9, 10 through 19, 20 through 29, and so forth.

However, partitioning the values of people’s ages as described in the preceding paragraph can be problematic. Suppose that person A, person B, and person C are 29, 30, and 39, respectively. Then person A and person B are probably more similar to each other than person B and person C, but because of the way in which the ages are partitioned, B is classified as closer to C than to A. In fact, binning can increase Type I errors (false positive) and Type II errors (false negative), as discussed in the following blog post (along with some alternatives to binning):

https://medium.com/@peterflom/why-binning-continuous-data-is-almost-always-a-mistake-ad0b3a1d141f.

As another example, using quartiles is even more coarse-grained than the earlier age-related binning example. The issue with binning pertains to the consequences of classifying people in different bins, even though they are in close proximity to each other. For instance, some people struggle financially because they earn a meager wage, and they are disqualified from financial assistance because their salary is higher than the cutoff point for receiving any assistance.

Scaling Numeric Data via Normalization

A range of values can vary significantly, and it’s important to note that they often need to be scaled to a smaller range, such as values in the range [-1,1] or [0,1], which you can do via the tanh function or the sigmoid function, respectively.

For example, measuring a person’s height in terms of meters involves a range of values between 0.50 meters and 2.5 meters (in the vast majority of cases), whereas measuring height in terms of centimeters ranges between 50 centimeters and 250 centimeters: these two units differ by a factor of 100. A person’s weight in kilograms generally varies between 5 kilograms and 200 kilograms, whereas measuring weight in grams differs by a factor of 1,000. Distances between objects can be measured in meters or in kilometers, which also differ by a factor of 1,000.

In general, use units of measure so that the data values in multiple features belong to a similar range of values. In fact, some machine learning algorithms require scaled data, often in the range of [0,1] or [-1,1]. In addition to the tanh and sigmoid functions, there are other techniques for scaling data, such as standardizing data (such as the Gaussian distribution) and normalizing data (linearly scaled so that the new range of values is in [0,1]).

The following examples involve a floating point variable X with different ranges of values that will be scaled so that the new values are in the interval [0,1].

	Example 1: If the values of X are in the range [0,2], then X/2 is in the range [0,1].

	Example 2: If the values of X are in the range [3,6], then X-3 is in the range [0,3], and (X-3)/3 is in the range [0,1].

	Example 3: If the values of X are in the range [-10,20], then X +10 is in the range [0,30], and (X +10)/30 is in the range of [0,1].

In general, suppose that X is a random variable whose values are in the range [a,b], where a < b. You can scale the data values by performing two steps:

Step 1: X-a is in the range [0,b-a]

Step 2: (X-a)/(b-a) is in the range [0,1]

If X is a random variable that has the values {x1, x2, x3, . . ., xn}, then the formula for normalization involves mapping each xi value to (xi – min)/(max – min), where min is the minimum value of X and max is the maximum value of X.

As a simple example, suppose that the random variable X has the values {-1, 0, 1}. Then min and max are 1 and -1, respectively, and the normalization of {-1, 0, 1} is the set of values {(-1-(-1))/2, (0-(-1))/2, (1-(-1))/2}, which equals {0, 1/2, 1}.

Scaling Numeric Data via Standardization

The standardization technique involves finding the mean mu and the standard deviation sigma, and then mapping each xi value to (xi – mu)/sigma. Recall the following formulas:

mu = [SUM (x)]/n

variance(x) = [SUM (x – xbar)*(x - xbar)]/n

sigma = sqrt(variance)

As a simple illustration of standardization, suppose that the random variable X has the values {-1, 0, 1}. Then mu and sigma are calculated as follows:

mu = (SUM xi)/n = (-1 + 0 + 1)/3 = 0

variance = [SUM (xi - mu)^2]/n

 = [(-1-0)^2 + (0-0)^2 + (1-0)^2]/3

 = 2/3

sigma = sqrt(2/3) = 0.816 (approximate value)

Hence, the standardization of {-1, 0, 1} is {-1/0.816, 0/0.816, 1/0.816}, which in turn equals the set of values {-1.2254, 0, 1.2254}.

As another example, suppose that the random variable X has the values {-6, 0, 6}. Then mu and sigma are calculated as follows:

mu = (SUM xi)/n = (-6 + 0 + 6)/3 = 0

variance = [SUM (xi - mu)^2]/n

 = [(-6-0)^2 + (0-0)^2 + (6-0)^2]/3

 = 72/3

 = 24

sigma = sqrt(24) = 4.899 (approximate value)

Hence, the standardization of {-6, 0, 6} is {-6/4.899, 0/4.899, 6/4.899}, which in turn equals the set of values {-1.2247, 0, 1.2247}.

In the preceding two examples, the mean equals 0 in both cases, but the variance and standard deviation are significantly different. The normalization of a set of values always produces a set of numbers between 0 and 1.

On the other hand, the standardization of a set of values can generate numbers that are less than -1 and greater than 1: this will occur when sigma is less than the minimum value of every term |mu – xi|, where the latter is the absolute value of the difference between mu and each xi value. In the preceding example, the minimum difference equals 1, whereas sigma is 0.816, and therefore the largest standardized value is greater than 1.

What to Look for in Categorical Data

This section contains suggestions for handling inconsistent data values, and you can determine which ones to adopt based on any additional factors that are relevant to your particular task. For example, consider dropping columns that have very low cardinality (equal to or close to 1), as well as numeric columns with zero or very low variance.

Next, check the contents of categorical columns for inconsistent spellings or errors. A good example pertains to the gender category, which can consist of a combination of the following values:

male

Male

female

Female

m

f

M

F

The preceding categorical values for gender can be replaced with two categorical values (unless you have a valid reason to retain some of the other values). Moreover, if you are training a model whose analysis involves a single gender, then you need to determine which rows (if any) of a dataset must be excluded. Also check categorical data columns for redundant or missing white spaces.

Check for data values that have multiple data types, such as a numerical column with numbers as numerals and some numbers as strings or objects. Ensure there are consistent data formats: numbers as integers or floating numbers. Ensure that dates have the same format (for example, do not mix mm/dd/yyyy date formats with another date format, such as dd/mm/yyyy).

Mapping Categorical Data to Numeric Values

Character data is often called categorical data, examples of which include people’s names, home or work addresses, and email addresses. Many types of categorical data involve short lists of values. For example, the days of the week and the months in a year involve seven and twelve distinct values, respectively. Notice that the days of the week have a relationship: each day has a previous day and a next day, and similarly for the months of a year.

On the other hand, the colors of an automobile are independent of each other. The color red is not “better” or “worse” than the color blue. However, cars of a certain color can have a statistically higher number of accidents, but we won’t address that issue here.

There are several well-known techniques for mapping categorical values to a set of numeric values. A simple example where you need to perform this conversion involves the gender feature in the Titanic dataset. This feature is one of the relevant features for training a machine learning model. The gender feature has {M, F} as its set of possible values. As you will see later in this chapter, Pandas makes it very easy to convert the set of values {M,F} to the set of values {0,1}.

Another mapping technique involves mapping a set of categorical values to a set of consecutive integer values. For example, the set {Red, Green, Blue} can be mapped to the set of integers {0,1,2}. The set {Male, Female} can be mapped to the set of integers {0,1}. The days of the week can be mapped to {0,1,2,3,4,5,6}. Note that the first day of the week depends on the country (in some cases it’s Sunday, and in other cases it’s Monday).

Another technique is called one-hot encoding, which converts each value to a vector. Thus, {Male, Female} can be represented by the vectors [1,0] and [0,1], and the colors {Red, Green, Blue} can be represented by the vectors [1,0,0], [0,1,0], and [0,0,1]. If you vertically “line up” the two vectors for gender, they form a 2×2 identity matrix, and doing the same for the colors will form a 3×3 identity matrix as shown here:

[1,0,0]

[0,1,0]

[0,0,1]

If you are familiar with matrices, you probably noticed that the preceding set of vectors looks like the 3×3 identity matrix. In fact, this technique generalizes in a straightforward manner. Specifically, if you have n distinct categorical values, you can map each of those values to one of the vectors in an nxn identity matrix.

As another example, the set of titles {"Intern", "Junior", "Mid-Range", "Senior", "Project Leader", "Dev Manager"} has a hierarchical relationship in terms of their salaries (which can also overlap, but we won’t address that now).

Another set of categorical data involves the season of the year: {"Spring", "Summer", "Autumn", "Winter"}, and while these values are generally independent of each other, there are cases in which the season is significant. For example, the values for the monthly rainfall, average temperature, crime rate, or foreclosure rate can depend on the season, month, week, or day of the year.

If a feature has a large number of categorical values, then one-hot encoding will produce many additional columns for each data point. Since the majority of the values in the new columns equal 0, this can increase the sparsity of the dataset, which in turn can result in more overfitting and hence adversely affect the accuracy of machine learning algorithms that you adopt during the training process.

Another solution is to use a sequence-based solution in which N categories are mapped to the integers 1, 2, . . . , N. Another solution involves examining the row frequency of each categorical value. For example, suppose that N equals 20, and there are three categorical values that occur in 95% of the values for a given feature. You can try the following:

	Assign the values 1, 2, and 3 to those three categorical values.

	Assign numeric values that reflect the relative frequency of those categorical values.

	Assign the category “OTHER” to the remaining categorical values.

	Delete the rows whose categorical values belong to the 5%.

Working with Dates

The format for a calendar date varies among different countries, and this belongs to something called the localization of data (not to be confused with i18n, which is data internationalization). Some examples of date formats are shown as follows (and the first four are probably the most common):

MM/DD/YY

MM/DD/YYYY

DD/MM/YY

DD/MM/YYYY

YY/MM/DD

M/D/YY

D/M/YY

YY/M/D

MMDDYY

DDMMYY

YYMMDD

If you need to combine data from datasets that contain different date formats, then converting the disparate date formats to a single common date format will ensure consistency.

Working with Currency

The format for currency depends on the country, which includes different interpretations for a “,” and “.” in the currency (and decimal values in general). For example, 1,124.78 equals “one thousand one hundred twenty-four point seven eight” in the United States, whereas 1.124,78 has the same meaning in Europe (i.e., the “.” symbol and the “,” symbol are interchanged).

If you need to combine data from datasets that contain different currency formats, then you probably need to convert all the disparate currency formats to a single common currency format. There is another detail to consider: currency exchange rates can fluctuate on a daily basis, which in turn can affect the calculation of taxes, and late fees. Although you might be fortunate enough where you won’t have to deal with these issues, it’s still worth being aware of them.

MISSING DATA, ANOMALIES, AND OUTLIERS

Although missing data is not directly related to checking for anomalies and outliers, in general you will perform all three of these tasks. Each task involves a set of techniques to help you perform an analysis of the data in a dataset, and the following subsections describe some of those techniques.

Missing Data

How you decide to handle missing data depends on the specific dataset. Here are some ways to handle missing data (the first three techniques are manual techniques, and the other techniques are algorithms):

	Replace missing data with the mean/median/mode value.

	Infer (“impute”) the value for missing data.

	Delete rows with missing data.

	Isolation forest (tree-based algorithm).

	Use the minimum covariance determinant.

	Use the local outlier factor.

	Use the one-class SVM (Support Vector Machines).

In general, replacing a missing numeric value with zero is a risky choice: this value is obviously incorrect if the values of a feature are between 1,000 and 5,000. For a feature that has numeric values, replacing a missing value with the average value is better than the value zero (unless the average equals zero); also consider using the median value. For categorical data, consider using the mode to replace a missing value.

If you are not confident that you can impute a “reasonable” value, consider excluding the row with a missing value, and then train a model with the imputed value and the deleted row.

One problem that can arise after removing rows with missing values is that the resulting dataset is too small. In this case, consider using SMOTE, which is discussed later in this chapter, to generate synthetic data.

Anomalies and Outliers

In simplified terms, an outlier is an abnormal data value that is outside the range of “normal” values. For example, a person’s height in centimeters is typically between 30 centimeters and 250 centimeters. Hence, a data point (e.g., a row of data in a spreadsheet) with a height of 5 centimeters or a height of 500 centimeters is an outlier. The consequences of these outlier values are unlikely to involve a significant financial or physical loss (though they could adversely affect the accuracy of a trained model).

Anomalies are also outside the “normal” range of values (just like outliers), and they are typically more problematic than outliers: anomalies can have more severe consequences than outliers. For example, consider the scenario in which someone who lives in California suddenly makes a credit card purchase in New York. If the person is on vacation (or a business trip), then the purchase is an outlier (it’s outside the typical purchasing pattern), but it’s not an issue. However, if that person was in California when the credit card purchase was made, then it’s more likely to be credit card fraud, as well as an anomaly.

Unfortunately, there is no simple way to decide how to deal with anomalies and outliers in a dataset. Although you can exclude rows that contain outliers, keep in mind that doing so might deprive the dataset—and therefore the trained model—of valuable information. You can try modifying the data values (described as follows), but again, this might lead to erroneous inferences in the trained model. Another possibility is to train a model with the dataset that contains anomalies and outliers, and then train a model with a dataset from which the anomalies and outliers have been removed. Compare the two results and see if you can infer anything meaningful regarding the anomalies and outliers.

Outlier Detection

Although the decision to keep or drop outliers is your decision to make, there are some techniques available that help you detect outliers in a dataset. This section contains a short list of some techniques, along with a very brief description and links for additional information.

Perhaps trimming is the simplest technique (apart from dropping outliers), which involves removing rows whose feature value is in the upper 5% range or the lower 5% range. Winsorizing the data is an improvement over trimming. Set the values in the top 5% range equal to the maximum value in the 95th percentile, and set the values in the bottom 5% range equal to the minimum in the 5th percentile.

The Minimum Covariance Determinant is a covariance-based technique, and a Python-based code sample that uses this technique can be found online:

https://scikit-learn.org/stable/modules/outlier_detection.html.

The Local Outlier Factor (LOF) technique is an unsupervised technique that calculates a local anomaly score via the kNN (k Nearest Neighbor) algorithm. Documentation and short code samples that use LOF can be found online:

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html.

Two other techniques involve the Huber and the Ridge classes, both of which are included as part of Sklearn. The Huber error is less sensitive to outliers because it’s calculated via linear loss, similar to MAE (Mean Absolute Error). A code sample that compares Huber and Ridge can be found online:

https://scikit-learn.org/stable/auto_examples/linear_model/plot_huber_vs_ridge.html.

You can also explore the Theil-Sen estimator and RANSAC, which are “robust” against outliers, and additional information can be found online:

https://scikit-learn.org/stable/auto_examples/linear_model/plot_theilsen.html and https://en.wikipedia.org/wiki/Random_sample_consensus.

Four algorithms for outlier detection are discussed at the following site:

https://www.kdnuggets.com/2018/12/four-techniques-outlier-detection.html.

One other scenario involves “local” outliers. For example, suppose that you use kMeans (or some other clustering algorithm) and determine that a value is an outlier with respect to one of the clusters. While this value is not necessarily an “absolute” outlier, detecting such a value might be important for your use case.

What Is Data Drift?

The value of data is based on its accuracy, its relevance, and its age. Data drift refers to data that has become less relevant over time. For example, online purchasing patterns in 2010 are probably not as relevant as data from 2020 because of various factors (such as the profile of different types of customers). Keep in mind that there might be multiple factors that can influence data drift in a specific dataset.

Two techniques are domain classifier and the black-box shift detector, both of which can be found online:

https://blog.dataiku.com/towards-reliable-mlops-with-drift-detectors.

WHAT IS IMBALANCED CLASSIFICATION?

Imbalanced classification involves datasets with imbalanced classes. For example, suppose that class A has 99% of the data and class B has 1%. Which classification algorithm would you use? Unfortunately, classification algorithms don’t work well with this type of imbalanced dataset. Here is a list of several well-known techniques for handling imbalanced datasets:

	Random resampling rebalances the class distribution.

	Random oversampling duplicates data in the minority class.

	Random undersampling deletes examples from the majority class.

	SMOTE

Random resampling transforms the training dataset into a new dataset, which is effective for imbalanced classification problems.

The random undersampling technique removes samples from the dataset, and involves the following:

	randomly remove samples from the majority class

	can be performed with or without replacement

	alleviates imbalance in the dataset

	may increase the variance of the classifier

	may discard useful or important samples

However, random undersampling does not work so well with a dataset that has a 99%/1% split into two classes. Moreover, undersampling can result in losing information that is useful for a model.

Instead of random undersampling, another approach involves generating new samples from a minority class. The first technique involves oversampling examples in the minority class and duplicate examples from the minority class.

There is another technique that is better than the preceding technique, which involves the following:

	synthesizing new examples from a minority class

	a type of data augmentation for tabular data

	generating new samples from a minority class

Another well-known technique is called SMOTE, which involves data augmentation (i.e., synthesizing new data samples) well before you use a classification algorithm. SMOTE was initially developed by means of the kNN algorithm (other options are available), and it can be an effective technique for handling imbalanced classes.

Yet another option to consider is the Python package imbalanced-learn in the scikit-learn-contrib project. This project provides various re-sampling techniques for datasets that exhibit class imbalance. More details are available online:

https://github.com/scikit-learn-contrib/imbalanced-learn.

WHAT IS SMOTE?

SMOTE is a technique for synthesizing new samples for a dataset. This technique is based on linear interpolation:

Step 1: Select samples that are close in the feature space.

Step 2: Draw a line between the samples in the feature space.

Step 3: Draw a new sample at a point along that line.

A more detailed explanation of the SMOTE algorithm is here:

	Select a random sample “a” from the minority class.

	Now find k nearest neighbors for that example.

	Select a random neighbor “b” from the nearest neighbors.

	Create a line L that connects “a” and “b.”

	Randomly select one or more points “c” on line L.

If need be, you can repeat this process for the other (k-1) nearest neighbors to distribute the synthetic values more evenly among the nearest neighbors.

SMOTE Extensions

The initial SMOTE algorithm is based on the kNN classification algorithm, which has been extended in various ways, such as replacing kNN with SVM. A list of SMOTE extensions is shown as follows:

	selective synthetic sample generation

	Borderline-SMOTE (kNN)

	Borderline-SMOTE (SVM)

	Adaptive Synthetic Sampling (ADASYN)

More information can be found online:

https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis.

ANALYZING CLASSIFIERS (OPTIONAL)

This section is marked optional because its contents pertain to machine learning classifiers, which are not the focus of this book. However, it’s still worthwhile to glance through the material, or perhaps return to this section after you have a basic understanding of machine learning classifiers.

Several well-known techniques are available for analyzing the quality of machine learning classifiers. Two techniques are LIME and ANOVA, both of which are discussed in the following subsections.

What is LIME?

LIME is an acronym for Local Interpretable Model-Agnostic Explanations. LIME is a model-agnostic technique that can be used with machine learning models. The methodology of this technique is straightforward: make small random changes to data samples and then observe the manner in which predictions change (or not). The approach involves changing the data just a little and then observing what happens to the output.

By way of contrast, consider food inspectors who test for bacteria in truckloads of perishable food. Clearly, it’s infeasible to test every food item in a truck (or a train car), so inspectors perform “spot checks” that involve testing randomly selected items. Instead of sampling data, LIME makes small changes to input data in random locations and then analyzes the changes in the associated output values.

However, there are two caveats to keep in mind when you use LIME with input data for a given model:

	The actual changes to input values are model-specific.

	This technique works on input that is interpretable.

Examples of interpretable input include machine learning classifiers (such as trees and random forests) and NLP techniques such as BoW (Bag of Words). Non-interpretable input involves “dense” data, such as a word embedding (which is a vector of floating point numbers).

You could also substitute your model with another model that involves interpretable data, but then you need to evaluate how accurate the approximation is to the original model.

What is ANOVA?

ANOVA is an acronym for analysis of variance, which attempts to analyze the differences among the mean values of a sample that’s taken from a population. ANOVA enables you to test if multiple mean values are equal. More importantly, ANOVA can assist in reducing Type I (false positive) errors and Type II errors (false negative) errors. For example, suppose that person A is diagnosed with cancer and person B is diagnosed as healthy, and that both diagnoses are incorrect. Then the result for person A is a false positive whereas the result for person B is a false negative. In general, a test result of false positive is preferable to a test result of false negative.

ANOVA pertains to the design of experiments and hypothesis testing, which can produce meaningful results in various situations. For example, suppose that a dataset contains a feature that can be partitioned into several “reasonably” homogenous groups. Next, analyze the variance in each group and perform comparisons with the goal of determining different sources of variance for the values of a given feature.

More information about ANOVA is available online:

https://en.wikipedia.org/wiki/Analysis_of_variance.

THE BIAS-VARIANCE TRADE-OFF

This section is presented from the viewpoint of machine learning, but the concepts of bias and variance are highly relevant outside of machine learning, so it’s probably still worthwhile to read this section as well as the previous section.

Bias in machine learning can be due to an error from wrong assumptions in a learning algorithm. High bias might cause an algorithm to miss relevant relations between features and target outputs (underfitting). Prediction bias can occur because of “noisy” data, an incomplete feature set, or a biased training sample.

Error due to bias is the difference between the expected (or average) prediction of your model and the correct value that you want to predict. Repeat the model building process multiple times, gather new data each time, and perform an analysis to produce a new model. The resulting models have a range of predictions because the underlying datasets have a degree of randomness. Bias measures the extent to which the predictions for these models deviate from the correct value.

Variance in machine learning is the expected value of the squared deviation from the mean. High variance can/might cause an algorithm to model the random noise in the training data (aka overfitting), rather than the intended outputs. Moreover, adding parameters to a model increases its complexity, increases the variance, and decreases the bias.

The point to remember is that dealing with bias and variance involves dealing with underfitting and overfitting.

Error due to variance is the variability of a model prediction for a given data point. As before, repeat the entire model building process, and the variance is the extent to which predictions for a given point vary among different “instances” of the model.

If you have worked with datasets and performed data analysis, you already know that finding well-balanced samples can be difficult or highly impractical. Moreover, performing an analysis of the data in a dataset is vitally important, yet there is no guarantee that you can produce a dataset that is 100% “clean.”

A biased statistic is a statistic that is systematically different from the entity in the population that is being estimated. In more casual terminology, if a data sample “favors” or “leans” toward one aspect of the population, then the sample has bias. For example, if you prefer movies that are comedies more so than any other type of movie, then clearly you are more likely to select a comedy instead of a dramatic movie or a science fiction movie. Thus, a frequency graph of the movie types in a sample of your movie selections will be more closely clustered around comedies.

On the other hand, if you have a wide-ranging set of preferences for movies, then the corresponding frequency graph will be more varied, and therefore have a larger spread of values.

As a simple example, suppose that you are given an assignment that involves writing a term paper on a controversial subject that has many opposing viewpoints. Since you want a bibliography that supports your well-balanced term paper that takes into account multiple viewpoints, your bibliography will contain a wide variety of sources. In other words, your bibliography will have a larger variance and a smaller bias. On the other hand, if most (or all) the references in your bibliography espouse the same point of view, then you will have a smaller variance and a larger bias (it’s just an analogy, so it’s not a perfect counterpart to bias vs. variance).

The bias-variance trade-off can be stated in simple terms. In general, reducing the bias in samples can increase the variance, whereas reducing the variance tends to increase the bias.

Types of Bias in Data

In addition to the bias-variance trade-off that is discussed in the previous section, there are several types of bias, some of which are listed as follows:

	Availability Bias

	Confirmation Bias

	False Causality

	Sunk Cost Fallacy

	Survivorship Bias

Availability bias is akin to making a “rule” based on an exception. For example, there is a known link between smoking cigarettes and cancer, but there are exceptions. If you find someone who has smoked three packs of cigarettes on a daily basis for four decades and is still healthy, can you assert that smoking does not lead to cancer?

Confirmation bias refers to the tendency to focus on data that confirms one’s beliefs and simultaneously ignore data that contradicts a belief.

False causality occurs when you incorrectly assert that the occurrence of a particular event causes another event to occur as well. One of the most well-known examples involves ice cream consumption and violent crime in New York during the summer. Since more people eat ice cream in the summer, that “causes” more violent crime, which is a false causality. Other factors, such as the increase in temperature, may be linked to the increase in crime. However, it’s important to distinguish between correlation and causality. The latter is a much stronger link than the former, and it’s also more difficult to establish causality instead of correlation.

Sunk cost refers to something (often money) that has been spent or incurred that cannot be recouped. A common example pertains to gambling at a casino. People fall into the pattern of spending more money in order to recoup a substantial amount of money that has already been lost. While there are cases in which people do recover their money, in many (most?) cases people simply incur an even greater loss because they continue to spend their money. Hence the expression, “it’s time to cut your losses and walk away.”

Survivorship bias refers to analyzing a particular subset of “positive” data while ignoring the “negative” data. This bias occurs in various situations, such as being influenced by individuals who recount their rags-to-riches success story (“positive” data) while ignoring the fate of the people (which is often a very high percentage) who did not succeed (the “negative” data) in a similar quest. So, while it’s certainly possible for an individual to overcome many difficult obstacles in order to succeed, is the success rate one in one thousand (or even lower)?

SUMMARY

This chapter started with an explanation of datasets, a description of data wrangling, and details regarding various types of data. Then you learned about techniques for scaling numeric data, such as normalization and standardization. You saw how to convert categorical data to numeric values, and how to handle dates and currency.

Then you learned some of the nuances of missing data, anomalies, and outliers, and techniques for handling these scenarios. You also learned about imbalanced data and evaluating the use of SMOTE to deal with imbalanced classes in a dataset. In addition, you learned about classifiers using two techniques, LIME and ANOVA. Finally, you learned about the bias-variance trade-off and various types of statistical bias.

CHAPTER 2

INTRO TO PROBABILITY AND STATISTICS

This chapter introduces you to data types, how to scale data values, and various techniques for handling missing data values. If most of the material in this chapter is new to you, be assured that it’s not necessary to understand everything in this chapter. It’s still a good idea to read as much material as you can absorb, and perhaps return to this chapter again after you have completed some of the other chapters in this book.

This chapter introduces you to concepts in probability as well as a wide assortment of statistical terms and algorithms.

The first section of this chapter starts with a discussion of probability, how to calculate the expected value of a set of numbers (with associated probabilities), the concept of a random variable (discrete and continuous), and a short list of some well-known probability distributions.

The second section of this chapter introduces basic statistical concepts, such as mean, median, mode, variance, and standard deviation, along with simple examples that illustrate how to calculate these terms. You will also learn about the terms RSS, TSS, R^2, and F1 score.

The third section of this chapter introduces the Gini impurity, entropy, perplexity, cross-entropy, and KL divergence. You will also learn about skewness and kurtosis.

The fourth section explains covariance and correlation matrices and how to calculate eigenvalues and eigenvectors.

The fifth section explains PCA (Principal Component Analysis), which is a well-known dimensionality reduction technique. The final section introduces you to Bayes’ Theorem.

WHAT IS A PROBABILITY?

If you have ever performed a science experiment in one of your classes, you might remember that measurements have some uncertainty. In general, we assume that there is a correct value, and we endeavor to find the best estimate of that value.

When we work with an event that can have multiple outcomes, we try to define the probability of an outcome as the chance that it will occur, which is calculated as follows:

p(outcome) = # of times outcome occurs/(total number of outcomes)

For example, in the case of a single balanced coin, the probability of tossing a head H equals the probability of tossing a tail T:

p(H) = 1/2 = p(T)

The set of probabilities associated with the outcomes {H, T} is shown in the set P:

P = {1/2, 1/2}

Some experiments involve replacement while others involve non-replacement. For example, suppose that an urn contains 10 red balls and 10 green balls. What is the probability that a randomly selected ball is red? The answer is 10/(10+10) = 1/2. What is the probability that the second ball is also red?

There are two scenarios with two different answers. If each ball is selected with replacement, then each ball is returned to the urn after selection, which means that the urn always contains 10 red balls and 10 green balls. In this case, the answer is 1/2 * 1/2 = 1/4. In fact, the probability of any event is independent of all previous events.

On the other hand, if balls are selected without replacement, then the answer is 10/20 * 9/19. As you undoubtedly know, card games are also examples of selecting cards without replacement.

One other concept is called conditional probability, which refers to the likelihood of the occurrence of event E1 given that event E2 has occurred. A simple example is the following statement:

"If it rains (E2), then I will carry an umbrella (E1)."

Calculating the Expected Value

Consider the following scenario involving a well-balanced coin: Whenever a head appears, you earn $1 and whenever a tail appears, you earn $1 dollar. If you toss the coin 100 times, how much money do you expect to earn? Since you will earn $1 regardless of the outcome, the expected value (in fact, the guaranteed value) is $100.

Now consider this scenario: whenever a head appears, you earn $1 and whenever a tail appears, you earn 0 dollars. If you toss the coin 100 times, how much money do you expect to earn? You probably determined the value 50 (which is the correct answer) by making a quick mental calculation. The more formal derivation of the value of E (the expected earning) is here:

E = 100 *[1 * 0.5 + 0 * 0.5] = 100 * 0.5 = 50

The quantity 1 * 0.5 + 0 * 0.5 is the amount of money you expected to earn during each coin toss (half the time you earn $1 and half the time you earn 0 dollars), and multiplying this number by 100 is the expected earning after 100 coin tosses. Note that you might never earn $50: the actual amount that you earn can be any integer between 1 and 100, inclusive.

As another example, suppose that you earn $3 whenever a head appears, and you lose $1.50 whenever a tail appears. Then the expected earning E after 100 coin tosses is shown here:

E = 100 *[3 * 0.5 - 1.5 * 0.5] = 100 * 1.5 = 150

We can generalize the preceding calculations as follows. Let P = {p1,. . .,pn} be a probability distribution, which means that the values in P are non-negative and their sum equals 1. In addition, let R = {R1,. . .,Rn} be a set of rewards, where reward Ri is received with probability pi. Then the expected value E after N trials is shown here:

E = N * [SUM pi*Ri]

In the case of a single balanced die, we have the following probabilities:

p(1) = 1/6

p(2) = 1/6

p(3) = 1/6

p(4) = 1/6

p(5) = 1/6

p(6) = 1/6

P = { 1/6, 1/6, 1/6, 1/6, 1/6, 1/6}

As a simple example, suppose that the earnings are {3, 0, -1, 2, 4, -1} when the values 1, 2, 3, 4, 5, and 6, respectively, appear when tossing the single die. Then after 100 trials our expected earnings are calculated as follows:

E = 100 * [3 + 0 + -1 + 2 + 4 + -1]/6 = 100 * 3/6 = 50

In the case of two balanced dice, we have the following probabilities of rolling 2, 3, . . . or 12:

p(2) = 1/36

p(3) = 2/36

...

p(12) = 1/36

P = {1/36,2/36,3/36,4/36,5/36,6/36,5/36,4/36,3/36,2/36,1/36}

RANDOM VARIABLES

A random variable is a variable that can have multiple values and where each value has an associated probability of occurrence. For example, if we let X be a random variable whose values are the outcomes of tossing a well-balanced die, then the values of X are the numbers in the set {1,2,3,4,5,6}. Moreover, each of those values can occur with equal probability (which is 1/6).

In the case of two well-balanced dice, let X be a random variable whose values can be any of the numbers in the set {2,3,4, . . . , 12}. Then the associated probabilities for the different values for X are listed in the previous section.

Discrete versus Continuous Random Variables

The preceding section contains examples of discrete random variables because the list of possible values is either finite or countably infinite (such as the set of integers). As an aside, the set of rational numbers is also countably infinite, but the set of irrational numbers and also the set of real numbers are both uncountably infinite (proofs are available online). As pointed out earlier, the associated set of probabilities must form a probability distribution, which means that the probability values are non-negative and their sum equals 1.

A continuous random variable is a variable whose values can be any number in an interval, which can be an uncountably infinite number of values. For example, the amount of time required to perform a task is represented by a continuous random variable.

A continuous random variable also has a probability distribution that is represented as a continuous function. The constraint for such a variable is that the area under the curve (which is sometimes calculated via a mathematical integral) equals 1.

Well-Known Probability Distributions

There are many probability distributions, and some of the well-known probability distributions are listed here:

	Gaussian distribution

	Poisson distribution

	Chi-squared distribution

	Binomial distribution

The Gaussian distribution is named after Karl F. Gauss, and it is sometimes called the normal distribution or the Bell curve. The Gaussian distribution is symmetric: The shape of the curve on the left of the mean is identical to the shape of the curve on the right side of the mean. As an example, the distribution of IQ scores follows a curve that is similar to a Gaussian distribution.

The frequency of traffic at a given point in a road follows a Poisson distribution (which is not symmetric). Interestingly, if you count the number of people who go to a public pool based on five-degree (Fahrenheit) increments of the temperature, followed by five-degree decrements in temperature, that set of numbers follows a Poisson distribution.

Perform an Internet search for each of the bullet items in the preceding list and you will find numerous articles that contain images and technical details about these (and other) probability distributions.

This concludes the brief introduction to probability, and the next section delves into the concepts of mean, median, mode, and standard deviation.

FUNDAMENTAL CONCEPTS IN STATISTICS

This section contains several subsections that discuss the mean, median, mode, variance, and standard deviation. Feel free to skim (or skip) this section if you are already familiar with these concepts. As a start point, let’s suppose that we have a set of numbers X ={x1, ..., xn} that can be positive, negative, integer-valued, or decimal values.

The Mean

The mean of the numbers in the set X is the average of the values. For example, if the set X consists of {-10,35,75,100}, then the mean equals (-10 + 35 + 75 + 100)/4 = 50. If the set X consists of {2,2,2,2}, then the mean equals (2+2+2+2)/4 = 2. As you can see, the mean value is not necessarily one of the values in the set.

Keep in mind that the mean is sensitive to outliers. For example, the mean of the set of numbers {1,2,3,4} is 2.5, whereas the mean of the set of number {1,2,3,4,1000} is 202. Since the formulas for the variance and standard deviation involve the mean of a set of numbers, both of these terms are also more sensitive to outliers.

The Median

The median of the numbers (sorted in increasing or decreasing order) in the set X is the middle value in the set of values, which means that half the numbers in the set are less than the median and half the numbers in the set are greater than the median. For example, if the set X consists of {-10,35,75,100}, then the median equals 55 because 55 is the average of the two numbers 35 and 75. As you can see, half the numbers are less than 55 and half the numbers are greater than 55. If the set X consists of {2,2,2,2}, then the median equals 2.

By contrast, the median is much less sensitive to outliers than the mean. For example, the median of the set of numbers {1,2,3,4} is 2.5, and the median of the set of numbers {1,2,3,4,1000} is 3.

The Mode

The mode of the numbers (sorted in increasing or decreasing order) in the set X is the most frequently occurring value, which means that there can be more than one such value. If the set X consists of {2,2,2,2}, then the mode equals 2.

If X is the set of numbers {2,4,5,5,6,8}, then the number 5 occurs twice and the other numbers occur only once, so the mode equals 5.

If X is the set of numbers {2,2,4,5,5,6,8}, then the numbers 2 and 5 occur twice and the other numbers occur only once, so the mode equals 2 and 5. A set that has two modes is called bimodal, and a set that has more than two modes is called multimodal.

One other scenario involves sets that have numbers with the same frequency and they are all different. In this case, the mode does not provide meaningful information, and one alternative is to partition the numbers into subsets and then select the largest subset. For example, if set X has the values {1,2,15,16,17,25,35,50}, we can partition the set into subsets whose elements are in ranges that are multiples of ten, which results in the subsets {1,2}, {15,16,17}, {25}, {35}, and {50}. The largest subset is {15,16,17}, so we could select the number 16 as the mode.

As another example, if set X has the values {-10,35,75,100}, then partitioning this set does not provide any additional information, so it’s probably better to work with either the mean or the median.

The Variance and Standard Deviation

The variance is the sum of the squares of the difference between the numbers in X and the mean mu of the set X, divided by the number of value in X, as shown here:

variance = [SUM (xi - mu)**2] / n

For example, if the set X consists of {-10,35,75,100}, then the mean equals (-10 + 35 + 75 + 100)/4 = 50, and the variance is computed as follows:

variance = [(-10-50)**2 + (35-50)**2 + (75-50)**2 + (100-50)**2]/4

 = [60**2 + 15**2 + 25**2 + 50**2]/4

 = [3600 + 225 + 625 + 2500]/4

 = 6950/4 = 1,737

The standard deviation std is the square root of the variance:

std = sqrt(1737) = 41.677

If the set X consists of {2,2,2,2}, then the mean equals (2+2+2+2)/4 = 2, and the variance is computed as follows:

variance = [(2-2)**2 + (2-2)**2 + (2-2)**2 + (2-2)**2]/4

 = [0**2 + 0**2 + 0**2 + 0**2]/4

 = 0

The standard deviation std is the square root of the variance:

std = sqrt(0) = 0

Population, Sample, and Population Variance

The population specifically refers to the entire set of entities in a given group, such as the population of a country, the people over 65 in the United States, or the number of first-year students in a university.

However, in many cases statistical quantities are calculated on samples instead of an entire population. Thus, a sample is a (much smaller) subset of the given population. See the central limit theorem regarding the distribution of the mean of a sample of a population (which need not be a population with a Gaussian distribution).

Here are some techniques for sampling data:

	Stratified sampling

	Cluster sampling

	Quota sampling

One other important point: The population variance is calculated by multiplying the sample variance by n/(n-1), as shown here:

population variance = [n/(n-1)]*variance

Chebyshev’s Inequality

Chebyshev’s inequality provides a simple way to determine the minimum percentage of data that lies within k standard deviations. Specifically, this inequality states that for any positive integer k greater than 1, the amount of data in a sample that lies within k standard deviations is at least 1 - 1/k**2. For example, if k = 2, then at least 1 - 1/2**2 = 3/4 of the data must lie within 2 standard deviations.

The interesting part of this inequality is that it’s been mathematically proven to be true; that is, it’s not an empirical or heuristic-based result. An extensive description regarding Chebyshev’s inequality (including some advanced mathematical explanations) is available online:

https://en.wikipedia.org/wiki/Chebyshev%27s_inequality.

What is a P-Value?

The null hypothesis states that there is no correlation between a dependent variable (such as y) and an independent variable (such as x). The p-value is used to reject the null hypothesis if the p-value is small enough (< 0.005), which indicates a higher significance. The threshold value for p is typically 1% or 5%.

There is no straightforward formula for calculating p-values, which are values that are always between 0 and 1. In fact, p-values are statistical quantities to evaluate the null hypothesis, and they are calculated by means of p-value tables or via spreadsheet/statistical software.

THE MOMENTS OF A FUNCTION (OPTIONAL)

The previous sections describe several statistical terms that are sufficient for the material in this book. However, several of those terms can be viewed from the perspective of different moments of a function.

In brief, the moments of a function are measures that provide information regarding the shape of the graph of a function. In the case of a probability distribution, the first four moments are defined as follows:

	The mean is the first central moment.

	The variance is the second central moment.

	The skewness (discussed later) is the third central moment.

	The kurtosis (discussed later) is the fourth central moment.

More detailed information (including the relevant integrals) regarding moments of a function is available online:

https://en.wikipedia.org/wiki/Moment_(mathematics)#Variance.

What is Skewness?

Skewness is a measure of the asymmetry of a probability distribution. A Gaussian distribution is symmetric, which means that its skew value is zero (it’s not exactly zero, but close enough for our purposes). In addition, the skewness of a distribution is the third moment of the distribution.

A distribution can be skewed on the left side or on the right side. A left-sided skew means that the long tail is on the left side of the curve, with the following relationships:

mean < median < mode

A right-sided skew means that the long tail is on the right side of the curve, with the following relationships (compare with the left-sided skew):

mode < median < mean

If need be, you can transform skewed data to a normally distributed dataset using one of the following techniques (which depends on the specific use-case):

	Exponential transform

	Log transform

	Power transform

Perform an online search for more information regarding the preceding transforms and when to use each of these transforms.

What is Kurtosis?

Kurtosis is related to the skewness of a probability distribution, in the sense that both of them assess the asymmetry of a probability distribution. The kurtosis of a distribution is a scaled version of the fourth moment of the distribution, whereas its skewness is the third moment of the distribution. Note that the kurtosis of a univariate distribution equals 3.

If you are interested in learning about additional kurtosis-related concepts, you can perform an online search for information regarding the mesokurtic, leptokurtic, and platykurtic types of so-called “excess kurtosis.”

DATA AND STATISTICS

This section contains various subsections that briefly discuss some of the challenges and obstacles that you might encounter when working with datasets. This section and subsequent sections introduce you to the following concepts:

	Correlation versus causation

	The bias-variance tradeoff

	Types of bias

	The central limit theorem

	Statistical inferences

Keep in mind that statistics typically involves data samples, which are subsets of observations of a population. The goal is to find well-balanced samples that provide a good representation of the entire population.

Although this goal can be very difficult to achieve, it’s also possible to achieve highly accurate results with a very small sample size. For example, the Harris poll in the United States has been used for decades to analyze political trends. This poll computes percentages that indicate the favorability rating of political candidates, and it’s usually within 3.5% of the correct percentage values. What’s remarkable about the Harris poll is that its sample size is a mere 4,000 people from the U.S. population, which is greater than 325,000,000 people.

Another aspect to consider is that each sample has a mean and variance, which do not necessarily equal the mean and variance of the actual population. However, the expected value of the sample mean and variance equal the mean and variance, respectively, of the population.

The Central Limit Theorem

Samples of a population have an interesting property. Suppose that you take a set of samples {S1, S3, . . ., Sn} of a population and you calculate the mean of those samples, which is {m1, m2, . . ., mn}. The Central Limit Theorem yields a remarkable result. Given a set of samples of a population and the mean value of those samples, the distribution of the mean values can be approximated by a Gaussian distribution. Moreover, as the number of samples increases, the approximation becomes more accurate.

Correlation versus Causation

In general, datasets have some features (columns) that are more significant in terms of their set of values, and some features only provide additional information that does not contribute to potential trends in the dataset. For example, the passenger names in the list of passengers on the Titanic are unlikely to affect the survival rate of those passengers, whereas the gender of the passengers is likely to be an important factor.

In addition, a pair of significant features may also be “closely coupled” in terms of their values. For example, a real estate dataset for a set of houses will contain the number of bedrooms and the number of bathrooms for each house in the dataset. As you know, these values tend to increase together and also decrease together. Have you ever seen a house that has ten bedrooms and one bathroom, or a house that has ten bathrooms and one bedroom? If you did find such a house, would you purchase that house as your primary residence?

 Table of Contents

 	
 DATA SCIENCE FUNDAMENTALS

 	
 DATA SCIENCE FUNDAMENTALS

 	
 Contents

 	
 Preface

 	
 WHAT IS THE PRIMARY VALUE PROPOSITION FOR THIS BOOK?

 	
 THE TARGET AUDIENCE

 	
 WHAT WILL I LEARN FROM THIS BOOK?

 	
 WHY ARE THE CODE SAMPLES PRIMARILY IN PYTHON?

 	
 DO I NEED TO LEARN THE THEORY PORTIONS OF THIS BOOK?

 	
 WHY DOES THIS BOOK INCLUDE SKLEARN MATERIAL?

 	
 WHY IS A REGEX CHAPTER INCLUDED IN THIS BOOK?

 	
 GETTING THE MOST FROM THIS BOOK

 	
 WHAT DO I NEED TO KNOW FOR THIS BOOK?

 	
 DOESN’T THE COMPANION FILES OBVIATE THE NEED FOR THIS BOOK?

 	
 DOES THIS BOOK CONTAIN PRODUCTION-LEVEL CODE SAMPLES?

 	
 WHAT ARE THE NON-TECHNICAL PREREQUISITES FOR THIS BOOK?

 	
 HOW DO I SET UP A COMMAND SHELL?

 	
 COMPANION FILES

 	
 WHAT ARE THE NEXT STEPS AFTER FINISHING THIS BOOK?

 	
 CHAPTER 1 WORKING WITH DATA

 	
 WHAT ARE DATASETS?

 	
 DATA TYPES

 	
 PREPARING DATASETS

 	
 MISSING DATA, ANOMALIES, AND OUTLIERS

 	
 WHAT IS IMBALANCED CLASSIFICATION?

 	
 WHAT IS SMOTE?

 	
 ANALYZING CLASSIFIERS (OPTIONAL)

 	
 THE BIAS-VARIANCE TRADE-OFF

 	
 SUMMARY

 	
 CHAPTER 2 INTRO TO PROBABILITY AND STATISTICS

 	
 WHAT IS A PROBABILITY?

 	
 RANDOM VARIABLES

 	
 FUNDAMENTAL CONCEPTS IN STATISTICS

 	
 THE MOMENTS OF A FUNCTION (OPTIONAL)

 	
 DATA AND STATISTICS

 	
 STATISTICAL TERMS – RSS, TSS, R^2, AND F1 SCORE

 	
 GINI IMPURITY, ENTROPY, AND PERPLEXITY

 	
 CROSS-ENTROPY AND KL DIVERGENCE

 	
 COVARIANCE AND CORRELATION MATRICES

 	
 CALCULATING EIGENVECTORS: A SIMPLE EXAMPLE

 	
 PCA (PRINCIPAL COMPONENT ANALYSIS)

 	
 WELL-KNOWN DISTANCE METRICS

 	
 TYPES OF DISTANCE METRICS

 	
 WHAT IS BAYESIAN INFERENCE?

 	
 SUMMARY

 	
 CHAPTER 3 LINEAR ALGEBRA CONCEPTS

 	
 WHAT IS LINEAR ALGEBRA?

 	
 WHAT ARE VECTORS?

 	
 WHAT ARE MATRICES?

 	
 WELL-KNOWN MATRICES

 	
 GAUSS JORDAN ELIMINATION (OPTIONAL)

 	
 COVARIANCE AND CORRELATION MATRICES

 	
 EIGENVALUES AND EIGENVECTORS

 	
 WHAT IS PCA (PRINCIPAL COMPONENT ANALYSIS)?

 	
 THE MAIN STEPS IN PCA

 	
 DIMENSIONALITY REDUCTION

 	
 DIMENSIONALITY REDUCTION TECHNIQUES

 	
 LINEAR VERSUS NON-LINEAR REDUCTION TECHNIQUES

 	
 COMPLEX NUMBERS (OPTIONAL)

 	
 SUMMARY

 	
 CHAPTER 4 INTRODUCTION TO PYTHON

 	
 NOTE

 	
 TOOLS FOR PYTHON

 	
 NOTE

 	
 PYTHON INSTALLATION

 	
 NOTE

 	
 SETTING THE PATH ENVIRONMENT VARIABLE (WINDOWS ONLY)

 	
 LAUNCHING PYTHON ON YOUR MACHINE

 	
 PYTHON IDENTIFIERS

 	
 NOTE

 	
 LINES, INDENTATIONS, AND MULTI-LINES

 	
 QUOTATION AND COMMENTS IN PYTHON

 	
 SAVING YOUR CODE IN A MODULE

 	
 SOME STANDARD MODULES IN PYTHON

 	
 THE HELP() AND DIR() FUNCTIONS

 	
 COMPILE TIME AND RUNTIME CODE CHECKING

 	
 SIMPLE DATA TYPES IN PYTHON

 	
 WORKING WITH NUMBERS

 	
 NOTE

 	
 UNICODE AND UTF-8

 	
 WORKING WITH UNICODE

 	
 WORKING WITH STRINGS

 	
 UNINITIALIZED VARIABLES AND THE VALUE NONE IN PYTHON

 	
 SLICING AND SPLICING STRINGS

 	
 SEARCH AND REPLACE A STRING IN OTHER STRINGS

 	
 REMOVE LEADING AND TRAILING CHARACTERS

 	
 PRINTING TEXT WITHOUT NEWLINE CHARACTERS

 	
 TEXT ALIGNMENT

 	
 WORKING WITH DATES

 	
 EXCEPTION HANDLING IN PYTHON

 	
 HANDLING USER INPUT

 	
 NOTE

 	
 COMMAND-LINE ARGUMENTS

 	
 PRECEDENCE OF OPERATORS IN PYTHON

 	
 PYTHON RESERVED WORDS

 	
 WORKING WITH LOOPS IN PYTHON

 	
 NESTED LOOPS

 	
 THE SPLIT() FUNCTION WITH FOR LOOPS

 	
 USING THE SPLIT() FUNCTION TO COMPARE WORDS

 	
 USING THE SPLIT() FUNCTION TO PRINT JUSTIFIED TEXT

 	
 USING THE SPLIT() FUNCTION TO PRINT FIXED WIDTH TEXT

 	
 USING THE SPLIT() FUNCTION TO COMPARE TEXT STRINGS

 	
 USING THE SPLIT() FUNCTION TO DISPLAY CHARACTERS IN A STRING

 	
 THE JOIN() FUNCTION

 	
 PYTHON WHILE LOOPS

 	
 CONDITIONAL LOGIC IN PYTHON

 	
 THE BREAK/CONTINUE/PASS STATEMENTS

 	
 COMPARISON AND BOOLEAN OPERATORS

 	
 LOCAL AND GLOBAL VARIABLES

 	
 SCOPE OF VARIABLES

 	
 PASS BY REFERENCE VERSUS VALUE

 	
 ARGUMENTS AND PARAMETERS

 	
 USING A WHILE LOOP TO FIND THE DIVISORS OF A NUMBER

 	
 USER-DEFINED FUNCTIONS IN PYTHON

 	
 SPECIFYING DEFAULT VALUES IN A FUNCTION

 	
 FUNCTIONS WITH A VARIABLE NUMBER OF ARGUMENTS

 	
 LAMBDA EXPRESSIONS

 	
 RECURSION

 	
 WORKING WITH LISTS

 	
 SORTING LISTS OF NUMBERS AND STRINGS

 	
 EXPRESSIONS IN LISTS

 	
 CONCATENATING A LIST OF WORDS

 	
 THE PYTHON RANGE() FUNCTION

 	
 ARRAYS AND THE APPEND() FUNCTION

 	
 WORKING WITH LISTS AND THE SPLIT() FUNCTION

 	
 COUNTING WORDS IN A LIST

 	
 ITERATING THROUGH PAIRS OF LISTS

 	
 OTHER LIST-RELATED FUNCTIONS

 	
 WORKING WITH VECTORS

 	
 WORKING WITH MATRICES

 	
 QUEUES

 	
 TUPLES (IMMUTABLE LISTS)

 	
 NOTE

 	
 SETS

 	
 NOTE

 	
 DICTIONARIES

 	
 NOTE

 	
 DICTIONARY FUNCTIONS AND METHODS

 	
 DICTIONARY FORMATTING

 	
 ORDERED DICTIONARIES

 	
 OTHER SEQUENCE TYPES IN PYTHON

 	
 MUTABLE AND IMMUTABLE TYPES IN PYTHON

 	
 THE TYPE() FUNCTION

 	
 SUMMARY

 	
 CHAPTER 5 INTRODUCTION TO NUMPY

 	
 WHAT IS NUMPY?

 	
 WHAT ARE NUMPY ARRAYS?

 	
 NOTE

 	
 WORKING WITH LOOPS

 	
 APPENDING ELEMENTS TO ARRAYS (1)

 	
 APPENDING ELEMENTS TO ARRAYS (2)

 	
 MULTIPLYING LISTS AND ARRAYS

 	
 DOUBLING THE ELEMENTS IN A LIST

 	
 LISTS AND EXPONENTS

 	
 ARRAYS AND EXPONENTS

 	
 MATH OPERATIONS AND ARRAYS

 	
 WORKING WITH “-1” SUB-RANGES WITH VECTORS

 	
 WORKING WITH “-1” SUB-RANGES WITH ARRAYS

 	
 OTHER USEFUL NUMPY METHODS

 	
 ARRAYS AND VECTOR OPERATIONS

 	
 NUMPY AND DOT PRODUCTS (1)

 	
 NUMPY AND DOT PRODUCTS (2)

 	
 NUMPY AND THE LENGTH OF VECTORS

 	
 NUMPY AND OTHER OPERATIONS

 	
 NUMPY AND THE RESHAPE() METHOD

 	
 CALCULATING THE MEAN AND STANDARD DEVIATION

 	
 CODE SAMPLE WITH MEAN AND STANDARD DEVIATION

 	
 WORKING WITH LINES IN THE PLANE (OPTIONAL)

 	
 PLOTTING RANDOMIZED POINTS WITH NUMPY AND MATPLOTLIB

 	
 PLOTTING A QUADRATIC WITH NUMPY AND MATPLOTLIB

 	
 WHAT IS LINEAR REGRESSION?

 	
 THE MSE (MEAN SQUARED ERROR) FORMULA

 	
 CALCULATING THE MSE MANUALLY

 	
 FIND THE BEST-FITTING LINE IN NUMPY

 	
 CALCULATING MSE BY SUCCESSIVE APPROXIMATION (1)

 	
 CALCULATING MSE BY SUCCESSIVE APPROXIMATION (2)

 	
 GOOGLE COLABORATORY

 	
 NOTE

 	
 SUMMARY

 	
 CHAPTER 6 INTRODUCTION TO PANDAS

 	
 WHAT IS PANDAS?

 	
 A PANDAS DATA FRAME WITH A NUMPY EXAMPLE

 	
 DESCRIBING A PANDAS DATA FRAME

 	
 PANDAS BOOLEAN DATA FRAMES

 	
 PANDAS DATA FRAMES AND RANDOM NUMBERS

 	
 READING CSV FILES IN PANDAS

 	
 THE LOC() AND ILOC() METHODS IN PANDAS

 	
 CONVERTING CATEGORICAL DATA TO NUMERIC DATA

 	
 MATCHING AND SPLITTING STRINGS IN PANDAS

 	
 CONVERTING STRINGS TO DATES IN PANDAS

 	
 MERGING AND SPLITTING COLUMNS IN PANDAS

 	
 COMBINING PANDAS DATA FRAMES

 	
 DATA MANIPULATION WITH PANDAS DATA FRAMES (1)

 	
 DATA MANIPULATION WITH PANDAS DATA FRAMES (2)

 	
 DATA MANIPULATION WITH PANDAS DATA FRAMES (3)

 	
 PANDAS DATA FRAMES AND CSV FILES

 	
 MANAGING COLUMNS IN DATA FRAMES

 	
 MANAGING ROWS IN PANDAS

 	
 HANDLING MISSING DATA IN PANDAS

 	
 SORTING DATA FRAMES IN PANDAS

 	
 WORKING WITH GROUPBY() IN PANDAS

 	
 WORKING WITH APPLY() AND MAPAPPLY() IN PANDAS

 	
 HANDLING OUTLIERS IN PANDAS

 	
 PANDAS DATA FRAMES AND SCATTERPLOTS

 	
 PANDAS DATA FRAMES AND SIMPLE STATISTICS

 	
 AGGREGATE OPERATIONS IN PANDAS DATA FRAMES

 	
 AGGREGATE OPERATIONS WITH THE TITANIC.CSV DATASET

 	
 SAVE DATA FRAMES AS CSV FILES AND ZIP FILES

 	
 PANDAS DATA FRAMES AND EXCEL SPREADSHEETS

 	
 WORKING WITH JSON-BASED DATA

 	
 USEFUL ONE-LINE COMMANDS IN PANDAS

 	
 WHAT IS METHOD CHAINING?

 	
 PANDAS PROFILING

 	
 SUMMARY

 	
 CHAPTER 7 INTRODUCTION TO R

 	
 WHAT IS R?

 	
 VARIABLE NAMES, OPERATORS, AND DATA TYPES IN R

 	
 WORKING WITH STRINGS IN R

 	
 WORKING WITH VECTORS IN R

 	
 WORKING WITH LISTS IN R

 	
 WORKING WITH MATRICES IN R (1)

 	
 WORKING WITH MATRICES IN R (2)

 	
 WORKING WITH MATRICES IN R (3)

 	
 WORKING WITH MATRICES IN R (4)

 	
 WORKING WITH MATRICES IN R (5)

 	
 UPDATING MATRIX ELEMENTS

 	
 LOGICAL CONSTRAINTS AND MATRICES

 	
 WORKING WITH MATRICES IN R (6)

 	
 COMBINING VECTORS, MATRICES, AND LISTS IN R

 	
 WORKING WITH DATES IN R

 	
 THE SEQ FUNCTION IN R

 	
 BASIC CONDITIONAL LOGIC

 	
 COMPOUND CONDITIONAL LOGIC

 	
 WORKING WITH USER INPUT

 	
 A TRY/CATCH BLOCK IN R

 	
 LINEAR REGRESSION IN R

 	
 WORKING WITH SIMPLE LOOPS IN R

 	
 WORKING WITH NESTED LOOPS IN R

 	
 WORKING WITH WHILE LOOPS IN R

 	
 WORKING WITH CONDITIONAL LOGIC IN R

 	
 ADD A SEQUENCE OF NUMBERS IN R

 	
 CHECK IF A NUMBER IS PRIME IN R

 	
 CHECK IF NUMBERS IN AN ARRAY ARE PRIME IN R

 	
 CHECK FOR LEAP YEARS IN R

 	
 WELL-FORMED TRIANGLE VALUES IN R

 	
 WHAT ARE FACTORS IN R?

 	
 WHAT ARE DATA FRAMES IN R?

 	
 WORKING WITH DATA FRAMES IN R (1)

 	
 WORKING WITH DATA FRAMES IN R (2)

 	
 WORKING WITH DATA FRAMES IN R (3)

 	
 SORT A DATA FRAME BY COLUMN

 	
 READING EXCEL FILES IN R

 	
 READING SQLITE TABLES IN R

 	
 READING TEXT FILES IN R

 	
 SAVING AND RESTORING OBJECTS IN R

 	
 DATA VISUALIZATION IN R

 	
 WORKING WITH BAR CHARTS IN R (1)

 	
 WORKING WITH BAR CHARTS IN R (2)

 	
 WORKING WITH LINE GRAPHS IN R

 	
 WORKING WITH FUNCTIONS IN R

 	
 MATH-RELATED FUNCTIONS IN R

 	
 SOME OPERATORS AND SET FUNCTIONS IN R

 	
 THE “APPLY FAMILY” OF BUILT-IN FUNCTIONS

 	
 THE DPLYR PACKAGE IN R

 	
 THE PIPE OPERATOR %>%

 	
 WORKING WITH CSV FILES IN R

 	
 WORKING WITH XML IN R

 	
 READING AN XML DOCUMENT INTO AN R DATA FRAME

 	
 WORKING WITH JSON IN R

 	
 READING A JSON FILE INTO AN R DATA FRAME

 	
 STATISTICAL FUNCTIONS IN R

 	
 SUMMARY FUNCTIONS IN R

 	
 DEFINING A CUSTOM FUNCTION IN R

 	
 RECURSION IN R

 	
 CALCULATING FACTORIAL VALUES IN R (NON-RECURSIVE)

 	
 CALCULATING FACTORIAL VALUES IN R (RECURSIVE)

 	
 CALCULATING FIBONACCI NUMBERS IN R (NON-RECURSIVE)

 	
 CALCULATING FIBONACCI NUMBERS IN R (RECURSIVE)

 	
 CONVERT A DECIMAL INTEGER TO A BINARY INTEGER IN R

 	
 CALCULATING THE GCD OF TWO INTEGERS IN R

 	
 CALCULATING THE LCM OF TWO INTEGERS IN R

 	
 SUMMARY

 	
 CHAPTER 8 REGULAR EXPRESSIONS

 	
 WHAT ARE REGULAR EXPRESSIONS?

 	
 METACHARACTERS IN PYTHON

 	
 NOTE

 	
 CHARACTER SETS IN PYTHON

 	
 CHARACTER CLASSES IN PYTHON

 	
 MATCHING CHARACTER CLASSES WITH THE RE MODULE

 	
 NOTE

 	
 USING THE RE.MATCH() METHOD

 	
 NOTE

 	
 OPTIONS FOR THE RE.MATCH() METHOD

 	
 MATCHING CHARACTER CLASSES WITH THE RE.SEARCH() METHOD

 	
 MATCHING CHARACTER CLASSES WITH THE FINDALL()METHOD

 	
 ADDITIONAL MATCHING FUNCTION FOR REGULAR EXPRESSIONS

 	
 GROUPING WITH CHARACTER CLASSES IN REGULAR EXPRESSIONS

 	
 USING CHARACTER CLASSES IN REGULAR EXPRESSIONS

 	
 MODIFYING TEXT STRINGS WITH THE RE MODULE

 	
 SPLITTING TEXT STRINGS WITH THE RE.SPLIT() METHOD

 	
 SPLITTING TEXT STRINGS USING DIGITS AND DELIMITERS

 	
 SUBSTITUTING TEXT STRINGS WITH THE RE.SUB() METHOD

 	
 MATCHING THE BEGINNING AND THE END OF TEXT STRINGS

 	
 COMPILATION FLAGS

 	
 COMPOUND REGULAR EXPRESSIONS

 	
 COUNTING CHARACTER TYPES IN A STRING

 	
 REGULAR EXPRESSIONS AND GROUPING

 	
 SIMPLE STRING MATCHES

 	
 PANDAS AND REGULAR EXPRESSIONS

 	
 SUMMARY

 	
 EXERCISES

 	
 CHAPTER 9 SQL AND NOSQL

 	
 WHAT IS AN RDBMS?

 	
 A FOUR-TABLE RDBMS

 	
 WHAT IS SQL?

 	
 WORKING WITH MYSQL

 	
 CREATING AND DROPPING TABLES

 	
 POPULATING TABLES WITH SEED DATA

 	
 POPULATING TABLES FROM TEXT FILES

 	
 SIMPLE SELECT STATEMENTS

 	
 WORKING WITH INDEXES IN SQL

 	
 WHAT ARE KEYS IN AN RDBMS?

 	
 NOTE

 	
 AGGREGATE AND BOOLEAN OPERATIONS IN SQL

 	
 JOINING TABLES IN SQL

 	
 DEFINING VIEWS IN MYSQL

 	
 ENTITY RELATIONSHIPS

 	
 ONE-TO-MANY ENTITY RELATIONSHIPS

 	
 MANY-TO-MANY ENTITY RELATIONSHIPS

 	
 SELF-REFERENTIAL ENTITY RELATIONSHIPS

 	
 WORKING WITH SUBQUERIES IN SQL

 	
 OTHER TASKS IN SQL

 	
 READING MYSQL DATA FROM PANDAS

 	
 EXPORT SQL DATA TO EXCEL

 	
 WHAT IS NORMALIZATION?

 	
 WHAT ARE SCHEMAS?

 	
 OTHER RDBMS TOPICS

 	
 WORKING WITH NOSQL

 	
 SUMMARY

 	
 CHAPTER 10 DATA VISUALIZATION

 	
 WHAT IS DATA VISUALIZATION?

 	
 WHAT IS MATPLOTLIB?

 	
 HORIZONTAL LINES IN MATPLOTLIB

 	
 SLANTED LINES IN MATPLOTLIB

 	
 PARALLEL SLANTED LINES IN MATPLOTLIB

 	
 A GRID OF POINTS IN MATPLOTLIB

 	
 A DOTTED GRID IN MATPLOTLIB

 	
 LINES IN A GRID IN MATPLOTLIB

 	
 A COLORED GRID IN MATPLOTLIB

 	
 A COLORED SQUARE IN AN UNLABELED GRID IN MATPLOTLIB

 	
 RANDOMIZED DATA POINTS IN MATPLOTLIB

 	
 A HISTOGRAM IN MATPLOTLIB

 	
 A SET OF LINE SEGMENTS IN MATPLOTLIB

 	
 PLOTTING MULTIPLE LINES IN MATPLOTLIB

 	
 TRIGONOMETRIC FUNCTIONS IN MATPLOTLIB

 	
 DISPLAY IQ SCORES IN MATPLOTLIB

 	
 PLOT A BEST-FITTING LINE IN MATPLOTLIB

 	
 INTRODUCTION TO SKLEARN (SCIKIT-LEARN)

 	
 THE DIGITS DATASET IN SKLEARN

 	
 THE IRIS DATASET IN SKLEARN (1)

 	
 THE IRIS DATASET IN SKLEARN (2)

 	
 THE FACES DATASET IN SKLEARN (OPTIONAL)

 	
 WORKING WITH SEABORN

 	
 SEABORN BUILT-IN DATASETS

 	
 THE IRIS DATASET IN SEABORN

 	
 THE TITANIC DATASET IN SEABORN

 	
 EXTRACTING DATA FROM THE TITANIC DATASET IN SEABORN (1)

 	
 EXTRACTING DATA FROM THE TITANIC DATASET IN SEABORN (2)

 	
 VISUALIZING A PANDAS DATASET IN SEABORN

 	
 DATA VISUALIZATION IN PANDAS

 	
 WHAT IS BOKEH?

 	
 SUMMARY

 	
 INDEX

OEBPS/css/page-template.xpgt

	
		
	

	
		
	

	
		
	

	
		
	

	
		
				
			
				
		
	

	

OEBPS/images/pub.jpg
(V)

MERCURY LEARNING AND INFORMATION

Dulls, Virginia
Boston, Massachusetts
‘New Delhi

OEBPS/images/cover.jpg
"DATA SCIENCE
FUNDAMENTALS
POCKET PRIMER

@ OSWALD CAMPESATO

