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			Preface

			Learn Robotics Programming is about building and programming a robot with smart behavior. It covers the skills required to make and build a gadget from parts, including how to choose them. These parts include sensors, motors, cameras, microphones, speakers, lights, and a Raspberry Pi.

			This book continues with how to write code to make those parts do something interesting. The book uses Python, together with a little bit of HTML/CSS and JavaScript. 

			The technology used is intended to include things that are available and affordable and the code is shown to demonstrate concepts, so they can be used and combined to create even more interesting code and robots. 

			The topics combine aspects of being a programmer with aspects of being a robot maker, with a number of specialist topics such as computer vision and voice assistants thrown in. 

			Who this book is for

			This book is intended for someone with a little programming experience, or someone more experienced but looking to apply their skills to a hardware project. You do not need to be an expert-level programmer, but do have to have written some lines of code and be comfortable with looping, conditionals, and functions. Knowledge of object-oriented- (class- and object-) based programming isn't necessary but is introduced in the book.

			The book does not require a specialist workshop, although there will be a little soldering and bolting things together. This will be introduced later in the book. 

			You do not need to have any experience at all with electronics or making things, but hopefully, you'll have a healthy interest in learning more, since some very basic concepts are introduced throughout the book. Being keen to build a robot, get it to do stuff, and find out what to do with it next is probably the most important aspect of the book.

			What this book covers

			Chapter 1, Introduction to Robotics, introduces what robots are, and finds examples in the home and industry, along with the kinds of robots beginners build.

			Chapter 2, Exploring Robot Building Blocks – Code and Electronics, looks at the components of a robot. We will start making choices about the robot's parts and see block diagrams for both systems and code. 

			Chapter 3, Exploring the Raspberry Pi, introduces the Raspberry Pi and its connections and the Raspbian Linux operating system we'll use on it, and also covers the preparation of an SD card for use in a robot.

			Chapter 4, Preparing a Headless Raspberry Pi for a Robot, shows you how to set up an untethered Raspberry Pi and communicate with it wirelessly.

			Chapter 5, Backing Up the Code with Git and SD Card Copies, shows how code can be lost or broken, then ways to protect your work and keep a history of it.

			Chapter 6, Building Robot Basics – Wheels, Power, and Wiring, introduces the trade-offs for buying and test fitting a robot base, then assembling it.

			Chapter 7, Drive and Turn – Moving Motors with Python, shows you how to write code to move a robot, laying down the foundations for the code in subsequent chapters.

			Chapter 8, Programming Distance Sensors with Python, adds sensors and code to make a robot that autonomously avoids walls and obstacles.

			Chapter 9, Programming RGB Strips in Python, adds multicolored lights to your robot. Explore this additional output to use for debugging or fun on the robot.

			Chapter 10, Using Python to Control Servo Motors, shows how to use these motors to position a sensor head, and where they could be used in arms or legs on other robots.

			Chapter 11, Programming Encoders with Python, demonstrates how odometry/tacho wheels can be read in your code, letting your robot drive in a straight line, make an accurate turn, or record how far it's driven. This chapter also introduces the PID controller.

			Chapter 12, IMU Programming with Python, introduces the Inertial Measurement Unit (IMU), a set of sensors to measure temperature, acceleration, turning speeds, and magnetic fields. This chapter also gives you an introduction to soldering and VPython.

			Chapter 13, Robot Vision – Using a Pi Camera and OpenCV, shows how to get data from a camera and use computer vision to make movements based on what the robot sees. This chapter also streams processed video to a browser.

			Chapter 14, Line-Following with a Camera in Python, demonstrates how to make line-following behavior with the Raspberry Pi camera.

			Chapter 15, Voice Communication with a Robot Using Mycroft, builds a voice control agent to link with your robot, letting you talk to control it and receive voice feedback.

			Chapter 16, Diving Deeper with the IMU, takes the sensors we learned about in Chapter 12, IMU Programming with Python, and combines them to provide data about the orientation of the robot, building behavior that responds to the compass direction.

			Chapter 17, Controlling the Robot with a Phone and Python, builds a menu system and a gaming-style control pad for your robot from your smartphone, letting you drive while seeing what the robot sees.

			Chapter 18, Taking Your Robot Programming Skills Further, looks at the wider world of robotics, what communities there are, how to get in touch with other robot builders and makers, potential development areas, and where to compete with a robot. 

			Chapter 19, Planning Your Next Robot Project – Putting It All Together, is the final chapter, where we summarize what you have seen in the book, while encouraging you to plan the construction of your next robot.

			To get the most out of this book

			Before you begin with this book, you need to have programmed a little in a text programming language. I am assuming some familiarity with variables, conditional statements, looping, and functions. 

			You will need a computer, running macOS, Linux, or Windows, an internet connection, and Wi-Fi.

			In terms of manual skills, I assume that you can use a screwdriver, that you can deal with occasional fiddly operations, and that you won't be too scared off by the possibility of soldering things.

			Code examples have been tested on Python 3 with Raspbian Buster and Picroft Buster Keaton. The book will show you how to install these when needed. The book will show you how to choose and find robot parts when needed too.

			
				
					[image: ]
				

			

			Please read the appropriate chapters with trade-offs and recommendations before buying robot hardware. 

			If you are using the digital version of this book, we advise you to type the code yourself or access the code via the GitHub repository (link available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			After reading the book, please come and join the #piwars community on Twitter for lots of robot discussion. 

			Download the example code files

			You can download the example code files for this book from your account at www.packt.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have the files emailed directly to you.

			You can download the code files by following these steps:

			
					Log in or register at www.packt.com.

					Select the Support tab.

					Click on Code Downloads.

					Enter the name of the book in the Search box and follow the onscreen instructions.

			

			Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

			
					WinRAR/7-Zip for Windows

					Zipeg/iZip/UnRarX for Mac

					7-Zip/PeaZip for Linux

			

			The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition. In case there's an update to the code, it will be updated on the existing GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Code in Action

			Code in Action videos for this book can be viewed at http://bit.ly/3bu5wHp.

			Download the color images

			We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: http://www.packtpub.com/sites/default/files/downloads/9781839218804_ColorImages.pdf.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "This sets one LED at led_number to the specified color."

			A block of code is set as follows:

			cyan_rgb = [int(c * 255) for c in cyan]

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			right_distance = self.robot.right_distance_sensor.distance

			  # Display this

			            self.display_state(left_distance, right_distance) 

			Any command-line input or output is written as follows:

			>>> r.leds.show()

			Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Select 4 for Other USB Microphone and try the sound test."

			Tips or important notes	

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

			Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Reviews

			Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

			For more information about Packt, please visit packt.com.

		

	


		
			Section 1: The Basics – Preparing for Robotics

			In this section, we will learn what a robot is with examples, get an idea of what is in a robot, and get a Raspberry Pi ready for robot experiments.

			This part of the book comprises the following chapters:

			
					Chapter 1, Introduction to Robotics 

					Chapter 2, Exploring Robot Building Blocks – Code and Electronics 

					Chapter 3, Exploring the Raspberry Pi 

					Chapter 4, Preparing a Headless Raspberry Pi for a Robot 

					Chapter 5, Backing Up the Code with Git and SD Card Copies 

			

		

	


		
			Chapter 1: Introduction to Robotics

			Throughout this book, we will build a robot and create programs for it that give the robot behaviors that make it appear intelligent and able to make decisions. We will write code to use sensors to observe the robot's surroundings and build real-world examples of advanced topics, including vision, speech recognition, and talking.

			You will see how the simple build techniques, when combined with a little bit of code, will result in a machine that feels like some kind of pet. You will also see how to debug it when things go wrong, which they will. You'll find out how to give the robot ways to indicate problems back to you, along with selecting the behavior you would like to demonstrate. We will connect a joypad to it, give it voice control, and finally show you how to plan a further robot build.

			Before we start building a robot, it's worth spending a little time on what a robot is. We can explore some types of robots, along with basic principles that distinguish robots from other machines. You'll think a little about where the line between robot and non-robot machines is located, and then perhaps muddy that line a little bit with the somewhat fuzzy truth. We will then look at a number of robots built in the hobbyist and amateur robotics scenes.

			In this chapter, we will be covering the following topics:

			
					What does robot mean? 

					Exploring advanced and impressive robots 

					Discovering robots in the home

					Exploring robots in industry

					Competitive, educational, and hobby robots 

			

			What does robot mean?

			A robot is a machine that makes autonomous decisions based on input from sensors. A software agent is a program that automatically processes input and produces output. Perhaps a robot is best described as an autonomous software agent with sensors and moving outputs, or it could be described as an electromechanical platform with software running on it. Either way, a robot requires electronics, mechanical parts, and code.

			The word robot conjures up images of fantastic sci-fi creations, devices with legendary strength and intelligence. These often follow the human body plan, making them an android, a human-like robot. They're often given a personality and behave like a person who is, in some simple way, naïve: 
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			Figure 1.1 – Science fiction and real-world robots. Images used are from the public domain OpenClipArt library

			The word robot comes from science fiction (also known as sci-fi). The word is derived from the Czech word for slave and was first used in the 1921 Karel Capek play, Rossum's Universal Robots. The science fiction author Isaac Asimov coined the word robotics as he explored intelligent robot behavior. 

			Most real robots in our homes and industries are not cutting-edge and eye-catching. Most do not stand on two legs, or indeed any legs at all. Some are on wheels, and some are not mobile but still have moving parts and sensors.

			Robots such as modern washing machines, autonomous vacuum cleaners, fully self-regulating boilers, and air sampling fans have infiltrated our homes and are part of everyday life. They aren't threatening and have become just another machine around us. The 3D printer, robot arm, and learning toys are a bit more exciting, though:
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			Figure 1.2 – The robot, simplified and deconstructed

			At their core, robots can all be simplified down to outputs such as a motor, inputs such as a sensor, and a controller for processing or running code. So, a basic robot would look something like this:

			
					It has inputs and sensors to measure and sample properties of its environment.

					It has outputs such as motors, lights, sounds, valves, or heaters to alter its environment.

					It uses data from its inputs to make autonomous decisions about how it controls its outputs.

			

			Now, we will go ahead and look at some advanced robots in the next section.

			Exploring advanced and impressive robots

			Now that you have an overview of robots in general, I'll introduce some specific examples that represent the most remarkable robots around, and what they are capable of. Except for the Mars robots, human and animal forms have been favored by these robot makers for their adaptability, contrasting with robots designed for industrial use and intended for single repeated use.

			Figure 1.3 shows the similarities between these robots and humans/animals:
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			Figure 1.3 – A selection of human and animal-like robots. [Image credits: Image 1: This image can be found at https://commons.wikimedia.org/wiki/File:Cog,_1993-2004,_view_2_-_MIT_Museum_-_DSC03737.JPG, and is in the public domain; Image 2: This image can be found at https://commons.wikimedia.org/wiki/File:Honda_ASIMO_(ver._2011)_2011_Tokyo_Motor_Show.jpg, by Morio, under CC BY-SA 3.0, at https://creativecommons.org/licenses/by-sa/3.0/deed.en; Image 3: This image can be found at https://commons.wikimedia.org/wiki/File:Nao_Robot_(Robocup_2016).jpg and is in the public domain; Image 4: This image can be found at https://commons.wikimedia.org/wiki/File:Atlas_from_boston_dynamics.jpg, by https://www.kansascity.com/news/business/technology/917xpi/picture62197987/ALTERNATES/FREE_640/atlas%20from%20boston%20dynamics, under CC BY-SA 4.0, at https://creativecommons.org/licenses/by-sa/4.0/deed.en; Image 5: This image can be found at https://commons.wikimedia.org/wiki/Commons:Licensing#Material_in_the_public_domain and is in the public domain

			What these robots have in common is that they try to emulate humans and animals in the following ways:

			
					Robot 1 is Cog from the Massachusetts Institute of Technology. Cog was an attempt to be human-like in its movements and sensors.

					Robot 2 is the Honda ASIMO, which walks and talks a little like a human. ASIMO's two cameras perform object avoidance, as well as gestures and face recognition, and have a laser distance sensor to sense the floor. It follows marks on the floor with infrared sensors. ASIMO accepts voice commands in English and Japanese.

					Robot 3 is the Nao robot from Softbank Robotics. This cute 58 cm tall robot was designed as a learning and play robot for users to program. It has sensors to detect its motion, including if it is falling, and ultrasonic distance sensors to avoid bumps. Nao uses speakers and a microphone for voice processing. It has multiple cameras to perform similar feats to the ASIMO.

					Robot 4 is Atlas from Boston Dynamics. This robot is fast on two legs and has natural-looking movement. It has a laser radar (LIDAR) array, which it uses to sense what is around it so as to plan its movement and avoid collisions.

					Robot 5 is the Boston Dynamics BigDog, a four-legged robot, or quadruped. It can walk and run. It's one of the most stable four-legged robots, staying upright when being pushed, shoved, and walking in icy conditions.

			

			You'll add some features like these in the robot you'll build. We'll use distance sensors to avoid obstacles, using ultrasonic sensors in the same way as Nao, and discussing laser distance sensors like ASIMO. We'll explore a camera for visual processing, line sensors to follow marks on the floor, and voice processing to work with spoken commands. We'll build a pan and tilt mechanism for a camera like the head of Cog. 

			The Mars rovers

			The Mars rover robots are designed to work on a different planet, where there is no chance of human intervention if it breaks. They are robust by design. Updated software can only be sent to a Mars rover via a remote link as it is not practical to send up a person with a screen and keyboard. The Mars rover is headless by design:
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			Figure 1.4 – NASA's Curiosity rover at Glen Etive, Mars (Image Credit: NASA/JPL-Caltech/MSSS; https://mars.nasa.gov/resources/24670/curiosity-at-glen-etive/?site=msl)

			Mars rovers depend on wheels instead of legs, since stabilizing a robot on wheels is far simpler than doing it for one that uses legs, and there is less that can go wrong. Each wheel on the Mars rovers has its own motor. The wheels are arranged to provide maximum grip and stability to tackle Mars's rocky terrain and lower gravity. 

			The Curiosity rover was deposited on Mars with its sensitive camera folded up. After landing, the camera was unfolded and positioned with servo motors. The camera is pointed using a pan and tilt mechanism. It needs to take in as much of the Mars landscape as it can, sending back footage and pictures to NASA for analysis. 

			Like the Mars robots, the robot you'll build in this book uses motor-driven wheels. Our robot is also designed to run without a keyboard and mouse, being headless by design. As we expand the capabilities of our robot, we'll also use servo motors to drive a pan and tilt mechanism. 

			Discovering robots in the home

			Many robots have already infiltrated our homes. They are overlooked as robots because, at first glance, they appear ordinary and mundane. However, they are more sophisticated than they appear. 

			The washing machine

			Let's start with the washing machine. It is used every day in some homes, with a constant stream of clothes to wash, spin, and dry. But how is this a robot?

			
				
					[image: ]
				

			

			Figure 1.5 – Components of a washing machine

			Figure 1.5 shows a washing machine as a block diagram. There's a central controller connected to the display with controls to select a program. The lines going out of the controller are outputs. The connections coming into the controller are data from sensors. The dashed lines from outputs to the sensors show a closed loop of output actions in the real world, causing sensor changes. This is feedback, an essential concept in robotics.

			The washing machine uses the display and buttons to let the user choose the settings and see the status. After the start button is pressed, the controller checks the door sensor and will sensibly refuse to start if the door is open. Once the door is closed, and the start button is pressed, it will output to lock the door. After this, it uses heaters, valves, and pumps to fill the drum with heated water, using sensor feedback to regulate the water level and temperature.

			Each process could be represented by a set of statements like these, which simultaneously fill the drum and keep it heated:

			start water pump

			turn on the water heater

			while water is not filled and water is not hot enough:

			  if water filled then

			    stop water pump

			  if the water is hot enough then

			    turn off heater

			  else

			    turn on the water heater

			Note the else there, which is in case the water temperature drops below the correct temperature slightly. The washing machine then starts the drum spinning sequence – slow turns, fast spins, sensing the speed to meet the criteria. It will drain the drum, spin the clothes dry, release the door lock, and stop.

			This washing machine is, in every respect, a robot. A washing machine has sensors and outputs to affect its environment. Processing allows it to follow a program and use sensors with feedback to reach and maintain conditions. A washing machine repair person may be more of a roboticist than I.

			Other household robots

			A gas central heating boiler has sensors, pumps, and valves. The boiler uses feedback mechanisms to maintain the temperature of the house, water flow through heating, gas flow, and ensuring that the pilot light stays lit. The boiler is automatic and has many robot-like features, but it is stationary and could not readily be adapted to other purposes. The same could be said for other home appliances such as smart fans and printers.

			Smart fans use sensors to detect room temperature, humidity, and air quality, and then output through the fan speed and heating elements. 

			Other machines in the home, like a microwave, for example, have only timer-based operation, they do not make decisions, and are too simple to be regarded as robots.

			Perhaps the most obvious home robot is a robot vacuum cleaner, as shown in Figure 1.6:
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			Figure 1.6 – A robotic vacuum cleaner – PicaBot (Image credit: Handitec [Public Domain - https://commons.wikimedia.org/wiki/File:PicaBot.jpg])

			This wheeled mobile robot is like the one we will build here, but prettier. They are packed with sensors to detect walls, bag levels, and barrier zones, and avoid collisions. They most represent the type of robot we are looking at. This robot is autonomous, mobile, and could be reprogrammed to different behaviors.

			As we build our robot, we will explore how to use its sensors to detect things and react to them, forming the same feedback loops we saw in the washing machine.

			Exploring robots in industry

			Another place where robots are commonly seen is in industry. The first useful robots were used in factories, and have been there for a long time.

			Robot arms

			Robot arms range from tiny delicate robots for turning eggs, to colossal monsters moving shipping containers. Robot arms tend to use stepper and servo motors. We will look at servo motors in the pan and tilt mechanism used in this book. Most industrial robot arms (for example, ABB welding robots) follow a predetermined pattern of moves, and do not possess any decision making. However, for a more sensor-based and smart system, take a look at the impressive Baxter from Rethink Robotics in Figure 1.7. Baxter is a collaborative robot designed to work alongside humans:

			
				
					[image: ]
				

			

			Figure 1.7 – The Rethink Robotics Baxter Robot (Image credit: Baxter at Innorobo by © Xavier Caré / Wikimedia Commons [CC-BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)])

			Many robot arms are unsafe to work next to and could result in accidents, requiring cages or warning markings around them. Not so with Baxter; it can sense a human and work around or pause for safety. In the preceding image, these sensors are seen around the head. The arm sensors and soft joints also allow Baxter to sense and react to collisions.

			Baxter has a training and repeat mechanism for workers to adapt it to a task. It uses sensors to detect joint positions when being trained or playing back motions. Our robot will use encoder sensors to precisely control wheel movements.

			Warehouse robots

			Another common type of robot used in industry is those that move items around a factory floor or warehouse:
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			Figure 1.8 – Warehouse robot systems: Stingray system by TGWmechanics [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], and Intellicart by Mukeshhrs [public domain]

			Figure 1.8 picture 1 shows robotic crane systems for shifting pallets in storage complexes. They receive instructions to move goods within shelving systems.

			Smaller item-moving robots, like Intellicart in Figure 1.8 picture 2, employ line sensors, by following lines on the floor, magnetically sensing wires underneath the floor, or by following marker beacons like ASIMO. Our robot will follow lines such as these. These line-following carts frequently use wheels because these are simple to maintain and can form stable platforms.

			Competitive, educational, and hobby robots

			The most fun robots are those created by amateur robot builders. This is an extremely innovative space.

			Robotics always had a home in education, with academic builders using them for learning and experimentation platforms. Many commercial ventures have started in this setting. University robots are often group efforts, with access to hi-tech equipment to create them:
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			Figure 1.9 – Kismet [Jared C Benedict CC BY-SA 2.5 https://creativecommons.org/licenses/by-sa/2.5] and OhBot [AndroidFountain [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]]

			Kismet (Figure 1.9 picture 1) was created at MIT in the late 90s. Several hobbyist robots are derived from it. It was groundbreaking at the time, using motors to drive face movements mimicking human expressions. OhBot, a low-priced hobbyist kit using servo motors, is based on Kismet. OhBot (Figure 1.9 picture 2) links with a Raspberry Pi, using voice recognition and camera processing to make a convincing face.

			Hobby robotics is strongly linked with the open source software/hardware community, making use of sites such as GitHub (https://github.com) for sharing designs, and code, leading to further ideas. Hobbyist robots can be created from kits available on the internet, with modifications and additions. The kits cover a wide range of complexity, from simple three-wheeled bases to drone kits and hexapods. They come with or without the electronics included. An investigation of kits will be covered in Chapter 6, Building Robot Basics – Wheels, Power, and Wiring. I used a hexapod kit to build SpiderBot (Figure 1.10) to explore the walking motion: 
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			Figure 1.10 – Spiderbot, made by me, based on a kit. The controller is an esp8266 + Adafruit 16 Servo Controller

			Skittlebot was my Pi Wars 2018 entry, built using toy hacking, repurposing a remote control excavator toy into a robot platform. Pi Wars is an autonomous robotics challenge for Raspberry Pi-based robots, with both manual and autonomous challenges. There were entries with decorative cases and resourceful engineering. Skittlebot (Figure 1.11) uses three distance sensors to avoid walls, and we will investigate this kind of sensor in Chapter 8, Programming Distance Sensors with Python. Skittlebot uses a camera to find colored objects, as we will see in Chapter 13, Robot Vision – Using a Pi Camera and OpenCV:
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			Figure 1.11 – Skittlebot – My PiWars 2018 Robot, based on a toy

			Some hobbyist robots are built from scratch, using 3D printing, laser cutting, vacuum forming, woodwork, CNC, and other techniques to construct the chassis and parts:
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			Figure 1.12 – Building ArmBot

			I built the robot in Figure 1.12 from scratch, for the London robotics group The Aurorans, in 2009. The robot was known as EeeBot in 2009 since it was intended to be driven by an Eee PC laptop. The Aurorans were a community that met to discuss robotics. The robot was later given a Raspberry Pi, and a robot arm kit (the uArm) seemed to fit, earning it the name ArmBot.

			In the current market, there are many chassis kits, and a beginner will not need to measure and cut materials in this way to make a functioning robot. These are built to experiment on, and to inspire other robot builders and kids to code. Toward the end of the book, we will cover some of the communities where robots are being built and shared, along with starting points on using construction techniques to make them from scratch.

			The television series Robot Wars is a well-known competitive robot event with impressive construction and engineering skills. There is no autonomous behavior in Robot Wars, though; they are manually driven like remote control cars. Washing machines, although less exciting, are smarter, so they could be more strictly considered robots.

			Summary

			In this chapter, we have looked at what the word robot means, and the facts and fiction associated with robots. We have defined what a real robot is. You have seen what a machine needs to do in order to be considered a robot.

			We've investigated the robots seen in the home and in industry. You've been shown some designed to amaze or travel to other planets. We've also looked at hobbyist and education robots, and how some of these are just built for fun. You've seen some block diagrams of real-world devices that may not have been considered robots. You've also spotted how our homes may already have several robots present.

			I hope this chapter has you thinking about what earns the title of robot. A washing machine can be fully automatic, starting at some time later, following a program, with some advanced machines saving water by detecting the quality of the water coming out from the clothes as a metric for how clean they are. A machine called a robot, however, could be simply a remote-controlled device, such as telepresence robots or Robot Wars robots. Undoubtedly, all have sophisticated engineering, requiring many similar skills to make them. 

			While some robots are clearly robots, such as the Honda ASIMO and Baxter, some others are far harder to draw the line at. If the broad concept of a decision-making, electro-mechanical machine fits these cases, it would exclude the remote-controlled type. If the concept of machines that are mobile is applied, then a toy RC car would be included, while a fully autonomous smart machine that is stationary is excluded. A machine could be made to look robot-like with anthropic (human-like) characteristics, but simply being mechanical, moving an arm up and down – is this a robot? It isn't running a program or reacting to an environment. 

			Now that we have explored what robots are, let's move on to the next chapter, in which we'll look at how to plan a robot so we can build it.

			Assessment

			Look around your home. There will be other automatic machines with many of the features of robots in them. Take a common household machine (other than a washing machine), and look at its inputs and outputs. Use these to make a diagram showing them going in or out of a controller. Think about how they move if they move around the house. 

			Consider further what feedback loops may be present in this system. What is it monitoring? How is it responding to that information?

			Further reading

			Refer to the following links:

			
					Honda ASIMO: http://asimo.honda.com/.

					Baxter at Rethink Robotics: https://www.rethinkrobotics.com/baxter/.

					Kismet at MIT: http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html.

					The OhBot: http://www.ohbot.co.uk/.

					The Mars Science Laboratory at NASA: https://mars.nasa.gov/msl/.

					For building a robot arm like the one used in ArmBot, take a look at MeArm: https://github.com/mimeindustries/MeArm.

					For more information about my ArmBot design, visit https://www.youtube.com/watch?v=xY6Oc4_jdmU.

			

		

	


		
			Chapter 2: Exploring Robot Building Blocks – Code and Electronics

			In this chapter, we'll take a robot apart to see its parts and systems. We'll explore the components of a robot, both the software (code, commands, and libraries) and the hardware, and how they go together. When starting to make a robot, it's valuable to think about the parts you want and how they relate to one another. I recommend sketching a plan of your robot—a block diagram as a guide to the connected code and parts, which we will explore in this chapter as well.

			In this chapter, we will be covering the following topics:

			
					Looking at what's inside a robot

					Exploring types of robot components

					Exploring controllers and I/O 

					Planning components and code structure

					Planning the physical robot

			

			Technical requirements

			For this chapter, you will require the following:

			
					Simple drawing materials, such as a pen and paper

					Optional – diagram software such as Draw.io (free at https://app.diagrams.net) or Inkscape (free at https://inkscape.org)

			

			Looking at what's inside a robot

			We can start by looking at a robot as a physical system. In Figure 2.1, we can see a simple hobby robot:
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			Figure 2.1 – An assembled hobby robot

			Figure 2.2 shows it in its disassembled form:
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			Figure 2.2 – A hobby robot's components laid out

			The component groups in Figure 2.2 include nine types of components:

			
					The chassis or body forms the main structure of the robot; other parts are attached here.

					A castor wheel balances this robot.

					Two drive wheels. Other robots may use more wheels or legs here.

					Motors are essential for the robot to move. 

					A motor controller bridges between a controller and connected motors. 

					A controller, here a Raspberry Pi, runs instructions, takes information from the sensors, and processes this information to drive outputs, such as motors, through the motor controller. 

					All robots must have power, usually one or more sets of batteries. 

					Sensors provide information about the robot's environment or the state of its physical systems.

					Finally, debug devices are outputs that allow the robot to communicate with humans about what its code is doing, and are also useful for looking good.

			

			We will examine these components in more detail later in this chapter.

			We can visualize a robot as a block diagram (Figure 2.3) of connected parts. Block diagrams use simple shapes to show a rough idea of how things may be connected:
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			Figure 2.3 – A robot block diagram

			The block diagram in Figure 2.3 does not use a formal notation. The key I've created is off the top of my head, but it should identify sensors, outputs, and controllers. It could be as simple as a sketch on some scrap paper. The critical factor is that you can see blocks of functionality in the hardware, with the high-level flow of data between them. 

			It is from this diagram that you can develop more detailed plans, plans containing details in terms of electrical connections, power requirements, the hardware, and how much space is needed. Sketching a block diagram about a robot you'd like to create is the first step toward making it.

			Important note

			A block diagram is not a schematic, nor a scale drawing of a finished robot. It doesn't even try to show the actual electronic connections. The picture ignores small details, such as how to signal an ultrasonic distance sensor before it responds. The connection lines give a general idea of the data flow. A block diagram is the right place to show the type and number of motors and sensors, along with additional controllers they may need. 

			This was a very brief overview of robot components, seeing a robot similar to the one you will build, along with it disassembled into parts. We took a look at a simple robot block diagram and its intent. In the next section, we will take a closer look at each of the robot's components, starting with motors.

			Exploring types of robot components

			Before we look at the types of motors and sensors, let's get a brief understanding of what each of them is. 

			A motor is an output device that rotates when power is applied. Motors are a subset of a type of machinery called an actuator. It is an output device that creates motion from electrical power. This power can be modulated with signals to control movement. Examples of actuators are solenoids, valves, and pneumatic rams. 

			A sensor is a device that provides input to a robot, allowing it to sense its environment. There are more sensor types than a single book can list, so we'll keep to the commonly available and fun-to-use ones. Displays and indicators are debug output devices, for giving feedback on the robot's operation to a human user/programmer. A few of these will be covered in this section.

			Now, let's look at them in detail.

			Types of motors 

			There are a number of different kinds of motors that robots commonly use. Let's take a look at what each one does and how we might use them for different types of motion:

			Important note

			Torque is a rotating/twisting force, for example, the force a motor will need in order to turn a wheel. If the torque increases, a motor will require more power (as current), and will slow down while trying to cope. A motor has a limit, the stall torque, at which point it will stop moving. 
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			Figure 2.4 – Different motor types – a DC motor, DC gear motor, servo motor, and stepper motor

			To identify what each of these motors do, let's look at them in detail:

			
					DC motor: This is the most simple type of motor in robotics and forms the basis of gear motors. It uses Direct Current (DC) voltage, which means it can be driven simply by voltage running one way through it. The motor speed is in proportion to the voltage running through it versus the torque required to move. A bare DC motor like the one in Figure 2.4 can spin too fast to be useful. It will not have much torque and stall easily.

					DC gear motor: This is a DC motor fitted with a gearbox. This gearbox provides a reduction in speed and increases the torque it can handle. This mechanical advantage increases the motor's ability to move a load. Note that this gear motor is missing soldered leads! I recommend these motor types for robot wheels. We will use gear motors such as this on our robot in Chapter 6, Building Robot Basics – Wheels, Power, and Wiring, and Chapter 7, Drive and Turn – Moving Motors with Python.

					Servo motor (or servomechanism): This type of motor combines a gear motor with a sensor and a built-in controller as shown in Figure 2.5. A signal to a controller states a motor position, and the controller uses feedback from the sensor to try to reach this position. Servo motors are used in pan and tilt mechanisms, along with robot arms and limbs. We will look more closely at, and program, servo motors in Chapter 10, Using Python to Control Servo Motors:[image: ]
Figure 2.5 – Pictorial diagram of a servo motor mechanism


					Stepper motor: These have coils powered in a sequence to let the motor step a certain number of degrees. Where exact motions are needed, engineers use steppers. Stepper motors tend to be slower and generate a lot of heat compared with DC motors or servo motors. You will find these in fine-control applications, such as 3D printers and high-end robot arms. They are heavier and more expensive than other motors.
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