
		
			[image: cover.png]
		

	
		
			Learn Robotics Programming

			Second Edition

			Build and control AI-enabled autonomous robots using the Raspberry Pi and Python

			Danny Staple

			[image:]

			BIRMINGHAM—MUMBAI

			Learn Robotics Programming

			Second Edition

			Copyright © 2021 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Wilson D'souza

			Publishing Product Manager: Rahul Nair

			Senior Editor: Rahul Dsouza

			Content Development Editor: Nihar Kapadia

			Technical Editor: Sarvesh Jaywant

			Copy Editor: Safis Editing

			Project Coordinator: Neil D'mello

			Proofreader: Safis Editing

			Indexer: Manju Arasan

			Production Designer: Aparna Bhagat

			First published: November 2018

			Second edition: February 2021

			Production reference: 1140121

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-83921-880-4

			www.packt.com

			[image:]

			Packt.com

			Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

			Why subscribe?

			
					Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

					Improve your learning with Skill Plans built especially for you

					Get a free eBook or video every month

					Fully searchable for easy access to vital information

					Copy and paste, print, and bookmark content

			

			Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

			At www.packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

			Contributors

			About the author

			Danny Staple builds robots and gadgets as a hobby, makes videos about robots, and attends community events such as Pi Wars and Arduino Day. He has worked as a professional software engineer since 2000, and he became a Python programmer in 2009 with a strong focus on DevOps and automation. Danny has worked with embedded systems, including embedded Linux systems, throughout the majority of his career. He mentors at CoderDojo Ham, where he shows kids how to code, and also used to run LEGO Robotics clubs.

			The robots he has built with his children include TankBot, SkittleBot, Bangers N Bash (a lunchbox robot), Big Ole Yellow (more tank tracks), ArmBot, and SpiderBot.

			I would like to thank David Anderson for being a great person to bounce ideas off and for his motivational energy. I would like to thank Ben Nuttall and Dave Jones (@waveform80) for GPIOZero, and for helping me out countless times on Twitter. Dave Jones kickstarted my journey into computer vision in a restaurant in Cardiff and is the author of the PiCamera library. Finally, I would like to thank my children, Helena and Jonathan, for their support and patience, even occasionally reviewing diagrams for me.

			About the reviewers

			Leo White is a professional software engineer and graduate of the University of Kent, whose interests include electronics, 3D printing, and robotics. He first started programming on the Commodore 64, then later wrote several applications for the Acorn Archimedes, and currently programs set-top boxes for his day job. Utilizing the Raspberry Pi as a foundation, he has mechanized children's toys and driven robot arms, blogging about his experiences and processes along the way, as well as given presentations at Raspberry Jams and entered a variety of robots into the Pi Wars competition.

			Ramkumar Gandhinathan is a roboticist and a researcher by profession. He started building robots in sixth grade and has been in the robotics field for over 15 years through personal and professional connections. He has built over 80+ robots of different types. With an overall professional experience of 7 years (4 years full-time and 3 years part-time/internships) in the robotics industry, he has 5 years of ROS experience. As a part of his professional career, he has built over 15 industrial robot solutions using ROS. He is also fascinated with building drones and is a drone pilot by practice. His research interests and passions are in the field of SLAM, motion planning, sensor fusion, multi-robot communication, and systems integration.

			Packt is searching for authors like you

			If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply today. We have worked with thousands of developers and tech professionals, just like you, to help them share their insight with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

		

	
		
			Table of Contents

			Preface

			Section 1: The Basics – Preparing for Robotics

			Chapter 1: Introduction to Robotics

			What does robot mean?

			Exploring advanced and impressive robots

			The Mars rovers

			Discovering robots in the home

			The washing machine

			Other household robots

			Exploring robots in industry

			Robot arms

			Warehouse robots

			Competitive, educational, and hobby robots

			Summary

			Assessment

			Further reading

			Chapter 2: Exploring Robot Building Blocks – Code and Electronics

			Technical requirements

			Looking at what's inside a robot

			Exploring types of robot components

			Types of motors

			Other types of actuators

			Status indicators – displays, lights, and sounds

			Types of sensors

			Exploring controllers and I/O

			I/O pins

			Controllers

			Choosing a Raspberry Pi

			Planning components and code structure

			Planning the physical robot

			Summary

			Exercise

			Further reading

			Chapter 3: Exploring the Raspberry Pi

			Technical requirements

			Exploring the Raspberry Pi's capabilities

			Speed and power

			Connectivity and networking

			Picking the Raspberry Pi 3A+

			Choosing the connections

			Raspberry Pi HATs

			What is Raspberry Pi OS?

			Preparing an SD card with Raspberry Pi OS

			Summary

			Assessment

			Further reading

			Chapter 4: Preparing a Headless Raspberry Pi for a Robot

			Technical requirements

			What is a headless system, and why is it useful in a robot?

			Setting up Wi-Fi on the Raspberry Pi and enabling SSH

			Finding your Pi on the network

			Setting up Bonjour for Microsoft Windows

			Testing the setup

			Troubleshooting

			Using PuTTY or SSH to connect to your Raspberry Pi

			Configuring Raspberry Pi OS

			Renaming your Pi

			Securing your Pi (a little bit)

			Rebooting and reconnecting

			Updating the software on your Raspberry Pi

			Shutting down your Raspberry Pi

			Summary

			Assessment

			Further reading

			Chapter 5: Backing Up the Code with Git and SD Card Copies

			Technical requirements

			Understanding how code can be broken or lost

			SD card data loss and corruption

			Changes to the code or configuration

			Strategy 1 – Keeping the code on a PC and uploading it

			Strategy 2 – Using Git to go back in time

			Strategy 3 – Making SD card backups

			Windows

			Mac

			Linux

			Summary

			Assessment

			Further reading

			Section 2: Building an Autonomous Robot – Connecting Sensors and Motors to a Raspberry Pi

			Chapter 6: Building Robot Basics – Wheels, Power, and Wiring

			Technical requirements

			Choosing a robot chassis kit

			Size

			Wheel count

			Wheels and motors

			Simplicity

			Cost

			Conclusion

			Choosing a motor controller board

			Integration level

			Pin usage

			Size

			Soldering

			Power input

			Connectors

			Conclusion

			Powering the robot

			Test fitting the robot

			Assembling the base

			Attaching the encoder wheels

			Fitting the motor brackets

			Adding the castor wheel

			Putting the wheels on

			Bringing the wires up

			Fitting the Raspberry Pi

			Adding the batteries

			The completed robot base

			Connecting the motors to the Raspberry Pi

			Wiring the Motor HAT in

			Independent power

			Summary

			Exercises

			Further reading

			Chapter 7: Drive and Turn – Moving Motors with Python

			Technical requirements

			Writing code to test your motors

			Preparing libraries

			Test – finding the Motor HAT

			Test – demonstrating that the motors move

			Troubleshooting

			Understanding how the code works

			Steering a robot

			Types of steering

			Steering the robot we are building

			Making a Robot object – code for our experiments to talk to the robot

			Why make this object?

			What do we put in the robot object?

			Writing a script to follow a predetermined path

			Summary

			Exercises

			Further reading

			Chapter 8: Programming Distance Sensors with Python

			Technical requirements

			Choosing between optical and ultrasonic sensors

			Optical sensors

			Ultrasonic sensors

			Logic levels and shifting

			Why use two sensors?

			Attaching and reading an ultrasonic sensor

			Securing the sensors to the robot

			Adding a power switch

			Wiring the distance sensors

			Installing Python libraries to communicate with the sensor

			Reading an ultrasonic distance sensor

			Troubleshooting

			Avoiding walls – writing a script to avoid obstacles

			Adding the sensors to the robot class

			Making the obstacle avoid behaviors

			Summary

			Exercises

			Further reading

			Chapter 9: Programming RGB Strips in Python

			Technical requirements

			What is an RGB strip?

			Comparing light strip technologies

			RGB values

			Attaching the light strip to the Raspberry Pi

			Attaching the LED strip to the robot

			Making a robot display the code object

			Making an LED interface

			Adding LEDs to the Robot object

			Testing one LED

			Making a rainbow display with the LEDs

			Colour systems

			Making a rainbow on the LEDs

			Using the light strip for debugging the avoid behavior

			Adding basic LEDs to the avoid behavior

			Adding rainbows

			Summary

			Exercises

			Further reading

			Chapter 10: Using Python to Control Servo Motors

			Technical requirements

			What are servo motors?

			Looking inside a servo

			Sending input positions to a servo motor

			Positioning a servo motor with the Raspberry Pi

			Writing code for turning a servo

			Troubleshooting

			Controlling DC motors and servo motors

			Calibrating your servos

			Adding a pan and tilt mechanism

			Building the kit

			Attaching the pan and tilt mechanism to the robot

			Creating pan and tilt code

			Making the servo object

			Adding the servo to the robot class

			Circling the pan and tilt head

			Running it

			Troubleshooting

			Building a scanning sonar

			Attaching the sensor

			Installing the library

			Behavior code

			Summary

			Exercises

			Further reading

			Chapter 11: Programming Encoders with Python

			Technical requirements

			Measuring the distance traveled with encoders

			Where machines use encoders

			Types of encoders

			Encoding absolute or relative position

			Encoding direction and speed

			The encoders we are using

			Attaching encoders to the robot

			Preparing the encoders

			Lifting the Raspberry Pi

			Fitting the encoders onto the chassis

			Wiring the encoders to the Raspberry Pi

			Detecting the distance traveled in Python

			Introducing logging

			Simple counting

			Adding encoders to the Robot object

			Turning ticks into millimeters

			Driving in a straight line

			Correcting veer with a PID

			Creating a Python PID controller object

			Writing code to go in a straight line

			Troubleshooting this behavior

			Driving a specific distance

			Refactoring unit conversions into the EncoderCounter class

			Setting the constants

			Creating the drive distance behavior

			Making a specific turn

			Writing the drive_arc function

			Summary

			Exercises

			Further reading

			Chapter 12: IMU Programming with Python

			Technical requirements

			Learning more about IMUs

			Suggested IMU models

			Soldering – attaching headers to the IMU

			Making a solder joint

			Attaching the IMU to the robot

			Physical placement

			Wiring the IMU to the Raspberry Pi

			Reading the temperature

			Installing the software

			Troubleshooting

			Reading the temperature register

			Troubleshooting

			Simplifying the VPython command line

			Reading the gyroscope in Python

			Understanding the gyroscope

			Adding the gyroscope to the interface

			Plotting the gyroscope

			Reading an accelerometer in Python

			Understanding the accelerometer

			Adding the accelerometer to the interface

			Displaying the accelerometer as a vector

			Working with the magnetometer

			Understanding the magnetometer

			Adding the magnetometer interface

			Displaying magnetometer readings

			Summary

			Exercises

			Further reading

			Section 3: Hearing and Seeing – Giving a Robot Intelligent Sensors

			Chapter 13: Robot Vision – Using a Pi Camera and OpenCV

			Technical requirements

			Setting up the Raspberry Pi camera

			Attaching the camera to the pan-and-tilt mechanism

			Wiring in the camera

			Setting up computer vision software

			Setting up the Pi Camera software

			Getting a picture from the Raspberry Pi

			Installing OpenCV and support libraries

			Building a Raspberry Pi camera stream app

			Designing the OpenCV camera server

			Writing the CameraStream object

			Writing the image server main app

			Building a template

			Running the server

			Troubleshooting

			Running background tasks when streaming

			Following colored objects with Python

			Turning a picture into information

			Enhancing the PID controller

			Writing the behavior components

			Running the behavior

			Troubleshooting

			Tracking faces with Python

			Finding objects in an image

			Planning our behavior

			Writing face-tracking code

			Running the face-tracking behavior

			Troubleshooting

			Summary

			Exercises

			Further reading

			Chapter 14: Line-Following with a Camera in Python

			Technical requirements

			Introduction to line following

			What is line following?

			Usage in industry

			Types of line following

			Making a line-follower test track

			Getting the test track materials in place

			Making a line

			Line-following computer vision pipeline

			Camera line-tracking algorithms

			The pipeline

			Trying computer vision with test images

			Why use test images?

			Capturing test images

			Writing Python to find the edges of the line

			Locating the line from the edges

			Trying test pictures without a clear line

			Line following with the PID algorithm

			Creating the behavior flow diagram

			Adding time to our PID controller

			Writing the initial behavior

			Tuning the PID

			Troubleshooting

			Finding a line again

			Summary

			Exercises

			Further reading

			Chapter 15: Voice Communication with a Robot Using Mycroft

			Technical requirements

			Introducing Mycroft – understanding voice agent terminology

			Speech to text

			Wake words

			Utterances

			Intent

			Dialog

			Vocabulary

			Skills

			Limitations of listening for speech on a robot

			Adding sound input and output to the Raspberry Pi

			Physical installation

			Installing a voice agent on a Raspberry Pi

			Installing the ReSpeaker software

			Getting Mycroft to talk to the sound card

			Starting to use Mycroft

			Troubleshooting

			Programming a Flask API

			Overview of Mycroft controlling the robot

			Starting a behavior remotely

			Programming the Flask control API server

			Troubleshooting

			Programming a voice agent with Mycroft on the Raspberry Pi

			Building the intent

			Troubleshooting

			Adding another intent

			Summary

			Exercises

			Further reading

			Chapter 16: Diving Deeper with the IMU

			Technical requirements

			Programming a virtual robot

			Modeling the robot in VPython

			Detecting rotation with the gyroscope

			Calibrating the gyroscope

			Rotating the virtual robot with the gyroscope

			Detecting pitch and roll with the accelerometer

			Getting pitch and roll from the accelerometer vector

			Smoothing the accelerometer

			Fusing accelerometer and gyroscope data

			Detecting a heading with the magnetometer

			Calibrating the magnetometer

			Getting a rough heading from the magnetometer

			Combining sensors for orientation

			Driving a robot from IMU data

			Summary

			Exercises

			Further reading

			Chapter 17: Controlling the Robot with a Phone and Python

			Technical requirements

			When speech control won't work – why we need to drive

			Menu modes – choosing your robot's behavior

			Managing robot modes

			Troubleshooting

			The web service

			The template

			Running it

			Troubleshooting

			Choosing a controller — how we are going to drive the robot, and why

			Design and overview

			Preparing the Raspberry Pi for remote driving—get the basic driving system going

			Enhancing the image app core

			Writing the manual drive behavior

			The template (web page)

			The style sheet

			Creating the code for the sliders

			Running this

			Troubleshooting

			Making the robot fully phone-operable

			Making menu modes compatible with Flask behaviors

			Loading video services

			Styling the menu

			Making the menu start when the Pi starts

			Adding lights to the menu server

			Using systemd to automatically start the robot

			Summary

			Exercises

			Further reading

			Section 4: Taking Robotics Further

			Chapter 18: Taking Your Robot Programming Skills Further

			Online robot building communities – forums and social media

			YouTube channels to get to know

			Technical questions – where to get help

			Meeting robot builders – competitions, makerspaces, and meetups

			Makerspaces

			Maker Faires, Raspberry Jams, and Dojos

			Competitions

			Suggestions for further skills – 3D printing, soldering, PCB, and CNC

			Design skills

			Skills for shaping and building

			Electronics skills

			Finding more information on computer vision

			Books

			Online courses

			Social media

			Extending to machine learning

			Robot Operating System

			Summary

			Further reading

			Chapter 19: Planning Your Next Robot Project – Putting It All Together

			Technical requirements

			Visualizing your next robot

			Making a block diagram

			Choosing the parts

			Planning the code for the robot

			Letting the world know

			Summary

			Other Books You May Enjoy

		

	

		
			Preface

			Learn Robotics Programming is about building and programming a robot with smart behavior. It covers the skills required to make and build a gadget from parts, including how to choose them. These parts include sensors, motors, cameras, microphones, speakers, lights, and a Raspberry Pi.

			This book continues with how to write code to make those parts do something interesting. The book uses Python, together with a little bit of HTML/CSS and JavaScript.

			The technology used is intended to include things that are available and affordable and the code is shown to demonstrate concepts, so they can be used and combined to create even more interesting code and robots.

			The topics combine aspects of being a programmer with aspects of being a robot maker, with a number of specialist topics such as computer vision and voice assistants thrown in.

			Who this book is for

			This book is intended for someone with a little programming experience, or someone more experienced but looking to apply their skills to a hardware project. You do not need to be an expert-level programmer, but do have to have written some lines of code and be comfortable with looping, conditionals, and functions. Knowledge of object-oriented- (class- and object-) based programming isn't necessary but is introduced in the book.

			The book does not require a specialist workshop, although there will be a little soldering and bolting things together. This will be introduced later in the book.

			You do not need to have any experience at all with electronics or making things, but hopefully, you'll have a healthy interest in learning more, since some very basic concepts are introduced throughout the book. Being keen to build a robot, get it to do stuff, and find out what to do with it next is probably the most important aspect of the book.

			What this book covers

			Chapter 1, Introduction to Robotics, introduces what robots are, and finds examples in the home and industry, along with the kinds of robots beginners build.

			Chapter 2, Exploring Robot Building Blocks – Code and Electronics, looks at the components of a robot. We will start making choices about the robot's parts and see block diagrams for both systems and code.

			Chapter 3, Exploring the Raspberry Pi, introduces the Raspberry Pi and its connections and the Raspbian Linux operating system we'll use on it, and also covers the preparation of an SD card for use in a robot.

			Chapter 4, Preparing a Headless Raspberry Pi for a Robot, shows you how to set up an untethered Raspberry Pi and communicate with it wirelessly.

			Chapter 5, Backing Up the Code with Git and SD Card Copies, shows how code can be lost or broken, then ways to protect your work and keep a history of it.

			Chapter 6, Building Robot Basics – Wheels, Power, and Wiring, introduces the trade-offs for buying and test fitting a robot base, then assembling it.

			Chapter 7, Drive and Turn – Moving Motors with Python, shows you how to write code to move a robot, laying down the foundations for the code in subsequent chapters.

			Chapter 8, Programming Distance Sensors with Python, adds sensors and code to make a robot that autonomously avoids walls and obstacles.

			Chapter 9, Programming RGB Strips in Python, adds multicolored lights to your robot. Explore this additional output to use for debugging or fun on the robot.

			Chapter 10, Using Python to Control Servo Motors, shows how to use these motors to position a sensor head, and where they could be used in arms or legs on other robots.

			Chapter 11, Programming Encoders with Python, demonstrates how odometry/tacho wheels can be read in your code, letting your robot drive in a straight line, make an accurate turn, or record how far it's driven. This chapter also introduces the PID controller.

			Chapter 12, IMU Programming with Python, introduces the Inertial Measurement Unit (IMU), a set of sensors to measure temperature, acceleration, turning speeds, and magnetic fields. This chapter also gives you an introduction to soldering and VPython.

			Chapter 13, Robot Vision – Using a Pi Camera and OpenCV, shows how to get data from a camera and use computer vision to make movements based on what the robot sees. This chapter also streams processed video to a browser.

			Chapter 14, Line-Following with a Camera in Python, demonstrates how to make line-following behavior with the Raspberry Pi camera.

			Chapter 15, Voice Communication with a Robot Using Mycroft, builds a voice control agent to link with your robot, letting you talk to control it and receive voice feedback.

			Chapter 16, Diving Deeper with the IMU, takes the sensors we learned about in Chapter 12, IMU Programming with Python, and combines them to provide data about the orientation of the robot, building behavior that responds to the compass direction.

			Chapter 17, Controlling the Robot with a Phone and Python, builds a menu system and a gaming-style control pad for your robot from your smartphone, letting you drive while seeing what the robot sees.

			Chapter 18, Taking Your Robot Programming Skills Further, looks at the wider world of robotics, what communities there are, how to get in touch with other robot builders and makers, potential development areas, and where to compete with a robot.

			Chapter 19, Planning Your Next Robot Project – Putting It All Together, is the final chapter, where we summarize what you have seen in the book, while encouraging you to plan the construction of your next robot.

			To get the most out of this book

			Before you begin with this book, you need to have programmed a little in a text programming language. I am assuming some familiarity with variables, conditional statements, looping, and functions.

			You will need a computer, running macOS, Linux, or Windows, an internet connection, and Wi-Fi.

			In terms of manual skills, I assume that you can use a screwdriver, that you can deal with occasional fiddly operations, and that you won't be too scared off by the possibility of soldering things.

			Code examples have been tested on Python 3 with Raspbian Buster and Picroft Buster Keaton. The book will show you how to install these when needed. The book will show you how to choose and find robot parts when needed too.

			
				
					[image:]
				

			

			Please read the appropriate chapters with trade-offs and recommendations before buying robot hardware.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code via the GitHub repository (link available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			After reading the book, please come and join the #piwars community on Twitter for lots of robot discussion.

			Download the example code files

			You can download the example code files for this book from your account at www.packt.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have the files emailed directly to you.

			You can download the code files by following these steps:

			
					Log in or register at www.packt.com.

					Select the Support tab.

					Click on Code Downloads.

					Enter the name of the book in the Search box and follow the onscreen instructions.

			

			Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

			
					WinRAR/7-Zip for Windows

					Zipeg/iZip/UnRarX for Mac

					7-Zip/PeaZip for Linux

			

			The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Learn-Robotics-Programming-Second-Edition. In case there's an update to the code, it will be updated on the existing GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Code in Action

			Code in Action videos for this book can be viewed at http://bit.ly/3bu5wHp.

			Download the color images

			We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: http://www.packtpub.com/sites/default/files/downloads/9781839218804_ColorImages.pdf.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "This sets one LED at led_number to the specified color."

			A block of code is set as follows:

			cyan_rgb = [int(c * 255) for c in cyan]

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			right_distance = self.robot.right_distance_sensor.distance

			 # Display this

			 self.display_state(left_distance, right_distance)

			Any command-line input or output is written as follows:

			>>> r.leds.show()

			Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "Select 4 for Other USB Microphone and try the sound test."

			Tips or important notes	

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

			Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Reviews

			Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

			For more information about Packt, please visit packt.com.

		

	

		
			Section 1: The Basics – Preparing for Robotics

			In this section, we will learn what a robot is with examples, get an idea of what is in a robot, and get a Raspberry Pi ready for robot experiments.

			This part of the book comprises the following chapters:

			
					Chapter 1, Introduction to Robotics

					Chapter 2, Exploring Robot Building Blocks – Code and Electronics

					Chapter 3, Exploring the Raspberry Pi

					Chapter 4, Preparing a Headless Raspberry Pi for a Robot

					Chapter 5, Backing Up the Code with Git and SD Card Copies

			

		

	

		
			Chapter 1: Introduction to Robotics

			Throughout this book, we will build a robot and create programs for it that give the robot behaviors that make it appear intelligent and able to make decisions. We will write code to use sensors to observe the robot's surroundings and build real-world examples of advanced topics, including vision, speech recognition, and talking.

			You will see how the simple build techniques, when combined with a little bit of code, will result in a machine that feels like some kind of pet. You will also see how to debug it when things go wrong, which they will. You'll find out how to give the robot ways to indicate problems back to you, along with selecting the behavior you would like to demonstrate. We will connect a joypad to it, give it voice control, and finally show you how to plan a further robot build.

			Before we start building a robot, it's worth spending a little time on what a robot is. We can explore some types of robots, along with basic principles that distinguish robots from other machines. You'll think a little about where the line between robot and non-robot machines is located, and then perhaps muddy that line a little bit with the somewhat fuzzy truth. We will then look at a number of robots built in the hobbyist and amateur robotics scenes.

			In this chapter, we will be covering the following topics:

			
					What does robot mean?

					Exploring advanced and impressive robots

					Discovering robots in the home

					Exploring robots in industry

					Competitive, educational, and hobby robots

			

			What does robot mean?

			A robot is a machine that makes autonomous decisions based on input from sensors. A software agent is a program that automatically processes input and produces output. Perhaps a robot is best described as an autonomous software agent with sensors and moving outputs, or it could be described as an electromechanical platform with software running on it. Either way, a robot requires electronics, mechanical parts, and code.

			The word robot conjures up images of fantastic sci-fi creations, devices with legendary strength and intelligence. These often follow the human body plan, making them an android, a human-like robot. They're often given a personality and behave like a person who is, in some simple way, naïve:

			
				
					[image:]
				

			

			Figure 1.1 – Science fiction and real-world robots. Images used are from the public domain OpenClipArt library

			The word robot comes from science fiction (also known as sci-fi). The word is derived from the Czech word for slave and was first used in the 1921 Karel Capek play, Rossum's Universal Robots. The science fiction author Isaac Asimov coined the word robotics as he explored intelligent robot behavior.

			Most real robots in our homes and industries are not cutting-edge and eye-catching. Most do not stand on two legs, or indeed any legs at all. Some are on wheels, and some are not mobile but still have moving parts and sensors.

			Robots such as modern washing machines, autonomous vacuum cleaners, fully self-regulating boilers, and air sampling fans have infiltrated our homes and are part of everyday life. They aren't threatening and have become just another machine around us. The 3D printer, robot arm, and learning toys are a bit more exciting, though:

			
				
					[image:]
				

			

			Figure 1.2 – The robot, simplified and deconstructed

			At their core, robots can all be simplified down to outputs such as a motor, inputs such as a sensor, and a controller for processing or running code. So, a basic robot would look something like this:

			
					It has inputs and sensors to measure and sample properties of its environment.

					It has outputs such as motors, lights, sounds, valves, or heaters to alter its environment.

					It uses data from its inputs to make autonomous decisions about how it controls its outputs.

			

			Now, we will go ahead and look at some advanced robots in the next section.

			Exploring advanced and impressive robots

			Now that you have an overview of robots in general, I'll introduce some specific examples that represent the most remarkable robots around, and what they are capable of. Except for the Mars robots, human and animal forms have been favored by these robot makers for their adaptability, contrasting with robots designed for industrial use and intended for single repeated use.

			Figure 1.3 shows the similarities between these robots and humans/animals:

			
				
					[image:]
				

			

			Figure 1.3 – A selection of human and animal-like robots. [Image credits: Image 1: This image can be found at https://commons.wikimedia.org/wiki/File:Cog,_1993-2004,_view_2_-_MIT_Museum_-_DSC03737.JPG, and is in the public domain; Image 2: This image can be found at https://commons.wikimedia.org/wiki/File:Honda_ASIMO_(ver._2011)_2011_Tokyo_Motor_Show.jpg, by Morio, under CC BY-SA 3.0, at https://creativecommons.org/licenses/by-sa/3.0/deed.en; Image 3: This image can be found at https://commons.wikimedia.org/wiki/File:Nao_Robot_(Robocup_2016).jpg and is in the public domain; Image 4: This image can be found at https://commons.wikimedia.org/wiki/File:Atlas_from_boston_dynamics.jpg, by https://www.kansascity.com/news/business/technology/917xpi/picture62197987/ALTERNATES/FREE_640/atlas%20from%20boston%20dynamics, under CC BY-SA 4.0, at https://creativecommons.org/licenses/by-sa/4.0/deed.en; Image 5: This image can be found at https://commons.wikimedia.org/wiki/Commons:Licensing#Material_in_the_public_domain and is in the public domain

			What these robots have in common is that they try to emulate humans and animals in the following ways:

			
					Robot 1 is Cog from the Massachusetts Institute of Technology. Cog was an attempt to be human-like in its movements and sensors.

					Robot 2 is the Honda ASIMO, which walks and talks a little like a human. ASIMO's two cameras perform object avoidance, as well as gestures and face recognition, and have a laser distance sensor to sense the floor. It follows marks on the floor with infrared sensors. ASIMO accepts voice commands in English and Japanese.

					Robot 3 is the Nao robot from Softbank Robotics. This cute 58 cm tall robot was designed as a learning and play robot for users to program. It has sensors to detect its motion, including if it is falling, and ultrasonic distance sensors to avoid bumps. Nao uses speakers and a microphone for voice processing. It has multiple cameras to perform similar feats to the ASIMO.

					Robot 4 is Atlas from Boston Dynamics. This robot is fast on two legs and has natural-looking movement. It has a laser radar (LIDAR) array, which it uses to sense what is around it so as to plan its movement and avoid collisions.

					Robot 5 is the Boston Dynamics BigDog, a four-legged robot, or quadruped. It can walk and run. It's one of the most stable four-legged robots, staying upright when being pushed, shoved, and walking in icy conditions.

			

			You'll add some features like these in the robot you'll build. We'll use distance sensors to avoid obstacles, using ultrasonic sensors in the same way as Nao, and discussing laser distance sensors like ASIMO. We'll explore a camera for visual processing, line sensors to follow marks on the floor, and voice processing to work with spoken commands. We'll build a pan and tilt mechanism for a camera like the head of Cog.

			The Mars rovers

			The Mars rover robots are designed to work on a different planet, where there is no chance of human intervention if it breaks. They are robust by design. Updated software can only be sent to a Mars rover via a remote link as it is not practical to send up a person with a screen and keyboard. The Mars rover is headless by design:

			
				
					[image:]
				

			

			Figure 1.4 – NASA's Curiosity rover at Glen Etive, Mars (Image Credit: NASA/JPL-Caltech/MSSS; https://mars.nasa.gov/resources/24670/curiosity-at-glen-etive/?site=msl)

			Mars rovers depend on wheels instead of legs, since stabilizing a robot on wheels is far simpler than doing it for one that uses legs, and there is less that can go wrong. Each wheel on the Mars rovers has its own motor. The wheels are arranged to provide maximum grip and stability to tackle Mars's rocky terrain and lower gravity.

			The Curiosity rover was deposited on Mars with its sensitive camera folded up. After landing, the camera was unfolded and positioned with servo motors. The camera is pointed using a pan and tilt mechanism. It needs to take in as much of the Mars landscape as it can, sending back footage and pictures to NASA for analysis.

			Like the Mars robots, the robot you'll build in this book uses motor-driven wheels. Our robot is also designed to run without a keyboard and mouse, being headless by design. As we expand the capabilities of our robot, we'll also use servo motors to drive a pan and tilt mechanism.

			Discovering robots in the home

			Many robots have already infiltrated our homes. They are overlooked as robots because, at first glance, they appear ordinary and mundane. However, they are more sophisticated than they appear.

			The washing machine

			Let's start with the washing machine. It is used every day in some homes, with a constant stream of clothes to wash, spin, and dry. But how is this a robot?

			
				
					[image:]
				

			

			Figure 1.5 – Components of a washing machine

			Figure 1.5 shows a washing machine as a block diagram. There's a central controller connected to the display with controls to select a program. The lines going out of the controller are outputs. The connections coming into the controller are data from sensors. The dashed lines from outputs to the sensors show a closed loop of output actions in the real world, causing sensor changes. This is feedback, an essential concept in robotics.

			The washing machine uses the display and buttons to let the user choose the settings and see the status. After the start button is pressed, the controller checks the door sensor and will sensibly refuse to start if the door is open. Once the door is closed, and the start button is pressed, it will output to lock the door. After this, it uses heaters, valves, and pumps to fill the drum with heated water, using sensor feedback to regulate the water level and temperature.

			Each process could be represented by a set of statements like these, which simultaneously fill the drum and keep it heated:

			start water pump

			turn on the water heater

			while water is not filled and water is not hot enough:

			 if water filled then

			 stop water pump

			 if the water is hot enough then

			 turn off heater

			 else

			 turn on the water heater

			Note the else there, which is in case the water temperature drops below the correct temperature slightly. The washing machine then starts the drum spinning sequence – slow turns, fast spins, sensing the speed to meet the criteria. It will drain the drum, spin the clothes dry, release the door lock, and stop.

			This washing machine is, in every respect, a robot. A washing machine has sensors and outputs to affect its environment. Processing allows it to follow a program and use sensors with feedback to reach and maintain conditions. A washing machine repair person may be more of a roboticist than I.

			Other household robots

			A gas central heating boiler has sensors, pumps, and valves. The boiler uses feedback mechanisms to maintain the temperature of the house, water flow through heating, gas flow, and ensuring that the pilot light stays lit. The boiler is automatic and has many robot-like features, but it is stationary and could not readily be adapted to other purposes. The same could be said for other home appliances such as smart fans and printers.

			Smart fans use sensors to detect room temperature, humidity, and air quality, and then output through the fan speed and heating elements.

			Other machines in the home, like a microwave, for example, have only timer-based operation, they do not make decisions, and are too simple to be regarded as robots.

			Perhaps the most obvious home robot is a robot vacuum cleaner, as shown in Figure 1.6:

			
				
					[image:]
				

			

			Figure 1.6 – A robotic vacuum cleaner – PicaBot (Image credit: Handitec [Public Domain - https://commons.wikimedia.org/wiki/File:PicaBot.jpg])

			This wheeled mobile robot is like the one we will build here, but prettier. They are packed with sensors to detect walls, bag levels, and barrier zones, and avoid collisions. They most represent the type of robot we are looking at. This robot is autonomous, mobile, and could be reprogrammed to different behaviors.

			As we build our robot, we will explore how to use its sensors to detect things and react to them, forming the same feedback loops we saw in the washing machine.

			Exploring robots in industry

			Another place where robots are commonly seen is in industry. The first useful robots were used in factories, and have been there for a long time.

			Robot arms

			Robot arms range from tiny delicate robots for turning eggs, to colossal monsters moving shipping containers. Robot arms tend to use stepper and servo motors. We will look at servo motors in the pan and tilt mechanism used in this book. Most industrial robot arms (for example, ABB welding robots) follow a predetermined pattern of moves, and do not possess any decision making. However, for a more sensor-based and smart system, take a look at the impressive Baxter from Rethink Robotics in Figure 1.7. Baxter is a collaborative robot designed to work alongside humans:

			
				
					[image:]
				

			

			Figure 1.7 – The Rethink Robotics Baxter Robot (Image credit: Baxter at Innorobo by © Xavier Caré / Wikimedia Commons [CC-BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)])

			Many robot arms are unsafe to work next to and could result in accidents, requiring cages or warning markings around them. Not so with Baxter; it can sense a human and work around or pause for safety. In the preceding image, these sensors are seen around the head. The arm sensors and soft joints also allow Baxter to sense and react to collisions.

			Baxter has a training and repeat mechanism for workers to adapt it to a task. It uses sensors to detect joint positions when being trained or playing back motions. Our robot will use encoder sensors to precisely control wheel movements.

			Warehouse robots

			Another common type of robot used in industry is those that move items around a factory floor or warehouse:

			
				
					[image:]
				

			

			Figure 1.8 – Warehouse robot systems: Stingray system by TGWmechanics [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], and Intellicart by Mukeshhrs [public domain]

			Figure 1.8 picture 1 shows robotic crane systems for shifting pallets in storage complexes. They receive instructions to move goods within shelving systems.

			Smaller item-moving robots, like Intellicart in Figure 1.8 picture 2, employ line sensors, by following lines on the floor, magnetically sensing wires underneath the floor, or by following marker beacons like ASIMO. Our robot will follow lines such as these. These line-following carts frequently use wheels because these are simple to maintain and can form stable platforms.

			Competitive, educational, and hobby robots

			The most fun robots are those created by amateur robot builders. This is an extremely innovative space.

			Robotics always had a home in education, with academic builders using them for learning and experimentation platforms. Many commercial ventures have started in this setting. University robots are often group efforts, with access to hi-tech equipment to create them:

			
				
					[image:]
				

			

			

			Figure 1.9 – Kismet [Jared C Benedict CC BY-SA 2.5 https://creativecommons.org/licenses/by-sa/2.5] and OhBot [AndroidFountain [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)]]

			Kismet (Figure 1.9 picture 1) was created at MIT in the late 90s. Several hobbyist robots are derived from it. It was groundbreaking at the time, using motors to drive face movements mimicking human expressions. OhBot, a low-priced hobbyist kit using servo motors, is based on Kismet. OhBot (Figure 1.9 picture 2) links with a Raspberry Pi, using voice recognition and camera processing to make a convincing face.

			Hobby robotics is strongly linked with the open source software/hardware community, making use of sites such as GitHub (https://github.com) for sharing designs, and code, leading to further ideas. Hobbyist robots can be created from kits available on the internet, with modifications and additions. The kits cover a wide range of complexity, from simple three-wheeled bases to drone kits and hexapods. They come with or without the electronics included. An investigation of kits will be covered in Chapter 6, Building Robot Basics – Wheels, Power, and Wiring. I used a hexapod kit to build SpiderBot (Figure 1.10) to explore the walking motion:

			
				
					[image:]
				

			

			Figure 1.10 – Spiderbot, made by me, based on a kit. The controller is an esp8266 + Adafruit 16 Servo Controller

			Skittlebot was my Pi Wars 2018 entry, built using toy hacking, repurposing a remote control excavator toy into a robot platform. Pi Wars is an autonomous robotics challenge for Raspberry Pi-based robots, with both manual and autonomous challenges. There were entries with decorative cases and resourceful engineering. Skittlebot (Figure 1.11) uses three distance sensors to avoid walls, and we will investigate this kind of sensor in Chapter 8, Programming Distance Sensors with Python. Skittlebot uses a camera to find colored objects, as we will see in Chapter 13, Robot Vision – Using a Pi Camera and OpenCV:

			
				
					[image:]
				

			

			Figure 1.11 – Skittlebot – My PiWars 2018 Robot, based on a toy

			Some hobbyist robots are built from scratch, using 3D printing, laser cutting, vacuum forming, woodwork, CNC, and other techniques to construct the chassis and parts:

			
				
					[image:]
				

			

			Figure 1.12 – Building ArmBot

			I built the robot in Figure 1.12 from scratch, for the London robotics group The Aurorans, in 2009. The robot was known as EeeBot in 2009 since it was intended to be driven by an Eee PC laptop. The Aurorans were a community that met to discuss robotics. The robot was later given a Raspberry Pi, and a robot arm kit (the uArm) seemed to fit, earning it the name ArmBot.

			In the current market, there are many chassis kits, and a beginner will not need to measure and cut materials in this way to make a functioning robot. These are built to experiment on, and to inspire other robot builders and kids to code. Toward the end of the book, we will cover some of the communities where robots are being built and shared, along with starting points on using construction techniques to make them from scratch.

			The television series Robot Wars is a well-known competitive robot event with impressive construction and engineering skills. There is no autonomous behavior in Robot Wars, though; they are manually driven like remote control cars. Washing machines, although less exciting, are smarter, so they could be more strictly considered robots.

			Summary

			In this chapter, we have looked at what the word robot means, and the facts and fiction associated with robots. We have defined what a real robot is. You have seen what a machine needs to do in order to be considered a robot.

			We've investigated the robots seen in the home and in industry. You've been shown some designed to amaze or travel to other planets. We've also looked at hobbyist and education robots, and how some of these are just built for fun. You've seen some block diagrams of real-world devices that may not have been considered robots. You've also spotted how our homes may already have several robots present.

			I hope this chapter has you thinking about what earns the title of robot. A washing machine can be fully automatic, starting at some time later, following a program, with some advanced machines saving water by detecting the quality of the water coming out from the clothes as a metric for how clean they are. A machine called a robot, however, could be simply a remote-controlled device, such as telepresence robots or Robot Wars robots. Undoubtedly, all have sophisticated engineering, requiring many similar skills to make them.

			While some robots are clearly robots, such as the Honda ASIMO and Baxter, some others are far harder to draw the line at. If the broad concept of a decision-making, electro-mechanical machine fits these cases, it would exclude the remote-controlled type. If the concept of machines that are mobile is applied, then a toy RC car would be included, while a fully autonomous smart machine that is stationary is excluded. A machine could be made to look robot-like with anthropic (human-like) characteristics, but simply being mechanical, moving an arm up and down – is this a robot? It isn't running a program or reacting to an environment.

			Now that we have explored what robots are, let's move on to the next chapter, in which we'll look at how to plan a robot so we can build it.

			Assessment

			Look around your home. There will be other automatic machines with many of the features of robots in them. Take a common household machine (other than a washing machine), and look at its inputs and outputs. Use these to make a diagram showing them going in or out of a controller. Think about how they move if they move around the house.

			Consider further what feedback loops may be present in this system. What is it monitoring? How is it responding to that information?

			Further reading

			Refer to the following links:

			
					Honda ASIMO: http://asimo.honda.com/.

					Baxter at Rethink Robotics: https://www.rethinkrobotics.com/baxter/.

					Kismet at MIT: http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/kismet.html.

					The OhBot: http://www.ohbot.co.uk/.

					The Mars Science Laboratory at NASA: https://mars.nasa.gov/msl/.

					For building a robot arm like the one used in ArmBot, take a look at MeArm: https://github.com/mimeindustries/MeArm.

					For more information about my ArmBot design, visit https://www.youtube.com/watch?v=xY6Oc4_jdmU.

			

		

	

		
			Chapter 2: Exploring Robot Building Blocks – Code and Electronics

			In this chapter, we'll take a robot apart to see its parts and systems. We'll explore the components of a robot, both the software (code, commands, and libraries) and the hardware, and how they go together. When starting to make a robot, it's valuable to think about the parts you want and how they relate to one another. I recommend sketching a plan of your robot—a block diagram as a guide to the connected code and parts, which we will explore in this chapter as well.

			In this chapter, we will be covering the following topics:

			
					Looking at what's inside a robot

					Exploring types of robot components

					Exploring controllers and I/O

					Planning components and code structure

					Planning the physical robot

			

			Technical requirements

			For this chapter, you will require the following:

			
					Simple drawing materials, such as a pen and paper

					Optional – diagram software such as Draw.io (free at https://app.diagrams.net) or Inkscape (free at https://inkscape.org)

			

			Looking at what's inside a robot

			We can start by looking at a robot as a physical system. In Figure 2.1, we can see a simple hobby robot:

			
				
					[image:]
				

			

			Figure 2.1 – An assembled hobby robot

			Figure 2.2 shows it in its disassembled form:

			
				
					[image:]
				

			

			Figure 2.2 – A hobby robot's components laid out

			The component groups in Figure 2.2 include nine types of components:

			
					The chassis or body forms the main structure of the robot; other parts are attached here.

					A castor wheel balances this robot.

					Two drive wheels. Other robots may use more wheels or legs here.

					Motors are essential for the robot to move.

					A motor controller bridges between a controller and connected motors.

					A controller, here a Raspberry Pi, runs instructions, takes information from the sensors, and processes this information to drive outputs, such as motors, through the motor controller.

					All robots must have power, usually one or more sets of batteries.

					Sensors provide information about the robot's environment or the state of its physical systems.

					Finally, debug devices are outputs that allow the robot to communicate with humans about what its code is doing, and are also useful for looking good.

			

			We will examine these components in more detail later in this chapter.

			We can visualize a robot as a block diagram (Figure 2.3) of connected parts. Block diagrams use simple shapes to show a rough idea of how things may be connected:

			
				
					[image:]
				

			

			Figure 2.3 – A robot block diagram

			The block diagram in Figure 2.3 does not use a formal notation. The key I've created is off the top of my head, but it should identify sensors, outputs, and controllers. It could be as simple as a sketch on some scrap paper. The critical factor is that you can see blocks of functionality in the hardware, with the high-level flow of data between them.

			It is from this diagram that you can develop more detailed plans, plans containing details in terms of electrical connections, power requirements, the hardware, and how much space is needed. Sketching a block diagram about a robot you'd like to create is the first step toward making it.

			Important note

			A block diagram is not a schematic, nor a scale drawing of a finished robot. It doesn't even try to show the actual electronic connections. The picture ignores small details, such as how to signal an ultrasonic distance sensor before it responds. The connection lines give a general idea of the data flow. A block diagram is the right place to show the type and number of motors and sensors, along with additional controllers they may need.

			This was a very brief overview of robot components, seeing a robot similar to the one you will build, along with it disassembled into parts. We took a look at a simple robot block diagram and its intent. In the next section, we will take a closer look at each of the robot's components, starting with motors.

			Exploring types of robot components

			Before we look at the types of motors and sensors, let's get a brief understanding of what each of them is.

			A motor is an output device that rotates when power is applied. Motors are a subset of a type of machinery called an actuator. It is an output device that creates motion from electrical power. This power can be modulated with signals to control movement. Examples of actuators are solenoids, valves, and pneumatic rams.

			A sensor is a device that provides input to a robot, allowing it to sense its environment. There are more sensor types than a single book can list, so we'll keep to the commonly available and fun-to-use ones. Displays and indicators are debug output devices, for giving feedback on the robot's operation to a human user/programmer. A few of these will be covered in this section.

			Now, let's look at them in detail.

			Types of motors

			There are a number of different kinds of motors that robots commonly use. Let's take a look at what each one does and how we might use them for different types of motion:

			Important note

			Torque is a rotating/twisting force, for example, the force a motor will need in order to turn a wheel. If the torque increases, a motor will require more power (as current), and will slow down while trying to cope. A motor has a limit, the stall torque, at which point it will stop moving.

			
				
					[image:]
				

			

			Figure 2.4 – Different motor types – a DC motor, DC gear motor, servo motor, and stepper motor

			To identify what each of these motors do, let's look at them in detail:

			
					DC motor: This is the most simple type of motor in robotics and forms the basis of gear motors. It uses Direct Current (DC) voltage, which means it can be driven simply by voltage running one way through it. The motor speed is in proportion to the voltage running through it versus the torque required to move. A bare DC motor like the one in Figure 2.4 can spin too fast to be useful. It will not have much torque and stall easily.

					DC gear motor: This is a DC motor fitted with a gearbox. This gearbox provides a reduction in speed and increases the torque it can handle. This mechanical advantage increases the motor's ability to move a load. Note that this gear motor is missing soldered leads! I recommend these motor types for robot wheels. We will use gear motors such as this on our robot in Chapter 6, Building Robot Basics – Wheels, Power, and Wiring, and Chapter 7, Drive and Turn – Moving Motors with Python.

					Servo motor (or servomechanism): This type of motor combines a gear motor with a sensor and a built-in controller as shown in Figure 2.5. A signal to a controller states a motor position, and the controller uses feedback from the sensor to try to reach this position. Servo motors are used in pan and tilt mechanisms, along with robot arms and limbs. We will look more closely at, and program, servo motors in Chapter 10, Using Python to Control Servo Motors:[image:]
Figure 2.5 – Pictorial diagram of a servo motor mechanism

					Stepper motor: These have coils powered in a sequence to let the motor step a certain number of degrees. Where exact motions are needed, engineers use steppers. Stepper motors tend to be slower and generate a lot of heat compared with DC motors or servo motors. You will find these in fine-control applications, such as 3D printers and high-end robot arms. They are heavier and more expensive than other motors.

				
			

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/image/B15660_02_04.jpg

OEBPS/image/B15660_01_09.jpg

OEBPS/toc.xhtml

		
		Contents

			
						Learn Robotics Programming

						Second Edition

						Why subscribe?

						Contributors

						About the author

						About the reviewers

						Packt is searching for authors like you

						Preface
					
								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Code in Action

								Download the color images

								Conventions used

								Get in touch

								Reviews

					

				

						Section 1: The Basics – Preparing for Robotics

						Chapter 1: Introduction to Robotics
					
								What does robot mean?

								Exploring advanced and impressive robots
							
										The Mars rovers

							

						

								Discovering robots in the home
							
										The washing machine

										Other household robots

							

						

								Exploring robots in industry
							
										Robot arms

										Warehouse robots

							

						

								Competitive, educational, and hobby robots

								Summary

								Assessment

								Further reading

					

				

						Chapter 2: Exploring Robot Building Blocks – Code and Electronics
					
								Technical requirements

								Looking at what's inside a robot

								Exploring types of robot components
							
										Types of motors

										Other types of actuators

										Status indicators – displays, lights, and sounds

										Types of sensors

							

						

								Exploring controllers and I/O
							
										I/O pins

										Controllers

										Choosing a Raspberry Pi

							

						

								Planning components and code structure

								Planning the physical robot

								Summary

								Exercise

								Further reading

					

				

						Chapter 3: Exploring the Raspberry Pi
					
								Technical requirements

								Exploring the Raspberry Pi's capabilities
							
										Speed and power

										Connectivity and networking

										Picking the Raspberry Pi 3A+

							

						

								Choosing the connections
							
										Power pins
									
												Data buses

												General IO

									

								

										Raspberry Pi HATs

							

						

								What is Raspberry Pi OS?

								Preparing an SD card with Raspberry Pi OS

								Summary

								Assessment

								Further reading

					

				

						Chapter 4: Preparing a Headless Raspberry Pi for a Robot
					
								Technical requirements

								What is a headless system, and why is it useful in a robot?

								Setting up Wi-Fi on the Raspberry Pi and enabling SSH

								Finding your Pi on the network
							
										Setting up Bonjour for Microsoft Windows

										Testing the setup

										Troubleshooting

							

						

								Using PuTTY or SSH to connect to your Raspberry Pi

								Configuring Raspberry Pi OS
							
										Renaming your Pi

										Securing your Pi (a little bit)

										Rebooting and reconnecting

										Updating the software on your Raspberry Pi

										Shutting down your Raspberry Pi

							

						

								Summary

								Assessment

								Further reading

					

				

						Chapter 5: Backing Up the Code with Git and SD Card Copies
					
								Technical requirements

								Understanding how code can be broken or lost
							
										SD card data loss and corruption

										Changes to the code or configuration

							

						

								Strategy 1 – Keeping the code on a PC and uploading it

								Strategy 2 – Using Git to go back in time

								Strategy 3 – Making SD card backups
							
										Windows

										Mac

										Linux

							

						

								Summary

								Assessment

								Further reading

					

				

						Section 2: Building an Autonomous Robot – Connecting Sensors and Motors to a Raspberry Pi

						Chapter 6: Building Robot Basics – Wheels, Power, and Wiring
					
								Technical requirements

								Choosing a robot chassis kit
							
										Size

										Wheel count

										Wheels and motors

										Simplicity

										Cost

										Conclusion

							

						

								Choosing a motor controller board
							
										Integration level

										Pin usage

										Size

										Soldering

										Power input

										Connectors

										Conclusion

							

						

								Powering the robot

								Test fitting the robot

								Assembling the base
							
										Attaching the encoder wheels

										Fitting the motor brackets
									
												Fitting plastic motor brackets

												Fitting metal motor brackets

									

								

										Adding the castor wheel

										Putting the wheels on

										Bringing the wires up

										Fitting the Raspberry Pi

										Adding the batteries
									
												Setting up the USB power bank

												Mounting the AA battery holder

									

								

										The completed robot base

							

						

								Connecting the motors to the Raspberry Pi
							
										Wiring the Motor HAT in

										Independent power

							

						

								Summary

								Exercises

								Further reading

					

				

						Chapter 7: Drive and Turn – Moving Motors with Python
					
								Technical requirements

								Writing code to test your motors
							
										Preparing libraries

										Test – finding the Motor HAT

										Test – demonstrating that the motors move

										Troubleshooting

										Understanding how the code works

							

						

								Steering a robot
							
										Types of steering
									
												Steerable wheels

												Fixed wheels

												Other steering systems

									

								

										Steering the robot we are building

							

						

								Making a Robot object – code for our experiments to talk to the robot
							
										Why make this object?

										What do we put in the robot object?

							

						

								Writing a script to follow a predetermined path

								Summary

								Exercises

								Further reading

					

				

						Chapter 8: Programming Distance Sensors with Python
					
								Technical requirements

								Choosing between optical and ultrasonic sensors
							
										Optical sensors

										Ultrasonic sensors

										Logic levels and shifting

										Why use two sensors?

							

						

								Attaching and reading an ultrasonic sensor
							
										Securing the sensors to the robot

										Adding a power switch

										Wiring the distance sensors

										Installing Python libraries to communicate with the sensor

										Reading an ultrasonic distance sensor

										Troubleshooting

							

						

								Avoiding walls – writing a script to avoid obstacles
							
										Adding the sensors to the robot class

										Making the obstacle avoid behaviors
									
												First attempt at obstacle avoidance

												More sophisticated object avoidance

									

								

							

						

								Summary

								Exercises

								Further reading

					

				

						Chapter 9: Programming RGB Strips in Python
					
								Technical requirements

								What is an RGB strip?

								Comparing light strip technologies
							
										RGB values

							

						

								Attaching the light strip to the Raspberry Pi
							
										Attaching the LED strip to the robot

							

						

								Making a robot display the code object
							
										Making an LED interface

										Adding LEDs to the Robot object

										Testing one LED
									
												Troubleshooting

									

								

							

						

								Making a rainbow display with the LEDs
							
										Colour systems
									
												Hue

												Saturation

												Value

												Converting HSV to RGB

									

								

										Making a rainbow on the LEDs

							

						

								Using the light strip for debugging the avoid behavior
							
										Adding basic LEDs to the avoid behavior

										Adding rainbows

							

						

								Summary

								Exercises

								Further reading

					

				

						Chapter 10: Using Python to Control Servo Motors
					
								Technical requirements

								What are servo motors?
							
										Looking inside a servo

										Sending input positions to a servo motor

							

						

								Positioning a servo motor with the Raspberry Pi
							
										Writing code for turning a servo

										Troubleshooting

										Controlling DC motors and servo motors

										Calibrating your servos

							

						

								Adding a pan and tilt mechanism
							
										Building the kit

										Attaching the pan and tilt mechanism to the robot

							

						

								Creating pan and tilt code
							
										Making the servo object

										Adding the servo to the robot class

										Circling the pan and tilt head

										Running it

										Troubleshooting

							

						

								Building a scanning sonar
							
										Attaching the sensor

										Installing the library

										Behavior code
									
												Troubleshooting

									

								

							

						

								Summary

								Exercises

								Further reading

					

				

						Chapter 11: Programming Encoders with Python
					
								Technical requirements

								Measuring the distance traveled with encoders
							
										Where machines use encoders

										Types of encoders

										Encoding absolute or relative position

										Encoding direction and speed

										The encoders we are using

							

						

								Attaching encoders to the robot
							
										Preparing the encoders

										Lifting the Raspberry Pi

										Fitting the encoders onto the chassis

										Wiring the encoders to the Raspberry Pi

							

						

								Detecting the distance traveled in Python
							
										Introducing logging

										Simple counting
									
												Troubleshooting

									

								

										Adding encoders to the Robot object
									
												Extracting the class

												Adding the device to the Robot object

									

								

										Turning ticks into millimeters

							

						

								Driving in a straight line
							
										Correcting veer with a PID

										Creating a Python PID controller object

										Writing code to go in a straight line

										Troubleshooting this behavior

							

						

								Driving a specific distance
							
										Refactoring unit conversions into the EncoderCounter class

										Setting the constants

										Creating the drive distance behavior

							

						

								Making a specific turn
							
										Writing the drive_arc function

							

						

								Summary

								Exercises

								Further reading

					

				

						Chapter 12: IMU Programming with Python
					
								Technical requirements

								Learning more about IMUs
							
										Suggested IMU models

							

						

								Soldering – attaching headers to the IMU
							
										Making a solder joint

							

						

								Attaching the IMU to the robot
							
										Physical placement

										Wiring the IMU to the Raspberry Pi

							

						

								Reading the temperature
							
										Installing the software

										Troubleshooting

										Reading the temperature register
									
												Creating the interface

												What is VPython?

												Graphing the temperature

												Running the temperature plotter

									

								

										Troubleshooting

										Simplifying the VPython command line

							

						

								Reading the gyroscope in Python
							
										Understanding the gyroscope
									
												Representing coordinate and rotation systems

									

								

										Adding the gyroscope to the interface

										Plotting the gyroscope

							

						

								Reading an accelerometer in Python
							
										Understanding the accelerometer

										Adding the accelerometer to the interface

										Displaying the accelerometer as a vector

							

						

								Working with the magnetometer
							
										Understanding the magnetometer

										Adding the magnetometer interface

										Displaying magnetometer readings

							

						

								Summary

								Exercises

								Further reading

					

				

						Section 3: Hearing and Seeing – Giving a Robot Intelligent Sensors

						Chapter 13: Robot Vision – Using a Pi Camera and OpenCV
					
								Technical requirements

								Setting up the Raspberry Pi camera
							
										Attaching the camera to the pan-and-tilt mechanism

										Wiring in the camera

							

						

								Setting up computer vision software
							
										Setting up the Pi Camera software

										Getting a picture from the Raspberry Pi

										Installing OpenCV and support libraries

							

						

								Building a Raspberry Pi camera stream app
							
										Designing the OpenCV camera server

										Writing the CameraStream object

										Writing the image server main app

										Building a template

										Running the server

										Troubleshooting

							

						

								Running background tasks when streaming
							
										Writing a web app core
									
												Making a behavior controllable

												Making the control template

												Running the controllable image server

									

								

							

						

								Following colored objects with Python
							
										Turning a picture into information

										Enhancing the PID controller

										Writing the behavior components
									
												Writing the control template

												Writing the behavior code

									

								

										Running the behavior

										Troubleshooting

							

						

								Tracking faces with Python
							
										Finding objects in an image
									
												Converting to integral images

												Scanning for basic features

									

								

										Planning our behavior

										Writing face-tracking code

										Running the face-tracking behavior

										Troubleshooting

							

						

								Summary

								Exercises

								Further reading

					

				

						Chapter 14: Line-Following with a Camera in Python
					
								Technical requirements

								Introduction to line following
							
										What is line following?

										Usage in industry

										Types of line following

							

						

								Making a line-follower test track
							
										Getting the test track materials in place

										Making a line

							

						

								Line-following computer vision pipeline
							
										Camera line-tracking algorithms

										The pipeline

							

						

								Trying computer vision with test images
							
										Why use test images?

										Capturing test images

										Writing Python to find the edges of the line

										Locating the line from the edges

										Trying test pictures without a clear line

							

						

								Line following with the PID algorithm
							
										Creating the behavior flow diagram

										Adding time to our PID controller

										Writing the initial behavior

										Tuning the PID

										Troubleshooting

							

						

								Finding a line again

								Summary

								Exercises

								Further reading

					

				

						Chapter 15: Voice Communication with a Robot Using Mycroft
					
								Technical requirements

								Introducing Mycroft – understanding voice agent terminology
							
										Speech to text

										Wake words

										Utterances

										Intent

										Dialog

										Vocabulary

										Skills

							

						

								Limitations of listening for speech on a robot

								Adding sound input and output to the Raspberry Pi
							
										Physical installation

										Installing a voice agent on a Raspberry Pi

										Installing the ReSpeaker software
									
												Troubleshooting

									

								

										Getting Mycroft to talk to the sound card

										Starting to use Mycroft
									
												The Mycroft client

												Talking to Mycroft

									

								

										Troubleshooting

							

						

								Programming a Flask API
							
										Overview of Mycroft controlling the robot

										Starting a behavior remotely
									
												Managing robot modes

									

								

										Programming the Flask control API server

										Troubleshooting

							

						

								Programming a voice agent with Mycroft on the Raspberry Pi
							
										Building the intent
									
												The settings file

												The requirements file

												Creating the vocabulary files

												Dialog files

												Current skill folder

									

								

										Troubleshooting

										Adding another intent
									
												Vocabulary and dialog

												Adding the code

												Running with the new intent

									

								

							

						

								Summary

								Exercises

								Further reading

					

				

						Chapter 16: Diving Deeper with the IMU
					
								Technical requirements

								Programming a virtual robot
							
										Modeling the robot in VPython
									
												Troubleshooting

									

								

							

						

								Detecting rotation with the gyroscope
							
										Calibrating the gyroscope

										Rotating the virtual robot with the gyroscope
									
												Troubleshooting

									

								

							

						

								Detecting pitch and roll with the accelerometer
							
										Getting pitch and roll from the accelerometer vector
									
												Troubleshooting

									

								

										Smoothing the accelerometer
									
												Delta time

									

								

										Fusing accelerometer and gyroscope data
									
												Troubleshooting

									

								

							

						

								Detecting a heading with the magnetometer
							
										Calibrating the magnetometer
									
												Troubleshooting

												Testing the calibration values

												What to do if the circles aren't together

									

								

							

						

								Getting a rough heading from the magnetometer

								Combining sensors for orientation
							
										Fixing the 180-degree problem

							

						

								Driving a robot from IMU data

								Summary

								Exercises

								Further reading

					

				

						Chapter 17: Controlling the Robot with a Phone and Python
					
								Technical requirements

								When speech control won't work – why we need to drive

								Menu modes – choosing your robot's behavior
							
										Managing robot modes

										Troubleshooting

										The web service

										The template

										Running it

										Troubleshooting

							

						

								Choosing a controller — how we are going to drive the robot, and why
							
										Design and overview

							

						

								Preparing the Raspberry Pi for remote driving—get the basic driving system going
							
										Enhancing the image app core

										Writing the manual drive behavior

										The template (web page)

										The style sheet

										Creating the code for the sliders

										Running this

										Troubleshooting

							

						

								Making the robot fully phone-operable
							
										Making menu modes compatible with Flask behaviors

										Loading video services

										Styling the menu
									
												Making the menu template into buttons

									

								

							

						

								Making the menu start when the Pi starts
							
										Adding lights to the menu server

										Using systemd to automatically start the robot
									
												Troubleshooting

									

								

							

						

								Summary

								Exercises

								Further reading

					

				

						Section 4: Taking Robotics Further

						Chapter 18: Taking Your Robot Programming Skills Further
					
								Online robot building communities – forums and social media
							
										YouTube channels to get to know

										Technical questions – where to get help

							

						

								Meeting robot builders – competitions, makerspaces, and meetups
							
										Makerspaces

										Maker Faires, Raspberry Jams, and Dojos

										Competitions

							

						

								Suggestions for further skills – 3D printing, soldering, PCB, and CNC
							
										Design skills
									
												2D design for illustration and diagrams

												3D CAD

									

								

										Skills for shaping and building
									
												Machine skills and tools

												Hand skills and tools

									

								

										Electronics skills
									
												Electronics principles

												Taking soldering further

												Custom circuits

									

								

							

						

								Finding more information on computer vision
							
										Books

										Online courses

										Social media

							

						

								Extending to machine learning
							
										Robot Operating System

							

						

								Summary

								Further reading

					

				

						Chapter 19: Planning Your Next Robot Project – Putting It All Together
					
								Technical requirements

								Visualizing your next robot

								Making a block diagram

								Choosing the parts
							
										The test-fit diagram
									
												Buying parts

												Assembling your robot

									

								

							

						

								Planning the code for the robot
							
										System layers
									
												Data-flow diagrams

												Formal diagrams

												Programming the robot

									

								

							

						

								Letting the world know

								Summary

					

				

						Other Books You May Enjoy
					
								Leave a review - let other readers know what you think

					

				

			

		
		
		Landmarks

			
						Cover

						Table of Contents

			

		
	

OEBPS/image/B15660_01_12.jpg

OEBPS/image/B15660_01_05.jpg
User Controls Display

Spin Motor

-/

ZB
L

Speed Sensor

'\;l Washing Machine

Door Lock

T
N

controller)

Door Open
Sensor

Water
Temperature
Sensor

Water Heater

Water Pumps

M| Water Level
Pxd Sensor

Water Valves

OEBPS/image/B15660_02_03.jpg

OEBPS/image/B15660_01_11.jpg

OEBPS/image/B15660_01_06.jpg

OEBPS/image/B15660_02_05_NEW.jpg
Control
Signal

Output

Speed

Reduction
Gearbox

Position
Sensor
DC Motor
Position SignaI—J

- .
1 Controller 1
1 1
1 1
! Motor Current | Motor
1 Sl = Driver | T Power Control
1 1

OEBPS/image/B15660_01_02.jpg
hange i the word)

OEBPS/image/cover.png
Learn
Robotics Programming

Second Edition

Build and control Al-enabled autonomous robots
using the Raspberry Pi and Python

Danny Staple)

OEBPS/image/B15660_01_10.jpg

OEBPS/image/Preface_Table.jpg
Software/hardware covered in the book

OS requirements

Python 3 Raspbian Buster
Picroft/Mycroft Picroft Buster Keaton
OpenCV Raspbian Buster/Python 3
VPython Raspbian Buster/Python 3
Flask Python 3

OEBPS/image/Packt_Logo.png
Packty

OEBPS/image/B15660_01_01.jpg

OEBPS/image/B15660_02_01.jpg

OEBPS/image/B15660_01_07.jpg

OEBPS/image/Image86706.jpg

OEBPS/image/Packt_Logo1.png
Packb

OEBPS/image/B15660_02_02_NEW.jpg
1. The Chassis

This is the robot's 2. Castor Wheel

Used for balance. |

3. Wheels

Used for balance.

4. Drive Motors

Make the robot
J move.

) J a

~
5. Motor Controller

Connects motors to the
Raspberry Pi.

6. The Controller

The Raspberry Pi, the
brain of this robot.

7. Power

Batteries serv
the power sourc

for the robot. E
P
AR fa%e
/
--—am 8. Sensors (such as the
camera)
9. Debug

Measure distance, speech,
and so on to help the robot
react to stimuli.

Lights to indicate
specific problems.

OEBPS/Fonts/CourierStd.otf

OEBPS/image/B15660_01_08.jpg

OEBPS/image/B15660_01_04.jpg

