

 [image: (missing alt)]

 Table of Contents

 Adobe Flash 11 Stage3D (Molehill) Game Programming

 Credits

 About the Author

 About the Reviewers

 www.PacktPub.com

 Support files, eBooks, discount offers and more

 Why Subscribe?

 Free Access for Packt account holders

 Preface

 What this book covers

 What you need for this book

 Who this book is for

 Conventions

 Reader feedback

 Customer support

 Downloading the example code for this book

 Errata

 Piracy

 Questions

 1. Let's Make a Game Using Molehill!

 Your epic adventure awaits!

 What is Molehill?

 What Molehill is NOT

 What you need to know already

 Basic 3D terminology

 Common 3D content terms

 Mesh

 Polygon

 Vertex

 Texture

 Shaders

 Vertex program

 Fragment program

 3D Content level one achieved!

 Common 3D coding terms

 Vectors

 Normals

 Matrices

 3D Coding level one achieved!

 Pop quiz – earn some experience points

 Have a go hero – your first side quest

 Summary

 Level 1 achieved!

 2. Blueprint of a Molehill

 The old fashioned way

 The Molehill way: Stage3D

 Using 2D Flash text and sprites

 Why is Stage3D so fast?

 The structure of a Molehill application

 Stage

 Stage3D

 Context3D

 VertexBuffer3D

 IndexBuffer3D

 Program3D

 Flowchart of a Molehill program

 Time for action – things we do once, during the setup

 What just happened?

 Time for action – things we do over and over again

 What just happened?

 Pop quiz – earn some experience points

 Summary

 Level 2 achieved!

 3. Fire up the Engines!

 Step 1: Downloading Flash 11 (Molehill) from Adobe

 Time for action – getting the plugin

 Time for action - getting the Flash 11 profile for CS5

 Time for action – upgrading Flex

 Time for action – upgrading the Flex playerglobal.swc

 Time for action – using SWF Version 13 when compiling in Flex

 Time for action – updating your template HTML file

 Stage3D is now set up!

 Step 2: Start coding

 Time for action – creating an empty project

 What just happened?

 Time for action – importing Stage3D-specific classes

 What just happened?

 Time for action – initializing Molehill

 What just happened?

 Time for action – defining some variables

 What just happened?

 Time for action – embedding a texture

 What just happened?

 Time for action – defining the geometry of your 3D mesh

 What just happened?

 Time for action – starting your engines

 What just happened?

 Time for action – adding to the onContext3DCreate function

 What just happened?

 Time for action – uploading our data

 What just happened?

 Time for action – setting up the camera

 What just happened?

 Time for action – let's animate

 What just happened?

 Time for action – setting the render state and drawing the mesh

 What just happened?

 Quest complete – time to reap the rewards

 Congratulations!

 The entire source code

 Pop quiz – earn some experience points

 Have a go hero – a fun side quest

 Summary

 Level 3 achieved!

 4. Basic Shaders: I can see Something!

 AGAL: Adobe Graphics Assembly Language

 What does one line of AGAL look like?

 What is a register?

 What is a component?

 Working with four components at the same time

 Different registers for different jobs

 Vertex attribute registers: va0..va7

 Constant registers: vc0..vc127 and fc0..fc27

 Temporary registers: vt0..vt7 and ft0..ft7

 Output registers: op and oc

 Varying registers: v0..v7

 Texture samplers: fs0..fs7

 A basic AGAL shader example

 The vertex program

 Time for action – writing your first vertex program

 What just happened?

 The fragment program

 Time for action – writing your first fragment program

 What just happened?

 Compiling the AGAL source code

 Time for action – compiling AGAL

 What just happened?

 Time to Render!

 Time for action – rendering

 What just happened?

 Creating a shader demo

 Adding an FPS counter

 Time for action – creating the FPS GUI

 What just happened?

 Time for action – adding the GUI to our inits

 What just happened?

 Time for action – adding multiple shaders to the demo

 What just happened?

 Time for action – initializing the shaders

 What just happened?

 Time for action – animating the shaders

 What just happened?

 Time for action – uploading data to Stage3D

 What just happened?

 Quest complete—time to reap the rewards

 Congratulations!

 Pop quiz – earn some experience points

 Have a go hero – shader experiments

 Summary

 Level 4 achieved!

 5. Building a 3D World

 Creating vertex buffers

 Importing 3D models into Flash

 Time for action – coding the Stage3dObjParser class

 What just happened?

 Time for action – creating the class constructor function

 What just happened?

 Time for action – coding the parsing functions

 What just happened?

 Time for action – processing the data

 What just happened?

 Time for action – coding some handy utility functions

 What just happened?

 Our mesh parsing class is complete!

 The render loop

 Time for action – starting the render loop

 What just happened?

 Time for action – adding the score to the GUI

 What just happened?

 Time for action – upgrading your init routines

 What just happened?

 Time for action – parsing our mesh data

 What just happened?

 Time for action – animating the scene

 What just happened?

 Quest complete—time to reap the rewards

 Folder structure

 Pop quiz – earn some experience points

 Have a go hero – a fun side-quest: make some more models!

 Summary

 Level 5 achieved!

 6. Textures: Making Things Look Pretty

 Time for a plan: creating a "real" game

 Using textures in Stage3D

 Power-of-two

 UV coordinates

 Transparent textures

 Animating UV coordinates in a shader

 Time for action – updating UV coordinates each frame

 What just happened?

 Texture atlases

 Animated textures

 Manipulating texture data

 Render states

 Backface culling

 Time for action – rendering a mesh's backfaces

 What just happened?

 Depth testing

 Time for action – making a mesh not affect the zbuffer

 What just happened?

 Blend modes

 Time for action – rendering an opaque mesh

 What just happened?

 Time for action – rendering a mesh with transparent regions

 What just happened?

 Time for action – rendering a mesh so it lightens the scene

 What just happened?

 Increasing your performance

 Opaque is faster

 Avoiding overdraw

 Avoiding state changes

 Use simple shaders

 Draw fewer meshes

 Adding texture effects to our demo

 Time for action – embedding the new art

 What just happened?

 Time for action – adding the variables we need

 What just happened?

 Time for action – upgrading the GUI

 What just happened?

 Time for action – listening for key presses

 Time for action – upgrading our render loop

 What just happened?

 Time for action – upgrading the renderTerrain function

 What just happened?

 Time for action – upgrading our Stage3D inits

 What just happened?

 Time for action – simplifying the initShaders function

 What just happened?

 Time for action – parsing the new meshes

 What just happened?

 Time for action – rendering different meshes as appropriate

 What just happened?

 Time for action – switching textures

 What just happened?

 Time for action – switching blend modes

 What just happened?

 Your demo has been upgraded!

 Pop quiz – earn some experience points

 Summary

 Level 6 achieved!

 7. Timers, Inputs, and Entities: Gameplay Goodness!

 Our current quest

 Keeping it simple

 Making it reusable

 Making our game more interactive

 Adding a HUD overlay graphic

 Time for action – adding a GUI overlay

 What just happened?

 Keeping track of time: a game timer class

 Time for action – creating the game timer class

 What just happened?

 Time for action – adding the GameTimer class constructor

 What just happened?

 Time for action – implementing the tick function

 What just happened?

 A game input class

 Time for action – creating the GameInput class

 What just happened?

 Time for action – coding the GameInput class constructor

 What just happened?

 Time for action – detecting mouse movement

 What just happened?

 Time for action – detecting the keyboard input

 What just happened?

 Time for action – detecting key release events

 What just happened?

 Time for action – detecting the input focus

 What just happened?

 An abstract entity class

 Time for action – creating the Stage3dEntity class

 What just happened?

 Time for action – creating the Stage3dEntity class constructor

 What just happened?

 Hiding complex code by using get and set functions

 Time for action – getting and setting the transform

 What just happened?

 Time for action – getting and setting the entity position

 What just happened?

 Time for action – getting and setting the entity rotation

 Time for action – getting and setting the entity's scale

 What just happened?

 Time for action – updating the transform or values on demand

 What just happened?

 Time for action – creating the movement utility functions

 What just happened?

 Time for action – implementing vector utility functions

 Time for action – adding some handy entity utility functions

 What just happened?

 Time for action – cloning an entity

 What just happened?

 Time for action – rendering an entity

 What just happened?

 Design art for our new improved game world

 Upgrading our game

 Time for action – importing our new classes

 What just happened?

 Time for action – adding new variables to our game

 What just happened?

 Time for action – embedding the new art

 Time for action – upgrading the game inits

 What just happened?

 Time for action – upgrading the GUI

 Time for action – simplifying the shaders

 Time for action – using the new textures

 What just happened?

 Time for action – spawning some game entities

 What just happened?

 Time for action – upgrading the render function

 What just happened?

 Time for action – creating a simulation step function

 What just happened?

 Time for action – creating a heartbeat function

 Time for action – upgrading the enterFrame function

 What just happened?

 Let's see all this in action!

 Pop quiz – earn some experience points

 Have a go hero – a fun side-quest: engage the afterburners!

 Summary

 Level 7 achieved!

 8. Eye-Candy Aplenty!

 Our current quest

 Designing for performance

 Designing for reusability

 Animating using AGAL

 A basic particle entity class

 Time for action – extending the entity class for particles

 What just happened?

 Time for action – adding particle properties

 What just happened?

 Time for action – coding the particle class constructor

 What just happened?

 Time for action – cloning particles

 What just happened?

 Time for action – generating numbers used for animation

 What just happened?

 Time for action – simulating the particles

 What just happened?

 Time for action – respawning particles

 What just happened?

 Time for action – rendering particles

 What just happened?

 Keyframed vertex animation shader

 Time for action – creating a keyframed particle vertex program

 What just happened?

 Time for action – creating a static particle vertex program

 What just happened?

 Time for action – creating a particle fragment program

 What just happened?

 Time for action – compiling the particle shader

 A particle system manager class

 Time for action – coding a particle system manager class

 What just happened?

 Time for action – defining a type of particle

 What just happened?

 Time for action – simulating all particles at once

 What just happened?

 Time for action – rendering all particles at once

 What just happened?

 Time for action – spawning particles on demand

 What just happened?

 Time for action – creating new particles if needed

 What just happened?

 Keyframed particle meshes

 Selecting a particle texture

 Time for action – sculpting a single particle

 Time for action – sculpting a group of particles

 Time for action – sculpting the second keyframe

 What just happened?

 Incorporating the particle system class in our game

 Time for action – adding particles to your game

 Time for action – preparing a type of particle for use

 What just happened?

 Time for action – upgrading the renderScene function

 What just happened?

 Time for action – adding particles to the gameStep function

 What just happened?

 Time for action – keeping track of particle statistics

 What just happened?

 Let's see the new particle system in action!

 Pop quiz – earn some experience points

 Have a go hero –inventing some cool particle effects

 Summary

 Level 8 achieved!

 9. A World Filled with Action

 Extending the entity class for "actors"

 Time for action – creating a game actor class

 What just happened?

 Time for action – extending the actor's properties

 What just happened?

 Time for action – coding the GameActor class constructor

 What just happened?

 Time for action – creating a step animation function

 What just happened?

 Time for action – animating actors

 Implementing artificial intelligence (AI)

 Time for action – using timers

 Time for action – shooting at enemies

 What just happened?

 Time for action – cloning an actor

 Time for action – handling an actor's death

 Time for action – respawning an actor

 Collision detection

 Time for action – detecting collisions

 Time for action – detecting sphere-to-sphere collisions

 Time for action – detecting bounding-box collisions

 An "actor reuse pool" system

 Time for action – creating an actor pool

 Time for action – defining a clone parent

 Time for action – animating the entire actor pool

 What just happened?

 Time for action – rendering an actor pool

 Time for action – spawning an actor

 Time for action – checking for collisions between actors

 Restricting display to nearby actors for better framerate

 Time for action – hiding actors that are far away

 What just happened?

 Time for action – destroying every actor in the pool

 What just happened?

 Easy world creation using a map image

 Time for action – implementing a level parser class

 What just happened?

 Time for action – spawning actors based on a map image

 What just happened?

 Time for action – parsing the map image pixels

 What just happened?

 Upgrading the input routines

 Time for action – adding more properties to the input class

 Time for action – handling click events

 Time for action – upgrading the key events

 What just happened?

 Pop quiz – earn some experience points

 Have a go hero – a fun side-quest: art attack!

 Summary

 Level 9 achieved!

 10. 3... 2... 1... ACTION!

 Our final quest

 Getting to the finish line

 Time for action – drawing a title screen

 Time for action – importing required classes

 What just happened?

 Adding new variables to our game

 Time for action – tracking the game state

 What just happened?

 Time for action – adding variables for timer-based events

 What just happened?

 Time for action – adding movement related variables

 What just happened?

 Time for action – keeping track of all entities

 What just happened?

 Time for action – upgrading the HUD

 What just happened?

 Time for action – defining variables used by Stage3D

 What just happened?

 Adding art to our game

 Time for action – embedding our new art assets (AS3 version)

 What just happened?

 Time for action – embedding our new art assets (CS5 version)

 What just happened?

 Time for action – embedding all the meshes

 Time for action – keeping track of art assets

 What just happened?

 Upgrading the final game source code

 Time for action – upgrading the inits

 What just happened?

 Time for action – initializing Stage3D

 What just happened?

 Time for action – upgrading the initGUI function

 What just happened?

 Time for action – upgrading the texture inits

 What just happened?

 Time for action – upgrading the shaders

 What just happened?

 Time for action – defining new actor types and behaviors

 What just happened?

 Time for action – initializing the terrain meshes

 What just happened?

 Time for action – initializing the enemies

 What just happened?

 Time for action – initializing the bullets

 What just happened?

 Time for action – initializing the asteroids

 What just happened?

 Time for action – initializing the space stations

 What just happened?

 Time for action – initializing the particle models

 What just happened?

 Time for action – creating the game level

 What just happened?

 Time for action – upgrading the render loop

 What just happened?

 Defining gameplay-specific events

 Time for action – tracking game events

 What just happened?

 Time for action – handling game over

 What just happened?

 Time for action – updating the score display

 What just happened?

 Time for action – updating the FPS display

 What just happened?

 Time for action – handling collision events

 What just happened?

 Time for action – handling the player input

 What just happened?

 Time for action – upgrading the gameStep function

 What just happened?

 Time for action – upgrading the heartbeat function

 What just happened?

 Time for action – upgrading the enterFrame function

 What just happened?

 Publish... distribute... profit!

 Have a go hero – a fun side quest

 Summary

 Level 10 achieved. Universe saved!

 Where to go from here?

 A note from the author

 A. AGAL Operand Reference

 What does one line of AGAL look like?

 Registers available for AGAL programs

 COPYING DATA

 ALGEBRAIC OPERANDS

 MATH OPERANDS

 TRIGONOMETRY OPERANDS

 CONDITIONAL OPERANDS

 VECTOR and MATRIX OPERANDS

 TEXTURE SAMPLING OPERAND

 B. Pop Quiz Answers

 Chapter 1

 Let's Make a Game Using Molehill!

 Chapter 2

 Blueprint of a Molehill

 Chapter 3

 Fire up the Engines

 Chapter 4

 Basic Shaders: I can see something!

 Chapter 5

 Building a 3D World

 Chapter 6

 Textures: Making Things Look Pretty

 Chapter 7

 Timers, Inputs, and Entities: Gameplay Goodness!

 Chapter 8

 Eye-Candy Aplenty!

 Chapter 9

 A World Filled with Action

 Index

Adobe Flash 11 Stage3D (Molehill) Game Programming

Beginner's Guide

Adobe Flash 11 Stage3D (Molehill) Game Programming

Beginner's Guide

Copyright © 2011 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: November 2011
Production Reference: 1181111
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK
ISBN 978-1-84969-168-0
www.packtpub.com
Cover Image by Asher Wishkerman (<wishkerman@hotmail.com>)

Credits

Author
Christer Kaitila
Reviewers
Arthy
Shane Johnson
Acquisition Editor
Tarun Singh
Development Editor
Maitreya Bhakal
Technical Editor
Azharuddin Sheikh
Indexer
Hemangini Bari
Project Coordinators
Kushal Bhardwaj
Srimoyee Ghoshal
Proofreader
Kevin McGowan
Graphics
Valentina D'souza
Production Coordinator
Shantanu Zagade
Cover Work
Shantanu Zagade

About the Author

Christer Kaitila, B.Sc., is a veteran video game developer with 17 years of professional experience. A hardcore gamer, dad, dungeon master, artist, and musician, he never takes himself too seriously and loves what he does for a living: making games! A child of the arcade scene, he programmed his first video game in the Eighties, long before the Internet or hard drives existed.
The first programming language he ever learned was 6809 assembly language, followed by BASIC, Turbo Pascal, VB, C++, Lingo, PHP, Javascript, and finally ActionScript. He grew up as an elite BBS sysop in the MS-DOS era and was an active member of the demo scene in his teens. He put himself through university by providing freelance software programming services for clients. Since then, he has been an active member of the indie game development community and is known by his fellow indies as Breakdance McFunkypants.
Christer frequently joins game jams to keep his skills on the cutting edge of technology, is always happy to help people out with their projects by providing enthusiastic encouragement, and plays an active part helping to find bugs in Adobe products that have not yet been made public. Over the years, he has programmed puzzle games, multiplayer RPGs, action titles, shooters, racing games, chat rooms, persistent online worlds, browser games, and many business applications for clients ranging from 3D displays for industrial devices to simulations made for engineers.
He is the curator of a popular news website called www.videogamecoder.com which syndicates news from hundreds of other game developer blogs. He would love to hear from you on twitter (www.twitter.com/McFunkypants) or Google+ (http://www.mcfunkypants.com/+) and is always happy to connect with his fellow game developers.
His client work portfolio is available at www.orangeview.net and his personal game development blog is www.mcfunkypants.com where you can read more about the indie game community and his recent projects.
He lives in Victoria, Canada with his beloved wife and the cutest baby son you have ever seen.

This book would not have been possible without valuable contributions of source code, tutorials and blog posts by Thibault Imbert, Ryan Speets, Alejandro Santander, Mikko Haapoja, Evan Miller, Terry Paton, and many other fellow game developers from the ever-supportive Flash community. Thank you for sharing. Your hard work is humbly and respectfully appreciated.

About the Reviewers

Arthy is a French senior flash developer, as well as a big video gaming fan. With 10 years of experience in Flash development for web agencies, his preference is clearly for video games development. Arthy began his video games experience as a junior producer at Atari (Lyon, FRANCE). Since then he went back behind the keyboard and entered the web Flash-based developments in 2001 for a French web agency, Megalos.
Then, to focus on Flash games development, he decided to work on his own as a freelance developer, and so created his company, Le Crabe. After two years of freelancing, he created and joined a freelance association: L'étrange Fabrique.
Recently, he left the freelance world and entered another adventure with a Swiss company: Blue infinity.
Shane Johnson has been working as a developer for the last four years, both freelance and contractually, creating engaging and creative applications for the web, desktop, and also mobile devices with not only Flash, but also any medium that he feels is the right tool to do the job. Primarily an ActionScript developer, Shane also enjoys programming with any language, as it is his real drive to create things using maths and any technology that gets him going.
Since the launch of the Adobe Molehill Incubator program for Flash Player 11, Shane has been involved in experimenting with the new API, creating many examples with some of the new Molehill frameworks that are emerging.
Shane is also an Adobe Certified Expert and maintains a blog at http://blog.ultravisual.co.uk, as well as being a consistent contributor to http://active.tutsplus.com/.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www.PacktPub.com for support files and downloads related to your book.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
[image: Support files, eBooks, discount offers and more]
http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book library. Here, you can access, read and search across Packt’s entire library of books.
Why Subscribe?

	Fully searchable across every book published by Packt
	Copy and paste, print and bookmark content
	On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view nine entirely free books. Simply use your login credentials for immediate access.
This book is dedicated to my loving wife, Kristyn, who recently gave birth to our newborn son, James. Every day I am grateful for the joy you bring to my life. You motivate me. Inspire me. Encourage me. Fill me with happiness... and pie! I'm the luckiest man in the world.

Preface

Adobe's Stage3D (previously codenamed Molehill) is a set of 3D APIs that has brought 3D to the Flash platform. Being a completely new technology, there were almost no resources to get you acquainted with this revolutionary platform, until now.
This book will show you how to make your very own next-gen 3D games in Flash. If you have ever dreamed of writing your own console-style 3D game in Flash, get ready to be blown away by the hardware accelerated power of Stage3D. This book will lead you step-by-step through the process of programming a 3D game in ActionScript 3 using this exciting new technology. Filled with examples, pictures, and source code, this is a practical and fun-to-read guide that will benefit both 3D programming beginners and expert game developers alike.
Starting with simple tasks such as setting up Flash to render a simple 3D shape, each chapter presents a deeper and more complete video game as an example project. From a simple tech demo, your game will grow to become a finished product—your very own playable 3D game filled with animation, special effects, sounds, and tons of action. The goal of this book is to teach you how to program a complete game in Stage3D that has a beginning, middle, and game over.
As you progress further into your epic quest, you will learn all sorts of useful tricks such as ways to create eye-catching special effects using textures, special blend modes for transparent particle systems, fantastic vertex and fragment programs that are used to design beautiful shaders, and much more. You will learn how to upload the geometry of your 3D models to video RAM for ultra-fast rendering. You will dive into the magical art of AGAL shader programming. You will learn optimization tricks to achieve blazingly fast frame rate even at full screen resolutions. With each chapter, you will "level up" your game programming skills, earning the title of Molehill Master—you will be able to honestly call yourself a 3D game programmer.
This book is written for beginners by a veteran game developer. It will become your trusty companion filled with the knowledge you need to make your very own 3D games in Flash.
What this book covers

Chapter 1, Let's Make a Game Using Molehill! In this chapter, we talk about what Stage3D (Molehill) is, what it can do, and the basic terminology you need to know when dealing with 3D games.
Chapter 2, Blueprint of a Molehill. In this chapter, we compare the differences between old-fashioned Flash games and the new way of doing things, along with a description of the major classes we will be working with and the structure of a typical Stage3D game.
Chapter 3, Fire up the Engines. In this chapter, we take the first step by setting up our tools and programming the initializations for our game. The result is a demo that gets Stage3D to animate a simple 3D mesh.
Chapter 4, Basic Shaders: I can see Something! In this chapter, we learn about programming shaders using AGAL and adding text to the display. The result is an upgraded demo with four different animated shaders.
Chapter 5, Building a 3D World. In this chapter, we create a way to fill the game world with complex 3D models by programming a mesh data file parser. The result is a game demo complete with high-poly spaceships and terrain instead of simple textured squares.
Chapter 6, Textures: Making Things Look Pretty. In this chapter, we upgrade our game demo to include a keyboard input and special render modes that allow us to draw special effects such as transparent meshes, explosions, and more. The result is a demo that highlights these many new effects.
Chapter 7, Timers, Inputs, and Entities: Gameplay Goodness! In this chapter, we program a timer and generic game entity class. In addition, we upgrade the GUI with a heads-up-display overlay and add a chase camera. The result is a demo with a spaceship that can fly around in an asteroid field that looks more like a real video game.
Chapter 8, Eye-Candy Aplenty! In this chapter, we program a highly optimized GPU particle system for use in special effects. All geometry is rendered in large, reusable batches. The result is a game demo that is able to render hundreds of thousands of particles at 60fps.
Chapter 9, A World Filled with Action. In this chapter, we upgrade our game engine to include simple game actor artificial intelligence, collision detection, and a map parsing mechanism to allow for easy world creation. The result is a fully functional engine ready for use in a real game.
Chapter 10, 3... 2... 1... ACTION! In this chapter, we add the final touches to our game project such as a title screen, dealing with the score, damage and game over events, music and sound, and much more. The final result of our efforts is a fully playable 3D shooter game filled with action!
Appendix A, AGAL Operand Reference. This appendix provides operand references that have been used in this book.
Appendix B, Pop Quiz Answers. In this section, we provide answers to the pop quiz.

What you need for this book

Recommended: FlashDevelop 4 (available for free from http://www.flashdevelop.org) or Adobe Flash CS5 (or newer).
The code in the book should also compile under any other AS3 development environment such as FlashBuilder, FDT, or Flex with very few changes required.
Optional tools:
	Image editing software (Photoshop, GIMP, and so on)
	Mesh editing software (3ds Max, Maya, Blender, and so on)

Who this book is for

If you ever wanted to make your own 3D game in Flash, then this book is for you. This book is a perfect introduction to 3D game programming in Adobe Molehill for complete beginners. You do not need to know anything about Stage3D/Molehill or Flash 11 in order to take advantage of the examples in this book. This book assumes that you have programming experience in AS3 (ActionScript 3).

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code words in text are shown as follows: "Last but not the least; now that everything is set up, an event listener is created that runs the enterFrame function every single frame."
A block of code is set as follows:
package
{
 [SWF(width="640", height="480", frameRate="60",
 backgroundColor="#FFFFFF")]

 public class Stage3dGame extends Sprite
 {

 }

}

New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "Alternately, if you are using FlashDevelop, you need to instruct it to use this new version of flex by going into Tools | Program Settings | AS3 Context | Flex SDK Location and browsing to your new Flex installation folder."
Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.
To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book title via the subject of your message.
If there is a book that you need and would like to see us publish, please send us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail <suggest@packtpub.com>.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example code for this book

You can download the example code files for all Packt books you have purchased from your account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit http://www.PacktPub.com/support and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata submission form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded on our website, or added to any list of existing errata, under the Errata section of that title. Any existing errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the book, and we will do our best to address it.

Chapter 1. Let's Make a Game Using Molehill!

Welcome, brave hero!
You are about to undertake an epic quest: to make a game using the Stage3D API (Molehill). This quest will be filled with fun and excitement, as well as challenges and setbacks. It is one that you are sure to enjoy. Programming a 3D game is not easy—but you CAN do it!
Consider this book your trusty sidekick on an exciting adventure. Much like in a role-playing game, you are the star. You are the hero.
This book will take the tone of a grand adventure story. We will explore Molehill together, overcoming challenges and slowly leveling-up our knowledge. On each step along the way to our goal—the creation of a 3D game—you will earn "experience points". During your adventure in game making, you will be presented with systematic challenges that we will call "quests". At the end of each chapter, you will "level-up".
This book is aimed at complete beginners to Molehill, and is meant to be informal, semi-jovial, light-hearted, and fun to read. You don't just want a boring appendix of every Stage3D command listed in order. That information can be found using Google.
Instead, we will start from scratch and gradually explore deeper into the world of 3D Flash games, one skill at a time. It will be example-heavy and filled with information that you can use in real-life game development using the Flash 11 Stage3D API.
Your epic adventure awaits!

Your mission is simple. Armed with this book and a little hard work, your quest is to program a fully functional 3D game filled with action and movement, loaded with eye-candy and amazing 3D graphics. When you have completed all the exercises in this book, you will be the proud author of your very own 3D game, ready to be played by all your friends… and indeed the whole world.
Your adventures will become the stuff of legend, to be sung by travelling minstrels in all the taverns in the kingdom.
So let's get on with it! Time for the training camp; the best place to start is the very beginning. The basics:

What is Molehill?

Molehill is the code name for Adobe's latest Flash technology, "Stage3D". It is specifically designed to take advantage of the modern hardware-accelerated 3D graphics cards. Just like games seen on consoles such as XBOX 360 and the Playstation 3, hardware 3D graphics processors deliver some serious graphics horsepower.
Compare this to how Flash traditionally renders graphics on-screen: vector graphics are rendered in software into 2D bitmaps and are blitted (drawn) onto the screen as pixels. This is both computationally expensive and extremely slow. If you have ever experimented with drawing a few hundred sprites in a large Flash window, you know that Flash starts to slow down to the point of being unplayable very quickly.
Molehill, on the other hand, moves this entire pixel processing function onto the video card, freeing your computer's CPU to do other things while the 3D graphics are rendered by a specialized GPU (graphics processing unit) on your video card. This allows the next generation of Flash games to render hundreds of thousands of sprites on-screen—at full screen resolution—with minimal CPU load.
In previous versions of Flash (10 and below), all the work—including all drawing—was done on the CPU. Moving all those pixels in each and every frame takes billions of tiny calculations. In the new version of Flash, you can have a video card do the time-consuming and calculation-intensive tasks of rendering your scenes, freeing up the CPU to do other things. For example, your CPU can be calculating enemy movements, updating the high score, or downloading files at the same time as your GPU is doing all the drawing.
Anecdotal benchmarks have shown full 3D scenes comprised of over 150,000 polygons running full screen at HD resolution at 60 frames per second (FPS) with less than 10% CPU usage. Compare this to a typical old-fashioned Flash animation which can max out the CPU to 100% usage with only a few thousand sprites in a small window.
The Stage3D API will free artists and game designers to spend more time thinking about the content and less time worrying about performance. You will be able to draw hundreds of explosions or smoke particles or special effects within a massive and complex 3D world filled with moving vehicles, buildings and terrain, and still maintain phenomenal frame-rate.
Why is it so fast? Because Molehill makes your video card do all the work. Flash gets to sit back and take it easy.

What Molehill is NOT

Molehill is a very low-level API. It only provides basic 3D rendering functionality. It is insanely fast, and the brilliant minds at Adobe have made the smart decision to keep it very simple. It does just one thing and it does it well. It is not bloated. It is not a jack-of-all-trades, with a million features plus the kitchen sink. It is a low-level programming interface that deals exclusively with 3D rendering and nothing else.
It is not a game engine (like Unity3d or Unreal or ID Tech). A game engine also includes supplemental game functions such as physics simulation, sounds, music, collision detection, and much more. Instead, you use a low level API such as Molehill to create your own game engine from scratch.
Instead of trying to be everything to everybody, Molehill sticks to being really good at just one thing—3D graphics. Much like OpenGL or Direct3D, Molehill is a collection of very basic functions. They are the basic building blocks of games and game engines.
We will be doing all Molehill programming using a new set of AS3 commands. The low level programming (for shaders) is written in its own language, which is compiled at runtime and uploaded to the video card. Molehill shaders look shockingly similar to those of the most low level of programming languages, assembly language.
Don't let that scare you: the number of commands you will need to learn is small.

What you need to know already

As long as you are armed with a basic understanding of Flash ActionScript, you are ready to embark on this adventure without any worries. You do not need to know a single thing about Molehill. Beginners are welcome.
As you know, AS3 (shorthand for Flash's ActionScript 3) is a programming language that looks very similar to Javascript or C++. You should already be familiar with Flash programming, but you do not yet have to be a 3D expert.
You don't need to be an elite coder, neither do you have to be a mathematician to get amazing results. We are not going to explain what a function or a variable is, nor are we going to show you how to compile your project into a .swf file—you already know how to program in Flash, you just want to learn Stage3D.
If you are not comfortable with AS3 programming quite yet, no problem! There are many great books available to help you with AS3. Get yourself to the level that you can program a simple "hello world" Flash program and then come back. Basic programming skills are beyond the scope of this book, which is only about the Molehill side of Flash.
Assuming that you already know a little bit about AS3, you know everything required to jump right in.

Basic 3D terminology

Your basic training, to get you to "level one" so to speak, should include the knowledge of some prerequisite terminology that you are sure to encounter during your adventures in 3D game development. Most of them are generic words for concepts related specifically to 3D.
You only need to know a few new terms in order to completely understand the 3D coding. It is not as complex as some people would have you think. You probably already know what most of these terms mean, so let's get them out of the way.
Are you ready to use both your left and right brain? We only need to go over two groups of terms: 3D art and 3D code.
Your artistic side, the right side of your brain, loves art. It cannot wait to sense the colors and textures that make up the visual component of your game.
Your logical side, the left side of your brain, hungers for all that is algorithmic. It wants to dive into some tasty code and make things happen. Working together, the art and code are used to create videogames. Here are the basic definitions that you will need in order to forge ahead and dive into Molehill.

Common 3D content terms

This section is a perfect food for the right side of your brain. It concerns the art.
In 3D games, what you see is simulated in a virtual world that has depth and volume. Instead of a 2D game where you are only concerned with the coordinates on the screen of various images, in a 3D game you can "look around the corner" so to speak; objects are sculpted, just like a real-world building, in three dimensions. In order to do this, the following art asset types are most commonly used.
Mesh

A model in a 3D game is typically called a mesh. This mesh is built in a 3D modeling application such as Maya, 3D Studio Max, or Blender. It defines the 3D shape of an object, as well as the colors used to draw it. Your game's main character will be made up of one (or more) meshes. A vehicle, a building, or a tree is all individual meshes. A single scene can be built from hundreds of meshes.
[image: Mesh]

Polygon

Each facet of a mesh is a flat geometrical shape. One mesh could be made from hundreds or thousands of polygons, or "polies". One poly could be a simple triangle with three sides. It could be a "quad" or a four-sided square or rectangle. Imagine, for example, a 3D cube, a box. It is made from six different squares (quads), one for each side. Each of these quads is called a poly.
Any kind of a polygon can be built from a collection of triangles. For example, a quad can be made from two triangles sitting side by side. As a result, modern graphics cards treat all 3D geometry as a huge collection of triangles. Usually, when somebody tells you the number of polies a particular mesh is made from, they are referring to the number of triangles (or "tris") used to define it. When a video card manufacturer is boasting about their latest and greatest benchmark performance, they will quote how many polies they are rendering and how many times per second they can do so.

Vertex

Each poly is defined by the location of three or more "corners". For example, in a square quad, there are four corners. Each of these four corners is called a vertex. A vertex (the point in space where the corner sits) is defined as a simple location in the 3D world.
In the example of a 3D box that has six sides (each being a square quad as described earlier), there are eight corners. Each of these corners is a vertex.
[image: Vertex]
As meshes are made from hundreds of polies, and each poly is defined by three or more vertex coordinates, when you tell Molehill about the "shape" of a particular model in your game, you generally do so by listing thousands of vertex coordinates in a huge array.

Texture

In order to draw a mesh (unless you simply want to render a wireframe), you will use one or more images, which are called textures, to color the shape. A texture could be thought of as wallpaper: plaster the texture onto the mesh, wrapping it around the mesh, and this image is stretched to conform to the mesh shape. For example, imagine a box. It would be a mesh with six sides, defined by a total of eight vertex coordinates (one for each corner). In order to make the box look like it was made out of rusty metal, you would draw, using Photoshop or GIMP, an image, and save it as a .jpg or a .png file. This image is your texture. By instructing Molehill to wrap it around your box mesh, the game would render it as a rusty metallic cube.

Shaders

Shaders are the definition of a particular visual style. They define "how to draw" something. One shader might be used to render shiny metal while another could be used to draw explosions.
In the Stage3D API, shaders are stored in the Program3D class. In order to create one, you need to create both a "fragment program" and a "vertex program". The combination of these two programs is a shader.
When people ask you if you know how to write shaders, you will soon be able to answer, yes, I am familiar with writing vertex and fragment programs.

Vertex program

A vertex program is run once for every vertex in your mesh, every time you want to render it. It is given whatever data is stored in your vertex array for that particular vertex plus whatever variables you wish to tell it about such as the camera angle. When it is done, it reports the "final position" for that vertex just prior to rendering, plus (optionally) other information, such as the vertex color.
Vertex programs tell your fragment program about the current state of each vertex in your mesh.
A vertex program decides where each vertex is, what color it is, what its texture coordinates are and anything else you may wish to calculate prior to being sent to your fragment program for rendering.
[image: Vertex program]
Vertex programs allow you to interact with your vertex data, as well as change things around. In the code, you send tiny bits of data to a vertex program to change the shape or position of the vertices in a mesh every frame. For example, if you program a vertex program to control the movement of an avatar's head, in each frame you could send a number from 0 to 360 to control which way the head is facing.
Vertex programs can use these constantly updated real-time parameters in an infinite variety of ways. Instead of a single number, as in the preceding example, perhaps you will create vertex programs that use vector3Ds to change the position of a sentry gun's turret, or an entire array of numbers to completely change the overall shape of your mesh by changing the locations of each vertex.
Every mesh you render will require a vertex program, whether very simple (draw each vertex in their original position) or complex (morph the mesh to animate a walk cycle).

Fragment program

In Molehill, a fragment program is a set of commands that define how to handle the visual rendering of a particular mesh. Sometimes referred to as pixel shaders, fragment programs are all about describing how a given surface/texture responds to light. Different materials respond to light in different ways (depending on how reflective and transparent they are for one thing), and you need different code to simulate that.
Fragment programs often use textures (the bitmaps described earlier), as well as complex functions to decide what color each pixel on the screen should be. Sometimes a fragment program will combine the effects of more than one texture, as well as the RGBA (red, green, blue, alpha transparency) data stored alongside each vertex location, plus any number of parameters to arrive at the final color.
[image: Fragment program]
By using fragment programs, you can add special effects to your plain textures, such as adding shine or shadows or real-time animation. Fragment programs let you fade things in, tint them different colors, and tell your video hardware how to draw each poly that makes up a mesh. Every mesh you draw needs a fragment program or nothing is drawn. It could be simple (just use the texture as is) or complex (blending two textures together and tinting it a see-through transparent shiny red that is affected by some lights).

3D Content level one achieved!

With regard to common 3D art asset terms, that's it for now! All you need to remember is that for each object you want to draw on the screen, you will upload some data to your video card.
In our rusty metal box example, you will instruct Molehill of each vertex that defines the shape of the mesh. You will define a texture, the image of rusty metal. You will compile a fragment program, instructing Molehill how to draw that texture, as well as a vertex program, which instructs Molehill what to do with the vertex data.
When the game is running, you might decide to fade the box out by sending a few numbers to your fragment program. Perhaps, you will change the box from rusty metal to wood by replacing the texture it uses. Alternately, you might want to make the box wobble as if it is made out of jelly by sending a few numbers to your vertex program.
You are in control of everything you need to produce spectacular 3D graphics. All this graphics power is sure to give you ideas. Anything you see in today's next-gen games can be accomplished with Molehill's fragment and vertex programs. The possibilities are endless.

Common 3D coding terms

This section is targeted towards the left side of your brain. It concerns the functional side of game programming.
A videogame is like a potion. You take the raw ingredients (the art content) and add a little magic. A sprinkling of 3D code is all it takes to make the game magic happen.
Don't be afraid of a little code, as a programmer you know that this is how things are done. By using the following concepts, you will have the tools to make things move around for you. Luckily, you don't need to be a Math whiz to make a game. Even if you are primarily an artist, you can program a game using Molehill by learning from examples.
Instead of a verbose list of every possible 3D function in Flash, instead of a giant dusty dry tome filled with trigonometry and advanced calculus, only the top four terms are presented here. If you do a Google search for Flash AS3 documentation regarding 3D, then you will find many more.
The great news is that 90% of the time you will only have to concern yourself with the following data structures: vectors, normals, and matrices.
Vectors

A Vector3D is an object that contains x, y, and z values that describe a location in the 3D space.
Each component is a number (which can be positive or negative and can be a fraction), and each number is the distance from 0,0,0 (the origin). Just as in 2D Flash, where Point(0,0) usually defines the top-left corner of the stage, a new Vector3D(0,0,0) would represent the location of the "center of the universe" or the very middle of the 3D world. This location (0,0,0) is called the origin. The term used to describe the x or y or z part of a vector is called an axis.
For example, you could use a Vector3D to define the coordinates of each vertex in a mesh. You could also use a Vector3D to define the location of a bullet in your game.
[image: Vectors]
For example, the x-axis (the first number in a Vector3D) typically represents the left-right movement. The y-axis is most commonly used for the up-down movement, and the z-axis describes the in-out movement (that is, moving from close to the camera to far away from the camera). In a normal 3D scene, when the z coordinate increases the object, it is seen to be smaller because it is farther away from the screen. Vectors actually have a fourth component, w, but it is rarely used. It is handy to store a rotation. In the vast majority of cases you will consider a Vector3D to consist of x,y,z.
Imagine that you want to put a model of a tree in a particular spot in a 3D scene. In old-fashioned 2D flash games, you have most likely used the Point class, which has an x and y coordinate, to define where on screen a sprite is supposed to be. In Molehill, the class you need to work with is named Vector3D.
Here are some examples of how to use vectors in Molehill:
import flash.geom.Vector3D;

var putTheTreeHere:Vector3D = new Vector3D(0,0,0);
var locationOfTreasure:Vector3D = new Vector3D(1000,0,-15000);

var aNormalPointingUp:Vector3D = new Vector3D(0,1,0);

Tip
Downloading the example code for this book
You can download the example code files for all Packt books you have purchased from your account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit http://www.PacktPub.com/support and register to have the files e-mailed directly to you.

You can probably guess what each line of the preceding code would do. We have declared three variables. Each is a vector, and could be used to define where something is sitting in the world. The Vector3D class is defined in the built-in package named flash.geom.
Looking back at the preceding example source code, if you were to add the following at the end:
trace(locationOfTreasure.z);

The output in the debug log after running the code would be -15000, the number stored in the z component of the variable named locationOfTreasure.

Normals

There is a special kind of vector which is usually used to describe a direction, instead of a location. This is called a normal. You store it using the exact same class, a Vector3D. The only difference between a positional vector, which could look like [55,5000,12] and a directional vector, a normal, is that normals always have a length of one .
Normals are also often called "unit" vectors because they have a length of one unit. The term "normal" literally means perpendicular (for example, normal to a plane, or pointing straight away from a particular surface). For example, a normal vector that describes something as pointing straight up would be [0,1,0] (assuming the y coordinate is up in this world, this vector describes a direction that is perpendicular to the "ground").
In the preceding example source code, the variable named
aNormalPointingUp is simply a Vector3D that has a length of one.
The reason why normals are so handy is that, because they have a length of one, you can use them to multiply with times or distances or speeds. For example, if you multiply a normal that points straight up with a speed, such as 100, then the resulting locational vector would be 100 units larger in the y axis.
You can add vectors together, subtract them, multiply, and divide them. In each case, all that is happening is that each axis in the vector (the x,y,z) is added or subtracted, or multiplied by the corresponding axis in the vector it is being added to.
How would you do this? Well, by using aNormalPointingUp from the example, we could add it to locationOfTreasure like this:
locationOfTreasure =
 locationOfTreasure.add(aNormalPointingUp);
trace(locationOfTreasure.y);

Now the output in the debug log would be 1.
This would result in the original position of the treasure being incremented by one in the y-axis. In simple English, the treasure would now be floating one unit above the ground.
In this example, then, the original value for locationOfTreasure was (1000,0,-15000) and after adding aNormalPointingUp to it, the new value is (1000,1,-15000). Makes sense, doesn't it?
The variable aNormalPointingUp is a special kind of vector. As it has a length of one, it is called a normalized vector, or just "a normal". Why make the distinction between a vector and a normal? A normal is just a special kind of vector. As it has a length of one, you can use it in handy ways, such as multiplying it by the amount of time which has passed since the last frame, so that a missile flies at a certain speed.
You can turn a positional vector, such as [55,5000,12], into a normal by dividing each axis by the length of the vector, which forces the total length of the new vector to be 1. The easiest way to do this is to use the normalize() function that is built into the Vector3D class.
Why would you want to do this? You might want to know what direction "points" toward a particular location. In this example, the normal of [55,5000,12] is approximately [0.011, 0.987, 0.002]. You can see that the proportions for each axis are the same, now they just add up to one.
Normals are really handy in game programming, and you will see them mentioned all the time. Remember that a normal is just a vector that is only one unit long.

Matrices

Sometimes you need to move and rotate and scale an object all in one go. In order to make your life easier, another AS3 class can be used. A Matrix3D is simply a collection of vectors. Each vector inside it describes the position, rotation, and scale. Often, you will need to move something at the same time as rotating it, perhaps also increasing its size. The Matrix3D class uses a 4x4 square matrix: a table of four rows and columns of numbers that hold the data for the transformation.
You don't need to know how a matrix is organized. Just know that it is really useful as a way to gather all the movement, rotation, and scaling data for a 3D object, so you can use it in a single line of code. There are many handy functions built into the Matrix3D class that can perform the difficult math for you, such as changing the scale or adding rotations or translations (positional changes).
For example, imagine a puff of smoke used in a cool-looking particle system like an explosion. In each frame, that puff will need to rise into the air, spin around, and perhaps grow larger as the smoke dissipates. With a matrix, you can do all this in one line of code. This is usually called a transform, which is just another word for a matrix that is used to describe the movement of an object in space. You usually create a matrix and use it to transform (move, scale, rotate, and so on) an object. Sometimes in 3D programming, you will see the term "matrix transforms" and this is what it means. For example, to transform a vector you might multiply it to be a matrix.

3D Coding level one achieved!

That is it! These are all the coding terms you need to know for now. All this talk of 3D matrix Math and Cartesian-coordinate geometry can be a little bit scary. Fear not, gallant hero.
Like the terrifying stomp of an approaching boss battle, all you need to do is take a deep breath and try your best to forge ahead. Nobody is going to expect you to know how to calculate the dot product of two vectors by hand and if you didn't take calculus in school, you are not at all precluded from becoming the next game programmer hero.
Be brave, wise adventurer, and take pride in the fact that you have been awarded the very first achievement in your quest to make a 3D game.

Pop quiz – earn some experience points

Here are a few quick questions to test your understanding. If you can answer them, you are officially ready to move on to the next step in your grand adventure.
	Imagine a 3D model of a house. The x, y, and z location in the 3D space of the house in your game world would be defined by a:a. 4x4 Matrix
b. Texture
c. Vector3D
d. Mole wearing a top hat

	If you wanted to make each wall of your house mesh look like it was made from purple plaid wallpaper, you would draw the plaid in an art program, save it as a jpeg, and use it in a fragment program as a:a. Normal
b. Texture
c. Polygon
d. Secret ingredient

	Imagine a giant ogre decides to push your house over to the next lot on the street. It shifts in position to the side by a small amount. Let's say its original position was [10,0,10]. The ogre pushed it by this amount: [5,0,0]. Where is it now?a. [15,0,10]
b. [15,0,0]
c. [5,0,10]
d. 42

Have a go hero – your first side quest

In order to really hone your skills, it can be a good idea to challenge yourself for some extra experience. At the end of each chapter, there is a side quest—without a solution provided—for you to experiment with, and it is optional. Just like grinding in an RPG game, challenges like these are designed to make you stronger, so that when you forge ahead, you are more than ready for the next step in your main quest.
Your side quest is to compile the following AS3 source code, so that you have a test bed for further experiments.
If you love to use the Flash IDE, that is great. Just set up a blank project and drop this code wherever you deem to be appropriate. If you use FDT or Flex, no problem, you know how to make a "hello world" project.
Many game developers nowadays use FlashDevelop as an IDE that uses Flex to compile pure AS3 projects without any of the CS5 bloat like timelines. FlashDevelop is completely free and is highly recommended as a more responsive, faster way to make flash files. You can download it from http://www.flashdevelop.org/. Whatever your weapon of choice, try to get yourself to the point where you have a simple project to do some experiments in.
Simply fire up your IDE or code editor of choice and see if you can get this quick "hello world" project compiled. It does not draw anything on screen: it simply outputs a couple of lines of text to the debug trace window:
package

{

import flash.geom.Vector3D;
 private var putTheTreeHere:Vector3D =
 new Vector3D(50,0,5000);

 private var moveItByThisMuch:Vector3D =
 new Vector3D(0,0,0);

 function moveTheTree():void
 {
 trace('The tree started here: ' + putTheTreeHere);

 putTheTreeHere =
 putTheTreeHere.add(moveItByThisMuch);

 trace('The tree is now here: ' + putTheTreeHere);
 }

}

Now that you have set up a project, you may have to change the preceding code to compile, depending on whether you are using pure AS3, flex, or flash. It is up to you to set up a basic project in whatever way you are most comfortable with.
Once you have the preceding code compiling properly, your side quest challenge (this should be the easy part) is to change the variable
moveItByThisMuch, so that the tree's final position is [100,0,5555].
For the adventurous, as an extra challenge try playing around with vectors some more. For example, you can move the tree by a small amount every single frame, as part of an onFrame() event. Can you figure out a way to move the tree at a constant rate regardless of the frame rate? Hint: you might find out how many ms have passed since the previous frame using the getTimer() function and then multiplying a tiny vector by that amount before adding that total to the tree's position. Use Google if you need it. You can do it!

Summary

We learned a lot in this chapter about common terms used in 3D programming. The good news is that you now know just about everything required to program video games. Any time you need to move something around, rotate it, change its scale, or calculate how far something travelled during a particular TimeSpan, you will be working with vectors. Months from now, when you are deep in the middle of creating a fantastic gaming masterpiece, you will most likely be spending most of your time dealing with vectors, normals, and matrices. When you are working on the art, you will be thinking about polygons and textures.
Specifically, we covered:
	Vector3D: containing an x, y, and z component
	Normal: a Vector3D that has a length of one
	Matrix: a 4x4 group of vectors with position, rotation, and scale
	Vertex: a point in space that is the corner of a polygon
	Polygon: a shape defined by multiple vertex coordinates
	Mesh: a group of polygons (polies) that make up a model
	Texture: a bitmap image that is like wallpaper for a mesh
	Shader: the combined result of a vertex program and a fragment program
	Vertex program: commands affecting the shape of a mesh
	Fragment program: commands affecting the look of a mesh

Now that we have learned the basics of 3D programming, we are ready to dive into Molehill. We are now armed with sufficient knowledge to have "leveled up".

Level 1 achieved!

Congratulations! As a level one Molehill master, you have opened the door that leads to the inner secrets of the Stage3D API—which is the topic of our next chapter.

Chapter 2. Blueprint of a Molehill

Level 2, here we come!
Now that you have learned the basic terminology, it is time to embark on the main quest in this exciting adventure. In this chapter, we will learn about the structure of a Molehill application. What goes where? How is everything put together? What is this "Stage3D" we keep hearing about?
Flash 11 graphics are incredibly fast. As we saw in Chapter 1, the reason that it runs so efficiently is that Adobe made the intelligent decision to make your video card do all the work. Molehill does not do things the way you are used to. If you are familiar with 2D Flash programming in AS3, it will feel like you are exploring a strange and unfamiliar land. This exploration of the unknown is exciting and new. So, put on your adventure gear and dive in!
The old fashioned way

Imagine a medieval world in which all combat is performed with traditional weapons such as swords. This is like previous versions of Flash, where everything is done without hardware 3D acceleration. Suddenly, magic is discovered. It changes everything. This is like the invention of Molehill.
Tried and trusted techniques and tools still work very well. Now, however, an additional element exists which can be added to the mix, to add a little sparkle, to add a dash of magic.
You will still need your old knowledge—Molehill does not replace anything in Flash—it simply adds to your bag of tricks.
In old fashioned Flash animations, the stage (the image which is drawn on the screen) is prepared in software by your CPU. Each dot you see, each pixel, is calculated by sorting various sprites that are part of the display list and by deciding what its color should be.
This process is incredibly slow. It is handy for animators who like to place layers of vectors and tween them to their heart's content, but it is so terribly inefficient and calculation-intensive that the frame rate of your game will often suffer.
This old approach to drawing Flash games is the reason why you cannot draw very many shapes on the screen at the same time without your game slowing to a crawl. This is the reason why you cannot overlay too many semi-transparent objects over the top of each other before your game looks like a slide show rather than a smooth animation.
This is the reason why Molehill was created: games need frame rate! The old way of doing things was simply too slow.

The Molehill way: Stage3D

Games that use Stage3D will bypass all of this handy-but-inefficient CPU-based heavy lifting. Instead of being part of the standard Flash display list, instead of playing nicely with the old fashioned way of doing things, Molehill games have a direct path to the video RAM. Instead of calculating pixels in RAM and then copying these values to the screen when everything is done, Stage3D actually writes directly onto the video RAM in one pass.
Stage3D relies on DirectX 9 on Windows machines and OpenGL 1.3 on both Mac OS-X and Linux. On mobile devices such as tablets, televisions, and phones, it will reply upon OpenGL ES2. For devices that do not support any of these three APIs, Flash takes advantage of a very fast CPU rasterizer named SwiftShader.
By choosing the fastest technology that will work on any given platform, Stage3D is designed to be able to work on any device. This includes both the super powerful gaming rigs with all the latest hardware and all the newest device drivers to your granny's tired dusty e-mail-only computer. As there is a software-only fallback method (SwiftShader), you can be sure that your games will run even on computers that don't have a GPU (3D video card).
The great news is that you do not have to worry about what is happening under the hood. It does not matter if you are running Windows, OSX, Android or iOS. Desktop PC, phone, tablet or TV, all are about to be Stage3D capable. You never have to choose a different API for OpenGL or DirectX for example. Stage3D makes all the tough decisions and handles everything for you automatically, behind the scenes.

Using 2D Flash text and sprites

Molehill games are still Flash files. You can use any of the older Flash classes in exactly the same way as before. You can add text, play sounds, stream videos, download XML files, and use addChild()
 to put anything you like on stage, just as before. They all sit over the top of your Stage3D objects.
[image: Using 2D Flash text and sprites]
This means that if you want to overlay 2D Flash graphics like sprites or text on top of your 3D graphics, you can. However, you cannot do it the other way around: you cannot draw a Stage3D object over the top of any Flash 2D objects. It is rendered first, underneath any regular Flash.

The great news is that because Molehill can coexist with older Flash 2D DisplayObjects, you can use all your old code that deals with buttons, videos, animations, or sounds. You simply overlay any Flash DisplayObjects you wish on top of your 3D game.
This is a perfect way to draw the HUD (heads-up-display) for your game. You could use Flash 2D objects to draw health bars, the player's score, buttons, watermarks, title screens, or anything else you wish to do outside of the 3D world.

Why is Stage3D so fast?

Adobe has bypassed many of the bottlenecks used in previous versions of Flash in order to get better performance. One big change from the old fashioned way of doing things is that your Stage3D objects are not DisplayObjects (the name for all things in Flash you can draw). DisplayObjects are the base class of standard Flash object that are placed in the DisplayList and can have rotations, blend modes, filters, and many other effects applied to them.
You can still use all of these older classes in your games. The important thing to note is that Stage3D objects are not DisplayObjects—they enable full GPU acceleration. With this new rendering model called Stage Video, the Flash player draws all the data directly onto the video memory, which is painted on the screen using the GPU.
As Flash got rid of the "middle man", the performance is insanely good. However, there are limitations that you need to be aware of as well: Stage3D objects are not inside the DisplayList in Flash! As they are not DisplayObjects, you cannot apply filters or blend modes. You cannot even put a Stage3D object over the top of other Flash 2D graphics!
Flash has given the control of the region defined by your Stage3D to your GPU. It does not play "by the rules". It achieves incredible performance because it bypasses the DisplayList and paints directly on-screen from the GPU. No more read-back is required to retrieve frames from memory to push them on-screen through the display list.
Molehill is a special case where we give complete control of the rendering to your GPU. Flash takes a hands-off approach when dealing with Stage3D objects. They get priority and they don't come with any of the bells-n-whistles that basic (but bloated and inefficient) Flash DisplayObjects do.
This is a major design constraint, but it is worth it for the speed. The good news is that you can always work around this limitation if you absolutely need 3D rendered on top of your 2D. One way to do this would be to render all your 2D graphics (regular Flash DisplayObjects) off-screen and copy those pixels onto a BitmapData which can be uploaded as the new texture data for use in your 3D world. For example, you could decode a streaming video and copy its BitmapData to a 3D rectangle in your 3D world and place that rectangle behind other 3D graphics.
Do not despair, anything is possible. You can draw anything in any order, but you may have to work around this one important consideration: Molehill always gets to draw first—underneath any old fashioned DisplayObjects.
Molehill is super fast, super trim, and super simple. It only does one thing, and does it well!

OEBPS/graphics/1680_01_05.jpg
the Origin,
[0,0,0]

A Vertex3D can de used
to store X,Y,Z coordinates

OEBPS/graphics/1680_02_01.jpg

OEBPS/graphics/1680_01_03.jpg
f ,
Vertex Program + Fragment Program = Render

OEBPS/graphics/1680_01_01.jpg

OEBPS/graphics/PacktLibLogo.jpg

OEBPS/cover/cover.jpg
Adobe Flash 11 Stage3D
(Molehill) Game Programming

A step-by-step guide for creating stunning 3D games in
Flash 11 Stage3D (Molehil) using AS3 and AGAL

Beginner's Guide

Bl

OEBPS/graphics/1680_01_04.jpg
Your Original Vertex

mesh as programs
defined change the.
during inits properties of

Finally.a

[such as a cube each verte
With 8 verteces] [such as X.Y<Z and r,g,b] on each surfaco

OEBPS/graphics/1680_02_02.jpg
Stage3D always goes underneath Flash 2d Graphics

supesaiol Flash 24 (Tenrields DiplayOblect,Soies etc)

OEBPS/graphics/1680_01_02.jpg

