

 [image: Cover of React Key Concepts_Second Edition by Maximilian Schwarzmüller]

 React Key Concepts

 Second Edition

 An in-depth guide to React’s core features

 Maximilian Schwarzmüller

 [image:]

 React Key Concepts

 Second Edition

 Copyright © 2024 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Publishing Product Manager: Lucy Wan

 Acquisition Editor – Peer Reviews: Jane Dsouza

 Project Editor: Janice Gonsalves

 Senior Development Editor: Elliot Dallow

 Copy Editor: Safis Editing

 Technical Editor: Tejas Mhasvekar

 Proofreader: Safis Editing

 Indexer: Pratik Shirodkar

 Presentation Designer: Ajay Patule

 Developer Relations Marketing Executive: Priyadarshini Sharma

 First published: December 2022

 Second edition: December 2024

 Production reference: 1231224

 Published by Packt Publishing Ltd.

 Grosvenor House

 11 St Paul’s Square

 Birmingham

 B3 1RB, UK.

 ISBN 978-1-83620-227-1

 www.packt.com

 Contributors

 About the Author

 Maximilian Schwarzmüller is a professional web developer and bestselling online course instructor. On Udemy, he is one of the most popular and biggest online instructors, teaching more than 3 million students worldwide. Students can become developers by exploring his more than 40 courses, most of them bestsellers in their respective categories.

 Besides helping students from all over the world, Maximilian loves exploring and mastering new technologies, building exciting digital products, and sharing his knowledge with fellow developers. He’s driven by his passion for good code and engaging websites and apps.

 I may be the author of this book but planning, polishing, and publishing this book was really a group effort.

 Most of all, I’m thankful for all the support from my wife Anna-Maria. You’re the love of my life!

 I also want to thank my publisher, Packt: Thank you Bridget, Megan, Elliot, Janice, Lucy, Tejas, and everyone else who was involved!

 About the Reviewers

 Cihan Yakar has over twenty years of experience in software development. He specializes in fullstack development and machine learning, creating applications with .NET and Node.js. An enthusiastic learner and knowledge sharer, Cihan often speaks at user group meetings. He is the founder of Bitsody Software and Defne Software. He was also a technical reviewer of The TypeScript Workshop. To discover more about his professional journey, feel free to connect with him on LinkedIn. When not working, Cihan enjoys spending time with his family and indulging in his passion for all things Star Trek.

 Slava Knyazev has been writing software since his early teenage years and is always seeking to find ways to improve his mastery of the craft. He has worked for well-known names, including theScore, Amazon Web Services, and Airbnb. When he isn’t writing code, he dives into technical topics on his blog, Building Better Software Slower.

 Eric Harvey is a consultant for Enwise Webtech LLC, focused on EdTech and secure systems integrations. He has worked in technology since 1998, his roles have included: applications engineer, web developer, manager of learning systems at a major university, and solutions engineer. In 2005, he founded a web development and hosting services company. Outside of work he is an avid collector of board games and vintage computers, and plays mandolin in a local Celtic string band.

 I would like to thank my kids – Amber, Nate, and Rylan – and my wife, Meredith, for being understanding, patient, and always loving.

 Join Us on Discord

 Read this book alongside other users, AI experts, and the author himself.

 Ask questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and much more.

 Scan the QR code or visit the link to join the community.

 https://packt.link/ReactKeyConcepts2e

 [image:]

 Contents

 	Contributors

 	About the Author

 	About the Reviewers

 	Join Us on Discord

 	Preface

 	Who This Book Is For

 	What This Book Covers

 	Staying Up to Date with This Book

 	Following Along with the Book

 	Installing React.js

 	Download the Example Code Files

 	Download the Color Images

 	Conventions Used

 	Get in Touch

 	Share Your Thoughts

 	Download the Free PDF and Supplementary Content

 	Description of Supplementary Content

 	React – What and Why

 	Introduction

 	What is React?

 	The Problem with “Vanilla JavaScript”

 	React and Declarative Code

 	How React Manipulates the DOM

 	Introducing SPAs

 	Creating a React Project with Vite

 	Summary and Key Takeaways

 	What’s Next?

 	Test Your Knowledge!

 	Join Us on Discord

 	Understanding React Components and JSX

 	Introduction

 	What Are Components?

 	Why Components?

 	The Anatomy of a Component

 	What Exactly Are Component Functions?

 	What Does React Do with All These Components?

 	Built-In Components

 	Naming Conventions

 	JSX vs HTML vs Vanilla JavaScript

 	Using React without JSX

 	JSX Elements Are Treated Like Regular JavaScript Values

 	JSX Elements Must Have a Closing Tag

 	Moving Beyond Static Content

 	Outputting Dynamic Content

 	Rendering Images

 	When Should You Split Components?

 	Summary and Key Takeaways

 	What’s Next?

 	Test Your Knowledge!

 	Apply What You Learned

 	Activity 2.1: Creating a React App to Present Yourself

 	Activity 2.2: Creating a React App to Log Your Goals for This Book

 	Components and Props

 	Introduction

 	Can Components Do More?

 	Using Props in Components

 	Passing Props to Components

 	Consuming Props in a Component

 	Components, Props, and Reusability

 	The Special “children” Prop

 	Which Components Need Props?

 	How to Deal with Multiple Props

 	Spreading Props

 	Prop Chains/Prop Drilling

 	Summary and Key Takeaways

 	What’s Next?

 	Test Your Knowledge!

 	Apply What You Learned

 	Activity 3.1: Creating an App to Output Your Goals for This Book

 	Working with Events and State

 	Introduction

 	What’s the Problem?

 	How Not to Solve the Problem

 	A Better Incorrect Solution

 	Improving the Solution by Properly Reacting to Events

 	Updating State Correctly

 	A Closer Look at useState()

 	A Look Under the Hood of React

 	Working with Multiple State Values

 	Using Multiple State Slices

 	Managing Merged State Objects

 	Updating State Based on Previous State Correctly

 	Two-Way Binding

 	Deriving Values from State

 	Working with Forms and Form Submission

 	Lifting State Up

 	Summary and Key Takeaways

 	What’s Next?

 	Test Your Knowledge!

 	Apply What You Learned

 	Activity 4.1: Building a Simple Calculator

 	Activity 4.2: Enhancing the Calculator

 	Rendering Lists and Conditional Content

 	Introduction

 	What Are Conditional Content and List Data?

 	Rendering Content Conditionally

 	Different Ways of Rendering Content Conditionally

 	Utilizing Ternary Expressions

 	Abusing JavaScript Logical Operators

 	Get Creative!

 	Which Approach is Best?

 	Setting Element Tags Conditionally

 	Outputting List Data

 	Mapping List Data

 	Updating Lists

 	A Problem with List Items

 	Keys to the Rescue!

 	Summary and Key Takeaways

 	What’s Next?

 	Test Your Knowledge!

 	Apply What You Learned

 	Activity 5.1: Showing a Conditional Error Message

 	Activity 5.2: Outputting a List of Products

 	Styling React Apps

 	Introduction

 	How Does Styling Work in React Apps?

 	Using Inline Styles

 	Setting Styles via CSS Classes

 	Setting Styles Dynamically

 	Conditional Styles

 	Combining Multiple Dynamic CSS Classes

 	Merging Multiple Inline Style Objects

 	Building Components with Customizable Styles

 	Customization with Fixed Configuration Options

 	The Problem with Unscoped Styles

 	Scoped Styles with CSS Modules

 	The styled-components Library

 	Use the Tailwind CSS Library for Styling

 	Using Other CSS or JavaScript Styling Libraries and Frameworks

 	Summary and Key Takeaways

 	What’s Next?

 	Test Your Knowledge!

 	Apply What You Learned

 	Activity 6.1: Providing Input Validity Feedback upon Form Submission

 	Activity 6.2: Using CSS Modules for Style Scoping

 	Portals and Refs

 	Introduction

 	A World without Refs

 	Refs versus State

 	Using Refs for More than DOM Access

 	Refs in Custom Components

 	Controlled versus Uncontrolled Components

 	React and Where Things End up in the DOM

 	Portals to the Rescue

 	Summary and Key Takeaways

 	What’s Next?

 	Test Your Knowledge!

 	Apply What You Have Learned

 	Activity 7.1: Extract User Input Values

 	Activity 7.2: Add a Side Drawer

 	Handling Side Effects

 	Introduction

 	What’s the Problem?

 	Understanding Side Effects

 	Side Effects Are Not Just about HTTP Requests

 	Dealing with Side Effects with the useEffect() Hook

 	How to Use useEffect()

 	Effects and Their Dependencies

 	Unnecessary Dependencies

 	Cleaning Up after Effects

 	Dealing with Multiple Effects

 	Functions as Dependencies

 	Avoiding Unnecessary Effect Executions

 	Effects and Asynchronous Code

 	Rules of Hooks

 	Summary and Key Takeaways

 	What’s Next?

 	Test Your Knowledge!

 	Apply What You Learned

 	Activity 8.1: Building a Basic Blog

 	Handling User Input & Forms with Form Actions

 	Introduction

 	Handling Form Submissions without Actions

 	Extracting User Input

 	Tracking State

 	Relying on Refs

 	Taking Advantage of the event Object

 	Which Solution Is Best?

 	Handling Form Submissions with Actions

 	Synchronous vs Asynchronous Actions

 	Behind the Scenes: Actions Are Transitions

 	Managing State Based on Form Submissions

 	Updating UI State with useActionState()

 	Managing Pending UI State with useActionState()

 	Handling Pending UI State with useFormStatus()

 	Performing Optimistic Updates

 	Summary and Key Takeaways

 	What’s Next?

 	Test Your Knowledge!

 	Apply What You Learned

 	Activity 9.1: Managing a Feedback Form

 	Behind the Scenes of React and Optimization Opportunities

 	Introduction

 	Revisiting Component Evaluations and Updates

 	What Happens When a Component Function Is Called

 	The Virtual DOM vs the Real DOM

 	State Batching

 	Avoiding Unnecessary Child Component Evaluations

 	Avoiding Costly Computations

 	Utilizing useCallback()

 	Using the React Compiler

 	Avoiding Unnecessary Code Download

 	Reducing Bundle Sizes via Code Splitting (Lazy Loading)

 	Strict Mode

 	Debugging Code and the React Developer Tools

 	Summary and Key Takeaways

 	What’s Next?

 	Test Your Knowledge!

 	Apply What You Learned

 	Activity 10.1: Optimize an Existing App

 	Working with Complex State

 	Introduction

 	A Problem with Cross-Component State

 	Using Context to Handle Multi-Component State

 	Providing and Managing Context Values

 	Using Context in Nested Components

 	Changing Context from Nested Components

 	Using the Context API Efficiently

 	Getting Better Code Completion

 	Context or Lifting State Up?

 	Outsourcing Context Logic into Separate Components

 	Combining Multiple Contexts

 	Limitations of useState()

 	Managing State with useReducer()

 	Understanding Reducer Functions

 	Dispatching Actions

 	Summary and Key Takeaways

 	What’s Next?

 	Test Your Knowledge!

 	Apply What You Learned

 	Activity 11.1: Migrating an App to the Context API

 	Activity 11.2: Replacing useState() with useReducer()

 	Building Custom React Hooks

 	Introduction

 	Introducing Custom Hooks

 	Why Would You Build Custom Hooks?

 	A First Custom Hook

 	Custom Hooks: A Flexible Feature

 	Custom Hooks and Parameters

 	Custom Hooks and Return Values

 	A More Complex Example

 	Building a First Version of the Custom Hook

 	Making the Hook Useful by Returning Values

 	Improving Reusability by Accepting an Input Parameter

 	Using Custom Hooks for Context Access

 	Summary and Key Takeaways

 	What’s Next?

 	Test Your Knowledge!

 	Apply What You Learned

 	Activity 12.1: Build a Custom Keyboard Input Hook

 	Multipage Apps with React Router

 	Introduction

 	One Page Is Not Enough

 	Getting Started with React Router and Defining Routes

 	Adding Page Navigation

 	Working with Layouts & Nested Routes

 	From Link to NavLink

 	Route Components versus “Normal” Components

 	From Static to Dynamic Routes

 	Extracting Route Parameters

 	Creating Dynamic Links

 	Navigating Programmatically

 	Redirecting

 	Handling Undefined Routes

 	Lazy Loading

 	Summary and Key Takeaways

 	What’s Next?

 	Test Your Knowledge!

 	Apply What You Learned

 	Activity 13.1: Creating a Basic Three-Page Website

 	Managing Data with React Router

 	Introduction

 	Data Fetching and Routing Are Tightly Coupled

 	Sending HTTP Requests without React Router

 	Loading Data with React Router

 	Getting Access to Loaded Data

 	Loading Data for Dynamic Routes

 	Loaders, Requests, and Client-Side Code

 	Layouts Revisited

 	Reusing Data across Routes

 	Handling Errors

 	Onward to Data Submission

 	Working with action() and Form Data

 	Returning Data Instead of Redirecting

 	Controlling Which <Form> Triggers Which Action

 	Reflecting the Current Navigation Status

 	Submitting Forms Programmatically

 	Behind-the-Scenes Data Fetching and Submission

 	Deferring Data Loading

 	Summary and Key Takeaways

 	What’s Next?

 	Test Your Knowledge!

 	Apply What You Learned

 	Activity 14.1: A To-Dos App

 	Server-side Rendering & Building Fullstack Apps with Next.js

 	Introduction

 	What’s the Problem with Client-Side React Apps?

 	Making Sense of Server-side Rendering (SSR)

 	Adding SSR to a React Application

 	Server-side Data Fetching Is Not Trivial

 	Introducing Next.js

 	Creating Next.js Projects

 	Working with File-Based Routes

 	Server-side Rendering with Next.js

 	Working with Layouts

 	Managing Internal Navigation

 	Highlighting Active Links & Using the “use client” Directive

 	Creating & Using Regular Components

 	Handling Dynamic Routes

 	Other Filename Conventions

 	Diving Deeper into Next.js

 	Summary and Key Takeaways

 	What’s Next?

 	Test Your Knowledge!

 	Apply What You Learned

 	Activity 15.1: Migrating a Vite-Based React Router App

 	React Server Components & Server Actions

 	Introduction

 	The Problem with Server-side Data Fetching

 	Introducing RSCs

 	Making Sense of RSCs

 	Creating & Using RSCs

 	Unlocking RSCs in React Projects

 	RSCs and Server Actions Can’t Be Used in All Projects

 	RSCs vs Server-side Rendering

 	RSCs vs Client Components

 	Not All Components Should Be RSCs

 	‘use client’ Affects Child Components, Too!

 	Combining RSCs and Client Components

 	Advanced Data Fetching with Next.js

 	Managing Loading States with Next.js

 	From Data Fetching to Data Mutations

 	Handling Data Mutations with Server Actions

 	Unlocking Server Actions in React Projects

 	Defining and Triggering Server Actions

 	Handling User Input & Updating the UI

 	Server Actions and useActionState()

 	Storing Server Actions in Separate Files

 	Summary and Key Takeaways

 	What’s Next?

 	Test Your Knowledge!

 	Apply What You Learned

 	Activity 16.1: Build a Mini Blog

 	Understanding React Suspense & The use() Hook

 	Introduction

 	Showing Granular Fallback Content with Suspense

 	Using Suspense for Data Fetching with Next.js

 	Using Suspense in Other React Projects—Possible, But Tricky

 	Suspense Does Not Work with useEffect()

 	Fetching Data while Rendering—the Incorrect Way

 	Getting Suspense Support Is Tricky

 	Using Suspense for Data Fetching with Supporting Libraries

 	use()ing Data while Rendering

 	Suspense Usage Patterns

 	Revealing Content Together

 	Revealing Content as Soon as Possible

 	Nesting Suspended Content

 	Should You Fetch Data via Suspense or useEffect()?

 	Summary and Key Takeaways

 	What’s Next?

 	Test Your Knowledge!

 	Apply What You Learned

 	Activity 17.1: Implement Suspense in the Mini Blog

 	Next Steps and Further Resources

 	Introduction

 	How Should You Proceed?

 	Become a Fullstack React Developer

 	Interesting Problems to Explore

 	Build a Shopping Cart

 	Build an Application’s Authentication System (User Signup and Login)

 	Build an Event Management Website

 	Common and Popular React Libraries

 	Using TypeScript

 	Other Resources

 	Beyond React for Web Applications

 	Final Words

 	Join Us on Discord

 	Why Subscribe?

 	Other Books You May Enjoy

 	Share Your Thoughts

 	Index

 	Download the Free PDF and Supplementary Content

 	Description of Supplementary Content

 Landmarks

 	
 Cover

 	
 Index

 Preface

 As the most popular JavaScript library for building modern, interactive user interfaces, React is an in-demand framework that’ll bring real value to your career or next project. But like any technology, learning React can be tricky, and finding the right teacher can make things a whole lot easier.

 Maximilian Schwarzmüller is a bestselling instructor who has helped over three million students worldwide learn how to code, and his latest React video course (React—The Complete Guide) has over eight hundred thousand students on Udemy.

 Max has written this in-depth reference to help you get to grips with the world of React programming. Simple explanations, relevant examples, and a clear, concise approach make this fast-paced guide the ideal resource for busy developers.

 This book distills the core concepts of React and draws together its key features with neat summaries, thus perfectly complementing other in-depth teaching resources. So, whether you’ve just finished Max’s React video course and are looking for a handy reference tool, or you’ve been using a variety of other learning material and now need a single study guide to bring everything together, this is the ideal companion to support you through your next React projects. Plus, it’s fully up to date for React 19, so you can be sure you’re ready to go with the latest version.

 Who This Book Is For

 This book is designed for developers who already have some familiarity with React basics. It can be used as a standalone resource to consolidate understanding or as a companion guide to a more in-depth course. To get the most value from this book, it is recommended that you have some understanding of the fundamentals of JavaScript, HTML, and CSS.

 What This Book Covers

 Chapter 1, React – What and Why, will re-introduce you to React.js. Assuming that React.js is not brand-new to you, this chapter will clarify which problems React solves, which alternatives exist, how React generally works, and how React projects may be created.

 Chapter 2, Understanding React Components and JSX, will explain the general structure of a React app (a tree of components) and how components are created and used in React apps.

 Chapter 3, Components and Props, will ensure that you are able to build reusable components by using a key concept called “props”.

 Chapter 4, Working with Events and State, will cover how to work with state in React components, which different options exist (single state vs multiple state slices) and how state changes can be performed and used for UI updates.

 Chapter 5, Rendering Lists and Conditional Content, will explain how React apps can render lists of content (e.g., lists of user posts) and conditional content (e.g., alert if incorrect values are entered into an input field).

 Chapter 6, Styling React Apps, will clarify how React components can be styled and how styles can be applied dynamically or conditionally, touching on popular styling solutions like vanilla CSS, Tailwind CSS, styled components, and CSS modules for scoped styles.

 Chapter 7, Portals and Refs, will explain how direct DOM access and manipulation is facilitated via the “refs” feature that is built-into React. In addition, you will learn how Portals may be used to optimize the rendered DOM element structure.

 Chapter 8, Handling Side Effects, will discuss the useEffect hook, explaining how it works, how it can be configured for different use cases and scenarios, and how side effects can be handled optimally with this React hook.

 Chapter 9, Handling User Input & Forms with Form Actions, will explore how React simplifies the process of handling forms by allowing you to define client-side form actions that are triggered upon submission.

 Chapter 10, Behind the Scenes of React and Optimization Opportunities, will take a look behind the scenes of React and dive into core topics like the virtual DOM, state update batching and key optimization techniques that help you avoid unnecessary re-render cycles (and thus improve performance).

 Chapter 11, Working with Complex State, will explain how the advanced React hook useReducer works, when and why you might want to use it and how it, can be used in React components to manage more complex component state with it. In addition, React’s Context API will be explored and discussed in depth, allowing you to manage app-wide state with ease.

 Chapter 12, Building Custom React Hooks, will build up on the previous chapters and explore how you can build your own, custom React hooks and what the advantage of doing so is.

 Chapter 13, Multipage Apps with React Router, will explain what React Router is and how this extra library can be used to build multipage experiences in a React single-page-application.

 Chapter 14, Managing Data with React Router, will dive deeper into React Router and explore how this package can also help with fetching and managing data.

 Chapter 15, Server-side Rendering & Building Fullstack Apps with Next.js, will help you understand the concept of server-side rendering (SSR) and help you use your React knowledge with the popular Next.js framework to build applications that span across both the front and backend.

 Chapter 16, React Server Components & Server Actions, will build upon the idea of building fullstack React apps and explain how you may render components and handle form submissions on the server side.

 Chapter 17, Understanding React Suspense & The use() Hook, will explain how React helps you provide better user experiences by showing fallback content while data is being fetched.

 Chapter 18, Next Steps and Further Resources, will cover the core and extended React ecosystem and which resources may be helpful for next steps.

 This book also comes with the following downloadable supplementary content:

 	A cheatsheet accompanying every chapter of the book

 	A video in which author Maximilian gives you his recommendations for next steps after finishing this book

 	A video in which author Maximilian shares his thoughts about the future of React

 Instructions for claiming this content are available at the end of the Preface.

 Staying Up to Date with This Book

 This edition of this book was written when React 19 was released, though most of the core concepts explained throughout this book have beern around since React 18 or even before that. Thus, the vast majority of the features covered in this book can be considered extremely stable and unlikely to change in the near future.

 But the book will also cover some relatively new React features, like server components or server actions. Whilst breaking changes are also unlikely for those concepts, a document has been created on GitHub to track any corrections or deviations you should be aware of when reading this book: https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/main/CHANGELOG.md.

 Following Along with the Book

 Before you can successfully create and run React.js projects on your system, you will need to ensure you have Node.js and npm (included with your installation by default) installed.

 These are available for download at https://nodejs.org/en/.

 The home page of this site should automatically provide you with the most recent installation options for your platform and system. For more options, select Downloads in the site navigation bar. This will open a new page through which you can explore all installation choices for all main platforms, as shown in the screenshot below:

 [image:]
 Installing React.js

 React.js projects can be created in various ways, including custom-built project setups that incorporate webpack, babel and other tools. The recommended way for this book is the usage of the Vite tool though. This tool and the process of creating a React app will be covered in Chapter 1, React – What and Why, but you may refer to this section for step-by-step instructions on this task.

 Perform the following steps to create a React.js project on your system:

 	Open your terminal (Powershell/Command Prompt for Windows; bash for Linux).

 	Use the make directory command to create a new project folder with a name of your choosing (e.g., mkdir react-projects) and navigate to that directory using the change directory command (e.g., cd react-projects).

 	Enter the following command prompt to create a new project directory within this folder:
 npm create vite@latest my-app

 After running this command, choose React and JavaScript when prompted for input.

 	Once completed, navigate to your new directory using the cd command:
 cd my-app

 	Open a terminal window in this new project directory and run the following command to install all required dependencies:
 npm install

 	Once this command is completed, in the same terminal, run the following command to start a Node.js development server:
 npm run dev

 	This command outputs a server address you can visit to preview the React application. By default, the address is http://localhost:5173. Type that address in the address/location bar to navigate to localhost:5173, as shown in the screenshot below:

 [image:]

 	When you are ready to stop development for the time being, use Ctrl + C in the same terminal as in Step 5 to quit running your server. To relaunch it, simply run the npm run dev command in that terminal once again. Keep the process started by npm run dev up and running while developing, as it will automatically update the website loaded on localhost:5173 with any changes you make.

 Download the Example Code Files

 The code bundle for the book is hosted on GitHub at https://github.com/mschwarzmueller/book-react-key-concepts-e2. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Download the Color Images

 We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/gbp/9781836202271.

 Conventions Used

 There are a number of text conventions used throughout this book.

 CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Once the root entry point has been defined, a method called render() can be called on the root object created via createRoot().”

 A block of code is set as follows:

 import React from 'react';
import ReactDOM from 'react-dom/client';
import './index.css';
import App from './App.jsx';
const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<App />);

 When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

 import { memo } from 'react';
import classes from './Error.module.css';
function Error({ message }) {
 console.log('<Error /> component function is executed.');
 if (!message) {
 return null;
 }
 return <p className={classes.error}>{message}</p>;
}
export default memo(Error);

 Any command-line input or output is written as follows:

 npm create vite@latest my-react-project

 Bold: Indicates a new term, an important word, or words that you see on the screen. For instance, words in menus or dialog boxes appear in the text like this. For example: “React simplifies the creation and management of such UIs by moving from an imperative to a declarative approach.”

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

 Get in Touch

 Feedback from our readers is always welcome.

 General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

 Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

 Share Your Thoughts

 Once you’ve read React Key Concepts, Second Edition, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

 Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

 Download the Free PDF and Supplementary Content

 Thanks for purchasing this book!

 Do you like to read on the go but are unable to carry your print books everywhere?

 Is your eBook purchase not compatible with the device of your choice?

 Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

 Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

 Additionally, with this book you get access to supplementary/bonus content for you to learn more. You can use this to add on to your learning journey on top of what you have in the book.

 The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily.

 Follow these simple steps to get the benefits:

 	Scan the QR code or visit the link below:

 [image:]
 https://packt.link/supplementary-content-9781836202271

 	Submit your proof of purchase.

 	Submit your book code. You can find the code on page no. 169 of the book.

 	That’s it! We’ll send your free PDF, supplementary content, and other benefits to your email directly

 Description of Supplementary Content

 This book comes with the following bonus material (claimable via the mechanism described above):

 	A cheatsheet accompanying every chapter of the book

 	A video in which author Maximilian gives you his recommendations for next steps after finishing this book

 	A video in which author Maximilian shares his thoughts about the future of React

 1

 React – What and Why

 Learning Objectives

 By the end of this chapter, you will be able to do the following:

 	Describe what React is and why you would use it

 	Compare React to web projects built with just JavaScript

 	Explain the difference between imperative and declarative code

 	Differentiate between single-page applications (SPAs) and multi-page apps

 	Create new React projects

 Introduction

 React.js (or just React, as it’s also called and as it’ll be referred to for the majority of this book) is one of the most popular frontend JavaScript libraries – maybe even the most popular one, according to a 2023 Stack Overflow developer survey. It is currently used by over 5% of the top 1,000 websites and compared to other popular frontend JavaScript libraries and frameworks like Angular, React is leading by a huge margin, when looking at key metrics like weekly package downloads via npm, which is a tool commonly used for downloading and managing JavaScript packages.

 Though it is certainly possible to write good React code without fully understanding how React works and why you’re using it, you’ll likely be able to learn advanced concepts quicker and avoid errors when trying to understand the tools you’re working with as well as the reasons for picking a certain tool in the first place.

 Therefore, before considering anything about its core concepts and ideas or reviewing example code, you first need to understand what React actually is and why it exists. This will help you understand how React works internally and why it offers the features it does.

 If you already know why you’re using React, why solutions like React, in general, are being used instead of vanilla JavaScript (i.e., JavaScript without any frameworks or libraries, more on this in the next section), and what the idea behind React and its syntax is, you may, of course, skip this section and jump ahead to the more practice-oriented chapters later in this book.

 But if you only think that you know it and are not 100% certain, you should definitely read this chapter first.

 What is React?

 React is a JavaScript library, and if you take a look at the official web page (the official React website and documentation are available at this link: https://react.dev/), you learn that the creators call it “The library for web and native user interfaces.”

 But what does this mean?

 First, it’s important to understand that React is a JavaScript library. As a reader of this book, you know what JavaScript is and why you use JavaScript in the browser. JavaScript allows you to add interactivity to your website since, with JavaScript, you can react to user events and manipulate the page after it is loaded. This is extremely valuable as it allows you to build highly interactive web user interfaces (UIs).

 But what is a “library” and how does React help with building UIs?

 While you can have philosophical discussions about what a library is (and how it differs from a framework), the pragmatic definition of a library is that it’s a collection of functionalities that you can use in your code to achieve results that would normally require more code and work from your side. Libraries can help you write more concise and possibly also less error-prone code and enable you to implement certain features more quickly.

 React is such a library – one that focuses on providing functionalities that help you create interactive and reactive UIs. Indeed, React deals with more than web interfaces (i.e., websites loaded in browsers). You can also build native apps for mobile devices with React and React Native, which is another library that utilizes React under the hood. The React concepts covered in this book still apply, no matter which target platform is chosen. But examples will focus on React for web browsers. No matter which platform you’re targeting though, creating interactive UIs with just JavaScript can quickly become very complex and overwhelming.

 The Problem with “Vanilla JavaScript”

 Vanilla JavaScript is a term commonly used in web development to refer to JavaScript without any frameworks or libraries. That means you write all the JavaScript on your own, without falling back to any libraries or frameworks that would provide extra utility functionalities. When working with vanilla JavaScript, you especially don’t use major frontend frameworks or libraries like React or Angular.

 Using vanilla JavaScript generally has the advantage that visitors of a website have to download less JavaScript code (as major frameworks and libraries typically are quite sizeable and can quickly add 50+ KB of extra JavaScript code that has to be downloaded).

 The downside of relying on vanilla JavaScript is that you, as the developer, must implement all functionalities from the ground up on your own. This can be error prone and highly time consuming. Therefore, especially more complex UIs and websites can quickly become very hard to manage with vanilla JavaScript.

 React simplifies the creation and management of such UIs by moving from an imperative to a declarative approach. Though this is a nice sentence, it can be hard to grasp if you haven’t worked with React or similar frameworks before. To understand it, the idea behind “imperative versus declarative approaches,” and why you might want to use React instead of just vanilla JavaScript, it’s helpful to take a step back and evaluate how vanilla JavaScript works.

 Let’s look at a short code snippet that shows how you could handle the following UI actions with vanilla JavaScript:

 	Add an event listener to a button to listen for click events.

 	Replace the text of a paragraph with new text once a click on the button occurs.
 const buttonElement = document.querySelector('button');
const paragraphElement = document.querySelector('p');
function updateTextHandler() {
 paragraphElement.textContent = 'Text was changed!';
}
buttonElement.addEventListener('click', updateTextHandler);

 This example is deliberately kept simple, so it’s probably not looking too bad or overwhelming. It’s just a basic example to show how code is generally written with vanilla JavaScript (a more complex example will be discussed later). But even though this example is straightforward to digest, working with vanilla JavaScript will quickly reach its limits for feature-rich UIs and the code to handle various user interactions accordingly also becomes more complex. Code can quickly grow significantly, so maintaining it can become a challenge.

 In the preceding example, code is written with vanilla JavaScript and, as a consequence, imperatively. This means that you write instruction after instruction, and you describe every step that needs to be taken in detail.

 The code shown previously could be translated into these more human-readable instructions:

 	Look for an HTML element of the button type to obtain a reference to the first button on the page.

 	Create a constant (i.e., a data container) named buttonElement that holds that button reference.

 	Repeat Step 1 but get a reference to the first element that is of type of p.

 	Store the paragraph element reference in a constant named paragraphElement.

 	Add an event listener to the buttonElement that listens for click events and triggers the updateTextHandler function whenever such a click event occurs.

 	Inside the updateTextHandler function, use the paragraphElement to set its textContent to "Text was changed!".

 Do you see how every step that needs to be taken is clearly defined and written out in the code?

 This shouldn’t be too surprising because that is how most programming languages work: you define a series of steps that must be executed in order. It’s an approach that makes a lot of sense because the order of code execution shouldn’t be random or unpredictable.

 However, when working with UIs, this imperative approach is not ideal. Indeed, it can quickly become cumbersome because, as a developer, you have to add a lot of instructions that, despite adding little value, cannot simply be omitted. You need to write all the Document Object Model (DOM) instructions that allow your code to interact with elements, add elements, manipulate elements, and so on.

 Your core business logic (e.g., deriving and defining the actual text that should be set after a click) therefore often makes up only a small chunk of the overall code. When controlling and manipulating web UIs with JavaScript, a huge chunk (often the majority) of your code is frequently made up of DOM instructions, event listeners, HTML element operations, and UI state management.

 As a result, you end up describing all the steps that are required to interact with the UI technically and all the steps that are required to derive the output data (i.e., the desired final state of the UI).

 Note

 This book assumes that you are familiar with the DOM. In a nutshell, the DOM is the “bridge” between your JavaScript code and the HTML code of the website with which you want to interact. Via the built-in DOM API, JavaScript is able to create, insert, manipulate, delete, and read HTML elements and their content.

 You can learn more about the DOM in this article: https://academind.com/tutorials/what-is-the-dom.

 Modern web UIs are often quite complex, with lots of interactivity going on behind the scenes. Your website might need to listen for user input in an input field, send that entered data to a server to validate it, output a validation feedback message on the screen, and show an error overlay modal if incorrect data is submitted.

 The button-clicking example is not a complex example in general, but the vanilla JavaScript code for implementing such a scenario can be overwhelming. You end up with lots of DOM selection, insertion, and manipulation operations, as well as multiple lines of code that do nothing but manage event listeners. Also, keeping the DOM updated, without introducing bugs or errors, can be a nightmare since you must ensure that you update the right DOM element with the right value at the right time. Here, you will find a screenshot of some example code for the described use case.

 Note

 The full, working, code can be found on GitHub at https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/01-what-is-react/examples/example-1/vanilla-javascript.

 If you take a look at the JavaScript code in the screenshot (or in the linked repository), you will probably be able to imagine how a more complex UI is likely to look.

 [image: A screenshot of a computer program

Description automatically generated]
 Figure 1.1: An example JavaScript code file that contains over 100 lines of code for a fairly trivial UI

 This example JavaScript file already contains roughly 110 lines of code. Even after minifying (“minifying” means that code is shortened automatically, e.g., by replacing long variable names with shorter ones and removing redundant whitespace; in this case, via https://www.toptal.com/developers/javascript-minifier) it and splitting the code across multiple lines thereafter (to count the raw lines of code), it still has around 80 lines of code. That’s a full 80 lines of code for a simple UI with only basic functionality. The actual business logic (i.e., input validation, determining whether and when overlays should be shown, and defining the output text) only makes up a small fraction of the overall code base – around 20 to 30 lines of code, in this case (around 20 after minifying).

 That’s roughly 75% of the code spent on pure DOM interaction, DOM state management, and similar boilerplate tasks.

 As you can see by these examples and numbers, controlling all the UI elements and their different states (e.g., whether an info box is visible or not) is a challenging task, and trying to create such interfaces with just JavaScript often leads to complex code that might even contain errors.

 That’s why the imperative approach, wherein you must define and write down every single step, has its limits in situations like this. This is the reason why React provides utility functionalities that allow you to write code differently: with a declarative approach.

 Note

 This is not a scientific paper, and the preceding example is not meant to act as an exact scientific study. Depending on how you count lines and which kind of code you consider to be “core business logic,” you will end up with higher or lower percentage values. The key message doesn’t change though: lots of code (in this case most of it) deals with the DOM and DOM manipulation – not with the actual logic that defines your website and its key features.

 React and Declarative Code

 Coming back to the first, simple code snippet from earlier, here’s that same code snippet, this time using React:

 import { useState } from 'react';
function App() {
 const [outputText, setOutputText] = useState('Initial text');
 function updateTextHandler() {
 setOutputText('Text was changed!');
 }
 return (
 <>
 <button onClick={updateTextHandler}>
 Click to change text
 </button>
 <p>{outputText}</p>
 </>
);
}

 This snippet performs the same operations as the first did with just vanilla JavaScript:

 	Add an event listener to a button to listen for click events (now with some React-specific syntax: onClick={…}).

 	Replace the text of a paragraph with a new text once the click on the button occurs.

 Nonetheless, this code looks totally different – like a mixture of JavaScript and HTML. Indeed, React uses a syntax extension called JSX (i.e., JavaScript extended to include XML-like syntax). For the moment, it’s enough to understand that this JSX code will work because of a pre-processing (or transpilation) step that’s part of the build workflow of every React project.

 Pre-processing means that certain tools, which are part of React projects, analyze and transform the code before it is deployed. This allows for development-only syntax like JSX, which would not work in the browser and is for that reason transformed to regular JavaScript before deployment. (You’ll get a thorough introduction to JSX in Chapter 2, Understanding React Components and JSX.)

 In addition, the snippet shown previously contains a React-specific feature: State. state will be discussed in greater detail later in the book (Chapter 4, Working with Events and State, will focus on handling events and states with React). For the moment, you can think of this state as a variable that, when changed, will trigger React to update the UI in the browser.

 What you see in the preceding example is the “declarative approach” used by React: you write your JavaScript logic (e.g., functions that should eventually be executed), and you combine that logic with the HTML code that should trigger it or that is affected by it. You don’t write the instructions for selecting certain DOM elements or changing the text content of some DOM elements. Instead, with React and JSX, you focus on your JavaScript business logic and define the desired HTML output that should eventually be reached. This output can, and typically will, contain dynamic values that are derived inside of your main JavaScript code.

 In the preceding example, outputText is some state managed by React. In the code, the updateTextHandler function is triggered upon a click, and the outputText state value is set to a new string value ('Text was changed!') with the help of the setOutputText function. The exact details of what’s going on here will be explored in Chapter 4.

 The general idea, though, is that the state value is changed and, since it’s being referenced in the last paragraph (<p>{outputText}</p>), React outputs the current state value in that place in the actual DOM (and hence, on the actual web page). React will keep the paragraph updated, and therefore, whenever outputText changes, React will select this paragraph element again and update its textContent automatically.

 This is the declarative approach in action. As a developer, you don’t need to worry about the technical details (for example, selecting the paragraph and updating its textContent). Instead, you will hand this work off to React. You will only need to focus on the desired end states where the goal simply is to output the current value of outputText in a specific place (i.e., in the second paragraph in this case) on the page. It’s React’s job to do the “behind the scenes” work of getting to that result.

 It turns out that this code snippet isn’t shorter than the vanilla JavaScript one; indeed, it’s actually even a bit longer. But that’s only the case because this first snippet was deliberately kept simple and concise. In such cases, React actually adds a bit of overhead code. If that were your entire UI, using React indeed wouldn’t make too much sense. Again, this snippet was chosen because it allows us to see the differences at a glance. Things change if you take a look at the more complex vanilla JavaScript example from before and compare that to its React alternative.

 Note

 Referenced code can be found on GitHub at https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/01-what-is-react/examples/example-1/vanilla-javascript and https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/01-what-is-react/examples/example-1/reactjs, respectively.

 [image: A screenshot of a computer program

Description automatically generated]
 Figure 1.2: The code snippet from before is now implemented via React

 It’s still not short because all the JSX code (i.e., the HTML output) is included in the JavaScript file. If you ignore pretty much the entire right side of that screenshot (since HTML was not part of the vanilla JavaScript files either), the React code gets much more concise. However, most importantly, if you take a closer look at all the React code (also in the first, shorter snippet), you will notice that there are absolutely no operations that would select DOM elements, create or insert DOM elements, or edit DOM elements.

 This is the core idea of React. You don’t write down all the individual steps and instructions; instead, you focus on the “big picture” and the desired end states of your page content. With React, you can merge your JavaScript and markup code without having to deal with the low-level instructions of interacting with the DOM like selecting elements via document.getElementById() or similar operations.

 Using this declarative approach instead of the imperative approach with vanilla JavaScript allows you, the developer, to focus on your core business logic and the different states of your HTML code. You don’t need to define all the individual steps that have to be taken (like “adding an event listener,” “selecting a paragraph,” etc.), and this simplifies the development of complex UIs tremendously.

 Note

 It is worth emphasizing that React is not a great solution if you’re working on a very simple UI. If you can solve a problem with a few lines of vanilla JavaScript code, there is probably no strong reason to integrate React into the project.

 Looking at React code for the first time, it can look very unfamiliar and strange. It’s not what you’re used to from JavaScript. Still, it is JavaScript – just enhanced with this JSX feature and various React-specific functionalities (like state). It may be less confusing if you remember that you typically define your UI (i.e., your content and its structure) with HTML. You don’t write step-by-step instructions there either but rather create a nested tree structure with HTML tags. You express your content, the meaning of different elements, and the hierarchy of your UI by using different HTML elements and nesting HTML tags.

 If you keep this in mind, the “traditional” (vanilla JavaScript) approach of manipulating the UI should seem rather odd. Why would you start defining low-level instructions like “insert a paragraph element below this button and set its text to <some text>” if you don’t do that in HTML at all? React, in the end, brings back that HTML syntax, which is far more convenient when it comes to defining content and structure. With React, you can write dynamic JavaScript code side by side with the UI code (i.e., the HTML code) that is affected by it or related to it.

 How React Manipulates the DOM

 As mentioned earlier, when writing React code, you typically write it as shown previously: you blend HTML with JavaScript code by using the JSX syntax extension.

 It is worth pointing out that JSX code does not run like this in browsers. It instead needs to be pre-processed before deployment. The JSX code must be transformed into regular JavaScript code before being served to browsers. The next chapter will take a closer look at JSX and what it’s transformed into. For the moment, though, simply keep in mind that JSX code must be transformed.

 Nonetheless, it is worth knowing that the code to which JSX will be transformed will also not contain any DOM instructions. Instead, the transformed code will execute various utility methods and functions that are built into React (in other words, those that are provided by the React package that need to be added to every React project). Internally, React creates a virtual DOM-like tree structure that reflects the current state of the UI. This book takes a closer look at this abstract, virtual DOM, and how React works in Chapter 10, Behind the Scenes of React and Optimization Opportunities. That’s why React (the library) splits its core logic across two main packages:

 	The main react package

 	The react-dom package

 The main react package is a third-party JavaScript library that needs to be imported into a project to use React’s features (like JSX or state) there. It’s this package that creates this virtual DOM and derives the current UI state. But you also need the react-dom package in your project if you want to manipulate the DOM with React.

 The react-dom package, specifically the react-dom/client part of that package, acts as a “translation bridge” between your React code, the internally generated virtual DOM, and the browser with its actual DOM that needs to be updated. It’s the react-dom package that will produce the actual DOM instructions that will select, update, delete, and create DOM elements.

 This split exists because you can also use React with other target environments. A very popular and well-known alternative to the DOM (i.e., to the browser) would be React Native, which allows developers to build native mobile apps with the help of React. With React Native, you also include the react package in your project, but in place of react-dom, you would use the react-native package. In this book, “React” refers to both the react package and the “bridge” packages (like react-dom).

 Note

 As mentioned earlier, this book focuses on React itself. The concepts explained in this book, therefore, will apply to both web browsers and websites as well as mobile devices. Nonetheless, all examples will focus on the web and react-dom since that avoids introducing extra complexity.

 Introducing SPAs

 React can be used to simplify the creation of complex UIs, and there are two main ways of doing that:

 	Manage parts of a website (e.g., a chat box in the bottom left corner).

 	Manage the entire page and all user interactions that occur on it.

 Both approaches are viable, but the more popular and common scenario is the second one: using React to manage the entire web page, instead of just parts of it. This approach is more popular because most websites that have complex UIs have not just one, but multiple complex elements on their pages. Complexity would actually increase if you were to start using React for some website parts without using it for other areas of the site. For this reason, it’s very common to manage the entire website with React.

 This doesn’t even stop after using React on one specific page of the site. Indeed, React can be used to handle URL path changes and update the parts of the page that need to be updated in order to reflect the new page that should be loaded. This functionality is called routing and third-party packages like react-router-dom (see Chapter 13, Multipage Apps with React Router), which integrate with React, allow you to create a website wherein the entire UI is controlled via React.

 A website that does not just use React for parts of its pages but instead for all subpages and for routing is often built as a SPA because it’s common to create React projects that contain only one HTML file (typically named index.html), which is used to initially load the React JavaScript code. Thereafter, the React library and your React code take over and control the actual UI. This means that the entire UI is created and managed by JavaScript via React and your React code.

 That being said, it’s also becoming more and more popular to build full-stack React apps, where frontend and backend code are merged. Modern React frameworks like Next.js simplify the process of building such web apps. Whilst the core concepts are the same, no matter which kind of application is built, this book will explore full-stack React app development in greater detail in Chapter 15, Server-side Rendering & Building Fullstack Apps with Next.js, Chapter 16, React Server Components and Server Actions and Chapter 17, Understanding React Suspense and the use() Hook.

 Ultimately, this book prepares you for working with React on all kinds of React projects since the core building blocks and key concepts are always the same.

 Creating a React Project with Vite

 To work with React, the first step is the creation of a React project. The official documentation recommends using a framework like Next.js. But while this might make sense for complex web applications, it’s overwhelming for getting started with React and for exploring React concepts. Next.js and other frameworks introduce their own concepts and syntax. As a result, learning React can quickly become frustrating since it can be difficult to tell React features apart from framework features. In addition, not all React apps need to be built as full-stack web apps – consequently, using a framework like Next.js might add unnecessary complexity.

 That’s why Vite-based React projects have emerged as a popular alternative. Vite is an open-source development and build tool that can be used to create and run web development projects based on all kinds of libraries and frameworks – React is just one of the many options.

 Vite creates projects that come with a built-in, preconfigured build process that, in the case of React projects, takes care of the JSX code transpilation. It also provides a development web server that runs locally on your system and allows you to preview the React app while you’re working on it.

 You need a project setup like this because React projects typically use features like JSX, which wouldn’t work in the browser without prior code transformation. Hence, as mentioned earlier, a pre-processing step is required.

 To create a project with Vite, you must have Node.js installed – preferably the latest (or latest LTS) version. You can get the official Node.js installer for all operating systems from https://nodejs.org/. Once you have installed Node.js, you will also gain access to the built-in npm command, which you can use to utilize the Vite package to create a new React project.

 You can run the following command inside of your command prompt (Windows), bash (Linux), or terminal (macOS) program. Just make sure that you navigate (via cd) into the folder in which you want to create your new project:

 npm create vite@latest my-react-project

 Once executed, this command will prompt you to choose a framework or library you want to use for this new project. You should choose React and then JavaScript.

 This command will create a new subfolder with a basic React project setup (i.e., with various files and folders) in the place where you ran it. You should run it in some path on your system where you have full read and write access and where you’re not conflicting with any system or other project files.

 It’s worth noting that the project creation command does not install any required dependencies such as the React library packages. For that reason, you must navigate into the created folder in your system terminal or command prompt (via cd my-react-project) and install these packages by running the following command:

 npm install

 Once the installation finishes successfully, the project setup process is complete.

 To view the created React application, you can start a development server on your machine via this command:

 npm run dev

 This invokes a script provided by Vite, which will spin up a locally running web server that pre-processes, builds, and hosts your React-powered SPA – by default on localhost:5173. Therefore, while working on the code, you typically have this development server up and running as it allows you to preview and test code changes.

 Best of all, this local development server will automatically update the website whenever you save any code changes, hence allowing you to preview your changes almost instantly.

 You can quit this server whenever you’re done for the day by pressing Ctrl + C in the terminal or command prompt where you executed npm run dev.

 Whenever you’re ready to start working on the project again, you can restart the server via npm run dev.

 Note

 In case you encounter any issues with creating a React project, you can also download and use the following starting project: https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/01-what-is-react/react-starting-project. It’s a project created via Vite, which can be used in the same way as if it were created with the preceding command.

 When using this starting project (or, in fact, any GitHub-hosted code snapshot belonging to this book), you need to run npm install in the project folder first, before running npm run dev.

 The exact project structure (that is, the file names and folder names) may vary over time, but generally, every new Vite-based React project contains a couple of key files and folders:

 	A src/ folder, which contains the main source code files for the project:
 	A main.jsx file, which is the main entry script file that will be executed first

 	An App.jsx file, which contains the root component of the application (you’ll learn more about components in the next chapter)

 	Various styling (*.css) files, which are imported by the JavaScript files

 	An assets/ folder that can be used to store images or other assets that should be used in your React code

 	A public/ folder, which contains static files that will be part of the final website (e.g., a favicon)

 	An index.html file, which is the single HTML page of this website

 	package.json and package-lock.json are files that list and define the third-party dependencies of your project:
 	Production dependencies like react or react-dom

 	Development dependencies like eslint for automated code quality checks

 	Other project configuration files (e.g., .gitignore for managing Git file tracking)

 	A node_modules folder, which contains the actual code of the installed third-party packages

 It’s worth noting that App.jsx and main.jsx use .jsx as a file extension, not .js. This is a file extension that’s enforced by Vite for files that do not just contain standard JavaScript but also JSX code. When working on a Vite project, most of your project files will consequently use .jsx as an extension.

 Almost all of the React-specific code will be written in the App.jsx file or custom component files that will be added to the project. We will explore components in the next chapter.

 Note

 package.json is the file in which you actually manage packages and their versions. package-lock.json is created automatically (by Node.js). It locks in exact dependency and sub-dependency versions, whereas package.json only specifies version ranges. You can learn more about these files and package versions at https://docs.npmjs.com/.

 The code of the project’s dependencies is stored in the node_modules folder. This folder can become very big since it contains the code of all installed packages and their dependencies. For that reason, it’s typically not included if projects are shared with other developers or pushed to GitHub. The package.json file is all you need. By running npm install, the node_modules folder will be recreated locally.

 Summary and Key Takeaways

 	React is a library, though it’s actually a combination of two main packages: react and react-dom.

 	Though it is possible to build non-trivial UIs without React, simply using vanilla JavaScript to do so can be cumbersome, error prone, and hard to maintain.

 	React simplifies the creation of complex UIs by providing a declarative way to define the desired end states of the UI.

 	Declarative means that you define the target UI content and structure, combined with different states (e.g., “Is a modal open or closed?”), and you leave it up to React to figure out the appropriate DOM instructions.

 	The react package itself derives UI states and manages a virtual DOM. It is a “bridge,” like react-dom or react-native, that translates this virtual DOM into actual UI (DOM) instructions.

 	With React, you can build SPAs, meaning that React is used to control the entire UI on all pages as well as the routing between pages.

 	You can also use React, in combination with frameworks like Next.js, to build full-stack web applications where server- and client-side code are connected.

 	React projects can be created with the help of the Vite package, which provides a readily configured project folder and a live preview development server.

 What’s Next?

 At this point, you should have a basic understanding of what React is and why you might consider using it, especially for building non-trivial UIs. You learned how to create new React projects with Vite, and you are now ready to dive deeper into React and the actual key features it offers.

 In the next chapter, you will learn about a concept called components, which are the fundamental building blocks of React apps. You will learn how components are used to compose UIs and why those components are needed in the first place. The next chapter will also dive deeper into JSX and explore how it is transformed into regular JavaScript code and which kind of code you could write alternatively to JSX.

 Test Your Knowledge!

 Test your knowledge about the concepts covered in this chapter by answering the following questions. You can then compare your answers to example answers that can be found here: https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/01-what-is-react/exercises/questions-answers.md.

 	What is React?

 	Which advantage does React offer over vanilla JavaScript projects?

 	What’s the difference between imperative and declarative code?

 	What is a Single-Page-Application (SPA)?

 	How can you create new React projects and why do you need such a complex project setup?

 Join Us on Discord

 Read this book alongside other users, AI experts, and the author himself.

 Ask questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and much more.

 Scan the QR code or visit the link to join the community.

 https://packt.link/ReactKeyConcepts2e

 [image:]

 2

 Understanding React Components and JSX

 Learning Objectives

 By the end of this chapter, you will be able to do the following:

 	Define what exactly components are

 	Build and use components effectively

 	Utilize common naming conventions and code patterns

 	Describe the relationship between components and JSX

 	Write JSX code and understand why it’s used

 	Write React components without using JSX code

 	Write your first React apps

 Introduction

 In the previous chapter, you learned about React in general, what it is, and why you should consider using it for building user interfaces. You also learned how to create React projects with the help of Vite, by running npm create vite@latest <your-project-name>.

 In this chapter, you will learn about one of the most important React concepts and building blocks. You will learn that components are reusable building blocks that are used to build user interfaces. In addition, JSX code will be discussed in greater detail so that you will be able to use the concept of components and JSX to build your own first basic React apps.

 What Are Components?

 A key concept of React is the usage of so-called components. Components are reusable building blocks that are combined to compose the final user interface. For example, a basic website could be made up of a sidebar that includes navigation items and a main section that includes elements for adding and viewing tasks.

 [image:]
 Figure 2.1: An example task management screen with sidebar and main area

 If you look at this example page, you might be able to identify various building blocks (i.e., components). Some of these components are even reused:

 	The sidebar and its navigation items

 	The main page area

 	In the main area, the header with the title and due date

 	A form for adding tasks

 	A list of tasks

 Please note that some components are nested inside other components—i.e., components are also made up of other components. That’s a key feature of React and similar libraries.

 Why Components?

 No matter which web page you look at, they are all made up of building blocks like this. It’s not a React-specific concept or idea. Indeed, HTML itself “thinks” in components if you take a closer look. You have elements like , <header>, <nav>, etc., and you combine these elements to describe and structure your website content.

 But React embraces this idea of breaking a web page into reusable building blocks because it is an approach that allows developers to work on small, manageable chunks of code. It’s easier and more maintainable than working on a single, huge HTML (or React code) file.

 That’s why other libraries—both frontend libraries like React or Angular as well as backend libraries and templating engines like EJS (Embedded JavaScript templates)—also embrace components (though the names might differ, you also find “partials” or “includes” as common names).

 Note

 EJS is a popular templating engine for JavaScript. It’s especially popular for backend web development with Node.js.

 When working with React, it’s especially important to keep your code manageable and work with small, reusable components because React components are not just collections of HTML code. Instead, a React component also encapsulates JavaScript logic and often also CSS styling. For complex user interfaces, the combination of markup (JSX), logic (JavaScript), and styling (CSS) could quickly lead to large chunks of code, thus making it difficult to maintain that code. Think of a large HTML file that also includes JavaScript and CSS code. Working in such a code file wouldn’t be a lot of fun.

 To make a long story short, when working on a React project, you will work with lots of components. You will split your code into small, manageable building blocks and then combine these components to form the overall user interface. It’s a key feature of React.

 Note

 When working with React, you should embrace this idea of working with components. But technically, they’re optional. You could, theoretically, build very complex web pages with one single component alone. It would not be much fun, and it would not be practical, but it would technically be possible without any issues.

 The Anatomy of a Component

 Components are important. But what exactly does a React component look like? How do you write React components on your own?

 Here’s an example component:

 import { useState } from 'react';
function SubmitButton() {
 const [isSubmitted, setIsSubmitted] = useState(false);

 function handleSubmit() {
 setIsSubmitted(true);
 };
 return (
 <button onClick={handleSubmit}>
 { isSubmitted ? 'Loading…' : 'Submit' }
 </button>
);
};
export default SubmitButton;

 Typically, you would store a code snippet like this in a separate file (e.g., a file named SubmitButton.jsx, stored inside a /components folder, which in turn resides in the /src folder of your React project) and import it into other component files that need this component. .jsx is used as an extension since the file contains JSX code. Vite enforces the usage of .jsx as a file extension if you’re writing JSX code – storing such code in .js files is not allowed in Vite projects (even though it might work in other React project setups).

 The following component imports the component defined above and uses it in its return statement to output the SubmitButton component:

 import SubmitButton from './submit-button.jsx';
function AuthForm() {
 return (
 <form>
 <input type="text" />
 <SubmitButton />
 </form>
);
};
export default AuthForm;

 The import statements you see in these examples are standard JavaScript import statements. Theoretically, in Vite-based projects, you could omit the file extension (.jsx in this case) in the import statement. However, it might be a good idea to include the extension since that’s in line with standard JavaScript. When importing from third-party packages (like useState from the react package), no file extension is added though – you just use the package name. import and export are standard JavaScript keywords that help with splitting related code across multiple files. Things like variables, constants, classes, or functions can be exported via export or export default so that they can then be used in other files after importing them there.

 Note

 If the concept of splitting code into multiple files and using import and export is brand-new to you, you might want to dive into more basic JavaScript resources on this topic first. For example, MDN has an excellent article that explains the fundamentals, which you can find at https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules.

 Of course, the components shown in these examples are highly simplified and also contain features that you haven’t learned about yet (e.g., useState()). However, the general idea of having standalone building blocks that can be combined should be clear.

 When working with React, there are two alternative ways to define components:

 	Class-based components (or “class components”): Components defined via the class keyword

 	Functional components (or “function components”): Components that are defined via regular JavaScript functions

 In all the examples covered in this book, components are built as JavaScript functions. As a React developer, you have to use one of these two approaches as React expects components to be functions or classes.

 Note

 Until late 2018, you had to use class-based components for certain kinds of tasks—specifically, for components that use state internally. (State will be covered in Chapter 4, Working with Events and State). However, in late 2018, a new concept was introduced: React Hooks. This allows you to perform all operations and tasks with functional components. Consequently, while still supported by React, class-based components are on their way out and are not covered in this book.

 In the examples above, there are a couple of other noteworthy things:

 	The component functions carry capitalized names (e.g., SubmitButton)

 	Inside the component functions, other “inner” functions can be defined (e.g., handleSubmit, typically written in camelCase)

 	The component functions return HTML-like code (JSX code)

 	Features like useState() can be used inside the component functions

 	The component functions are exported (via export default)

 	Certain features (like useState or the custom component SubmitButton) are imported via the import keyword

 The following sections will take a closer look at these different concepts that make up components and their code.

 What Exactly Are Component Functions?

 In React, components are functions (or classes, but as mentioned above, those aren’t relevant anymore).

 A function is a regular JavaScript construct, not a React-specific concept. This is important to note. React is a JavaScript library and consequently uses JavaScript features (like functions); React is not a brand-new programming language.

 When working with React, regular JavaScript functions can be used to encapsulate HTML (or, to be more precise, JSX) code and JavaScript logic that belongs to that markup code. However, it depends on the code you write in a function whether it qualifies to be treated as a React component or not. For example, in the code snippets above, the handleSubmit function is also a regular JavaScript function, but it’s not a React component. The following example shows another regular JavaScript function that doesn’t qualify as a React component:

 function calculate(a, b) {
 return {sum: a + b};
};

 Indeed, a function will be treated as a component and can therefore be used like an HTML element in JSX code if it returns a renderable value (typically JSX code). This is very important. You can only use a function as a React component in JSX code if it is a function that returns something that can be rendered by React. The returned value technically doesn’t have to be JSX code, but in most cases, it will be. You will see an example of non-JSX code being returned in Chapter 7, Portals and Refs.

 In the code snippet where functions named SubmitButton and AuthForm were defined, those two functions qualified as React components because they both returned JSX code (which is code that can be rendered by React, making it renderable). Once a function qualifies as a React component, it can be used like an HTML element inside of JSX code, just as <SubmitButton /> was used like a (self-closing) HTML element.

 When working with vanilla JavaScript, you, of course, typically call functions to execute them. With functional components, that’s different. React calls these functions on your behalf, and for that reason, as a developer, you use them like HTML elements inside of this JSX code.

 Note

 When referring to renderable values, it is worth noting that by far the most common value type being returned or used is indeed JSX code—i.e., markup defined via JSX. This should make sense because, with JSX, you can define the HTML-like structure of your content and user interface.

 But besides JSX markup, there are a couple of other key values that also qualify as renderable and therefore could be returned by custom components (instead of JSX code). Most notably, you can also return strings or numbers as well as arrays that hold JSX elements or strings or numbers.

 What Does React Do with All These Components?

 If you follow the trail of all components and their import and export statements to the top, you will find a root.render(...) instruction in the main entry script of the React project. Typically, this main entry script can be found in the main.jsx file, located in the project’s src/ folder. This render() method, which is provided by the React library (to be precise, by the react-dom package), takes a snippet of JSX code and interprets and executes it for you.

 The complete snippet you find in the root entry file (main.jsx) typically looks like this:

 import React from 'react';
import ReactDOM from 'react-dom/client';
import './index.css';
import App from './App.jsx';
const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<App />);

 The exact code you find in your new React project might look slightly different.

 It may, for instance, include an extra <StrictMode> element that’s wrapped around <App>. <StrictMode> turns on extra checks that can help catch subtle bugs in your React code. But it can also lead to confusing behavior and unexpected error messages, especially when experimenting with React or learning React. As this book is primarily interested in the coverage of React core features and key concepts, <StrictMode> will not be used.

 While omitted here, strict mode will be covered in Chapter 10, Behind the Scenes of React and Optimization Opportunities. If you want to learn more about it right now, you can delve into the official documentation: https://react.dev/reference/react/StrictMode. Just be aware that some of the effects triggered by strict mode will be easier to understand after you’ve read more of this book.

 To follow along smoothly then, cleaning up a newly created main.jsx file to look like the code snippet above is a good idea.

 The createRoot() method instructs React to create a new entry point, which will be used to inject the generated user interface into the actual HTML document that will be served to website visitors. The argument passed to createRoot() therefore is a pointer to a DOM element that can be found in index.html—the single page that will be served to website visitors.

 In many cases, document.getElementById('root') is used as an argument. This built-in vanilla JavaScript method yields a reference to a DOM element that is already part of the index.html document. Hence, as a developer, you must ensure that such an element with the provided id attribute value (root, in this example) exists in the HTML file into which the React app script is loaded. In a default React project created via npm create vite@latest, this will be the case. You can find a <div id="root"> element in the index.html file in the root project folder.

 This index.html file is a relatively empty file that only acts as a shell for the React app. React just needs an entry point (defined via createRoot()), which will be used to attach the generated user interface to the displayed website. The HTML file and its content, as a result, do not directly define the website content. Instead, the file just serves as a starting point for the React application, allowing React to then take over and control the actual user interface.

 Once the root entry point has been defined, a method called render() can be called on the root object created via createRoot():

 root.render(<App />);

 This render() method tells React which content (i.e., which React component) should be injected into that root entry point. In most React apps, this is a component called App. React will then generate appropriate DOM-manipulating instructions to reflect the markup defined via JSX in the App component on the actual web page.

 This App component is a component function that is imported from some other file. In a default React project, the App component function is defined and exported in an App.jsx file, which is also located in the src/ folder.

 This component, which is handed to render() (<App />, typically), is also called the root component of the React app. It’s the main component that is rendered to the DOM. All other components are nested in the JSX code of that App component or the JSX code of even more nested descendent components. You can think of all these components building up a tree of components that is evaluated by React and translated into actual DOM-manipulating instructions.

 [image: A diagram of a product

Description automatically generated]
 Figure 2.2: Nested React components form a component tree

 Note

 As mentioned in the previous chapter, React can be used on various platforms. With the react-native package, it could be used to build native mobile apps for iOS and Android. The react-dom package, which provides the createRoot() method (and therefore, implicitly, the render() method), is focused on the browser. It provides the “bridge” between React’s capabilities and the browser instructions that are required to bring the UI (described via JSX and React components) to life in the browser. If you build for different platforms, replacements for ReactDOM.createRoot() and render() are required (and, of course, such alternatives do exist).

 Either way, no matter whether you use a component function like an HTML element inside of JSX code of other components or use it like an HTML element that’s passed as an argument to the render() method, React takes care of interpreting and executing the component function on your behalf.

 Of course, this is not a new concept. In JavaScript, functions are first-class objects, which means that you can pass functions as arguments to other functions. This is basically what happens here, just with the extra twist of using this JSX syntax, which is not a default JavaScript feature.

 React executes these component functions for you and translates the returned JSX code into DOM instructions. To be precise, React traverses the returned JSX code and dives into any other custom components that might be used in that JSX code until it ends up with JSX code that is only made up of native, built-in HTML elements (technically, it’s not really HTML, but that will be discussed later in this chapter).

 Take these two components as an example:

 function Greeting() {
 return <p>Welcome to this book!</p>;
};
function App() {
 return (
 <div>
 <h2>Hello World!</h2>
 <Greeting />
 </div>
);
};
const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<App />);

 The App component uses the Greeting component inside its JSX code. React will traverse the entire JSX markup structure and derive this final JSX code:

 root.render((
 <div>
 <h2>Hello World!</h2>
 <p>Welcome to this book!</p>
 </div>
), document.getElementById('root'));

 This code will instruct React and ReactDOM to perform the following DOM operations:

 	Create a <div> element

 	Inside that <div>, create two child elements: <h2> and <p>

 	Set the text content of the <h2> element to 'Hello World!'

 	Set the text content of the <p> element to 'Welcome to this book!'

 	Insert the <div>, with its children, into the already-existing DOM element, which has the ID 'root'

 This is a bit simplified, but you can think of React handling components and JSX code as described above.

 Note

 React doesn’t actually work with JSX code internally. It’s just easier to use as a developer. Later, in this chapter, you will learn what JSX code gets transformed into and what the actual code that React works with looks like.

 Built-In Components

 As shown in the earlier examples, you can create your own custom components by creating functions that return JSX code. And indeed, that’s one of the main things you will do all the time as a React developer: create component functions – lots of component functions.

 But, ultimately, if you were to merge all JSX code into just one big snippet of JSX code, as shown in the last example, you would end up with a chunk of JSX code that includes only standard HTML elements like <div>, <h2>, <p>, and so on.

 When using React, you don’t create brand-new HTML elements that the browser would be able to display and handle. Instead, you create components that only work inside the React environment. Before they reach the browser, they have been evaluated by React and “translated” into DOM-manipulating JavaScript instructions (like document.append(…)).

 But keep in mind that all this JSX code is a feature that’s not part of the JavaScript language itself. It’s basically syntactical sugar (i.e., a simplification regarding the code syntax) provided by the React library and the project setup you’re using to write React code. Therefore, elements like <div>, when used in JSX code, also aren’t normal HTML elements because you don’t write HTML code. It might look like that, but it’s inside a .jsx file and it’s not HTML markup. Instead, it’s this special JSX code. It is important to keep this in mind.

 Accordingly, these <div> and <h2> elements you see in all these examples are also just React components in the end. But they are not components built by you, but instead provided by React (or, to be precise, by ReactDOM).

 When working with React, you consequently always end up with these primitives—these built-in component functions that are later translated to browser instructions that generate and append or remove normal DOM elements. The idea behind building custom components is to group these elements together such that you end up with reusable building blocks that can be used to build the overall UI. But, in the end, this UI is made up of regular HTML elements.

 Note

 Depending on your level of frontend web development knowledge, you might have heard about a web feature called Web Components. The idea behind this feature is that you can indeed build brand-new HTML elements with vanilla JavaScript.

 As mentioned, React does not pick up this feature; you don’t build new custom HTML elements with React.

 Naming Conventions

 All component functions that you can find in this book carry names like SubmitButton, AuthForm, or Greeting.

 You can generally name your React functions however you want—at least in the file where you are defining them. But it is a common convention to use the PascalCase naming convention, wherein the first character is uppercase and multiple words are grouped into one single word (SubmitButton instead of Submit Button), where every “subword” then starts with another uppercase character.

 In the place where you define your component function, it is only a naming convention, not a hard rule. However, it is a hard rule in the place where you use the component functions—i.e., in the JSX code where you embed your own custom components.

 You can’t use your own custom component function as a component like this:

 <greeting />

 React forces you to use an uppercase starting character for your own custom component names when using them in JSX code. This rule exists to give React a clear and easy way of telling custom components apart from built-in components like <div>, etc. React only needs to look at the starting character to determine whether it’s a built-in element or a custom component.

 Besides the names of the actual component functions, it is also important to understand file naming conventions. Custom components are typically stored in separate files that live inside a src/components/ folder. However, this is not a hard rule. The exact placement as well as the folder name is up to you, but it should be somewhere inside the src/ folder. Using a folder named components/ is the standard though.

 Whereas it is the standard to use PascalCase for the component functions, there is no general default regarding file names. Some developers prefer PascalCase for file names as well; and, indeed, in brand-new React projects, created as described in this book, the App component can be found inside a file named App.jsx. Nonetheless, you will also encounter many React projects where components are stored in files that follow the kebab-case naming convention. (All lowercase and multiple words are combined into a single word via a dash). With this convention, component functions could be stored in files named submit-button.jsx, for example.

 Ultimately, it is up to you (and your team) which file naming convention you want to follow. In this book, PascalCase will be used for file names.

 JSX vs HTML vs Vanilla JavaScript

 As mentioned above, React projects typically contain lots of JSX code. Most custom components will return JSX code snippets. You can see this in all the examples shared thus far, and you will see it in basically every React project you explore, no matter whether you are using React for the browser or other platforms like react-native.

 But what exactly is this JSX code? How is it different from HTML? And how is it related to vanilla JavaScript?

 JSX is a feature that’s not part of vanilla JavaScript. What can be confusing, though, is that it’s also not directly part of the React library.

 Instead, JSX is syntactical sugar that is provided by the build workflow that’s part of the overall React project. When you start the development web server via npm run dev or build the React app for production (i.e., for deployment) via npm run build, you kick off a process that transforms this JSX code back to regular JavaScript instructions. As a developer, you don’t see those final instructions but React, the library, actually receives and evaluates them.

 So, what does the JSX code get transformed to?

 In modern React projects, it gets transformed to rather complex, unintuitive code that looks something like this:

 function Ld() {
 return St.jsx('p', { children: 'Welcome to this book!' });
}

 Of course, this code is not very developer-friendly. It’s not the kind of code you would write. Instead, it’s the code produced by Vite (i.e., by the underlying build process) for the browser to execute.

 But you could, in theory, write code like this instead of using JSX—if, for some reason, you wanted to avoid writing JSX code. React has a built-in method you can use instead of JSX: you can use React’s createElement(…) method.

 Here’s a concrete example, first in JSX:

 function Greeting() {
 return <p>Hello World!</p>;
};

 Instead of using JSX, you could also write this component code like this:

 function Greeting() {
 return React.createElement('p', {}, 'Hello World!');
};

 createElement() is a method built into the React library. It instructs React to create a paragraph element with 'Hello World!' as child content (i.e., as inner, nested content). This paragraph element is then created internally first (via a concept called the virtual DOM, which will be discussed later in the book, in Chapter 10, Behind the Scenes of React and Optimization Opportunities). Thereafter, once all elements for all JSX elements have been created, the virtual DOM is translated into real DOM-manipulating instructions that are executed by the browser.

 Note

 It has been mentioned before that React (in the browser) is actually a combination of two packages: react and react-dom.

 With the introduction of React.createElement(…), it’s now easier to explain how these two packages work together: React creates this virtual DOM internally and then passes it to the react-dom package. This package then generates the actual DOM-manipulating instructions that must be executed in order to update the web page such that the desired user interface is displayed there.

 As mentioned, this will be covered in greater detail in Chapter 10.

 The middle parameter value ({}, in the example) is a JavaScript object that may contain extra configuration for the element that is to be created.

 Here’s an example where this middle argument becomes important:

 function Advertisement() {
 return Visit my website;
};

 This would be transformed to the following:

 function Advertisement() {
 return React.createElement(
 'a',
 { href: ' https://my-website.com ' },
 'Visit my website'
);
};

 The last argument that’s passed to React.createElement(…) is the child content of the element—i.e., the content that should be between the element’s opening and closing tags. For nested JSX elements, nested React.createElement(…) calls would be produced:

 function Alert() {
 return (
 <div>
 <h2>This is an alert!</h2>
 </div>
);
};

 This would be transformed like this:

 function Alert() {
 return React.createElement(
 'div', {}, React.createElement('h2', {}, 'This is an alert!')
);
};

 Using React without JSX

 Since all JSX code gets transformed to these native JavaScript method calls anyway, you can actually build React apps and user interfaces with React without using JSX.

 You can skip JSX entirely if you want to. Instead of writing JSX code in your components and all the places where JSX is expected, you can simply call React.createElement(…).

 For example, the following two snippets will produce exactly the same user interface in the browser:

 function App() {
 return (
 <p>Please visit my Blog</p>
);
};

 The preceding snippet will ultimately be the same as the following:

 function App() {
 return React.createElement(
 'p',
 {},
 [
 'Please visit my ',
 React.createElement(
 'a',
 { href: 'https://my-blog-site.com' },
 'Blog'
)
]
);
};

 Of course, it’s a different question whether you would want to do this. As you can see in this example, it’s way more cumbersome to rely on React.createElement(…) only. You end up writing a lot more code and deeply nested element structures will lead to code that can become almost impossible to read.

 That’s why, typically, React developers use JSX. It’s a great feature that makes building user interfaces with React way more enjoyable. But it is important to understand that it’s neither HTML nor a vanilla JavaScript feature, but that it instead is some syntactical sugar that gets transformed to function calls behind the scenes.

 JSX Elements Are Treated Like Regular JavaScript Values

 Because JSX is just syntactical sugar that gets transformed, there are a couple of noteworthy concepts and rules you should be aware of:

 	JSX elements are just regular JavaScript values (functions, to be precise) in the end

 	The same rules that apply to all JavaScript values also apply to JSX elements

 	As a result, in a place where only one value is expected (e.g., after the return keyword), you must only have one JSX element

 This code would cause an error:

 function App() {
 return (
 <p>Hello World!</p>
 <p>Let's learn React!</p>
);
};

 The code might look valid at first, but it’s actually incorrect. In this example, you would return two values instead of just one. That is not allowed in JavaScript.

 For example, the following non-React code would also be invalid:

 function calculate(a, b) {
 return (
 a + b
 a - b
);
};

 You can’t return more than one value. No matter how you write it.

 Of course, you can return an array or an object though. For example, this code would be valid:

 function calculate(a, b) {
 return [
 a + b,
 a - b
];
};

 It would be valid because you only return one value: an array. This array contains multiple values, as arrays typically do. That would be fine and the same would be the case if you used JSX code:

 function App() {
 return [
 <p>Hello World!</p>,
 <p>Let's learn React!</p>
];
};

 This kind of code would be allowed since you are returning one array with two elements inside of it. The two elements are JSX elements in this case, but as mentioned earlier, JSX elements are just regular JavaScript values. Thus, you can use them anywhere where values would be expected.

 When working with JSX, you won’t see this array approach too often though—simply because it can become annoying to remember wrapping JSX elements via square brackets. It also looks less like HTML, which kind of defeats the purpose and core idea behind JSX (it was invented to allow developers to write HTML code inside JavaScript files).

 Instead, if sibling elements are required, as in these examples, a special kind of wrapping component is used: a React fragment. That’s a built-in component that serves the purpose of allowing you to return or define sibling JSX elements:

 function App() {
 return (
 <>
 <p>Hello World!</p>
 <p>Let's learn React!</p>
 </>
);
};

 This special <>…</> element is available in most modern React projects (for instance, ones created via Vite), and you can think of it wrapping your JSX elements with an array behind the scenes. Alternatively, you can also use <React.Fragment>…</React.Fragment>. Since some React projects might not support the shorter <>…</> syntax, this built-in component is always available.

 The parentheses (()) that are wrapped around the JSX code in all these examples are required to allow for nice multiline formatting. Technically, you could put all your JSX code into one single line, but that would be pretty unreadable. In order to split the JSX elements across multiple lines, just as you typically do with regular HTML code in .html files, you need those parentheses; they tell JavaScript where the returned value starts and ends.

 Since JSX elements are regular JavaScript values (after being translated by the build process at least), you can also use JSX elements in all the places where values can be used.

 Thus far, that has been the case for all these return statements, but you can also store JSX elements in variables or pass them as arguments to other functions:

 function App() {
 const content = <p>Stored in a variable!</p>; // this works!
 return content;
};

 This will be important once you dive into slightly more advanced concepts like conditional or repeated content—something that will be covered in Chapter 5, Rendering Lists and Conditional Content.

 JSX Elements Must Have a Closing Tag

 Another important rule related to JSX elements is that they must always have a closing tag. Therefore, JSX elements must be self-closing if there is no content between the opening and closing tags:

 function App() {
 return ;
};

 In regular HTML, you would not need that forward backslash at the end. Instead, regular HTML supports void elements (i.e.,). You can add that forward slash there as well, but it’s not mandatory.

 When working with JSX, these forward slashes are mandatory if your element doesn’t contain any child content.

 Moving Beyond Static Content

 Thus far, in all these examples, the content that was returned was static. It was content like <p>Hello World!</p>—which of course is content that never changes. It will always output a paragraph that says, 'Hello World!'.

 But most websites, of course, need to output dynamic content that may change (e.g., due to user input). Similarly, you’ll have a hard time finding lots of websites without any images.

 Thus, as a React developer, it’s important to know how to output dynamic content (and what “dynamic content” actually means) and how to display images in a React app.

 Outputting Dynamic Content

 At this point in the book, you don’t yet have any tools to make the content more dynamic. To be precise, React requires that state concept (which will be covered in Chapter 4, Working with Events and State) to change the content that is displayed (e.g., upon user input or some other event).

 Nonetheless, since this chapter is about JSX, it is worth diving into the syntax for outputting dynamic content, even though it’s not yet truly dynamic:

 function App() {
 const userName = 'Max';
 return <p>Hi, my name is {userName}!</p>;
};

 This example technically still produces static output since userName never changes, but you can already see the syntax for outputting dynamic content as part of the JSX code. You use opening and closing curly braces ({…}) with a JavaScript expression (like the name of a variable or constant, as is the case here) between those braces.

 You can put any valid JavaScript expression between those curly braces. For example, you can also call a function (e.g., {getMyName()}) or do simple inline calculations (e.g., {1 + 1}).

 You can’t add complex statements like loops or if statements between those curly braces though. Again, standard JavaScript rules apply. You output a (potentially) dynamic value, and therefore, anything that produces a single value is allowed in that place. However, it’s worth noting that a few value types can’t be used for outputting a value in JSX. For example, trying to output a JavaScript object in JSX will cause an error.

 It’s also worth noting that you’re not limited to outputting dynamic content between element tags. Instead, you can also set dynamic values for attributes:

 function App() {
 const userName = 'Max';
 return <input type="text" value={userName} />;
};

 Rendering Images

 Most websites do not just display plain text. Instead, you often need to render images as well.

 Of course, when working with React, you can use the default element like in any other web project. But there are two important things to keep in mind when displaying images in React projects:

 	 must be a self-closing tag.

 	When displaying local images stored inside of the src/ folder, you must import them into your .jsx files.

 As explained above, in the JSX elements must have a closing tag section, you can’t have void JSX elements, i.e., elements without any closing tag.

 In addition, when outputting locally stored images (i.e., images stored in the project’s src/ folder, not on some remote server), you typically don’t set a string path to the image in your code.

 You might be used to outputting images like this:

 But React projects (e.g., when created with Vite) do involve some kind of build process. In most projects, the final project structure that will be deployed onto a server will look quite different from the project structure you work on during development.

 That being the case, if you store an image in the src/assets folder in a Vite-based React project, and you use that as a path (), the image will not load on the deployed website. It will not load there because the deployable folder structure will not contain a src/assets folder anymore.

 Indeed, you can get an idea of the production-ready folder structure by running npm run build. This will build the project for deployment and produce a new dist folder in your project directory. It’s the content of that dist folder that will be deployed onto some server. If you inspect that folder, you won’t find a src folder in there.

 [image: A screenshot of a computer

Description automatically generated]
 Figure 2.3: The dist folder contains a different structure

 Put in other words: You can’t tell the exact path of a locally stored image in advance. That’s why you should import the image file into your .jsx file. As a result, you’ll get a string value that will contain the actual path (which will work in production). This value can then be set as a dynamic value for the src attribute of the element:

 import myImage from './assets/my-image.png';
function App() {
 return ;
};

 This might look strange at first, but it is code that will work in pretty much all React projects. Behind the scenes, this import gets analyzed by the underlying build process. The import statement then gets removed, and the image path is hardcoded into the production-ready output code (i.e., the code that’s stored in the dist folder).

 There is one important exception though: if you store an image file (or, actually, any asset) in the public/ folder of your project, you can directly reference its path.

 For example, a demo.jpg image file stored in public/images/demo.jpg can be rendered and displayed like this:

 function App() {
 return ;
};

 This works because the contents of the public/ folder are simply copied into the dist/ folder. Unlike the src/ folder and its nested files, the public/ folder files skip the transpilation step.

 Please note that the public folder name itself is not part of the paths referenced—it’s src="/images/demo.jpg", not src="/public/images/demo.jpg".

 Which approach should you use then? Store images in src/ or public/?

 For most images, src/ is a sensible choice since the pre-processing step assigns a unique file name to each imported file. As a result, files can be cached more efficiently once the application is deployed.

 Any files imported in the root index.html file, or files where the file name must never change (e.g., because it’s also referenced by some other app, running on some other server) should typically go into the public/ folder.

 Thus, in most cases, when outputting images that are stored locally in your project, you should store them in the src/ folder and then import them into your JSX files. When using images that are stored on some remote server, you would instead use the full image URL:

 function App() {
 return ;
};

 When Should You Split Components?

 As you work with React and learn more and more about it, and as you dive into more challenging React projects, you will most likely come up with one very common question: When should I split a single React component into multiple separate components?

 As mentioned earlier in this chapter, React is all about components, and it is therefore very common to have dozens, hundreds, or even thousands of React components in a single React project.

 When it comes to splitting a single React component into multiple smaller components, there is no hard rule you must follow. As mentioned earlier, you could put all your UI code into one single, large component. Alternatively, you could create a separate custom component for every single HTML element and piece of content that you have in your UI. Both approaches are probably not that great. Instead, a good rule of thumb is to create a separate React component for every data entity that can be identified.

 For example, if you’re outputting a “to-do” list, you could identify two main entities: the individual to-do item and the overall list. In this case, it could make sense to create two separate components instead of writing one bigger component.

 The advantage of splitting your code into multiple components is that the individual components stay manageable because there’s less code per component and component file.

 However, when it comes to splitting components into multiple components, a new problem arises: How do you make your components reusable and configurable?

 import Todo from './todo.jsx';
function TodoList() {
 return (

 <Todo />
 <Todo />

);
};

 In this example, all “to-dos” would be the same because we use the same <Todo /> component, which can’t be configured. You might want to make it configurable by either adding custom attributes (<Todo text="Learn React!" />) or by passing content between the opening and closing tags (<Todo>Learn React!</Todo>).

 And, of course, React supports this. In the next chapter, you will learn about a key concept called props, which allows you to make your components configurable like this.

 Summary and Key Takeaways

 	React embraces components: reusable building blocks that are combined to define the final user interface

 	Components must return renderable content – typically, JSX code that defines the HTML code that should be produced in the end

 	React provides a lot of built-in components: besides special components like <>…</>, you get components for all standard HTML elements

 	To allow React to tell custom components apart from built-in components, custom component names have to start with capital letters when being used in JSX code (typically, PascalCase naming is used)

 	JSX is neither HTML nor a standard JavaScript feature – instead, it’s syntactical sugar provided by build workflows that are part of all React projects

 	You could replace JSX code with React.createElement(…) calls, but since this leads to significantly more unreadable code, it’s typically avoided

 	When using JSX elements, you must not have sibling elements in places where single values are expected (e.g., directly after the return keyword)

 	JSX elements must always be self-closing if there is no content between the opening and closing tags

 	Dynamic content can be output via curly braces (e.g., <p>{someText}</p>)

 	Images can be rendered by referencing their paths (if stored remotely or in the public/ folder) or by importing the image files into JSX files and outputting them with the dynamic content syntax

 	In most React projects, you split your UI code across dozens or hundreds of components, which are then exported and imported in order to be combined again

 What’s Next?

 In this chapter, you learned a lot about components and JSX. The next chapter builds upon this key knowledge and explains how you can make components reusable by making them configurable.

 Before you continue, you can also practice what you have learned up to this point by going through the questions and exercises below.

 Test Your Knowledge!

 Test your knowledge about the concepts covered in this chapter by answering the questions below. You can then compare your answers to example answers that can be found here: https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/02-components-jsx/exercises/questions-answers.md.

 	What’s the idea behind using components?

 	How can you create a React component?

 	What turns a regular function into a React component function?

 	Which core rules should you keep in mind regarding JSX elements?

 	How is JSX code handled by React and ReactDOM?

 Apply What You Learned

 With this and the previous chapter, you have all the knowledge you need to create a React project and populate it with some first, basic components.

 Below, you’ll find your first two practical activities for this book.

 Activity 2.1: Creating a React App to Present Yourself

 Suppose you are creating your personal portfolio page, and as part of that page, you want to output some basic information about yourself (e.g., your name or age). You could use React and build a React component that outputs this kind of information, as outlined in the following activity.

 The aim is to create a React app as you learned in the previous chapter (i.e., create it via npm create vite@latest <your-project-name> and run npm run dev to start the development server) and edit the App.jsx file such that you output some basic information about yourself. You could, for example, output your full name, address, job title, or other kinds of information. In the end, it is up to you what content you want to output and which HTML elements you choose.

 The idea behind this first exercise is that you practice project creation and working with JSX code.

 The steps are as follows:

 	Create a new React project via npm create vite@latest <project>. Alternatively, you can use the starting project snapshot provided here: https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/02-components-jsx/activities/practice-1-start.

 	Edit the App.jsx file in the /src folder of the created project and return JSX code with any HTML elements of your choice to output basic information about yourself. You can use the styles in the index.css file in the starting project snapshot to apply some styling.

 	Also, store an image in the src/assets folder and output it in the App component.

 You should get output like this in the end:

 [image:]
 Figure 2.4: The final activity result—some user information being output on the screen

 Note

 Styling will of course differ. To get the same styling as shown in the screenshot, use my prepared starting project, which you can find here: https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/02-components-jsx/activities/practice-1-start.

 Analyze the index.css file in that project to determine how to structure your JSX code to apply the styles.

 You’ll find an example solution on GitHub: https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/02-components-jsx/activities/practice-1/SOLUTION-INSTRUCTIONS.md.

 Besides the linked instructions, you will also find the finished example solution code in the project folder that contains the SOLUTIONS-INSTRUCTIONS.md file.

 However, before you explore this solution, you should consider trying to solve this task on your own. Even if your result deviates from the example solution, or if you fail to come up with a working application, you’ll learn more by at least giving it a try because, as always in life, only practice makes perfect.

 Activity 2.2: Creating a React App to Log Your Goals for This Book

 Suppose you are adding a new section to your portfolio site, where you plan to track your learning progress. As part of this page, you plan to define and output your main goals for this book (e.g., “Learn about key React features”, “Do all the exercises”, etc.).

 The aim of this activity is to create another new React project in which you add multiple new components. Each goal will be represented by a separate component, and all these goal components will be grouped together into another component that lists all the main goals. In addition, you can add an extra header component that contains the main title for the web page.

 The steps to complete this activity are as follows:

 	Create a new React project via npm create vite@latest <project>, or use the project starting snapshot provided here: https://github.com/mschwarzmueller/book-react-key-concepts-e2/tree/02-components-jsx/activities/practice-2-start.

 	Inside the new project, create a components folder that contains multiple component files (for the individual goals as well as for the list of goals and the page header).

 	Inside the different component files, define and export multiple component functions (FirstGoal, SecondGoal, ThirdGoal, etc.) for the different goals (one component per file).

 	Also, define one component for the overall list of goals (GoalList) and another component for the page header (Header).

 	In the individual goal components, return JSX code with the goal text and a fitting HTML element structure to hold this content.

 	In the GoalList component, import and output the individual goal components.

 	Import and output the GoalList and Header components in the root App component (replace the existing JSX code).

 Apply any style of your choice. You can also use the index.css file that’s part of the starting project snapshot for inspiration.

 You should get the following output in the end:

 [image:]
 Figure 2.5: The final page output, showing a list of goals

 You’ll also find an example solution for this activity on GitHub: https://github.com/mschwarzmueller/book-react-key-concepts-e2/blob/02-components-jsx/activities/practice-2/SOLUTION-INSTRUCTIONS.md.

 As before, besides the linked instructions, you will also find the finished example solution code in the project folder that contains the SOLUTIONS-INSTRUCTIONS.md file.

 3

 Components and Props

 Learning Objectives

 By the end of this chapter, you will be able to do the following:

 	Build reusable React components

 	Utilize a concept called props to make components configurable

 	Build flexible user interfaces by combining components with props

 Introduction

 In the previous chapter, you learned about the key building block of any React-based user interface: components. You learned why components matter, how they are used, and how you can build components yourself.

 You also learned about JSX, which is the HTML-like markup that’s typically returned by component functions. It’s this markup that defines what should be rendered on the final web page (in other words, which HTML markup should end up on the final web page that is being served to visitors).

 Can Components Do More?

 However, so far, those components haven’t been too useful. While you could use them to split your web page content into smaller building blocks, the actual reusability of these components was pretty limited. For example, every course goal that you might have as part of an overall course goal list would go into its own component (if you decided to split your web page content into multiple components in the first place).

 If you think about it, this isn’t too helpful; it would be much better if different list items could share one common component and you just configured that one component with different content or attributes—just like how HTML works.

 When writing plain HTML code and describing content with it, you use reusable HTML elements and configure them with different content or attributes. For example, you have one <a> HTML element, but thanks to the href attribute and the element child content, you can build an endless amount of different anchor elements that point at different resources, as shown in the following snippet:

 Use Google
Browse Free Tutorials

 These two elements use the exact same HTML element (<a>) but lead to totally different links that would end up on the web page (pointing to two totally different websites).

 To fully unlock the potential of React components, it would, therefore, be very useful if you could configure them just like regular HTML elements. And it turns out that you can do exactly that—with another key React concept called props.

 Using Props in Components

 How do you use props in your components? And when do you need them?

 The second question will be answered in greater detail a little bit later. For the moment, it’s enough to know that you typically will have some components that are reusable and, therefore, need props and some components that are unique and might not need props.

 The “how” part of the question is the more important part at this point, and this part can be split into two complementary problems:

 	Passing props to components

 	Consuming props in a component

 Passing Props to Components

 How would you want props and component configurability to work if you were to design React from the ground up?

 Of course, there would be a broad variety of possible solutions, but there is one great role model that can be considered: HTML. As mentioned above, when working with HTML, you pass content and configuration either between element tags or via attributes.

 Fortunately, React components work just like HTML elements when it comes to configuring them. Props are simply passed as attributes (to your component) or as child data between component tags, and you can also mix both approaches:

 	<Product id="abc1" price="12.99" />

 	<FancyLink target="https://some-website.com">Click me</FancyLink>

 For this reason, configuring components is quite straightforward—at least, if you look at them from the consumer’s angle (in other words, at how you use them in JSX).

 Consuming Props in a Component

 How can you get access to the prop values passed into a component, when writing that component’s inner code?

 Imagine you’re building a GoalItem component that is responsible for outputting a single goal item (for example, a course goal or project goal) that will be part of an overall goals list.

 The parent component JSX markup could look like this:

 <GoalItem />
 <GoalItem />
 <GoalItem />

 Inside GoalItem, the goal (no pun intended) would be to accept different goal titles so that the same component (GoalItem) can be used to output these different titles as part of the final list that’s displayed to website visitors. Maybe the component should also accept another piece of data (for example, a unique ID that is used internally).

 That’s how the GoalItem component could be used in JSX, as shown in the following example:

 <GoalItem id="g1" title="Finish the book!" />
 <GoalItem id="g2" title="Learn all about React!" />

 Inside the GoalItem component function, the plan would probably be to output dynamic content (in other words, the data received via props) like this:

 function GoalItem() {
 return {title} (ID: {id});
}

 But this component function would not work. It has a problem: title and id are never defined inside that component function. This code would, therefore, cause an error because you’re using a variable that wasn’t defined.

 Of course, these shouldn’t be defined inside the GoalItem component anyway, as the idea was to make the GoalItem component reusable and receive different title and id values from outside the component (i.e., from the component that renders the list of <GoalItem> components).

 React provides a solution for this problem: a special parameter value that is passed into every component function automatically by React. This is a special parameter that contains the extra configuration data that is set on the component in JSX code, called the props parameter.

 The preceding component function could (and should) be rewritten like this:

 function GoalItem(props) {
 return {props.title} (ID: {props.id});
}

 The name of the parameter (props) is up to you, but using props as a name is a convention because the overall concept is called props.

 To understand this concept, it is important to keep in mind that these component functions are not called by you somewhere else in your code and that, instead, React will call these functions on your behalf. And since React calls these functions, it can pass extra arguments into them when calling them.

 This props argument is indeed such an extra argument. React will pass it into every component function, irrespective of whether you defined it as an extra parameter in the component function definition. However, if you didn’t define that props parameter in a component function, you, of course, won’t be able to work with the props data in that component.

 This automatically provided props argument will always contain an object (because React passes an object as a value for this argument), and the properties of this object will be the “attributes” you added to your component (such as the title or id) inside the JSX code where the component is used.

 That’s why in this GoalItem component example, custom data can be passed via attributes (<GoalItem id="g1" … />) and consumed via the props object and its properties ({props.title}).

 Components, Props, and Reusability

 Thanks to this props concept, components become actually reusable, instead of just being theoretically reusable.

 Outputting three <GoalItem> components without any extra configuration could only render the same goal three times, since the goal text (and any other data you might need) would have to be hardcoded into the component function.

 By using props as described above, the same component can be used multiple times with different configurations. That allows you to define some general markup structure and logic once (in the component function) but then use it as often as needed with different configurations.

 And if that sounds familiar, that is indeed exactly the same idea that applies to regular JavaScript (or any other programming language) functions. You define logic once, and you can then call it multiple times with different inputs to receive different results. It’s the same for components—at least when embracing this props concept.

 The Special “children” Prop

 It was mentioned before that React passes this props object automatically into component functions. That is indeed the case, and as described, this object contains all the attributes you set on the component (in JSX) as properties.

 But React does not just package your attributes into this object; it also adds another extra property to the props object: the special children property (a built-in property whose name is fixed, meaning you can’t change it).

 The children property holds a very important piece of data: the content you might have provided between the component’s opening and closing tags.

 Thus far, in the examples shown above, the components were mostly self-closing. <GoalItem id="…" title="…" /> holds no content between the component tags. All the data is passed into the component via attributes.

 There is nothing wrong with this approach. You can configure your components with attributes only. But for some pieces of data and some components, it might make more sense and be more logical to actually stick to regular HTML conventions, passing that data between the component tags instead. And the GoalItem component is actually a great example.

 Which approach looks more intuitive?

 	<GoalItem id="g1" title="Learn React" />

 	<GoalItem id="g1">Learn React</GoalItem>

 You might determine that the second option looks a bit more intuitive and in line with regular HTML because, there, you would also configure a normal list item like this: <li id="li1">Some list item.

 While you have no choice when working with regular HTML elements (you can’t add a goal attribute to a just because you want to), you do have a choice when working with React and your own components. It simply depends on how you consume props inside the component function. Both approaches can work, depending on the internal component code.

OEBPS/image/B31339_Preface_02.png
C @ localhost:5173 * &, & Incognito (2)

vV &

Vite + React

count is 0

Edit src/App. jsx and save to test MR

Click on the Vite and React logos to learn more

OEBPS/image/blockquote-top.png

OEBPS/image/QR_Code1044817876677025718.png
DS

O 0]

OEBPS/image/B31339_02_05.png
My Goals For This Book

Teach React in a highly-understandable way

I want to ensure, that you get the most out of this book and you learn all
about React!

Allow you to practice what you learned

Reading and learning is fun and helpful but you only master a topic, if you
really work with it! That's why | want to prepare many exercises that allow
you to practice what you learned.

Motivate you to continue learning

As a developer, learning never ends. | want to ensure that you enjoy
learning and you're motivated to dive into advanced (React) resources
after finishing this book. Maybe my complete React video course?

OEBPS/image/tip.png

OEBPS/image/B31339_02_04.png
MAXIMILIAN SCHWARZMULLER

Web developer, online course instructor & book author

Right now, | am 35 years old and | live in Munich.

My full name is Maximilian Schwarzmdiller and | am a web developer as well as top-rated,
bestselling online course instructor.

OEBPS/image/qrcode_(1)_3_(1).png

OEBPS/image/info.png

OEBPS/image/blockquote-bottom.png

OEBPS/image/9781836202271_cov.png
EXPERT INSIGHT

React
Key Concepts

An in-depth guide to React’s core features

RS s ,II/
.....::;;;,JZ;;;;;;””////////W
s

Second Edition

Maximilian Schwarzmuller

OEBPS/image/B31339_02_03.png
v dist

v assets
Js index-DkiCPOZD.js
index-ffqOMAGE.css
™ max-C8eEDyf9.jpg
<> index.html

OEBPS/image/B31339_02_01.png
OUREROJECTS Learn React Delete

+ Add Project

In-depth, from the ground up.

Learn React Tasks

Add Task

Learn about components, props & state Clear

Explore basic concepts Clear

OEBPS/image/B31339_01_01.png
5 et emithusiant = . priSlntatyMC suti
e e e

ot cstowtss » ttse n e

BESE B | RS IS e s

i et ol b s D e cn s s e 1 e
e o T T e e L ST

4 s prsoni ¢
e crenes st

P ——

conn st v rnetecion (et et € o
et s s i [——
o 5o
y B fection coemanttte, e ¢
” P b
Rt o L R p—— e
! [T —
"ﬁ.. e .,‘1;'.._1 Pt B S s

¥ e o ey ¢

A ——

it st e, oo
ot et « oottt e

D
promatideanentiat

| =L |
[i s ¢
it et ot
e o T I T e,
[—— et
g g R
i st e e e—
e B9 alidsteinputandler.bisdinall, ‘emil’)
e [—
¥ e N | e ldtaotar i, ‘panacs)
Y T sismaorntiomnt vt stenerCstnit, baitFormdien);

R e e P e T T

OEBPS/image/New_Packt_Logo.png
<PACKD

OEBPS/image/B31339_Preface_01.png
Download Node.js®

Download Node js the way you want.

Package Manager Prebuilt Installer Prebuilt Binaries Source Code

Install Node.js | v20.14.0 (LTS) v | on| ® macOS v using| /nvm v

installs nvm (Node Version Manager)
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v@.39.7/install.sh | bash

1
2
3
4 # download and install Node.js
5 nvm install 20
6
7
8
9

verifies the right Node.js version is in the environment
node -v # should print 'v20.14.0"

10 # verifies the right NPM version is in the environment
11 npm -v # should print '10.7.0"

Bash [Copyto clipboard

OEBPS/image/B31339_01_02.png
FEEEEGEEEE S eavovaunn

B L ARECARE § v Soea=r

focton et enaretant)

I iy, o g s sesin (e et el e 10 Dcknd P £ Chch 1 s i tht el et ey
e o oy it o

7 4 v i ot o1

o i < e sttt (o, et €

s

focton anipmmarsintrsunad) {
e ra e < 6 ¢

e e Erar A s - st S 8¢ et € s o
»

e et i,) €

¥ ot o s
1 .

st esistnnteresnin
3 it Grran §
»

i gt o et
iritiskmieih

focton mstrrmatartoset

S0 s i ok s e ek st atres e s

ek RU——

» .

4
5

Clsddell) {

fomcts
Pty
y

y

et i clssomen bk it i)

s

e o

et ————

o

AT S——

S e oot
Pl a—
e

o S, e

Gomnaratsnis e ¢
e e o et ¢ s s

s s st o drm el 1t & ety ontisnt st o

e e o
P

OEBPS/image/B31339_02_02.png
App

Header

Products

Footer

[

I

1

Cart

Product

Product

Product

