
 [image: Python for Engineering and Scientific Computing – Cover]

 Dr. Veit Steinkamp

 Python for Engineering and Scientific Computing

 [image: Logo Rheinwerk Verlag]

 Imprint

 This e-book is a publication many contributed to, specifically:

 Editor Meagan White
Acquisitions Editor Hareem Shafi
German Edition Editor Christoph Meister
Copyeditor Yvette Chin
Translation Winema Language Services
Cover Design Graham Geary
Photo Credit
 iStockphoto: 137993550/© OGphoto, 1336159068/© cemagraphics
Production E-Book Kelly O’Callaghan
Typesetting E-Book Satz-Pro, Germany

 We hope that you liked this e-book. Please share your feedback with us and read the
 Service Pages to find out how to contact us.

The Library of Congress Cataloging-in-Publication Control Number for the printed edition
 is as follows:2024930350

 ISBN 978-1-4932-2559-0 (print)
ISBN 978-1-4932-2560-6 (e-book)
ISBN 978-1-4932-2561-3 (print and e-book)

© 2024 by Rheinwerk Publishing Inc., Boston (MA)
1st edition 2024

 Notes on Usage

 This e-book is protected by copyright. By purchasing this e-book, you have agreed to accept and adhere to the copyrights.
 You are entitled to use this e-book for personal purposes. You may print and copy
 it, too, but also only for personal use. Sharing an electronic or printed copy with
 others, however, is not permitted, neither as a whole nor in parts. Of course, making
 them available on the internet or in a company network is illegal as well.

 For detailed and legally binding usage conditions, please refer to the section Legal Notes.

 This e-book copy contains a digital watermark, a signature that indicates which person may use this copy:

 Notes on the Screen Presentation

 You are reading this e-book in a file format (EPUB or Mobi) that makes the book content
 adaptable to the display options of your reading device and to your personal needs.
 That’s a great thing; but unfortunately not every device displays the content in the
 same way and the rendering of features such as pictures and tables or hyphenation
 can lead to difficulties. This e-book was optimized for the presentation on as many
 common reading devices as possible.

 If you want to zoom in on a figure (especially in iBooks on the iPad), tap the respective
 figure once. By tapping once again, you return to the previous screen. You can find
 more recommendations on the customization of the screen layout on the Service Pages.

 Table of Contents

 Notes on Usage

 Table of Contents

 1 Introduction

 1.1 Development Environments

 1.1.1 IDLE

 1.1.2 Thonny

 1.1.3 Spyder

 1.1.4 Pip

 1.2 The Modules of Python

 1.2.1 NumPy

 1.2.2 Matplotlib

 1.2.3 SymPy

 1.2.4 SciPy

 1.2.5 VPython

 1.3 The Keywords of Python

 1.4 Your Path through This Book

 2 Program Structures

 2.1 Linear Program Structures

 2.1.1 Linear Programs without Function Calls

 2.2 Functions

 2.2.1 Built-In Functions

 2.2.2 Functions without Parameters and without Return Values

 2.2.3 Functions with Parameters and a Return

 2.2.4 Functions with Multiple Return Values

 2.2.5 Functions Call Other Functions

 2.3 Branching Structures

 2.3.1 Single Selection

 2.3.2 Multiple Selection

 2.4 Repetitive Structures

 2.4.1 The while Loop

 2.4.2 The for Loop

 2.5 Data Structures

 2.5.1 Tuples

 2.5.2 Lists

 2.5.3 Dictionaries

 2.5.4 Sets

 2.6 Functional Program Style

 2.7 Object-Oriented Program Style

 2.7.1 Objects and Classes

 2.7.2 Inheritance

 2.8 Project Task: Dimensions of a Shaft

 2.9 Tasks

 3 Numerical Calculations Using NumPy

 3.1 NumPy Functions

 3.1.1 Creating One-Dimensional Arrays Using arange() and linspace()

 3.1.2 Creating Two-Dimensional Arrays Using array()

 3.1.3 Slicing

 3.1.4 Mathematical NumPy Functions

 3.1.5 Statistical NumPy Functions

 3.2 Vectors

 3.2.1 Addition of Vectors

 3.2.2 Scalar Product

 3.2.3 Cross Product

 3.2.4 Triple Product

 3.2.5 Dyadic Product

 3.3 Matrix Multiplication

 3.3.1 Chain Shape with B Parameters

 3.3.2 Usage Example: Calculating the Energy of a Rotating Rigid Body in Space

 3.4 Linear Systems of Equations

 3.4.1 Systems of Equations with Real Coefficients

 3.4.2 Systems of Equations with Complex Coefficients

 3.5 Project Task: Lightning Protection System

 3.6 Tasks

 4 Function Plots and Animations Using Matplotlib

 4.1 2D Function Plots

 4.1.1 Basic Structure of a Function Plot

 4.1.2 Gridlines

 4.1.3 Labels

 4.1.4 Line Styles

 4.1.5 Designing Axes

 4.1.6 Coloring Areas

 4.1.7 Subplots

 4.1.8 Parameter Representation

 4.1.9 Changing Function Parameters Interactively

 4.1.10 Contour Plots

 4.2 3D Function Plots

 4.2.1 Helical Line

 4.2.2 Circular Ring

 4.2.3 Combining a 3D Plot with a Contour Plot

 4.3 Vectors

 4.3.1 Vector Addition

 4.3.2 Vector Field

 4.4 Displaying Figures, Lines, and Arrows

 4.4.1 Rectangles

 4.4.2 Circles and Lines

 4.4.3 Arrows

 4.4.4 Polygons

 4.4.5 Usage Example: A Metal Rod in a Magnetic Field

 4.5 Animations

 4.5.1 A Simple Animation: Shifting a Sine Function

 4.5.2 Animated Oblique Throw

 4.5.3 Animated Planetary Orbit

 4.6 Project Task: Stirling Cycle

 4.7 Project Task: Animating a Thread Pendulum

 4.8 Project Task: Animating a Transmission

 4.9 Tasks

 5 Symbolic Computation Using SymPy

 5.1 Basic Mathematical Operations

 5.1.1 Addition

 5.1.2 Multiplication of Terms

 5.1.3 Multiplication of Linear Factors

 5.1.4 Division

 5.1.5 Exponentiation

 5.1.6 Usage Example: Analyzing an Electrical Power Transmission System

 5.2 Multiplying Matrixes

 5.2.1 Calculation Rule

 5.2.2 Transmission Function of a Catenary Circuit

 5.3 Equations

 5.3.1 Linear Systems of Equations

 5.3.2 Nonlinear Systems of Equations

 5.4 Simplifications of Terms

 5.5 Series Expansion

 5.6 Partial Fractions

 5.7 Continued Fractions

 5.8 Limits

 5.8.1 Limits of Sequences

 5.8.2 Limits of Functions

 5.8.3 Differential Quotient

 5.9 Differentiation

 5.9.1 Usage Example: Curve Sketching

 5.10 Integrations

 5.10.1 Indefinite Integral

 5.10.2 Definite Integral

 5.10.3 Usage Example: Stored Electrical Energy

 5.11 Differential Equations

 5.11.1 Linear First-Order Differential Equations

 5.11.2 General Solution of a Second-Order Differential Equation

 5.11.3 Special Solution of a Second-Order Differential Equation

 5.12 Laplace Transform

 5.12.1 Solving Differential Equations

 5.12.2 Analyzing Networks with Transmission Functions

 5.13 Project Task: Step Response of a Catenary Circuit

 5.14 Project Task: Bending a Beam That Is Fixed at One End

 5.14.1 Second Moment of Area

 5.14.2 Equation of the Bending Line

 5.15 Project Task: Reaction Kinetics

 5.16 Project Task: Dual Mass Oscillator

 5.17 Tasks

 6 Numerical Computations and Simulations Using SciPy

 6.1 Numerical Computation of Zeros

 6.2 Optimizations

 6.3 Interpolations

 6.4 Numerical Differentiation

 6.4.1 Methods of Numerical Differentiation

 6.4.2 Drawing a Tangent Slope

 6.4.3 Derivative of a Sine Function

 6.4.4 Usage Example: Free Fall

 6.5 Numerical Integration

 6.5.1 Methods of Numerical Integration

 6.5.2 Definite Integral

 6.5.3 Integrating a Constant

 6.5.4 Usage Example: Free Fall

 6.5.5 Improper Integral

 6.5.6 Calculating Arc Lengths

 6.5.7 Volume and Surfaces of Rotating Bodies

 6.5.8 Double Integrals

 6.5.9 Triple Integrals

 6.6 Solving Differential Equations Numerically

 6.6.1 Numerical Solution of Differential Equations

 6.6.2 First-Order Linear Differential Equation

 6.6.3 Second-Order Linear Differential Equation

 6.6.4 Nonlinear Second-Order Differential Equation

 6.6.5 Second-Order Differential Equation System: Coupled Spring-Mass System

 6.6.6 Nonlinear Second-Order Differential Equation System: Double Pendulum

 6.7 Discrete Fourier Transform

 6.7.1 Basic Use of the Fast Fourier Transform Algorithm

 6.7.2 Frequency Spectra of Non-Sinusoidal Periodic Signals

 6.7.3 Reconstructing a Noisy Signal

 6.8 Writing and Reading Sound Files

 6.8.1 Generating and Saving Signals

 6.8.2 Reading and Displaying Signals

 6.9 Signal Processing

 6.9.1 Frequency Response of a Butterworth Lowpass

 6.9.2 Frequency Response of a Crossover

 6.9.3 Filtering Signals

 6.10 Project Task: Simulation of a Rolling Bearing Damage

 6.11 Project Task: Predator-Prey Model

 6.11.1 Exponential Growth

 6.11.2 Logistic Growth

 6.11.3 Predator-Prey Relationship for Exponential Growth

 6.11.4 Predator-Prey Relationship for Logistic Growth

 6.12 Project Task: Simulation of an Epidemic

 6.13 Tasks

 7 3D Graphics and Animations Using VPython

 7.1 The Coordinate System

 7.2 Basic Shapes, Points, and Lines

 7.2.1 Cylinder

 7.2.2 Cuboid

 7.2.3 Points

 7.2.4 Lines

 7.2.5 Sphere

 7.2.6 Penetration

 7.2.7 Composite Bodies

 7.3 Bodies in Motion

 7.3.1 Vertical Movement

 7.3.2 Horizontal Movement

 7.3.3 Movement in Space

 7.3.4 Composite Motion

 7.3.5 Rotational Motion

 7.3.6 Random Motion

 7.4 Animation of Oscillations

 7.4.1 Simple Pendulum

 7.4.2 Spring Pendulum

 7.5 Event Processing

 7.6 Project Task: Animation of a Coupled Spring Pendulum

 7.7 Project Task: Animation of Two Coupled Simple Pendulums

 7.8 Tasks

 8 Computing with Complex Numbers

 8.1 Mathematical Operations

 8.2 Euler’s Formula

 8.2.1 Symbolic Method

 8.3 Calculating with Complex Resistors

 8.4 Function Plots with Complex Magnitudes

 8.4.1 Complex Frequency Response of a Series Resonant Circuit

 8.4.2 Locus Curves

 8.5 Project Task: Electric Power Transmission System

 8.5.1 Task

 8.5.2 Equivalent Circuit Diagram of a Three-Phase Power Line

 8.6 Tasks

 9 Statistical Computations

 9.1 Generating, Saving, and Reading Measurement Values

 9.1.1 Generating Measurement Values

 9.1.2 Converting a Measurement Series into a Table

 9.1.3 Writing Measurement Values to a File

 9.1.4 Reading Measurement Values from a File

 9.2 Frequency Distribution

 9.2.1 Frequency Tables

 9.2.2 Histograms

 9.3 Location Parameters

 9.3.1 Arithmetic Mean

 9.3.2 Mode, Median, Harmonic Mean, and Geometric Mean

 9.4 Dispersion Parameters

 9.5 Normal Distribution

 9.5.1 Graphical Representation of the Density Function

 9.5.2 Probability Distribution

 9.6 Skew

 9.7 Regression Analysis

 9.7.1 Computing the Regression Parameters

 9.7.2 Representing the Scatter Plot and the Regression Line

 9.8 Project Task: Simulation of a Quality Control Chart

 9.9 Tasks

 10 Boolean Algebra

 10.1 Logical Operations

 10.1.1 Conjunction

 10.1.2 Disjunction

 10.1.3 Negation

 10.2 Laws of Boolean Algebra

 10.2.1 Simple Postulates

 10.2.2 De Morgan’s Laws

 10.2.3 Distributive Law

 10.3 Circuit Synthesis

 10.3.1 Simplifying Logic Functions by Factoring Out

 10.3.2 Simplification Using the Disjunctive Normal Form

 10.3.3 Simplification Using the Conjunctive Normal Form

 10.4 Project Task: Seven-Segment Coding

 10.5 Tasks

 11 Interactive Programming Using Tkinter

 11.1 Interactions with Command Buttons, Textboxes, and Labels

 11.1.1 Labels

 11.1.2 Textboxes and Command Buttons

 11.2 The Layout Manager of Tkinter

 11.2.1 The pack Method

 11.2.2 The grid Method

 11.2.3 Summary

 11.3 Selection with Radio Button

 11.4 Slider

 11.5 The Canvas Drawing Area

 11.5.1 Representing Lines

 11.5.2 Function Plots

 11.5.3 Querying Mouse Coordinates

 11.6 Project Task: Rotational Frequency Control of an Externally Excited DC Motor

 11.7 Tasks

 A Appendix

 A.1 Glossary: Basic Applied Computer Science Terminology

 A.2 Derivatives of Elementary Functions

 A.3 Antiderivative of Elementary Functions

 A.4 Fourier Series of Important Electrotechnical Voltage Characteristics

 A.5 Correspondence Table of Important Inverse Laplace Transforms

 A.6 Bibliography

 B The Author

 Index

 Service Pages

 Legal Notes

 1 Introduction
This chapter provides a brief overview of the extensibility, application areas, and functionality of the Python programming language.
If you need to perform extensive calculations for your scientific work and also want to present the results in a graphically appealing way, then you should seriously consider using Python. Python is a programming language whose functionality is similar to that of MATLAB when extended with appropriate modules. In addition, Python and all its extension modules are provided free of charge. Using Python, you can, for example, solve systems of equations, create function plots, differentiate, integrate, and also solve differential equations. You can also create graphical user interfaces (GUIs). For almost every problem in engineering and natural sciences, solutions exist that not only cover a wide range of applications, but also excel in their user-friendliness and performance.
The Python programming language was developed in the early 1990s by Dutchman Guido van Rossum at Centrum voor Wiskunde & Informatica (CWI) in Amsterdam. Its name has nothing to do with the snake but refers instead to the British comedy group Monty Python.
The particular advantages and features of this programming language include the following:

 	
 Python is an easy-to-learn and powerful programming language.

 	
 It provides efficient data structures.

 	
 It also allows object-oriented programming (OOP).

 	
 It has a clear syntax and dynamic typing.

 	
 Python programs are compiled using an interpreter and are therefore suitable for the rapid development of prototypes.

 	
 Python is available for Linux, macOS, and Windows.

 	
 Python can be extended by modules.

The module concept is the cornerstone and one of Python’s outstanding strengths. A module is a component of a software system and represents a functionally self-contained unit that provides a specific service. For a definable scientific problem, a module that is tailored precisely to this problem is provided in each case. In this book, I will introduce you to the NumPy, Matplotlib, SymPy, SciPy, and VPython modules.

 1.1 Development Environments

 A development environment is a software program that consists of a text editor, a debugger, and an interpreter. The text editor of a development environment supports a programmer in writing programs, for example, with features like syntax highlighting, automatic indentation of the source code, and so on. The debugger helps programmers find errors, and the interpreter executes the program’s statements. Of the many development environments that can be used to develop Python programs, only the Integrated Development and Learning Environment (IDLE), Thonny, and Spyder development environments will be briefly presented here.

 1.1.1 IDLE

 The abbreviation IDLE stands for “Integrated Development and Learning Environment.” Figure 1.1 shows the user interface for IDLE.

 [image: The IDLE Development Environment]

 Figure 1.1
 The IDLE Development Environment

 IDLE is part of the standard Python download. During the installation of Python, IDLE is installed at the same time as the Pip package manager. You can download the latest version of Python for the Linux, macOS, and Windows operating systems at https://www.python.org/downloads/. Then, you’ll need to install the NumPy, Matplotlib, SymPy, SciPy, and VPython modules individually using the Pip package manager (Section 1.1.4). This step may cause problems if you install a new Python version: The modules can no longer be imported with the new IDLE version, and the programs will no longer run. I will show you a way to fix this problem in Section 1.1.4. If the installation of the Python modules fails, I recommend you use the Thonny development environment.

 When you click Run • Python Shell, the Python shell will open. Next to the >>> input prompt, you can directly enter Python commands or mathematical expressions, such as 2+3, 3*5, or 7/5. Note that you must complete each entry by pressing the (Return) key.

 1.1.2 Thonny

 Compared to the professional solutions, Thonny is a rather simply designed development environment with a comparatively small range of functions. However, it is particularly suitable for programming beginners due to its ease of use. Using Thonny, you can run and test all the sample programs discussed in this book. Figure 1.2 shows the user interface.

 [image: The Thonny Development Environment]

 Figure 1.2
 The Thonny Development Environment

 Thonny is available for Linux, macOS, and Windows and can be downloaded at https://thonny.org.

 The source code of the program must be entered into the text editor (upper left area). Once the program has been started via the (F5) function key or by clicking the Start button, a window opens where you’ll need to enter the file name of the program. The result of numerical calculations is then output in the Command Line window at the bottom left of the Python shell. Each function plot of Matplotlib programs will be output in a separate window. In the shell, also referred to as the Python console, you can also enter Python commands directly. The Assistant in the main window, on the right, supports you in terms of troubleshooting, although you should temper your expectations about its capabilities.

 A particularly important feature of Thonny is that you can easily install and update the NumPy, Matplotlib, SymPy, SciPy, and VPython modules. For these tasks, all you need to do is open the Tools • Manage Packages dialog box, as shown in Figure 1.3. Then, in the text box in the top-left corner, enter the name of the module you want to install and click Install or Update.

 [image: Installing Modules]

 Figure 1.3
 Installing Modules

 To remove a module, you must select the corresponding module in the pane on the left. Then, the Uninstall command button appears to the right of the Install command button. One notable advantage of the package manager in Thonny is that you can also test older versions of all available modules. For this task, simply click the ... command icon to the right of the Install button, which will open a window where you can select the desired version of the module.

 1.1.3 Spyder

 Spyder is the development environment of the Anaconda distribution of Python. Except for VPython, the modules covered in this book—NumPy, Matplotlib, SymPy, and SciPy—are already built in.

 [image: The Spyder Development Environment]

 Figure 1.4
 The Spyder Development Environment

 Spyder is available as a free download for Linux, macOS, and Windows at https://www.spyder-ide.org.

 To run an animation using a Matplotlib program, you must select Automatic as the backend in the settings under IPython Console • Graphics. After starting the program, a separate window will open where the animation will run. Matplotlib programs containing slider controls can also be executed interactively only with this option.

 Spyder is an immensely powerful development environment. However, one disadvantage is that the subsequent installation of modules that are not installed by default, such as VPython, can be difficult for beginners. For more information on installing Python modules, see the documentation for Spyder at https://www.spyder-ide.org.

 1.1.4 Pip

 To use development environments other than Thonny or Spyder, you can install Python modules using Pip. Pip is not a development environment but the package manager for Python that installs modules from the Python Package Index (PyPI) (https://pypi.org/). Pip allows you to download and update modules easily—when you use Python, Pip is a particularly important tool.

 If you have installed Python and want to add only the NumPy module, for example, you can enter the following command in a terminal on Windows, Linux, or macOS:

 pip install numpy

 The following command enables you to update an existing NumPy installation:

 pip install –-upgrade numpy

 If you use IDLE (e.g., version 3.9) and install a new version of Python (e.g., 3.11), then the previously installed Python modules will no longer be imported into the updated version. In this case, you should try installing via pip3.11 install numpy.

 For more information about using Pip, see https://pypi.org/project/pip. If the installation or update of the Python modules fails, I recommend using the Thonny development environment instead.

 1.2 The Modules of Python

 For our first look at the capabilities and features of the module concept in Python, I first want to describe the five modules in a keyword-like manner. Instead of module, the terms library or software library are also commonly used. The capabilities of Python are best illustrated by using short sample programs. Of course, you don’t need understand the source code shown in this section yet. After all, understanding is what the other chapters are for.

 1.2.1 NumPy

 The NumPy module (numerical Python) enables you to perform extensive numerical calculations. For example, you can solve linear systems of equations, even with complex numbers. Listing 1.1 shows a simple vector calculus program.

 01 import numpy as np
02 A=np.array([1, 2, 3])
03 B=np.array([4, 5, 6])
04 print("Vector A:",A)
05 print("Vector B:",B)
06 print("Total A+B:",A+B)
07 print("Product A*B:",A*B)
08 print("Cross product :",np.cross(A,B))
09 print("Scalar product:",np.dot(A,B))

 Listing 1.1
 A NumPy Program

 Output

 Vector A: [1 2 3]
Vector B: [4 5 6]
Total A+B: [5 7 9]
Product A*B: [4 10 18]
Cross product : [-3 6 -3]
Scalar product: 32

 The NumPy module is described in Chapter 3.

 1.2.2 Matplotlib

 The Matplotlib module allows you to display mathematical functions, histograms, and many other diagram types as well as to simulate and animate physical processes. The graphical design options are remarkably diverse and rich in detail. Listing 1.2 shows a simple example of the function plot of a polynomial.

 01 import numpy as np
02 import matplotlib.pyplot as plt
03 x=np.arange(-2,6,0.01)
04 y=x**3-7*x**2+7*x+15
05 plt.plot(x,y)
06 plt.show()

 Listing 1.2
 Function Plot with Matplotlib

 Output

 Figure 1.5 shows the output of the function plot.

 [image: A Function Plot Created Using Matplotlib]

 Figure 1.5
 A Function Plot Created Using Matplotlib

 The Matplotlib module is discussed in detail in Chapter 4.

 1.2.3 SymPy

 Using SymPy (symbolic Python), you can calculate integrals or derivatives symbolically or solve differential equations symbolically. A simplification of mathematical terms is also possible (and much more). Listing 1.3 shows a simple example of symbolic differentiation and integration.

 01 from sympy import *
02 x=symbols("x")
03 y=x**3-7*x**2+7*x+15
04 y_1=diff(y,x,1)
05 y_2=diff(y,x,2)
06 y_3=diff(y,x,3)
07 Y=integrate(y,x)
08 print("1. Derivative:",y_1)
09 print("2. Derivative:",y_2)
10 print("3. Derivative:",y_3)
11 print(" Integral :",Y)

 Listing 1.3
 Symbolic Differentiation and Integration Using SymPy

 Output

 1. Derivative: 3*x**2 - 14*x + 7
2. Derivative: 2*(3*x - 7)
3. Derivative: 6
 Integral : x**4/4 - 7*x**3/3 + 7*x**2/2 + 15*x

 The SymPy module is described in detail in Chapter 5.

 1.2.4 SciPy

 SciPy (scientific Python) allows you to numerically differentiate, integrate, and numerically solve systems of differential equations. SciPy is as comprehensive as it is versatile. The capabilities of SciPy can only be partially described in this book. Listing 1.4 shows a simple example of a numerical integration program.

 01 import scipy.integrate as integral
02 def f(x):
03 return x**2
04 A=integral.quad(f,0,5)
05 print("Area A=",A[0])

 Listing 1.4
 Numerical Integration Using SciPy

 Output

 Area A= 41.66666666666666

 The SciPy module is described in Chapter 6.

 1.2.5 VPython

 Using VPython, you can display fields in a 3D view or even animate their movements in 3D space. As of version 7, the animations are displayed in the standard browser after the program starts. Listing 1.5 shows an example of how you can program the animation of a bouncing ball.

 01 from vpython import *
02 r=1. #radius
03 h=5. #height
04 scene.background=color.white
05 scene.center=vector(0,h,0)
06 box(pos=vector(0,0,0),size=vector(2*h,r/2,h), color=color.green)
07 ball = sphere(radius=r, color=color.yellow)
08 ball.pos=vector(0,2*h,0) #drop height
09 ball.v = vector(0,0,0) #initial velocity
10 g=9.81
11 dt = 0.01
12 while True:
13 rate(100)
14 ball.pos = ball.pos + ball.v*dt
15 if ball.pos.y < r:
16 ball.v.y = -ball.v.y
17 else:
18 ball.v.y = ball.v.y - g*dt

 Listing 1.5
 Animation of a Bouncing Ball

 Output

 Figure 1.6 shows a snapshot of the animation. The VPython module is described in Chapter 7. Of course, not all the capabilities of the Python modules we’ve mentioned can be treated exhaustively in this book. If you miss a particular topic, I recommend referring to the online documentation as a supplemental source of information. A module’s maintainers should have a website where you’ll find tutorials for each module to get you started, including complete module descriptions.

 [image: A Bouncing Ball Animation Created Using VPython]

 Figure 1.6
 A Bouncing Ball Animation Created Using VPython

 The chapters after Chapter 7 describe additional possible uses of the modules in greater detail with a focus on the practical application options.

 Chapter 8 describes how you can compute alternating current (AC) electrical networks using the symbolic method. In the project assignment, you’ll learn how to size an electrical power transmission system.

 Chapter 9 focuses primarily on the simulation of a quality control chart. You’ll learn how to generate normally distributed random numbers and save them to a file. This data is then read again to calculate its statistical characteristics, such as arithmetic mean and standard deviation.

 Chapter 10 describes how to set up truth tables and simplify complex logical circuits using SymPy.

 In Chapter 11, you’ll learn how to program GUIs using Python. The project task shows you how to simulate simple control circuits.

 1.3 The Keywords of Python

 Whenever you learn a new programming language, the first thing you must know are the keywords defined in that language. Keywords are the reserved words of a programming language. They have a specific meaning in the programming language definition and must therefore not be used as variable names in a program. Python has 35 keywords, which you can view by entering the following commands in the Python console:

 >>> import keyword

 >>> a=keyword.kwlist

 >>> print(a)

 You’ll receive the following output:

 ['False', 'None', 'True', 'and', 'as', 'assert', 'async', 'await', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']

 Similarly, the following statement will output the number of keywords:

 >>> print(len(a))

 35

 You don’t need to memorize all the keywords at first. For better overview of Python’s keywords, a useful exercise is to first arrange them according to their functionalities. Table 1.1 provides an overview of the most important keywords arranged according to functional criteria.

 	
 Conditional
Statements

 	
 Loops

 	
 Classes, Modules, and Functions

 	
 Error
Handling

 	
 if

 	
 for

 	
 class

 	
 try

 	
 else

 	
 in

 	
 def

 	
 except

 	
 elif

 	
 while

 	
 global

 	
 finally

 	
 not

 	
 break

 	
 lambda

 	
 raise

 	
 or

 	
 as

 	
 nonlocal

 	
 assert

 	
 and

 	
 continue

 	
 yield

 	
 with

 	
 is

 	
 	
 import

 	

 	
 True

 	
 	
 return

 	

 	
 False

 	
 	
 from

 	

 	
 None

 	
 	
 	

 Table 1.1
 The Most Important Keywords in Python

 With a few keywords like if, else, for, and while, along with the built-in Python function print(), you can already write simple Python programs.

 1.4 Your Path through This Book

 How should you read this book? Basically, you can read the individual chapters independently of each other. If you already know the basic structures of Python, then you can skip Chapter 2. If just starting to learn, you must read that chapter first as a prerequisite for understanding subsequent chapters.

 Our approach to presentation and knowledge transfer is based on a uniform principle: One to three examples from electrical engineering, mechanical engineering, or physics are presented for each topic. After a brief description of the task, the complete source code is printed. Directly after the source code, the output (the results of the calculations) takes place. The source code is then discussed and analyzed.

 Our analysis of source code also includes an analysis of the results (output). Are the results in line with expectations? Does the program solve the task set for it at all? Often, you won’t fully understand the source code of a program until you’ve taken a closer look at the output. After viewing the output, you can then analyze the source code again.

 At the end of each chapter, one or more project assignments are provided, discussed, and fully solved to reinforce and expand on what was learned in that chapter.

 2 Program Structures
In this chapter, you’ll get to know the linear program structure as well as the branching and repetition structures of the imperative programming style of Python. Examples of object-oriented and functional programming describe further ways to program using Python.
A program consists of a sequence of statements. A statement is a command that tells the interpreter (in this case, the Python interpreter) what actions the CPU is supposed to perform: for example, accept input, process the input, or output the processing results to the screen. These actions, which always run in the same way, are referred to as the input-process-output (IPO) model in computer science terminology.
Problems that are to be solved with a computer can be modeled and structured in a variety of ways by programming languages. In applied computer science, the imperative (procedural) programming, object-oriented programming (OOP), and functional programming styles have become established. Python supports all three programming styles, which I will introduce to you in this chapter.
Solutions to problems are also linked to logical conditions: Does the expected case apply or not? Also, depending on the problem, repetitions of the same tasks must be implemented, such as the calculation of value tables for mathematical functions. Like any other procedural programming language, Python supports the linear program structure as well as branching and repetition structures.

 2.1 Linear Program Structures

 In programs with the linear flow structure, calculations are performed in the order of the logic of the problem solution. Thus, calculation C cannot be performed until calculation B has been performed, and calculation B cannot be performed until calculation A has been performed first. So, you absolutely must retain the order of first A, then B, then C, because this order is mandatory for this type of problem. An example from the theory of motion illustrates this fact: If the acceleration of a vehicle is given, the velocity can be calculated from it, and the distance traveled can be calculated from the velocity.

 2.1.1 Linear Programs without Function Calls

 In real life, most programs are divided into functions (also referred to as subroutines), which I will explain in Section 2.2. As a rule, a program consists of multiple functions and one main program.

 Before we consider this division of a program into several subsections, let’s first examine the structure of a simple linear program. For many small, clearly defined problems, this program structure is already sufficient.

 A linear program has the following general structure:

 Statement1
Statement2
Statement3
...

 The individual statements are translated and executed sequentially line by line by the Python interpreter. Branching and repetition do not occur.

 Let’s explore some basic concepts of programming such as statement, assignment, variable, data type, and object using the calculation of a simple power circuit with only one consumer. In such a circuit, the voltage U and the resistance R of the load are given. The program is supposed to calculate the current I, with the following formula:

 [image: inline image]

 In this simple case, the formula for calculating the current provides the development steps for designing the program. The inputs U and R are to the right, and the output is to the left of the equal sign of the formula.

 [image: Structure Chart for a Linear Program Flow]

 Figure 2.1
 Structure Chart for a Linear Program Flow

 For the design phase of program development, structure charts are particularly useful because they enable the description of the problem solution independently of the syntax of any particular programming language. In addition, they help you understand the problem and thus to find a suitable solution. Structure charts can be used to clearly illustrate the flow structures of programs. In our example, to calculate the current, you use the formula to create a structure chart with four statements, as shown in Figure 2.1.

 You can implement this structure chart directly as Python source code by using the = assignment operator for the simple assignments and using the print function for the output. Formulas can also be transferred directly into the source code. Note that you can use the usual mathematical operators (/, *, +, and -). In addition, the quantity searched for must always be positioned to the left of the equal sign (the = assignment operator). For testing, enter the source code from Listing 2.1 into your development environment and start the program.

 01 #!/usr/bin/env python3
02 #01_linear1.py
03 U=230
04 R=11.8
05 I=U/R
06 b="The current is:"
07 print(b, I, " A")

 Listing 2.1
 Linear Program Structure

 Output

 The current is: 19.491525423728813 A

 Analysis

 The program contains a total of five statements. In applied computer science, a statement is a syntactically related section of source code that tells the Python interpreter what action it is supposed to perform. In this sample program, a statement consists of one program line each.

 In line 01, which is referred to as the shebang, the operating system is told which interpreter should be used for running the program. Due to the env specification, you don’t need to specify the path of the directory where the Python interpreter is located. To run the program on Linux or macOS directly in the terminal using the ./01_linear1.py command, you must first set the executable flag by using the chmod +x 01_linear1.py command.

 On Windows, the statement in line 01 gets ignored. In all the following sample programs, the shebang is not specified.

 In line 02, the filename of the #01_linear1.py program is written as a comment. This specification is useful so that the developer (and you as a learner) don’t lose track of the numerous program examples. All lines preceded by a # character are ignored by the Python interpreter. Comments are used to explain statements of the source code in more detail.

 Now, the actual program starts with a statement. Line 03 causes the U variable to be assigned the value 230. In computer science, the term variable has a completely different meaning than in mathematics. For a simple understanding, think of the U variable as a symbolic address within the working memory where the number 230 is stored. At the same time, this assignment declares the U variable.

 The equal sign in the context of Python has the meaning of an assignment, not that of a mathematical equal sign! An assignment is a type of statement that gives a variable a new value. The U variable automatically receives the Integer data type because the number 230 is an integer.

 Value Range for Integer

 Theoretically, the value range of the integer data type is not limited in the current Python version. For detailed information about the value ranges, refer to the Python documentation at https://docs.python.org/3/reference/datamodel.html#the-standard-type-hierarchy.

 Thus, integers can consist of any number of digits. The internal designation for the Integer data type is int. In Python, variables are declared indirectly; that is, the first time a variable is used, its name and data type are made known to the interpreter during runtime. However, the data type can still change during runtime.

 In line 04, the R variable of the float data type is declared because the floating point number 11.8 is assigned to it. This data type is the approximated representation of a real number.

 The Float Data Type

 In Python, the Float data type has a precision of 64 bits (double precision) according to the Institute of Electrical and Electronics Engineers (IEEE) 754 standard. The internal designation for the float data type is float, which corresponds to a range of values from about 2.225·10-308 to 1.798·10308. You can use the Python shell to determine the range of values of float with the following commands:

 >>> import sys
>>> print(sys.float_info)
sys.float_info(max=1.7976931348623157e+308,max_exp=1024,
max_10_exp=308,min=2.2250738585072014e-308,min_exp=-1021,
min_10_exp=-307,dig=15,mant_dig=53,epsilon=2.220446049250313e-16,
radix=2, rounds=1)

 In line 05, the I variable is declared, and at the same time, the current is calculated. Notice how you can also declare variables by assigning the result of a formula to them. As in other imperative programming languages, in Python, the division operation is also written using the / operator (slash). The result of the division of voltage and resistance is assigned to the I variable.

 In line 06, the b variable of the string type is declared because a string is assigned to this variable. A string is a sequence of individual characters. The quotation marks tell the interpreter that this is a string variable. You can place any text between the quotation marks. The internal name for the string type in Python is str.

 In line 07, the result of the calculation using the print function is output in an unformatted way. You can separate each output by using a comma. If the print function is supposed to output a string, such as the unit of current (A) in this example, the string must be enclosed in quotation marks.

 What Are Objects?

 Until this point, I’ve used the terms variable and data type in the same way as in the traditional imperative programming languages Pascal, C, C++, or Java. Strictly speaking, however, these conceptual borrowings from traditional programming languages do not apply to the Python programming language because, in Python, all variables, data types, data structures, and functions are objects. Let’s explore exactly I mean with some examples using the Python shell. You’ll get information about the type of each variable if you enter the following statement into the Python shell:

 >>> U=230
>>> R=11.8
>>> I=U/R
>>> b="string"
>>> type(U)
<class 'int'>
>>> type(R)
<class 'float'>
>>> type(I)
<class 'float'>
>>> type(b)
<class 'str'>

 You can use the built-in type() function in Python to determine the type of an object. The class keyword specifies the respective object type. The U object belongs to the int class, the R and I objects belong to the float class, and the b object belongs to the str class.

 Each object is identified by a number. You can use the built-in id() function to determine these numbers (identities):

 >>> id(U)
4505151824
>>> id(R)
4506525960
>>> id(I)
4506525888
>>> id(b)
4509028720

 Each object is given its own integer as its identity, which is guaranteed to be unique and remains constant for the lifetime of the program. The identities themselves represent memory addresses in the working memory (RAM). Even if the type of an object should change during runtime, its identity (memory address) remains the same. Thus, an object has a name (identifier), a value, a type, and an identity, and it belongs to a certain class. If we continue to talk about variables, then what we actually mean is objects. A quote from the Python documentation should clarify this connection again:

 Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations between objects.... Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you may think of it as the object’s address in memory. The “is” operator compares the identity of two objects; the id() function returns an integer representing its identity.

 Formatting the Output

 The output for the current of Listing 2.1 has too many decimal places. Python provides the option to format floating point numbers, so that the outputs have decimal places that can be used in real life. As an example, just take a look at a series circuit with three resistors. Listing 2.2 shows how you can implement floating point number formatting in Python.

 01 #02_linear2.py
02 U=230
03 R1,R2,R3=0.12,0.52,228
04 Rg=R1+R2+R3
05 I=U/Rg
06 P1=R1*I**2
07 P2=R2*I**2
08 P3=R3*I**2
09 print("Current I={0:6.3f} A " .format(I))
10 print("P1={0:3.2f} W, P2={1:3.2f} W, P3={2:3.2f} W".format(P1,P2,P3))
11 #print("P1=%3.2f W, P2=%3.2f W, P3=%3.2f W" %(P1,P2,P3))

 Listing 2.2
 Formatting Output

 Output

 Current I= 1.006 A
P1=0.12 W, P2=0.53 W, P3=230.72 W

 Analysis

 The program calculates the total resistance of three resistors (line 04), the current, and the partial powers of the resistors. The assignment in line 03 is new. The R1 resistor is assigned the value 0.12; the R2 resistor, the value 0.52; and resistor R3, the value 228. The declaration of the three variables is done simultaneously in one program line. The individual identifiers of the variables are separated by commas just like the values of these variables.

 In lines 06 to 08, the current I is squared using the ** operator. The Python interpreter considers the mathematical precedence rule. First, the current is squared and then multiplied by the resistances.

 The formatting of the outputs is specified in lines 09 and 10. The curly brackets tell the interpreter to output the results in a formatted way. The number before the dot indicates the total number of characters (digits plus separators) of a floating point number. The number after the dot defines the number of decimal places. The output of the current therefore has three decimal places, while those of the partial powers have two decimal places each. The letter f stands for float. The number before the colon defines the position within the output. The .format(I) and .format(P1,P2,P3) statements cause the calculated results for the current and the partial powers to be output formatted. Alternatively, the output could have been formatted more simply using the syntax of line 11.

 Interactive Input Using the input Function

 Up to this point, all inputs were entered by means of static assignments. If you wanted to change the input values, the program would have to be restarted each time. Listing 2.3 shows how this deficiency can be remedied by using the built-in input function.

 01 #03_linear3.py
02 while True:
03 print("\n---Input---")
04 U=float(input("Voltage: "))
05 R=float(input("Resistance: "))
06 I=U/R
07 P=U*I
08 print("\n---Output---")
09 print("Current {0:6.2f} A " .format(I))
10 print("Power {0:6.2f} W " .format(P))

 Listing 2.3
 Interactive Input

 Output

 ---Input---
Voltage: 230
Resistance: 24

---Output---
Current 9.58 A
Power 2204.17 W

 Analysis

 The program starts with a while loop in line 02. This loop construct is introduced at this point because one-time console entries are just as useless as static assignments. Section 2.4.1 discusses the syntax of the while loop in greater detail. The while keyword is followed by the condition that must be met before the subsequent statements belonging to the loop body can be executed. The while statement must be terminated with a colon. The editor of a Python development environment automatically indents all subsequent statements that should be run repeatedly (with four spaces by default). This indentation is elementary because it tells the Python interpreter which statements belong to the loop body.

 Indentations Are Important

 In other programming languages, indentations are solely used to make a program more readable to humans, but actually the entire code could be placed in one line. Not so in Python! Indentations and spacing have syntactic meaning in Python, which means you must ensure that loops and branches are displayed correctly.

 This requirement has the great advantage of producing readable code. If you look at a program again after a few months or read code written by colleagues, you’ll be grateful for indentations.

 Since the condition is always True, the loop is an infinite loop. The prompt can be interrupted by pressing the (Ctrl) + (C) shortcut (also often written as ^C) or by an incorrect input (no number or no input). I’ll show you how to avoid this pretty inelegant programming style in Section 2.4.

 The escape sequence "\n" in lines 03 and 08 causes a line break in each case. An escape sequence is a character combination that does not represent text but instead is a control statement that tells the computer how it should arrange the screen output. The n after the backslash (\) stands for newline.

 In line 04, the built-in input() function first outputs the text specified in the quotes to the screen and then expects an input which must be terminated via (Return). Each input is read as a string, converted to the float type via the built-in float() function and then assigned to the U variable.

 2.2 Functions

 If you place all the statements needed for the calculation of a complex task in a single coherent source code section (the main program), you’ll lose track of your own work as the number of program lines increases. The development process itself and subsequent changes to the source code are thus unnecessarily complicated, if not impossible. In this context, the subroutine technique provides the option to break down complex problems into subproblems that are easy to master. This structuring option is available in every programming language. However, in the discourse about modern programming languages (C, C++, Java), the term subroutine is no longer common; instead, the term function is used. In general, in modern programming languages, a function is understood to be a structural element that combines a logically related set of instructions into a holistic unit.

 The use of functions provides the following advantages:

 	
 The source code of a program becomes clearer and is thus easier to understand.

 	
 Troubleshooting (debugging) is simplified.

 	
 Programs structured by functions are easier to maintain.

 	
 Once written and tested, functions can be used by other programs.

 	
 A function can be called at different places in the same program.

 	
 A single function can be used for different calculations if the calculation rule for the different tasks has the same structural design. The calculation of kinetic energy, rotational energy, electrical energy, and magnetic energy provides a vivid example of this flexibility, as shown in Listing 2.12.

 The general syntax of a function definition is:

 def functionname(parameter1, parameter2, parameter3):
 statement1
 statement2
 statement3
 ...
 return value

 The expressions in parentheses are called parameters.

 Function

 A Python function is a subroutine that solves a subproblem. A function definition consists of the function header and the function body. The function header is introduced with the keyword def, followed by the function name func(), which must end with parentheses. A colon marks the end of the function header.

 The function body contains the individual statements. It ends with the return statement. In a function call such as a=func(), the calculated values are stored in the object, a.

 2.2.1 Built-In Functions

 Python provides a total of 68 built-in functions. We’ve already used some of them, such as print(), input(), and type(). An overview of some selected functions can be found in Table 2.1.

 	
 Function

 	
 Argument

 	
 Description

 	
 abs()

 	
 Integer, Float

 	
 Determines the absolute value of the argument.

 	
 bin()

 	
 Integer

 	
 Converts the argument to a binary string with the prefix '0b'.

 	
 eval()

 	
 String

 	
 Evaluates a string as a mathematical expression.

 	
 float()

 	
 Number or String

 	
 Converts the argument to a float object.

 	
 hex()

 	
 Integer

 	
 Converts the argument to a hex value with prefix '0x'.

 	
 id()

 	
 Object

 	
 Returns the integer value identity of the object.

 	
 int()

 	
 Number or String

 	
 Converts the argument to an integer object.

 	
 input()

 	
 String

 	
 Reads a string from standard input and returns it.

 	
 print()

 	
 Objects

 	
 Outputs values.

 	
 range()

 	
 Integer, Integer, Integer

 	
 Generates a list of integers.

 	
 round()

 	
 Float, Integer

 	
 Rounds a floating point number.

 	
 type()

 	
 Variable

 	
 Determines the type of a variable.

 Table 2.1
 Selection of Built-In Functions in Python

 You may wonder why the second column in Table 2.1 does not contain the word “parameter” but “argument” instead. Applied computer science distinguishes between the term argument and the term parameter. An argument is a value that is passed when the function is called. This value is assigned to the assigned parameters within the function. A parameter is a name that is used within the function.

 You can find documentation for all built-in functions at https://docs.python.org/3.12/library/functions.html.

 2.2.2 Functions without Parameters and without Return Values

 The first example shown in Listing 2.4 illustrates how to use functions in a circuit with one load to calculate the current, electrical power, electrical work, and cost of electrical energy:

 01 #04_function1.py
02 U,R = 230,460
03 t=8
04 price=0.3
05
06 def current():
07 I=U/R
08 print("Current: ", I, " A")
09
10 def power():
11 P=U**2/R
12 print("Power : ", P, " W")
13
14 def work():
15 P=U**2/R
16 W=P*t
17 print("Work: ", W, " Wh")
18
19 def cost():
20 I=U/R
21 W=U*I*t
22 c=W*price/1000.0
23 print("Cost: ", c, " Euro")
24
25 current()
26 power()
27 work()
28 cost()

 Listing 2.4
 Functions without Parameters and without Return Values

 Output

 Current: 0.5 A
Power: 115.0 W
Work: 920.0 Wh
Cost: 0.276 Euro

 Analysis

 This program consists of four functions. Each function solves a self-contained task. The identifiers for the function names should be formulated in such a way that the task of a function is immediately recognized. Only nouns should be used for function names because an identifier such as calculate_current() contains a pleonasm, a meaningless duplication, because the actual task of the function is already to perform a calculation. A function name should describe the task of the function as precisely as possible. The first character in a function name must not be a number or a special character.

 In lines 02 to 04, the variables necessary for the calculations are defined. The values of these variables are available to all four functions, which is why they are also referred to as global variables.

 Line 06 contains the function definition for the calculation of the current. All other function definitions follow the same pattern. A function definition is introduced by the def keyword. This keyword is followed by a freely selectable function name. The parentheses after the function name are mandatory, even if no parameters are used. Identifiers for function names should consist of lowercase letters, as convention requires. The function definition is terminated with a colon. The function body (lines 07 and 08) consists of the individual statements. All statements of a function must be indented evenly so that the interpreter recognizes which statements belong to the function definition. The function definition is complete when it is followed by a statement that has the same indentation depth as the function header. The variables that are declared within functions are referred to as local variables. A local variable cannot be changed outside of the function in which it is declared.

 In lines 25 to 28, the individual functions are called by specifying their name. The syntax of a function call is similar to a simple statement without an assignment. When calling the function, don’t forget the parentheses. Only the parentheses tell the interpreter that the statement is a function call. The self-explanatory names of the identifiers for the functions significantly improve the readability of the program. At first glance, which calculations are performed can be immediately visible.

 2.2.3 Functions with Parameters and a Return

 The program shown in Listing 2.5 again performs the same calculations as the example shown in Listing 2.4. With regard to the system, functions with a return can be described as a black box, as shown in Figure 2.2, with inputs and outputs. The parameters represent the inputs, and the return statement causes the output of the calculation results to the outputs. The calculations themselves are performed within the black box.

 [image: The Black Box of a Function with a Return]

 Figure 2.2
 The Black Box of a Function with a Return

 01 #05_function2.py
02 def current(U,R):
03 return U/R
04
05 def power(U, R):
06 return U**2/R
07
08 def work(U, R, t):
09 P=U**2/R
10 W=P*t
11 return W
12
13 def cost(U, R, t, price):
14 I=U/R
15 W=U*I*t
16 c=W*price/1000.0
17 return c
18
19 Uq=230 #V
20 RLoad=23 #ohms
21 tn=8 #h, hours
22 price_actual=0.3 #euro
23 print("Current: ", current(Uq, RLoad), " A")
24 print("Power : ", power(Uq, RLoad), " W")
25 print("Work : ", work(Uq, RLoad,tn), " Wh")
26 print("Cost : ", cost(Uq, RLoad,tn,price_actual), " euros")

 Listing 2.5
 Functions with Return Value

 Output

 Current: 10.0 A
Power : 2300.0 W
Work : 18400.0 Wh
Cost : 5.52 euros

 Analysis

 In line 02, the current(U,R) function is defined with the U and R parameters. The return statement in line 03 is followed by the calculation rule for the current. In line 23, this function is called in the built-in print function, and the calculated value for the current is output. As a result, there is a function call within a function. The variables in parentheses are referred to as parameters. A further distinction can be made between the parameters of the function definition (called formal parameters) and the parameters passed in the function call (called current parameters or arguments). The other function definitions and calls follow the same pattern. The variables for the current parameters are declared in lines 19 to 22.

 In lines 23 to 26, the values for voltage Uq, resistance RLoad, time of use tn, and for the present price preis_actual are passed as arguments to the functions.

 Note: Difference between a Parameter and an Argument

 Applied computer science distinguishes between the terms argument and parameter. An argument is a value that is passed when the function is called. This value is assigned to the assigned parameters within the function. A parameter is the name used within the function.

 The variables declared in the function bodies are only valid locally (i.e., these variables cannot be accessed from outside). This principle of local validity, also known as data encapsulation, ensures that the values of local variables cannot be changed. Thus, an assignment at another position in the program does not cause these values to be overwritten. If this were the case, the calculations of the functions could be manipulated from outside, and the function would return incorrect results.

 2.2.4 Functions with Multiple Return Values

 Unlike other programming languages, Python also allows the return of multiple values. Let’s look at an example of a solid steel cylinder with a diameter of 1 decimeter and a length of 10 decimeters. With only one function, the volume, mass, moment of inertia, and acceleration torque can be calculated. All four values are supposed to be returned with a return statement.

 The acceleration torque Mb increases proportionally with the angular acceleration α and the moment of inertia J:

 [image: inline image]

 The moment of inertia J of a cylinder increases proportionally with its mass [image: inline image] and proportionally with the square of its radius r:

 [image: inline image]

 The mass is calculated from the volume V and the density [image: inline image] of the cylinder:

 [image: inline image]

 To calculate the volume V, you need the diameter d and the length l of the cylinder:

 [image: inline image]

 To implement this task, you must enter the formulas according to the syntax rules in reverse order into the text editor of a Python development environment. Your source code should resemble the code shown in Listing 2.6. Start the program.

 01 #06_function3.py
02 rho=7.85 #kg/dm^3, density for steel
03 alpha=1.2 #1/s^2, angular acceleration
04 g=3 #accuracy
05
06 def cylinder(d,l):
07 V=round(0.785*d**2*l,g)
08 m=round(rho*V,g)
09 J=round(0.5*m*(d/2/10)**2,g)
10 Mb=round(alpha*J,g)
11 return (V,m,J,Mb)
12 #return V,m,J,Mb
13 #return [V,m,J,Mb]
14
15 d1=1 #dm
16 l1=10 #dm
17 T=cylinder(d1, l1)
18 print("Cylinder data: ", T)
19 print("Volume: ", T[0]," dm^3")
20 print("Mass: ", T[1]," kg")
21 print("Moment of inertia: ", T[2]," kgm^2")
22 print("Acceleration torque:", T[3]," Nm")

 Listing 2.6
 Function with Four Return Values

 Output

 Cylinder data: (7.85, 61.622, 0.077, 0.092)
Volume: 7.85 dm^3
Mass: 61.622 kg
Moment of inertia: 0.077 kgm^2
Acceleration torque: 0.092 Nm

 Analysis

 In lines 06 to 11, the cylinder(d,l) function is defined. The formal parameters are the diameter d and the length l of the cylinder. First, the volume V is calculated, then the mass m, then the moment of inertia J and finally the acceleration torque Mb. The results are rounded to three digits of precision using the built-in round function. The return statement in line 11 returns the four calculated values as a tuple. A tuple is a data structure that consists of an immutable sequence of variables (here V, m, J and Mb). The elements of a tuple are enclosed in parentheses and separated by commas (line 11). The parentheses can also be omitted (line 12).

 If the return values are enclosed in square brackets (line 13), then the return is a list. Because the elements of a list are changeable, however, you should avoid this option of a return.

 In line 17, the cylinder(d1,l1) function is called with the current parameters d1=1 and l1=10. The results are assigned to the T variable. At this point, it becomes clear that T is not a simple variable, but an object containing the memory addresses of the variables V, m, J and Mb. In other words: T is a reference pointing to the memory addresses of the elements of the tuple T.

 Line 18 outputs the four values of tuple T. Since the output is not unique in this form, in lines 19 to 22 the values are read individually from the tuple using the [] operator and then output.

 2.2.5 Functions Call Other Functions

 Functions can also call other functions. To show you how such function calls can be implemented, I want to use the example of the calculation of dynamic characteristics of a cylinder once again, as shown in Listing 2.7.

 01 #07_function4.py
02 rho=7.85 #kg/dm^3, density of steel
03
04 def volume(d,l):
05 return 0.785*d**2*l
06
07 def mass(d,l):
08 return rho*volume(d,l)
09
10 def moment_of_inertia(d,l):
11 return 0.5*mass(d,l)*(d/2/10)**2
12
13 def acceleration_torque(d,l,alpha):
14 return alpha*moment_of_inertia(d,l)
15
16 d1=1 #dm
17 l1=10 #dm
18 alpha1=1.2 #1/s^2, angular acceleration
19 V=volume(d1,l1)
20 m=mass(d1,l1)
21 J=moment_of_inertia(d1,l1)
22 Mb=acceleration_torque(d1,l1,alpha1)
23 print("Volume: ", V, " dm^3")
24 print("Mass: ", m, " kg")
25 print("moment of inertia: ", J, " kgm^2")
26 print("Acceleration torque: ", Mb, " Nm")

 Listing 2.7
 Function Call in Other Functions

 Output

 Volume: 7.8500000000000005 dm^3
Mass: 61.6225 kg
Moment of inertia: 0.07702812500000002 kgm^2
Acceleration torque: 0.09243375000000002 Nm

 Analysis

 The functions are defined, as usual, in lines 04 to 14. In line 08, the first function call of the volume() function occurs directly after the return statement. The volume is not calculated until the mass() function is called in the main program (line 20). The function calls are made in lines 19 to 22. The mass() function calls the volume() function. The moment of inertia() function calls the mass() function, and the acceleration torque() function calls the moment of inertia() function. The return values are assigned to the V, m, J, and Mb variables, which are thus available for output in lines 23 to 26.

 2.3 Branching Structures

 The example on recursion has shown that certain algorithms are not executable without control structures. Thus, in real life, you’ll always find programs with branching structures. Applied computer science distinguishes between single selection and multiple selection branches.

 2.3.1 Single Selection

 A single selection has the following general structure:

 if condition:
 statement1
 statement2
 statement3
else:
 statement4
 statement5

 If the condition is true in the single selection, then the statement block from statement1 to statement3 will be executed; if the condition is false, then the statement block from statement4 to statement5 will be run. Let’s use an example of a quadratic equation to show how a choice between two possible cases is implemented.

 The general form of a quadratic equation is as follows:

 [image: inline image]

 The solution of a quadratic equation is calculated in the following way:

 [image: inline image]

 The term under the root is called discriminant D in the technical language of mathematics.

 The expression under the root can also take negative values. When this case occurs, the equation can no longer be solved within the real number space. For this reason, the program must catch this case by checking whether D
 ≥ 0. For the problem to be solved, the structure chart shown in Figure 2.3 can be created.

 [image: Structure Chart for the Single Selection]

 Figure 2.3
 Structure Chart for the Single Selection

 Listing 2.8 shows the implementation of the structure chart for this simple branching structure.

 01 #08_branch1.py
02 import math as m
03 p=-8.
04 q=7.
05 D=(p/2)**2 - q
06 if D >= 0:
07 x1 = -p/2 + m.sqrt(D)
08 x2 = -p/2 - m.sqrt(D)
09 print("x1 =",x1,"\nx2 =",x2)
10 print("p =",-(x1+x2),"\nq =",x1*x2)
11 else:
12 print("The equation cannot be solved!")

 Listing 2.8
 Case Query for the Solution of a Quadratic Equation

 Output

 x1 = 7.0
x2 = 1.0
p = -8.0
q = 7.0

 Analysis

 In line 02, the math module is imported and assigned to the m alias. The values for the p and q coefficients of the quadratic equation are specified in lines 03 and 04. Line 05 calculates the discriminant D. If this value is greater than zero, the if branch will be executed, and the values for x1 and x2 (lines 07 and 08) will be calculated. The sqrt() root function of the math module is accessed using the m alias and the dot operator, m.sqrt(D). Line 09 outputs the result. Line 10 performs a control calculation according to Vieta’s theorem.

 If the discriminant is less than zero, the else branch will be executed from line 11, and the message that the equation cannot be solved will be output.

 2.3.2 Multiple Selection

 A multiple selection is always used when there are multiple alternatives to choose from, for example, in a menu that offers different calculations. A multiple selection has the following formal structure:

 if condition1:
 statement1
 statement2
elif condition2:
 statement3
 statement4
elif condition3:
 statement5
 statement6

 The elif keyword is used to query further conditions. The sample program shown in Listing 2.9 for multiple selection determines the numerical value of a ring from the color coding of a resistor. A carbon film resistor is coded with four color rings. The first two rings represent the digits of an integer. The third ring serves as a multiplier. The fourth ring indicates the tolerance. For simplicity, the complete evaluation of the color rings is omitted in this example. For multiple selection, the structure chart can be created from Figure 2.4.

 [image: Structure Chart for Multiple Selection]

 Figure 2.4
 Structure Chart for Multiple Selection

 The conversion of the structure chart is done in Listing 2.9.

 01 #09_multiple_selection1.py
02 color=["black", "brown", "red", "orange", "yellow",
03 "\ngreen","blue","purple","gray","white"]
04 code="yellow" #input
05 if code==color[0]:
06 print("The color black is coded as 0.")
07 elif code==color[1]:
08 print("The color brown is coded as 1.")
09 elif code==color[2]:
10 print("The color red is coded as 2.")
11 elif code==color[3]:
12 print("The color orange is coded as 3.")
13 elif code==color[4]:
14 print("The color yellow is coded as 4.")
15 elif code==color[5]:
16 print("The color green is coded as 5.")
17 elif code==color[6]:
18 print("The color blue is coded as 6.")
19 elif code==color[7]:
20 print("The color purple is coded as 7.")
21 elif code==color[8]:
22 print("The color gray is coded as 8.")
23 elif code==color[9]:
24 print("The color white is coded as 9.")

 Listing 2.9
 Multiple Selection for the Color Coding of Resistors

 Output

 The color yellow is coded as 4.

 Analysis

 In line 02, a list of ten colors is created and assigned to the variable color. All properties of the list elements are now stored in the color variable (an object!). Each color represents a specific digit. In line 04, the color of the color ring is assigned to the code variable. The list elements are accessed using the [] operator. The if statement in line 05 determines the first alternative. The check whether the respective case applies is performed using the == operator. All other cases are queried using the elif statement (from line 07). For example, since the color yellow stands for value 4 and has the index 4 in the list, the program outputs the value 4.

 Multiple Selection for One Area

 In real life, value ranges will need to be queried, for instance, when calculating the energy costs at a specific electricity rate. If the calculations are within a defined range of values, a case distinction must be made. Four ranges for hypothetical electricity rates are calculated in Listing 2.10.

 01 #10_multiple_selection2.py
02 rate1,rate2,rate3=0.3,0.25,0.2 #euros
03 consumption=5500 #kWh
04
05 if 0 < consumption<= 5000:
06 print("Amount for rate1:",consumption*rate1, "euros")
07 elif 5000 < consumption <= 10000:
08 print("Amount for rate2:",consumption*rate2, "euros")
09 elif 10000 < consumption <= 30000:
10 print("Amount for rate3:",consumption*rate3, "euros")
11 else:
12 print("industry_rate!")

 Listing 2.10
 Multiple Selection for One Area

 Output

 Amount for rate2: 1375.0 euros

 Analysis

 Line 02 establishes three electricity rates. Line 03 determines the actual consumption. The case query for the value ranges is performed using the notation known from mathematics. If the consumption is exactly equal to 5000 kWh or below, then the amount to be paid for rate1 is calculated and output in line 06 using the if statement. Line 07 uses the elif statement to query the consumption between 5,000 and 10,000 kWh. The amount to be paid for rate2 is calculated and output in line 08. The same applies to line 09. If the consumption is not in the specified range, the else branch in line 11 will be executed.

 2.4 Repetitive Structures

 In Python, two constructs exist for implementing repetitive structures: the while loop and the for loop. Loop constructs are always needed when a statement block must be executed multiple times, for example, when value tables for mathematical functions or when rectangle sums must be calculated for numerical integration.

 2.4.1 The while Loop

 A while loop consists of the loop head and the statement block or loop body that is supposed to be repeated. This loop has the following general structure:

 while condition:
 statement1
 statement2
 statement3
 ...

 The loop body can consist of one or more statements. The statements of the loop body are executed as long as the condition is True, and its execution is aborted if the condition is no longer true (i.e., if this condition is False). The termination condition results either from the calculations performed in the loop body or from a previously defined condition.

 The first example shown in Listing 2.11 illustrates how to use a while loop to calculate the value table of any mathematical function. The structure chart associated with the program is shown in Figure 2.5. To focus on the essential structural elements of the program, I have omitted the presentation of the function call.

 [image: Structure Chart for a while Loop]

 Figure 2.5
 Structure Chart for a while Loop

 The conversion of the structure chart into a Python program is shown in Listing 2.11.

 01 #11_while_loop1.py
02 def f(x):
03 return x**2
04 x=1
05 while x<=10:
06 y=f(x)
07 print(x,y)
08 x=x+1 #better x+=1

 Listing 2.11
 while Loop for a Value Table

 Output

 1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100

 Analysis

 In lines 02 and 03, a function named f(x) is defined. The return statement can be followed by the term of any mathematical function, 𝑓(x). Line 04 initializes the independent variable x with 1. The while statement in line 05 sets the termination condition as x<=10. The loop body will be executed as long as x<=10. Each termination condition must be terminated using a colon. All statements of the loop body must be indented evenly. In line 08, x is incremented by the value 1 with each loop pass; in technical jargon, this step is referred to as incrementing. This increment and the x<=10 condition determine that the program executes the loop ten times. Line 06 calls function f(x) with the current value of x. Line 07 outputs the values for x and y. In line 08, the value of x is increased by 1 with each loop pass. Instead of writing x=x+1, the formulation x+=1 is also common.

 while Loop for Program Repetition

 The next example shown in Listing 2.12 demonstrates how to run a program that contains a menu for four selection options until the user forces the program termination. The program calculates four kinds of energy: kinetic, rotational, electrical, and magnetic. Because all four formulas for calculating energy have the same structure, as shown in Table 2.2, you also only need to implement one function.

 	
 Energy Type

 	
 Formula

 	
 Energy Storage

 	
 Kinetic energy

 	
 [image: inline image]

 	
 Mass

 	
 Rotational energy

 	
 [image: inline image]

 	
 Moment of inertia

 	
 Electrical energy

 	
 [image: inline image]

 	
 Capacity

 	
 Magnetic energy

 	
 [image: inline image]

 	
 Inductance

 Table 2.2
 Types of Energy

 For the storage variables mass, moment of inertia, capacity, and inductance, you generally specify the a variable. The physical quantities such as velocity, angular velocity, voltage, and current are generally denoted by x:

 [image: inline image]

 In your development environment, enter the source code shown in Listing 2.12 and then start the program.

 01 #12_while_loop2.py
02 def f(a,x):
03 return 0.5*a*x**2
04
05 next=True
06 while next:
07 print("Kinetic energy......1")
08 print("Rotational energy...2")
09 print("Electrical energy...3")
10 print("Magnetic energy.....4")
11 selection=int(input("Select:"))
12 if selection==1:
13 m=float(input("Mass m="))
14 v=float(input("Velocity v="))
15 Wkin=f(m,v)
16 print("\nThe kinetic energy is %6.3f Ws\n" %Wkin)
17 elif selection==2:
18 omega=float(input("Angular velocity \u03C9="))
19 J=float(input("Moment of inertia J="))
20 Wrot=f(J,omega)
21 print("\nThe rotational energy is %6.3f Ws\n" %Wrot)
22 elif selection==3:
23 C=float(input("Capacity C="))
24 U=float(input("Voltage U="))
25 Wel=f(C,U)
26 print("\nThe electrical energy is %6.3f Ws\n" %Wel)
27 elif selection==4:
28 L=float(input("Inductance L="))
29 I=float(input("Current I="))
30 Wmag=f(L,I)
31 print("\nThe magnetic energy is %6.3f Ws\n" %Wmag)
32 else:
33 next =False

 Listing 2.12
 A while Loop with Internal Termination Condition

 For example, if you select menu item 2, enter 1.2 s-1 for the angular velocity, and 2.4 kg m2 for the moment of inertia, the program will calculate a value of 1.728 Ws for the rotational energy.

 Kinetic energy......1
Rotational energy...2
Electrical energy...3
Magnetic energy.....4
Select:2
Angular velocity ω=1.2
Moment of inertia J=2.4

The rotational energy is 1.728 Ws

 Analysis

 Line 05 initializes the Boolean variable further via the True value. Line 06 contains the loop header of the while loop. The loop body is executed as long as next equals True, which is the case if the values 1, 2, 3, or 4 were entered for the Select variable. For all other values, the else branch in line 32 is executed, and the next variable is set to False.

 while Loop with a break Statement

 If you need to perform divisions in a loop body, during the course of the calculations, the denominator of a fraction might become zero or be very small. If divided by zero, the result would become infinite, resulting in a memory overflow. This case must be intercepted. For this purpose, Python provides the break statement, which causes a loop to abort.

 Based on the example of a zero point calculation, I want to show you how a break statement works. Using regula falsi, zeros can be calculated numerically in a simple way:

 [image: inline image]

 The denominator of the fraction contains the difference between the newly calculated and the previously calculated function value. This value may become zero or take a very small value during the calculations.

 Listing 2.13 calculates the zero for the function:

 [image: inline image]

 Using a sketch for the function graphs f1 (x) = x and f2(x) = cos x, you’ll get an intersection point of both function graphs that is approximately at x = 0.74. Therefore, x1 = 0 is set for the start value, and x2 = 1, for the end value.

 01 #13_while_loop3.py
02 import math as m
03 def f(x):
04 return x-m.cos(x)
05
06 eps=1e-12 #termination condition
07 x1=0 #start value
08 x2=1 #end value
09 n=0
10 f1=f(x1)
11 while abs(x2-x1)>eps and n<100:
12 n+=1
13 x0=x1
14 x1=x2
15 f0=f1
16 f1=f(x1)
17 if abs((f1-f0))<eps: break
18 x2=x1-f1*(x1-x0)/(f1-f0)
19 print(n,":", x2)

 Listing 2.13
 A while Loop with a break Statement

 Output

 1 : 0.6850733573260451
2 : 0.736298997613654
3 : 0.7391193619116293
4 : 0.7390851121274639
5 : 0.7390851332150012
6 : 0.7390851332151607

 The result can be checked in the Python shell with the following command:

 >>> import math
>>> 0.7390851332151607 - math.cos(0.7390851332151607)
0.0
>>>

 Analysis

 Line 02 imports the math module (math), which is needed for the calculation of the cos function. The m alias saves some typing work. Instead of math.cos(), the program calls the cosine function via the m alias and the m.cos() dot operator. The function definition is performed in lines 03 and 04. In lines 06 to 10, the variables are initialized with their initial values.

 Line 11 contains the termination condition of the while loop. The loop is supposed to be executed as long as the amount of eps is greater than 10-12 and n<100. In line 13, the value of variable x1 is assigned to variable x0. This assignment causes the last calculated value of x1 to be temporarily stored in the (x1-x0) counter for the calculation of the difference. For the calculation of the denominator, the last value of f1 is assigned to the f0 variable in line 15 and thus also temporarily stored. The difference of the denominator (f1-f0) can thus be calculated from the current and the previously calculated values.

 Line 17 contains the termination condition. The loop is then exited when the amount of the counter becomes less than 10-12. A check whether the case f1-f0==0 occurs or whether it becomes f1==f0 would even work in this case. However, I strongly recommend you avoid such an implementation because two floats are very rarely really equal.

 In line 18, the calculation of the zero is performed according to the regula falsi iteration rule. The result is output with the number of required calculation steps in line 19.

 2.4.2 The for Loop

 The for loop is a counter-driven loop. The number of times the loop body should be executed is already specified in the loop header. This kind of loop is always used when the number of loop passes is known in advance. It has the following general structure:

 for i in range(start value, end value, increment):
 statements

 The count variable i must always be of type integer. The range function sets the start value, the end value, and the increment for the count variable. The head of the for loop must end with a colon. The range(n) function internally generates a list of integers for a range of values from 0 to n -1 with an increment of 1. For range(10), the count variable i takes the values i = 0 to 9 in succession:

 >>> for i in range(10):
 print(i, end=' ')
0 1 2 3 4 5 6 7 8 9

 The count variable of a for loop can also iterate over a string, list, tuple, or dictionary. These options are discussed in more detail in Section 2.5.

 Figure 2.6 shows the structure chart for a for loop. The program should calculate the value table of a mathematical function.

 [image: Structure Chart for a for Loop]

 Figure 2.6
 Structure Chart for a for Loop

 The conversion of the structure chart into a Python source code is shown in Listing 2.14. The program calculates the table of values for a parabola for the range from x = 0 to x = 10. The count variable x is of the integer type. You can also enter any other mathematical functions in the function definition (line 03).

 01 #14_for_loop1.py
02 def f(x):
03 return x**2
04
05 print(" x\ty")
06 for x in range(11):
07 y=f(x)
08 print("%2i %6.3f" %(x, y))

 Listing 2.14
 Calculating a Value Table Using a for Loop

 Output

 x y
 0 0.000
 1 1.000
 2 4.000
 3 9.000
 4 16.000
 5 25.000
 6 36.000
 7 49.000
 8 64.000
 9 81.000
10 100.000

 Analysis

 The program outputs 11 pairs of values for x and y. The loop header in line 06 contains the count variable x, which is automatically declared as int, and the range function, whose parameters must also be of type int. The loop header must always end with a colon. The loop body must be evenly indented. Line 07 calls the y = 𝑓(x) function. With each new loop pass, x is incremented by 1, and the function value is recalculated until the termination condition is reached. Line 08 outputs the values for x and y in a formatted manner. You can test the loop construct by inserting other start and stop values and other increments into the range function. If you type help(range) in the Python shell, you’ll get detailed information about the range class.

 Reducing the Increment

 Often, values of functions must be calculated whose increment is not 1 but less than 1. This case arises, for example, in numerical integration with rectangle sums. The area A of the rectangles is calculated from the sum of products of the current function value, 𝑓(xk) and a [image: inline image] that’s chosen as small as possible:

 [image: inline image]

 The program in Listing 2.15 calculates the rectangle sums of the e-function between the limits from 0 to 1. The expected result is A = 1.718281828459045 area units (e1 – 1).

 01 #15_for_loop2.py
02 import math
03 def f(x):
04 #return x
05 #return -x+1
06 return math.exp(x)
07
08 a=0 #lower limit
09 b=1 #upper limit
10 n=1000
11 delta_x=(b-a)/n
12 r=0
13 x=a
14 for k in range(1,n+1):
15 r=r+f(x)*delta_x
16 x=a+k*delta_x
17 print("%6d %6.3f %6.15f" %(k, x, r))

 Listing 2.15
 Numerical Integration with Rectangle Sums

 Output

 1000 1.000 1.718422830734965

 Analysis

 The function definition is made in lines 03 and 06. The lines that have been commented out can be used for further test functions. Lines 08 and 09 define the lower and upper integration limits. The n variable in line 10 defines the number of subproducts [image: inline image]. For the intercept [image: inline image] on the x-axis (called the abscissa), the somewhat unwieldy identifier delta_x was chosen so as to avoid creating a false association with the differential dx. delta_x is calculated in line 11 from the difference between upper and lower limits divided by the number of subproducts n.

 The r variable is initialized with 0 (line 12), and the x variable is initialized with the lower limit a (line 13). The for loop in line 14 is run through from k=1 to n+1. Thus, 1,000 subproducts (rectangles r) are added up. The number n of subproducts determines the accuracy of numerical integration. Since rectangle sums are calculated, no improved accuracy can be achieved by increasing n compared to other integration methods (i.e., trapezoidal, Simpson, or Romberg).

 The summation of the individual rectangle areas is performed via the summation algorithm in line 15. On the right-hand side of the assignment, the sum of the old r value and the rectangle area f(x)*delta_x at location k is calculated. The f(x) function is called anew for each loop pass. The function argument x is recalculated at position k in line 16 for each loop pass.

 Line 17 outputs the number of calculations, the value of the upper limit, and the area. Except for the third digit, the result calculated by the program matches the exact value.

 Numerical Solution of First-Order Differential Equations

 In engineering and science, you must be able to solve differential equations. Based on the example of the Euler-Cauchy method, I want to show you how easily you can solve differential equations. This method is described using the following sum algorithm:

 [image: inline image]

 Listing 2.16 calculates differential equations of the following type: [image: inline image]. In this concrete case, the solution of the differential equation [image: inline image] is to be calculated at the point x = 1. The exact solution of this differential equation is:

 [image: inline image]

 For x = 1, the exact value of the solution is thus y = 1.6487.

 01 #16_for_loop3.py
02 def f(x,y):
03 return x*y
04
05 x0=0
06 xn=1
07 y0=1
08 n=1000
09 delta_x=(xn-x0)/n
10 y=y0
11 for k in range(n+1):
12 x=x0+k*delta_x
13 y=y + f(x,y)*delta_x
14 print("%3i %6.3f %6.4f" %(k, x, y))

 Listing 2.16
 Solution of a First-Order Differential Equation

 Output

 1000 1.000 1.6493

 Analysis

 The function definition in line 02 expects two parameters when called. With each function call, the product of x and y is returned. The statement in line 09 calculates the delta_x increment from the start and end values as well as the number n. In line 12, the current x value is calculated for the function call in line 13. The algorithm of the Euler-Cauchy method is implemented directly in line 13 in Python syntax. The print function in line 14 outputs the number of calculations and the function value of the solution y at position x=1. The result shows that the Euler-Cauchy method is not suitable for practical purposes because this algorithm still yields an error of 0.0006 even after 1,000 loop passes. Doubling n only halves the error. The Heun method or the Runge–Kutta method provide more accurate results.

 Nested Loops

 Loops can also be nested within each other. You can use two nested for loops to create triangular or rectangular number schemes. Pascal’s triangle is an example of a triangular number scheme. It can be generated using the following binomial coefficient:

 [image: inline image]

 The math function comb(n,k) calculates the binomial coefficient. Listing 2.17 demonstrates how you can create Pascal’s triangle using this function and two nested for loops.

 01 #17_for_for_loop1.py
02 from math import *
03 k=8
04 for n in range(k):
05 for k in range(n+1):
06 print(comb(n,k),end=' ')
07 print()

 Listing 2.17
 Two Nested for Loops

 Output

 1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

 Analysis

 The first for loop creates the lines of Pascal’s triangle (line 04). In line 05, the counting range is increased by 1 with each new loop pass of the inner loop. Line 06 creates the column entries. The end=' ' parameter prevents a line break. In line 07, the print function forces a new line break.

 Usage Example: BubbleSort

 What’s called the BubbleSort method compares adjacent pairs of numbers in a sequence of numbers. These pairs of numbers are compared and swapped until the sequence of numbers has been sorted. While this procedure is rather inefficient, it is particularly well suited to illustrate the operation of two nested for loops. Listing 2.18 shows a quite simple implementation of this sorting procedure.

 01 #18_for_for_loop2.py
02 a=[5,4,3,2,1] #list
03 print(a)
04 for i in range(len(a)-1):
05 for i in range(len(a)-1):
06 if a[i]>a[i+1]: #compare
07 a[i],a[i+1]=a[i+1],a[i] #swap
08 print(a)

 Listing 2.18
 BubbleSort

 Output

 [5, 4, 3, 2, 1]
[4, 3, 2, 1, 5]
[3, 2, 1, 4, 5]
[2, 1, 3, 4, 5]
[1, 2, 3, 4, 5]

 Analysis

 The statement in line 02 creates list a. The list data structure is discussed in Section 2.5.2. Line 06 compares the predecessor a[i] with its direct successor a[i+1]. If the predecessor is greater than its successor, the corresponding elements in the list will be swapped (line 07). The swap process is performed using tuples, which is a data structure described in Section 2.5.1.

 Usage Example: Double Integral

 Nested loops are also needed, for example, to calculate a double integral numerically. A typical application is the calculation of the second area moment. The second area moment indicates how stiff a beam is based on its cross-sectional area. For the second area moment of a rectangle cross section, the following applies:

 [image: inline image]

 You can calculate the double integral numerically by applying the sum algorithm within two nested for loops. Listing 2.19 shows the implementation of such an algorithm.

 01 #19_for_for_loop3.py
02 b=5 #width in cm
03 h=10 #height in cm
04 y1,y2=-b/2,b/2 #limits of the y-axis
05 z1,z2=-h/2,h/2 #limits of the z-axis
06 #Function definition
07 def f(y,z):
08 return z**2
09 #Calculate double integral
10 dy=dz=1e-2
11 m=int((z2-z1)/dz) #height
12 n=int((y2-y1)/dy) #width
13 sz=0
14 for i in range(m): #outside
15 z=z1+i*dz
16 sy=0
17 for j in range(n): #inside
18 y=y1+j*dy
19 sy=sy+f(y,z)
20 sz=sz+sy
21 Iy=sz*dy*dz
22 #Output
23 print("First moment of area for a rectangle cross section")
24 print("Iy =",Iy, "cm^4")
25 print("Iy =",b*h**3/12,"cm^4 exactly")
26 print(m,n)

 Listing 2.19
 Numerical Calculation of a Double Integral

 Output

 First moment of area for a rectangle cross section
Iy = 416.6675 cm^4
Iy = 416.6666666666667 cm^4 exactly
1000 500

 Analysis

 In line 10, you can define the dy and dz increments. The increments determine the accuracy of the numerical integration. Lines 11 and 12 calculate the number of loop passes for the outer and inner loops. For m = 1000 and n = 500, we obtain 1000 × 500 = 50000 computational steps in the inner loop.

 In lines 15 and 18, the current values z and y are calculated for the z and y coordinates. In line 19, these values are passed as arguments to the function f(y,z) and added to the sum sy at each new loop pass.

 In line 20, the sum is calculated in the z-direction. Line 21 calculates the second moment of area, Iy.

 The comparison between numerical integration and exact value shows that the accuracy is still acceptable. In Chapter 6 on using SciPy, you’ll learn how to use the function dblquad(f,z1,z2,y1,y2)[0] to calculate the second moment of area in a much easier way by using only one line of source code.

 2.5 Data Structures

 Programs are composed of algorithms and data structures. So far, data structures such as lists and tuples have already appeared in some of the sample programs. Let’s now take a closer look at what data structures Python brings to the table.

 Data Structures and Data Types

 You should not confuse data structures with simple data types, such as int, float, and str. An essential difference between data types and data structures is that data structures have a much more complex structure than the simple data types.

 In applied computer science, a data structure is a set of objects that may only be manipulated by means of well-defined operations. In a nutshell, data structure = objects + operations. The data is organized in a way that is ideal for the particular data structure in order to access it as efficiently as possible.

 Python has the following built-in data structures: tuples, lists, dictionaries, and sets.

 2.5.1 Tuples

 A tuple is a sequence of elements that are iterable but cannot be modified. The elements of a tuple do not all need to be of the same type. The immutability of the elements is the decisive characteristic of a tuple. You can define a tuple by enclosing the elements in parentheses separated by commas. The Python shell is helpful again with our first encounter with the tuple data structure through the following commands:

 >>> t=(2,4,6)
>>> t
(2, 4, 6)
>>> t[1]
4
>>> t[1]=8
Traceback (most recent call last):
 File "<pyshell>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> type(t)
<class 'tuple'>
>>>

 The individual elements of a tuple can only be accessed in read-only mode. If an attempt is made to assign a value to an element of a tuple, then the Python interpreter throws an error message.

 Listing 2.20 shows how tuples are defined and which operations are applicable to tuples.

 01 #20_tuple1.py
02 t1=(1,2,3)
03 t2= 4,5,6
04 t3=t1+t2
05 t4=3*t2
06 print("Tuple1 contains the elements",t1)
07 print("Tuple2 contains the elements",t2)
08 print("Tuple3 contains the elements",t3)
09 print("Tuple4 contains the elements",t4)
10 print("The third object of t3 has the value", t3[2])
11 print("Are t1 and t2 the same?",t1==t2)
12 print("t3 belongs to the class",type(t3))
13 print("t1 has id",(id(t1)))
14 print("t1[0] has id",(id(t1[0])))
15 print("t1[1] has id",(id(t1[1])))
16 print("t1[2] has id",(id(t1[2])))

 Listing 2.20
 Operations on Tuples

 Output

 Tuple1 contains the elements (1, 2, 3)
Tuple2 contains the elements (4, 5, 6)
Tuple3 contains the elements (1, 2, 3, 4, 5, 6)
Tuple4 contains the elements (4, 5, 6, 4, 5, 6, 4, 5, 6)
The third object of t3 has the value 3
Are t1 and t2 the same? False
t3 belongs to the class <class 'tuple'>
t1 has id 4344167376
t1[0] has id 4335508656
t1[1] has id 4335508688
t1[2] has id 4335508720

 Analysis

 Two tuples (i.e., t1 and t2) are defined in lines 02 and 03. You can also omit the parentheses. Line 04 concatenates tuples t1 and t2 to form the new tuple, t3. In line 05, another new tuple t4 is created, this one containing three copies of tuple t2. Each element of a tuple can be accessed in read-only mode via the [] operator (line 10). Tuples can also be checked for equality using the == operator (line 11). Not only does a tuple have its own identity (line 13), but also each element of a tuple has its own identity (lines 14 to 16).

 Are Tuples Really Immutable?

 In the sorting program shown in Listing 2.18, the value of two variables has been swapped:

 a[i], a[i+1] = a[i+1], a[i]

 The left-hand value of tuple a[i], a[i+1] was assigned the right-hand value a[i+1], a[i]. a[i] had the value of a[i+1] and a[i+1] the value of a[i] after the swap. The swap operation was apparently performed successfully because the program worked. How can we explain this contradiction, that tuples are supposed to be immutable, but during the exchange process the values of two tuple elements were changed? Listing 2.21 resolves this contradiction.

 01 #21_tuple2.py
02 a,b=10,20
03 t=(a,b)
04 print("----before----")
05 print("Value of a=%i id of a=%i" %(a,id(a)))
06 print("Value of b=%i id of b=%i" %(b,id(b)))
07 print("Value of t=",t,"id of t=",id(t))
08 a,b=b,a
09 print("----after----")
10 print("Value of a=%i id of a=%i" %(a,id(a)))
11 print("Value of b=%i id of b=%i" %(b,id(b)))
12 print("Value of t=",t,"id of t=",id(t))

 Listing 2.21
 Swapping Two Variables with a Tuple

 Output

 ----before----
Value of a=10 id of a=4317511120
Value of b=20 id of b=4317511440
Value of t= (10, 20) id of t= 4326503240
----after----
Value of a=20 id of a=4317511440
Value of b=10 id of b=4317511120
Value of t= (10, 20) id of t= 4326503240

 Analysis

 The left-hand value of the tuple consists of the variables a and b (line 02). Variable a is assigned the value 10, and variable b, the value 20. Line 03 defines a tuple with elements a and b. In lines 05 to 07, the values and the identities of the variables and the tuple are output. In line 08, the swap process takes place. After swapping, variable a has the value 20 and variable b has the value 10. The values and the IDs of a and b have changed after the swap. That is, only the memory addresses of a and b were swapped. In contrast, the values and ID of tuple t have not changed.

 Tuples in for Loops

 In a for loop, a count variable can also iterate over a tuple. The following console example shows a possible implementation:

 >>> for i in ('Iron','Chromium','Nickel'):
 print(i,end=' ')
Iron Chromium Nickel

 2.5.2 Lists

 A list is an ordered summary of various objects. The values contained in a list are also referred to as elements. The list itself is also considered an object. The special thing about a list is that its length can be changed at runtime. The Python interpreter recognizes a list definition by the square brackets in which the elements of a list are embedded. The individual elements are separated by commas. Objects of a list can be, for example, floats of measured values of a measuring sequence or any other objects. Lists themselves can also be components of lists. The range function enables you to generate lists automatically:

 >>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(2,10,2))
[2, 4, 6, 8]
>>> list(range(1,10,2))
[1, 3, 5, 7, 9]

 Many operations are applicable to lists, such as inserting or removing single or multiple elements, accessing single elements, sorting elements, and so on. The elements of a list can be accessed via an index. Table 2.3 illustrates the structure of a list through a model.

 	
 Index

 	
 0

 	
 1

 	
 2

 	
 3

 	
 4

 	
 Value

 	
 5.7

 	
 6.8

 	
 5.9

 	
 6.2

 	
 5.1

 Table 2.3
 Model of a List Structure

 Each element of a list is assigned an index. This index can be used for read and write access to the individual elements of the list. The count always starts with index 0. Again, you can use the Python shell to explore the list data structure, for instance, with the following commands:

 >>> l=[2,4,6]
>>> l[1]
4
>>> l[1]=8
>>> l
[2, 8, 6]
>>> type(l)
<class 'list'>
>>>

 By specifying the index, the value of the element at position i is output. A new assignment can change this value. The list l belongs to the list class.

 A count variable can also iterate over a list in a for loop, as the following console example shows:

 >>> for i in [1,3,5,7,9]:
 print(i+1,end=';')
2;4;6;8;10;

 You can perform numerous operations on lists, such as sorting the list elements, determining their length, and appending or removing elements. Table 2.4 contains selected functions for operations on lists.

 	
 Function

 	
 Description

 	
 n=len(l)

 	
 Returns the number of elements.

 	
 l2=sorted(l1)

 	
 Returns the sorted list l1.

 	
 s=sum(l)

 	
 Returns the sum of list l.

 	
 mi=min(l)

 	
 Returns the smallest element.

 	
 ma=max(l)

 	
 Returns the largest element.

 	
 l3=zip(l1,l2)

 	
 Connects lists l1 and l2 to l3.

 Table 2.4
 Functions for Operations on Lists

 In addition to these functions, you can also use methods. Table 2.5 contains important methods for performing operations on lists. The letter l stands for list, and the letter e stands for the element of a list.

 	
 Method

 	
 Description

 	
 l1.extend(l2)

 	
 List l2 is appended to list l1 at the end.

 	
 l.append(e)

 	
 Element e is appended to the end of the list.

 	
 l.remove(e)

 	
 Removes element e from the list.

 	
 l.insert(i,e)

 	
 Inserts an element e into list l at position i.

 	
 l.count(e)

 	
 Determines how often element e is contained in list l.

 Table 2.5
 Methods for Operations on Lists

 Difference between Functions and Methods

 Methods are functions that are defined within a class. To use methods, an obj object must be created beforehand. Otherwise, no other difference exists between the way a function works and the way a method works.

 A function is called via a=functionname(parameter), while a method is called using a=obj.methodname(parameter).

 Connecting Two Lists Using the zip Function

 You should briefly test the zip function in the Python shell because it will be needed later in connection with the dictionary data structure. The following console example creates a new list from two lists:

 >>> x = [1, 2, 3]
>>> y = [4, 5, 6]
>>> zipped = zip(x, y)
>>> list(zipped)
[(1, 4), (2, 5), (3, 6)]

 The zip function creates a new list of three tuples from the two lists, x and y.

 Operations on Lists

 Listing 2.22 shows how you can implement some selected operations on lists. For this purpose, uniform data of type float was deliberately selected as list elements in order to establish a reference to technically relevant topics. The program calculates important statistical parameters of a measuring sequence.

 01 #22_list1.py
02 import statistics as stat
03 l1=[52.1,48.7,50.1,49.6,51.8]
04 l2=[50.5,48.5,49.5,51.5,48.8]
05 l1.extend(l2) #method
06 sl=sorted(l1) #function
07 n=len(sl)
08 minimum=min(l1)
09 maximum=max(l1)
10 s=sum(l1)
11 m=s/n
12 r=maximum-minimum
13 z=stat.median(l1)
14 print("sorted list:\n",sl)
15 print("Number of elements:",n)
16 print("Minimum: %6.2f Maximum: %6.2f" %(minimum,maximum))
17 print("Sum:",s)
18 print("Mean:",m)
19 print("Median:",z)
20 print("Span:",r)

 Listing 2.22
 Operations on a List

 Output

 sorted list:
[48.5, 48.7, 48.8, 49.5, 49.6, 50.1, 50.5, 51.5, 51.8, 52.1]
Number of elements 10
Minimum: 48.50 Maximum: 52.10
Sum: 501.1
Average: 50.11
Median: 49.85
Span: 3.6000000000000014

 Analysis

 The program calculates the arithmetic mean, the median, and the range of a measuring sequence. In lines 03 and 04, two lists with five float types each are defined. The values of the two lists are stored in objects l1 and l2. In line 05, list l2 is appended to list l1 via the l1.extend(l2) method.

 In line 06, the sorted(l1) function sorts the extended list l1 and assigns the result to the sl variable. In line 07, the len(sl) function determines the length of the sorted list and assigns it to the n variable. From the sum of the measured values (line 10), the mean value m of the measured values can then be calculated in line 11. The determination of the minimum (line 08) and the maximum (line 09) is performed via the built-in functions min(sl) and max(sl) respectively. In line 10, the built-in sum(sl) function calculates the sum of the measuring sequence. The span r is calculated from the difference between maximum and minimum (line 12). In line 13, the stat.median(l1) function calculates the median of the measuring sequence. For this purpose, the statistics module (line 02) must be imported.

 Lines 14 to 20 show the output of the results.

 Nested Lists

 Nested lists are important for the representation of two-dimensional matrices with NumPy arrays. To convert two nested lists a and b into NumPy arrays and then add them, consider the following console commands:

 >>> from numpy import array
>>> a=[[1,2,3],[4,5,6]]
>>> b=[[7,8,9],[10,11,12]]
>>> A=array(a)
>>> B=array(b)
>>> A
array([[1, 2, 3],
 [4, 5, 6]])
>>> B
array([[7, 8, 9],
 [10, 11, 12]])
>>> A+B
array([[8, 10, 12],
 [14, 16, 18]])

 List Comprehension

 Python even enables you to run statements within a list, while the list is not generated until runtime. During runtime, its length can be changed (almost) at will. This feature is referred to as list comprehension. Listing 2.23 demonstrates the power of the list comprehension feature by calculating the Pythagorean numbers within a selected range.

 01 #23_list2.py
02 ug=1
03 og=20
04 p=[(a,b,c)
05 for a in range(ug,og)
06 for b in range(a,og)
07 for c in range(b,og)
08 if a**2 + b**2 == c**2]
09 n=len(p)
10 print(p)
11 print("Between %i and %i there are %i Pythagorean triples." %(ug,og,n))

 Listing 2.23
 Dynamic Generation of a List via List Comprehension

 Output

 [(3, 4, 5), (5, 12, 13), (6, 8, 10), (8, 15, 17), (9, 12, 15)]
Between 1 and 20 there are 5 Pythagorean triples.

 Analysis

 Lines 02 and 03 define the upper and lower limits in which the Pythagorean numbers are to be calculated. The list definition starts at line 04 and ends at line 08. The list consists of only one element: a tuple of the triangle sides (a,b,c) including the three for loops with the if query.

 In line 05, the a variable is iterated from ug to og. The b variable is iterated from a to og (line 06), and variable c is iterated from b to og (line 07). Line 08 checks that the sum of the squares of a and b is equal to the square of the hypotenuse c. If this is the case, then the Pythagorean triples are generated as list elements and stored in variable p (line 04).

 Line 09 determines the length of list p. In line 10, the output of the Pythagorean numbers occurs in tuples.

 2.5.3 Dictionaries

 A dictionary is a sequence of key-value pairs. Unlike the elements of a list, an element of a dictionary consists of two components: a key value and a data value. A key value and its data value are separated by a colon. The individual key-value pairs are separated by commas and enclosed in curly brackets. The first entry is the key value, while the second entry is the data value: {key value:data value}. Table 2.6 illustrates the dictionary data structure. The left-hand column contains the key values, while the right-hand column contains the data values.

 	
 Key Value

 	
 Data Value

 	
 unique

 	
 eindeutig

 	
 Anweisung

 	
 statement

 	
 Zuweisung

 	
 assignment

 	
 Schleife

 	
 loop

 	
 Klammern

 	
 parentheses

 Table 2.6
 Table for an English-German Dictionary

 The following console example shows how a dictionary is implemented and how an element can be accessed:

 >>> d={"unique":"eindeutig","statement":"Anweisung"}
>>> d["unique"]
'eindeutig'
>>> type(d)
<class 'dict'>
>>>

 Access to the value of a dictionary is enabled by using the key value with the [] operator. Table 2.7 lists the most important methods for operations on dictionaries.

 	
 Method

 	
 Description

 	
 d.keys()

 	
 Returns the key values of the dictionary d.

 	
 d.values()

 	
 Returns the data values of the dictionary d.

 	
 d.items()

 	
 Returns a list of tuples. Each tuple contains a key-value pair from the dictionary d.

 	
 del d[k]

 	
 Deletes the key-value pair with the key value k from the dictionary d.

 	
 k in d

 	
 Checks if k is a key value of the dictionary d.

 Table 2.7
 Important Methods for Operations on Dictionaries

 The first sample program shown in Listing 2.24 shows how lists can be converted to dictionaries and how basic operations on dictionaries must be implemented.

 OEBPS/bilder/equ-0003.png

OEBPS/bilder/equ-0004.png

OEBPS/bilder/equ-0001.png

OEBPS/bilderklein/klein01_001.png
@ DLE File Edt Format Run Options Window

Help.

© © © animation_sinus_testpy - Usersfveitestjanimation_sinus_testpy (311.2)

1 #Animation iner Sinus-Funkton

2 import numpy ¢ np

3 mport matploti pyplot s pit

4 o matplotibanimation o1t FuncAnimation

5
© ot f(xk:
7 g sols20)

9 cefviky
10 y.sel datalefixk)
T ey,

14 x=p.inspace(0,4°p.200)
It (5,0} =3, col

16 #Animation

17 a=FuncAnimation(figvinterval

19 pishoul)

U0 GoEd.

OEBPS/bilder/equ-0005.png

OEBPS/bilder/equ-0006.png

OEBPS/bilderklein/klein01_004.png
e l

e e e e an e vt

3 mport oy 35

3 imort maplottib pypat as pie

I T watatottin. amiaation: isport Funchnieation

Ty

7 R mssntczn)

5 et vin: e— |
0 " et aatate, i [ormee—r—
12 - [———

L rgeenicsuptons)
11 e inspacela, s, 200)
15y T et a0,

1 anieroncanisotion(tis, v,

1 Shtarvatez
1 B,

E Save-counizse,

2 SR o emratse

2 pttsnan) ten s v o

B T T T T e e el]

OEBPS/bilder/equ-0007.png

OEBPS/bilderklein/klein01_003.png
[e

 numpy.

P AR—
ot
i

OEBPS/bilderklein/klein01_002.png
8 S Toomrw s B e e e

05

o6 o=

33 anination_sinus.py
anport nunpy as p

inport matplotlib.pyplot as plt

#ron matplotlib.animation isport FuncAniation

def 10x,K):
retdrn np.sin(x-k/20)

def v
yeset_data(x, 1(x,))
return v,

fig,axspit. subplots()
xenp. Uinspace (s, 4+np.pi,
¥, = ax-plot(x, 1(x,00, ' F-
Hhnination

ani=FuncAnimation(fig,v,

)
u2)

Shtervat-2o,
blitTrue,

tse

pit.show()

OEBPS/bilderklein/klein02_002.png
=lc

OEBPS/bilder/equ-0013.png
~cu?

OEBPS/bilderklein/klein02_001.png
Linear Program Structure

Input U

InputR

1=U/R

Output |

OEBPS/bilder/equ-0014.png
Winag =

Z LI

OEBPS/bilderklein/klein01_006.png

OEBPS/bilder/equ-0011.png
Wiin =

—mp?

OEBPS/common/cover.jpg
(°2. Derivation:"y _2)
(°3. Derivation:",y_3)
11 print(* Integral :",Y)

Python for Engineering
and Scientific Computing

Veit Steinkamp

OEBPS/bilderklein/klein01_005.png
1

Figure 1.

OEBPS/bilder/equ-0012.png
- 2
%}
Wrot 5 J

OEBPS/bilderklein/klein02_005.png
While Loop

x=1

while x <10

Computey = f(x)

Output xy

X=x+1

OEBPS/keys/KeyboardUniversal.otf

OEBPS/bilder/equ-0009.png
X‘“+px+qg

OEBPS/bilder/equ-0010.png

OEBPS/bilderklein/klein02_004.png
Multpleseection

nput Color
T T color
o 1 fals Jalsels [s]o]a

OEBPS/common/logo.png
® Rheinwerk

OEBPS/bilder/equ-0008.png
V = 0.785 d*]

OEBPS/bilderklein/klein02_003.png
Input p,q

Compute D

Compute x1
Compute x2

Output x1,x2

OEBPS/bilder/equ-0015.png
f(x) = 0.5ax*

OEBPS/keys/TheAntiquaB-W4SemiLightItalic.otf

OEBPS/keys/TheAntiquaB-W4SemiLight.otf

OEBPS/keys/RheinwerkCalloutTS2.otf

OEBPS/bilderklein/klein02_006.png
forx«0to 10

Compute f(x)

Output xy

OEBPS/keys/RheinwerkCallout.otf

OEBPS/keys/TheAntiquaB-W6SemiBoldItalic.otf

OEBPS/keys/TheAntiquaB-W6SemiBold.otf

OEBPS/bilder/equ-0020.png
f(x)Ax

OEBPS/bilder/equ-0021.png
AY

OEBPS/bilder/equ-0019.png
A= flis
k=0

OEBPS/bilder/equ-0017.png
f(x) =x—cosx =0

OEBPS/bilder/equ-0018.png
AY

OEBPS/bilder/equ-0016.png
An T An-1
f(xn) = F(x_1)

Xns1 = Xn = f ()

OEBPS/bilder/equ-0024.png

OEBPS/bilder/equ-0022.png

OEBPS/bilder/equ-0023.png

OEBPS/bilder/equ-0027.png

OEBPS/bilder/equ-0025.png

OEBPS/bilder/equ-0026.png

