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			Preface

			Godot Engine is the most popular free open-source game engine on the market. With the advent of Godot 4.0 and the release of many hit games made in Godot, such as Dome Keeper, Brotato, and Case of the Golden Idol, this popularity only grew. There is no better time to learn how to use this wonderful game development tool than now.

			Learning how to program and use a new game engine can be a daunting task. However, this book will guide you step by step through all the aspects of creating your own game from scratch, from the basics of writing our first scripts in GDScript to more advanced topics.

			We’ll learn how to program in GDScript, the custom language of the Godot Engine, which is easy to learn yet very capable and performant for game development. Then, we’ll go over all the ins and outs of the engine’s intuitive graphical interface and discover everything about its flexible node-based approach to game development.

			Who this book is for

			This book is for programmers, game designers, game developers, and game artists who want to start creating games in Godot 4. If you’re new to coding or game development, looking for a new creative outlet, and want to give Godot 4 and GDScript 2.0 a try, this book is for you. While no prior knowledge of programming or Godot is required, this book gradually introduces more complex concepts as you advance through the chapters.

			What this book covers

			Chapter 1, Setting Up the Environment, starts off the book by setting up everything we need to create games in the Godot Engine and gives a brief overview of the engine and how to write scripts.

			Chapter 2, Getting Familiar with Variables and Control Flow, explains the major concepts of what variables are and how we can store data within them. From here, we go over different control flows that help us make decisions during the execution of our game.

			Chapter 3, Grouping Information in Arrays, Loops, and Dictionaries, teaches about two new data types: arrays and dictionaries. These will help us group data in a more structured format. Along the way, we will learn about the two different kinds of loops with which we can loop over different sets of data.

			Chapter 4, Bringing Structure with Methods and Classes, delves into writing reusable pieces of code using methods and how to structure variables and methods into classes.

			Chapter 5, How and Why to Keep Your Code Clean, introduces many concepts around writing clean code, which will help us create code that is reusable and understandable by others as well as ourselves.

			Chapter 6, Creating a World of Your Own in Godot, will kick off our own game project. We’ll start by defining what kind of game we will be making and progress to making the base of a player character and the environment in which they will be moving around.

			Chapter 7, Making the Character Move, offers a refresher on vector math, which is integral to moving entities around in two-dimensional space. Then, we’ll write the physics code to make our layer character move and go into debugging the game while it is running.

			Chapter 8, Splitting and Reusing Scenes, shows how we can easily split up our game into multiple smaller scenes that are easier to manage and maintain, followed by how we can organize all the scene and script files in tidy folders within the project.

			Chapter 9, Cameras, Collisions, and Collectibles, starts by making a smooth camera that will follow the player character without making the real-life player nauseous. After this, we’ll move on to handling collisions with the terrain and creating collectible items.

			Chapter 10, Creating Menus, Making Enemies, and Using Autoloads, finishes up our single-player game by teaching us about the menu system of the Godot Engine, followed by the creation of enemies that can navigate through the world and projectiles with which the player can shoot these enemies. We conclude this chapter with an introduction to autoloads, with which we can store the high score.

			Chapter 11, Playing Together with Multiplayer, converts our single-player experience into a multiplayer one. We start with a crash course in computer networking. After this, we will learn about MultiplayerSpawner and MultiplayerSynchronizer to be able to play our game with others over a network.

			Chapter 12, Exporting to Multiple Platforms, shows how we can export the game for different platforms such as Windows, macOS, Linux, and even the web. We will conclude the chapter by uploading our game to Itch.io, a popular platform for indie games.

			Chapter 13, OOP Continued and Advanced Topics, introduces the more advanced object-oriented programming (OOP) topics such as the super keyword, static variables, enumerations, lambda functions, the different ways of passing values to methods, and the tool keyword.

			Chapter 14, Advanced Programming Patterns, gives us a basis for programming patterns and explores the Event Bus, Object Pool, and State Machine patterns so that we can use them in our next project.

			Chapter 15, Using the File System, introduces the file system of the Godot Engine and shows us how we can save and load data in our game.

			Chapter 16, What Next?, leaves us with some last techniques and resources to start the next game project as well as introduce the game development community we can be part of.

			To get the most out of this book

			You don’t need any prior knowledge about programming or game development. The only prerequisite is that you are open to learning and willing to improve. During the book, I propose multiple experiments you could do and have included quizzes to test your knowledge. It’s important that you take the time to do these so that the knowledge gets cemented in your brain.

			We’ll cover how to download and set up the Godot Engine in the first chapter of this book but you could already download Godot 4.2.1 or later if you’re feeling impatient. All the examples in the book were tested on Godot 4.2.1 but should work in future versions too.
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			The Godot Engine is a very light piece of software that easily runs on older, outdated hardware but it doesn’t hurt to check out the minimum specifications and make sure your computer is able to meet them: https://docs.godotengine.org/en/stable/about/system_requirements.html.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Learning-GDScript-by-Developing-a-Game-with-Godot-4. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “In Chapter 1, we learned to write code with the _ready method of a node.”

			A block of code is set as follows:

			
func deal_damage(amount: float) -> void:
   player_health -= amount
func heal(amount: float) -> void:
   player_health += amount
			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
func minimum(number1, number2):
   if number1 < number2:
      return number1
   else:
      return number2
			Any command-line input or output is written as follows:

			
unzip Godot_v4.2.1-stable_linux.x86_64.zip -d Godot
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “You can access the user:// folder for a given project by opening up the Project menu and choosing Open User Data Folder.”

			Containers

			We call an array a container because we can store and retrieve pieces of data of other data types within them, like integers, strings, booleans, and such. An array contains other data.

			Containers structure other data so it is easier to work with.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Learning GDScript by developing a game with Godot 4, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image: Download a free PDF copy of this book ]
				

			

			https://packt.link/free-ebook/978-1-80461-698-7

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	


		
			Part 1:Learning How to Program

		

		
			In this part, we’ll start off by downloading the free and open-source Godot Engine and setting up the environment in which we will be developing our very own game from scratch. Before we come on to creating a game, though, we’ll build strong fundamentals in programming using the GDScript programming language.

			By the end of this part, you will know all about variables, control flows, different data and container types, methods, and classes. We will conclude this part with a chapter on clean coding.

			This part has the following chapters:

			
					Chapter 1, Setting Up the Environment

					Chapter 2, Getting Familiar with Variables and Control Flow

					Chapter 3, Grouping Information in Arrays, Loops, and Dictionaries

					Chapter 4, Bringing Structure with Methods and Classes

					Chapter 5, How and Why to Keep Your Code Clean
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			Setting Up the Environment

			Game development is becoming more accessible as game engines become more powerful. Tools and pipelines that were only available to big companies and wealthy individuals are now freely available to everyone with a computer. Anyone can feel the satisfaction of creating their own game and having others play it.

			This is exactly what we are going to achieve in this book. We will go from knowing absolutely nothing about programming or developing games to creating our very first game and even a little beyond.

			During the first part of this book, we will learn all about setting up Godot and programming. This might be a little more abstract, but I’ll try to give clear examples and keep you engaged with exercises and experiments you can do for yourself.

			The second part of this book will be way more practical as we will dive neck-deep into creating our very own video game! We’ll learn how to use the Godot editor to create interesting game scenes and scenarios.

			In the last part of this book, we’ll take our programming skills to the next level and learn all about advanced topics, such as more powerful concepts, programming patterns, the filesystem, and much more.

			But before we get there, nothing is more satisfying than starting a new project! It represents a blank slate with endless possibilities. By the end of this chapter, we’ll have created our very own blank slate and written our first lines of code. But first, I’d like to take some time to introduce the Godot game engine and open-source software in general.

			In this chapter, we’re going to cover the following main topics:

			
					Godot Engine and open-source software

					Downloading the engine from the official website

					Creating our first project

					How to join the community

			

			Technical requirements

			As this book aims to get you from knowing nothing about programming and game development to an intermediate level, there are no technical requirements. So, instead, I’ll guide you through all (or at least most) of the steps required for creating games.

			Example project and code

			You can find the example project and code for this book in this book’s GitHub repository: https://github.com/PacktPublishing/Learning-GDScript-by-Developing-a-Game-with-Godot-4/tree/main/chapter01.

			Godot game engine and open-source software

			We’ll be using the Godot game engine, which I presume you already know exists as this is a book specifically about that engine. But let me give you some more insight into its history and what open-source means.

			Some background on the engine

			Godot Engine is a piece of open-source software that lets people from all experience levels and walks of life create games. The project was started in 2007 by Juan Linietsky and Ariel Manzur as an in-house engine for several Argentinian game studios. In late 2014, the engine got open-sourced, giving everyone free access to the code. Since then, it has gained lots of traction and is currently one of the most used game engines on the market. Many commercial games have been released or are under development using the engine. Examples of released games are Brotato, Dome Keeper, Case of the Golden Idol, and Cassette Beasts.

			For those of you wondering, yes, the engine is named after the theatrical piece Waiting for Godot, by Samuel Beckett. This choice of name is because people will always be waiting for the next version or new feature, resulting in an endless cycle of waiting.

			While on the topic of the engine’s name, let’s also get the pronunciation out of the way. In short, there is no standard way of pronouncing Godot. Because of the association with the play’s title, which is written in French, some people say it should be “go-do,” without emphasis on any syllable. But most English speakers would say “GOH-doh” and stress the first syllable. Then, there is the stream of people that pronounce it “go-DOT,” mainly because it sounds similar to the word “robot” and the engine’s logo is a blue robot. But I notice that I say Godot differently each time. So, to cut a long story short, pronounce it however you like. Just use roughly the same letters.

			What is open-source software?

			As mentioned earlier, Godot is open-source, meaning the engine’s source code is freely available. Because everyone has access, people can alter this code to their liking. Once they have tweaked enough parameters or developed a new feature, they can ask the creator of the software to include these tweaks or features in the original project. The creator will then review what the other person has done, alter it a bit if needed, and then add it to the code of the original software. This process creates a virtuous circle that results in a win-win situation for everyone:

			
					The software’s creator can grow the code faster because everyone chips in

					People with technical knowledge can add the features they miss, making it fit their needs

					The end user gets a much better and more stable end product

			

			But not every open-source project is created equal. Each free open-source software (FOSS) comes with its respective license. This license dictates how you can or should use the software. Some of these are pretty restrictive, but in the case of Godot Engine, we are in luck: we can do anything without significant restrictions. We only have to attribute the creators on the credit page of our games.

			Alright – we know what Godot Engine is, how to pronounce its name (or not), and why FOSS is so awesome. Let’s dive right into preparing our development environment!

			Getting and preparing Godot

			Before we can do any programming, we’ll need to set up the development environment. That is what we will do in this section, beginning with downloading the engine and creating a new project.

			Downloading the engine

			Getting the engine is relatively easy and only requires a few steps:

			
					First, we’ll need to download a copy of the software. We can do this at https://godotengine.org/download.

			

			
				
					[image: Figure 1.1 – The download page of Godot Engine 4.0 for the Windows platform]
				

			

			Figure 1.1 – The download page of Godot Engine 4.0 for the Windows platform

			
					Usually, the page will automatically direct you to the download page of the operating system you are using to browse the website and you can press the big blue button in the middle of the page to download the engine. If it doesn’t, you’ll need to select your computer’s platform (Windows, macOS, Linux, and so on) when scrolling down the page.

			

			
				
					[image: Figure 1.2 – Select your computer’s platform if the download page was not able to detect it]
				

			

			Figure 1.2 – Select your computer’s platform if the download page was not able to detect it

			
					The download page should also detect whether you’re using a 64- or 32-bit system. If it did not do this correctly, then you can find the other versions under the All downloads section:

			

			
				
					[image: Figure 1.3 – The All Downloads section, where you can find different versions of the engine]
				

			

			Figure 1.3 – The All Downloads section, where you can find different versions of the engine

			
					What we downloaded is a ZIP file. So, unzip it to get to the actual engine.	On Windows: Right-click the zip file and select Extract All.... Now follow the prompt that pops up to choose a location.
	On macOS: Double-click the zip file, the file will be unzipped into a new folder.
	On Linux: Run the following command in the terminal:
unzip Godot_v4.2.1-stable_linux.x86_64.zip -d Godot



					Put the extracted files somewhere on your computer where it will be safe, such as the desktop, applications, or any other location besides the Downloads folder. Otherwise, if you are anything like me, you might accidentally remove it in a clean-up spree of the Downloads folder.

			

			For this book, we will be using version 4.0.0, as it just came out. But any version with a 4 at the beginning should work fine. Unfortunately, this is not a guarantee. We’ll do our best to keep this book’s content up to date, but open-source software can move quickly.

			The download size of Godot Engine is tiny, about 30 to 100 MB, depending on your platform. This small package is all we need to create awesome games. Compare this to Unity’s 10 GB and Unreal Engine’s whopping 34 GB! Of course, these all come without any assets, such as visuals or audio.

			That’s it for getting the engine. You don’t need to install anything else to use it.

			Other versions of the engine

			Because Godot Engine is open-source, there are also a lot of complete game projects that are open-source too. If you ever want to run one of those game projects on your machine, make sure you use the correct version of Godot; otherwise, the game could crash and weird things might happen. You can find and download all official versions of Godot from https://godotengine.org/download/.

			Creating a new project

			Now, let’s go ahead and create our first Godot Engine project, hopefully with many others to come in the future!

			
					First, open the engine by double-clicking the file we downloaded in the Downloading the engine section. A screen like this will greet you:

			

			
				
					[image: Figure 1.4 – Creating a new project by pressing the New button]
				

			

			Figure 1.4 – Creating a new project by pressing the New button

			
					Choose + New; a new window will pop up:

			

			
				
					[image: Figure 1.5 – Setting up the new project]
				

			

			Figure 1.5 – Setting up the new project

			
					Call the project Hello World.

					Select a Project Path area to put the project. Create a new folder by using the Create Folder button or use an existing one but note that this folder should preferably be empty. Although the folder you select can contain files already, starting from a clean directory will keep everything we do more organized.

					Select Compatibility under the Renderer category. The compatibility renderer is made to make sure that our game can run on a wide variety of hardware and supports older graphics cards and web exports. The Forward+ renderer is used for cutting-edge graphics but demands a better graphics card, while the mobile renderer is optimized for mobile devices. For what we are doing, the compatibility renderer is more than capable enough and it makes sure that we can export to the biggest amount of platforms possible.

					Finally, press Create & Edit!

			

			Godot will now set up the basic structure of our project within the selected folder and, after a few seconds, show us the editor:

			
				
					[image: Figure 1.6 – The Godot Engine 4.0 editor]
				

			

			Figure 1.6 – The Godot Engine 4.0 editor

			At first sight, this may look quite daunting – little windows everywhere, multiple controls here and there, and a giant 3D space in the middle. Don’t worry. By the end of this book, you’ll know the ins and outs of almost everything that lies before you. You’re in good hands.

			Fun fact

			The Godot developers used Godot Engine to create the editor itself. Try to wrap your brain around that! They did this to easily extend and maintain the editor.

			Light mode

			Because of the limitations of printed media, dark screenshots might look grainy and unsharp. That is why, from this point on, we’ll switch to the light version of Godot. There is no difference but the appearance of the editor.

			If you also want to follow along in light mode, perform these optional steps:

			
					Go to Editor | Editor Settings… at the top of the screen:

			

			
				
					[image: Figure 1.7 – The Editor Settings… option in the Editor menu]
				

			

			Figure 1.7 – The Editor Settings… option in the Editor menu

			
					Find the Theme settings.

					Select the Light theme within the Preset dropdown:

			

			
				
					[image: Figure 1.8 – Selecting the Light theme preset in the Theme settings]
				

			

			Figure 1.8 – Selecting the Light theme preset in the Theme settings

			Now, the editor will look like what’s shown in Figure 1.9:

			
				
					[image: Figure 1.9 – The Godot Engine editor with the Light theme applied]
				

			

			Figure 1.9 – The Godot Engine editor with the Light theme applied

			With that out of the way, let’s get back to creating a game by learning how to create a scene.

			Creating the main scene

			Let’s continue by setting up our first scene:

			
					In the leftmost panel of Figure 1.10, which shows the Scene panel, select 2D Scene. This button will set up the scene for a 2D game, as shown here:

			

			
				
					[image: Figure 1.10 – Selecting 2D Scene in the left panel]
				

			

			Figure 1.10 – Selecting 2D Scene in the left panel

			You’ll see that there is one node in the Scene panel called Node2D and that the 3D space in the middle window got replaced with a 2D plane.

			
					Right-click the node called Node2D and rename it Main. This node will be our main node to work with for now:

			

			
				
					[image: Figure 1.11 – Renaming the Node2D node to Main]
				

			

			Figure 1.11 – Renaming the Node2D node to Main

			
					Save the scene by going to Scene | Save Scene or by pressing Ctrl/Cmd + S:

			

			
				
					[image: Figure 1.12 – Saving the scene]
				

			

			Figure 1.12 – Saving the scene

			
					We’ll be asked where we wish to save the scene. Choose the project’s root folder and name the file main.tscn:

			

			
				
					[image: Figure 1.13 – Selecting the root folder to save the scene and naming it main.tscn]
				

			

			Figure 1.13 – Selecting the root folder to save the scene and naming it main.tscn

			That’s all for creating our first scene. What we just added is a node. These nodes represent everything in Godot. Images, sounds, menus, special effects – everything is a node. You can think of them as game objects, each having a separate function in the game. The player could be a node, just like enemies or coins.

			On the other hand, scenes are collections of nodes or collections of game objects. For now, you can think of scenes as levels. For a level, you need a player node, some enemy nodes, and a bunch of coin nodes; the collection of these is a scene. It’s like nodes are the paint and scenes are our canvases.

			We’ll come back to nodes and scenes throughout this book.

			A brief UI overview

			Now would be a great time to review some of the more prominent features of the editor’s UI. As we saw earlier, it looks something like this:

			
				
					[image: Figure 1.14 – An overview of the editor]
				

			

			Figure 1.14 – An overview of the editor

			The prominent elements of the editor are as follows:

			
					The Scene Tree area shows all the nodes in the current scene. For now, there is only one.

					The FileSystem area provides access to the files within the project folder.

					The middle window is the currently active main editor. For now, we can see the 2D editor, which will allow us to place nodes in 2D space within the scene.
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