
		
			[image: Cover.jpg]
		

	
		
			Learning GDScript by Developing a Game with Godot 4

			A fun introduction to programming in GDScript 2.0 and game development using the Godot Engine

			Sander Vanhove

			[image: Packt Logo]

			Learning GDScript by Developing a Game with Godot 4

			Copyright © 2024 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Rohit Rajkumar

			Publishing Product Manager: Kaustubh Manglurkar

			Book Project Manager: Sonam Pandey

			Senior Editor: Anuradha Joglekar

			Technical Editor: K Bimala Singha

			Copy Editor: Safis Editing

			Proofreader: Anuradha Joglekar

			Indexer: Subalakshmi Govindhan

			Production Designer: Gokul Raj S.T

			DevRel Marketing Coordinators: Anamika Singh and Nivedita Pandey

			First published: May 2024

			Production reference: 2240725

			Published by

			Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB, UK

			ISBN 978-1-80461-698-7

			www.packtpub.com

			To all new Godot Engine users, may your games be great!

			- Sander Vanhove

			Contributors

			About the author

			Sander Vanhove is a lead game developer and technical artist at Studio Tolima, a Brussels-based studio working on its first commercial game, Koira.

			Creating little games for his friends from the age of 14 led him to pursue a master’s degree in computer science, after which he worked as a data analyst for several years.

			In 2018, he decided to give the Godot Engine a try and never looked back. With a mountain of jam games, uncountable game experiments, and a few small commercial game releases under his belt, he finally took the plunge of working full time at a game studio, the aforementioned Studio Tolima.

			He can always be found working on that next project, learning new game development techniques, or trying to teach people how to use the Godot Engine.

			I want to thank my parents, Martine and Gerrit, and close friends who believed in me and this project and would relentlessly inquire about its progress.

			About the reviewers

			Jesse Glover is a seasoned software consultant with a comprehensive background in both backend and frontend development, specializing in Salesforce and ServiceNow development and administration. Jesse has honed his skills in various technical domains with a particular focus on modern frontend frameworks and tools.

			In addition to his professional accomplishments, Jesse is passionate about sharing his knowledge and expertise through his YouTube channel, GameDevMadeEasy, where he creates educational content on game and software development.

			Jesse was also the author of Unity 2018 Augmented Reality Projects, which is available on the Packt website.

			Ludovic de Saint-Viance, known on the internet as theLudovyc, is a senior developer who likes to use Godot in his free time. He has been creating different projects (you can find them on his Itch.io or GitHub pages) for 6 years. Also, he was the admin of a French Discord server about Godot: Espace Godot.

			I thank Nikita Raghani from Packt, who invited me to review this book, and my manager, Sonam Pandey. I am also very thankful to the author of this book, Sander, and Packt for being part of this incredible journey. To quote Sander, “I want to respect Packt rules, but it feels strange to introduce myself like on a Wikipedia page. If someone reads those lines to the end, my favorite pizza is the one with pineapple.”

		

	
		
			Table of Contents

			Preface

			Part 1: Learning How to Program

			1

			Setting Up the Environment

			Technical requirements

			Godot game engine and open-source software

			Some background on the engine

			What is open-source software?

			Getting and preparing Godot

			Downloading the engine

			Creating a new project

			Light mode

			Creating the main scene

			A brief UI overview

			Writing our first script

			The Godot Engine Documentation

			Join our community!

			Summary

			Quiz time

			2

			Getting Familiar with Variables and Control Flow

			Technical requirements

			What are variables?

			Variables – Drawers in a filing cabinet full of data

			Naming variables

			Variables in GDScript

			Printing out variables

			Changing a variable’s value

			Mathematical operators

			Other assignment operators

			Data types – Integers, floats, and strings

			Integers

			Floats

			Strings

			What are constants?

			Constants in GDScript

			Magic numbers

			Creating new scenes

			Getting started with control flow

			The if statement

			The if-else statement

			The elif statement

			Commenting in code

			Indentation

			Boolean logic

			The match statement

			The ternary-if statement

			Additional exercises – Sharpening the axe

			Summary

			Quiz time

			3

			Grouping Information in Arrays, Loops, and Dictionaries

			Technical requirements

			Arrays

			Creating an array

			Accessing values

			Accessing elements backward

			Changing the elements of an array

			Data types in arrays

			Strings are secretly arrays

			Manipulating arrays

			Don’t be scared of errors or warnings

			Loops

			For loops

			While loops

			Continuing or breaking a loop

			Dictionaries

			Creating a dictionary

			Data types in dictionaries

			Accessing and changing values

			Creating a new key-value pair

			Useful functions

			Looping through dictionaries

			Nested loops

			Null

			Additional exercises – Sharpening the axe

			Summary

			Quiz time

			4

			Bringing Structure with Methods and Classes

			Technical requirements

			Methods are reusable bits of code

			What is a function?

			Defining a function

			Naming a function

			The return keyword

			The pass keyword

			Optional parameters

			Classes group code and data together

			Defining a class

			Instancing a class

			Naming a class

			Extending a class

			Each script is a class!

			When are certain variables available?

			The scope of a function

			Types help us to know how to use a variable

			What is type hinting?

			Type hinting variables

			Type hinting arrays

			Learning about the Variant type

			Type hinting function parameters

			Type hinting function returns

			Using void as a function return

			Inferred types

			null can be any type

			Autocompletion

			Using type hinting for named classes

			Performance

			Editor adding type hints

			OOP primer

			Inheritance

			Abstraction

			Encapsulation

			Polymorphism

			Additional exercises – Sharpening the axe

			Summary

			Quiz time

			5

			How and Why to Keep Your Code Clean

			Technical requirements

			Back to naming things

			Naming conventions

			General naming tips

			Public and private class members

			Make short functions

			DRY

			Do one thing (KISS)

			Defensive programming

			Programming style guides

			White spacing

			Blank lines

			Line length

			Utilizing the documentation

			Accessing a class’s documentation

			Directly accessing a function or variable’s documentation

			Going to the definition of a function or variable

			Searching the documentation

			Accessing the online documentation

			Summary

			Quiz time

			Part 2: Making a Game in Godot Engine

			6

			Creating a World of Your Own in Godot

			Technical requirements

			Game design

			Genre

			Mechanics

			Story

			Creating a player character

			Adding a sprite

			Displaying health

			Manipulating nodes in the editor

			Creating the player script

			Referencing nodes in a script

			Caching node references

			Trying out the player script

			Exporting variables to the editor

			Setters and getters

			Changing values while the game is running

			Different types of exported variables

			Creating a little world

			Changing the background color

			Adding Polygon2D boulders

			Node drawing order

			Creating an outer wall

			Getting creative

			Additional exercises – Sharpening the axe

			Summary

			Quiz time

			7

			Making the Character Move

			Technical requirements

			Vector math refresher

			The 2D coordinate system

			What is a vector?

			Scaling vectors

			Adding and subtracting vectors

			More vector operations

			Moving the player character

			Changing the current player node

			Applying forces to the player

			Process and physics process functions

			Mapping input

			Using the input

			Smoothing out the movement

			Debugging a running game

			Breakpoints

			Remote tree

			Additional exercises – Sharpening the axe

			Summary

			Quiz time

			8

			Splitting and Reusing Scenes

			Technical requirements

			Saving a branch as a new scene

			Creating a separate player scene

			The root node of a scene

			Using saved scenes

			Organizing scene files

			Additional exercises – Sharepening the axe

			Summary

			Quiz time

			9

			Cameras, Collisions, and Collectibles

			Technical requirements

			Making a camera that follows the player

			Setting up a basic camera

			Adding drag margins

			Making the camera look ahead

			Smoothing out the look ahead

			Collisions

			The different physics bodies

			The Area2D node

			Adding a collision shape to the player node

			Creating static bodies for the boulders

			Creating static bodies for the walls

			Creating collectibles

			Creating the base collectible scene

			Inheriting from a base scene

			Connecting to a signal

			Writing the code for collectibles

			Using collision layers and masks

			Your turn!

			Additional exercises – Sharpening the axe

			Summary

			Quiz time

			10

			Creating Menus, Making Enemies, and Using Autoloads

			Technical requirements

			Creating a menu

			Control nodes

			Creating a basic start menu

			Setting the main scene

			Making enemies

			Constructing the base scene

			Navigating enemies

			Writing the enemy script

			Damaging the player in a collision

			Spawning enemies and collectibles

			Making a Game Over screen

			Shooting projectiles

			Creating the base scene

			Writing the logic of the projectile

			Spawning projectiles

			Storing highscores in autoloads

			Using an autoload

			Creating a HighscoreManager autoload

			Autoloads in the remote tree

			Adding a UI in the main menu and game scene

			Using the highscore in the main menu

			Additional exercises – Sharpening the axe

			Summary

			Quiz time

			11

			Playing Together with Multiplayer

			Technical requirements

			A crash course in computer networking

			What is a Transport Layer?

			What is an Application Layer?

			Networking in Godot Engine

			Learning about IP addresses

			Using port numbers

			Setting up the base networking code

			Creating the client-server connection

			Adding UI

			Running multiple debug instances at the same time

			Synchronizing different clients

			Updating the player scene for multiplayer

			Synchronizing EntitySpawner

			Synchronizing the enemy and collectibles

			Synchronizing the projectile

			Fixing the timer and end game

			Synchronizing the timer

			Synchronizing the end of the game

			Running the game on multiple computers

			Showing the IP address of the server

			Connecting from another computer

			Additional exercises – Sharpening the axe

			Summary

			Quiz time

			Part 3: Deepening Our Knowledge

			12

			Exporting to Multiple Platforms

			Technical requirements

			Exporting for Windows, Mac, and Linux

			Downloading the export template

			Making the actual exports of the game

			Uploading our game to Itch.io

			What is Itch.io?

			Exporting our game to the web

			Uploading to Itch.io

			Exporting our game to other platforms

			Mobile platforms

			Consoles

			Summary

			Quiz time

			13

			OOP Continued and Advanced Topics

			Technical requirements

			The super keyword

			Static variables and functions

			Enumerations

			Lambda functions

			Creating a lambda function

			Where to use lambda functions

			Passing parameters by value or reference

			Passing by value

			Passing by reference

			The @tool annotation

			Summary

			Quiz time

			14

			Advanced Programming Patterns

			Technical requirements

			What are programming patterns?

			Exploring the Event Bus

			The problem

			The solution

			Understanding Object Pooling

			The problem

			The solution

			Implementing the Object Pool in our game

			Working with State Machines

			The problem

			The solution

			An example state

			Additional exercises – Sharpening the axe

			Summary

			Quiz time

			15

			Using the File System

			Technical requirements

			What is the file system?

			File paths

			User path

			Creating a save system

			Writing data to the disk

			Reading data from disk

			Preparing the save manager for use in the game

			Adjusting the game to use the save manager

			Having a look at the save file

			Summary

			Quiz time

			16

			What Next?

			Ideas for your next projects

			Starting a new project

			Extending the survivor-like game

			Creating another game

			Free game assets

			Learning about new topics

			Following specific tutorials

			Reading more books

			Reading the Godot Engine documentation

			Looking at the game code of other people’s projects

			Joining the community

			Joining the Forum, Discord, Reddit, or any other platform

			Contributing to the Godot Engine project

			Joining a game jam

			Goodbyes

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			Godot Engine is the most popular free open-source game engine on the market. With the advent of Godot 4.0 and the release of many hit games made in Godot, such as Dome Keeper, Brotato, and Case of the Golden Idol, this popularity only grew. There is no better time to learn how to use this wonderful game development tool than now.

			Learning how to program and use a new game engine can be a daunting task. However, this book will guide you step by step through all the aspects of creating your own game from scratch, from the basics of writing our first scripts in GDScript to more advanced topics.

			We’ll learn how to program in GDScript, the custom language of the Godot Engine, which is easy to learn yet very capable and performant for game development. Then, we’ll go over all the ins and outs of the engine’s intuitive graphical interface and discover everything about its flexible node-based approach to game development.

			Who this book is for

			This book is for programmers, game designers, game developers, and game artists who want to start creating games in Godot 4. If you’re new to coding or game development, looking for a new creative outlet, and want to give Godot 4 and GDScript 2.0 a try, this book is for you. While no prior knowledge of programming or Godot is required, this book gradually introduces more complex concepts as you advance through the chapters.

			What this book covers

			Chapter 1, Setting Up the Environment, starts off the book by setting up everything we need to create games in the Godot Engine and gives a brief overview of the engine and how to write scripts.

			Chapter 2, Getting Familiar with Variables and Control Flow, explains the major concepts of what variables are and how we can store data within them. From here, we go over different control flows that help us make decisions during the execution of our game.

			Chapter 3, Grouping Information in Arrays, Loops, and Dictionaries, teaches about two new data types: arrays and dictionaries. These will help us group data in a more structured format. Along the way, we will learn about the two different kinds of loops with which we can loop over different sets of data.

			Chapter 4, Bringing Structure with Methods and Classes, delves into writing reusable pieces of code using methods and how to structure variables and methods into classes.

			Chapter 5, How and Why to Keep Your Code Clean, introduces many concepts around writing clean code, which will help us create code that is reusable and understandable by others as well as ourselves.

			Chapter 6, Creating a World of Your Own in Godot, will kick off our own game project. We’ll start by defining what kind of game we will be making and progress to making the base of a player character and the environment in which they will be moving around.

			Chapter 7, Making the Character Move, offers a refresher on vector math, which is integral to moving entities around in two-dimensional space. Then, we’ll write the physics code to make our layer character move and go into debugging the game while it is running.

			Chapter 8, Splitting and Reusing Scenes, shows how we can easily split up our game into multiple smaller scenes that are easier to manage and maintain, followed by how we can organize all the scene and script files in tidy folders within the project.

			Chapter 9, Cameras, Collisions, and Collectibles, starts by making a smooth camera that will follow the player character without making the real-life player nauseous. After this, we’ll move on to handling collisions with the terrain and creating collectible items.

			Chapter 10, Creating Menus, Making Enemies, and Using Autoloads, finishes up our single-player game by teaching us about the menu system of the Godot Engine, followed by the creation of enemies that can navigate through the world and projectiles with which the player can shoot these enemies. We conclude this chapter with an introduction to autoloads, with which we can store the high score.

			Chapter 11, Playing Together with Multiplayer, converts our single-player experience into a multiplayer one. We start with a crash course in computer networking. After this, we will learn about MultiplayerSpawner and MultiplayerSynchronizer to be able to play our game with others over a network.

			Chapter 12, Exporting to Multiple Platforms, shows how we can export the game for different platforms such as Windows, macOS, Linux, and even the web. We will conclude the chapter by uploading our game to Itch.io, a popular platform for indie games.

			Chapter 13, OOP Continued and Advanced Topics, introduces the more advanced object-oriented programming (OOP) topics such as the super keyword, static variables, enumerations, lambda functions, the different ways of passing values to methods, and the tool keyword.

			Chapter 14, Advanced Programming Patterns, gives us a basis for programming patterns and explores the Event Bus, Object Pool, and State Machine patterns so that we can use them in our next project.

			Chapter 15, Using the File System, introduces the file system of the Godot Engine and shows us how we can save and load data in our game.

			Chapter 16, What Next?, leaves us with some last techniques and resources to start the next game project as well as introduce the game development community we can be part of.

			To get the most out of this book

			You don’t need any prior knowledge about programming or game development. The only prerequisite is that you are open to learning and willing to improve. During the book, I propose multiple experiments you could do and have included quizzes to test your knowledge. It’s important that you take the time to do these so that the knowledge gets cemented in your brain.

			We’ll cover how to download and set up the Godot Engine in the first chapter of this book but you could already download Godot 4.2.1 or later if you’re feeling impatient. All the examples in the book were tested on Godot 4.2.1 but should work in future versions too.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

				
				
					
							
							Godot 4.2.1

						
							
							Windows, macOS, or Linux

						
					

					
							
							GDScript 2.0

						
							
					

				
			

			The Godot Engine is a very light piece of software that easily runs on older, outdated hardware but it doesn’t hurt to check out the minimum specifications and make sure your computer is able to meet them: https://docs.godotengine.org/en/stable/about/system_requirements.html.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Learning-GDScript-by-Developing-a-Game-with-Godot-4. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “In Chapter 1, we learned to write code with the _ready method of a node.”

			A block of code is set as follows:

			
func deal_damage(amount: float) -> void:
 player_health -= amount
func heal(amount: float) -> void:
 player_health += amount
			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
func minimum(number1, number2):
 if number1 < number2:
 return number1
 else:
 return number2
			Any command-line input or output is written as follows:

			
unzip Godot_v4.2.1-stable_linux.x86_64.zip -d Godot
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “You can access the user:// folder for a given project by opening up the Project menu and choosing Open User Data Folder.”

			Containers

			We call an array a container because we can store and retrieve pieces of data of other data types within them, like integers, strings, booleans, and such. An array contains other data.

			Containers structure other data so it is easier to work with.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Learning GDScript by developing a game with Godot 4, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image: Download a free PDF copy of this book]
				

			

			https://packt.link/free-ebook/978-1-80461-698-7

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	

		
			Part 1:Learning How to Program

		

		
			In this part, we’ll start off by downloading the free and open-source Godot Engine and setting up the environment in which we will be developing our very own game from scratch. Before we come on to creating a game, though, we’ll build strong fundamentals in programming using the GDScript programming language.

			By the end of this part, you will know all about variables, control flows, different data and container types, methods, and classes. We will conclude this part with a chapter on clean coding.

			This part has the following chapters:

			
					Chapter 1, Setting Up the Environment

					Chapter 2, Getting Familiar with Variables and Control Flow

					Chapter 3, Grouping Information in Arrays, Loops, and Dictionaries

					Chapter 4, Bringing Structure with Methods and Classes

					Chapter 5, How and Why to Keep Your Code Clean

			

		

		
			
			

		

		
			
			

		

	

		
			1

			Setting Up the Environment

			Game development is becoming more accessible as game engines become more powerful. Tools and pipelines that were only available to big companies and wealthy individuals are now freely available to everyone with a computer. Anyone can feel the satisfaction of creating their own game and having others play it.

			This is exactly what we are going to achieve in this book. We will go from knowing absolutely nothing about programming or developing games to creating our very first game and even a little beyond.

			During the first part of this book, we will learn all about setting up Godot and programming. This might be a little more abstract, but I’ll try to give clear examples and keep you engaged with exercises and experiments you can do for yourself.

			The second part of this book will be way more practical as we will dive neck-deep into creating our very own video game! We’ll learn how to use the Godot editor to create interesting game scenes and scenarios.

			In the last part of this book, we’ll take our programming skills to the next level and learn all about advanced topics, such as more powerful concepts, programming patterns, the filesystem, and much more.

			But before we get there, nothing is more satisfying than starting a new project! It represents a blank slate with endless possibilities. By the end of this chapter, we’ll have created our very own blank slate and written our first lines of code. But first, I’d like to take some time to introduce the Godot game engine and open-source software in general.

			In this chapter, we’re going to cover the following main topics:

			
					Godot Engine and open-source software

					Downloading the engine from the official website

					Creating our first project

					How to join the community

			

			Technical requirements

			As this book aims to get you from knowing nothing about programming and game development to an intermediate level, there are no technical requirements. So, instead, I’ll guide you through all (or at least most) of the steps required for creating games.

			Example project and code

			You can find the example project and code for this book in this book’s GitHub repository: https://github.com/PacktPublishing/Learning-GDScript-by-Developing-a-Game-with-Godot-4/tree/main/chapter01.

			Godot game engine and open-source software

			We’ll be using the Godot game engine, which I presume you already know exists as this is a book specifically about that engine. But let me give you some more insight into its history and what open-source means.

			Some background on the engine

			Godot Engine is a piece of open-source software that lets people from all experience levels and walks of life create games. The project was started in 2007 by Juan Linietsky and Ariel Manzur as an in-house engine for several Argentinian game studios. In late 2014, the engine got open-sourced, giving everyone free access to the code. Since then, it has gained lots of traction and is currently one of the most used game engines on the market. Many commercial games have been released or are under development using the engine. Examples of released games are Brotato, Dome Keeper, Case of the Golden Idol, and Cassette Beasts.

			For those of you wondering, yes, the engine is named after the theatrical piece Waiting for Godot, by Samuel Beckett. This choice of name is because people will always be waiting for the next version or new feature, resulting in an endless cycle of waiting.

			While on the topic of the engine’s name, let’s also get the pronunciation out of the way. In short, there is no standard way of pronouncing Godot. Because of the association with the play’s title, which is written in French, some people say it should be “go-do,” without emphasis on any syllable. But most English speakers would say “GOH-doh” and stress the first syllable. Then, there is the stream of people that pronounce it “go-DOT,” mainly because it sounds similar to the word “robot” and the engine’s logo is a blue robot. But I notice that I say Godot differently each time. So, to cut a long story short, pronounce it however you like. Just use roughly the same letters.

			What is open-source software?

			As mentioned earlier, Godot is open-source, meaning the engine’s source code is freely available. Because everyone has access, people can alter this code to their liking. Once they have tweaked enough parameters or developed a new feature, they can ask the creator of the software to include these tweaks or features in the original project. The creator will then review what the other person has done, alter it a bit if needed, and then add it to the code of the original software. This process creates a virtuous circle that results in a win-win situation for everyone:

			
					The software’s creator can grow the code faster because everyone chips in

					People with technical knowledge can add the features they miss, making it fit their needs

					The end user gets a much better and more stable end product

			

			But not every open-source project is created equal. Each free open-source software (FOSS) comes with its respective license. This license dictates how you can or should use the software. Some of these are pretty restrictive, but in the case of Godot Engine, we are in luck: we can do anything without significant restrictions. We only have to attribute the creators on the credit page of our games.

			Alright – we know what Godot Engine is, how to pronounce its name (or not), and why FOSS is so awesome. Let’s dive right into preparing our development environment!

			Getting and preparing Godot

			Before we can do any programming, we’ll need to set up the development environment. That is what we will do in this section, beginning with downloading the engine and creating a new project.

			Downloading the engine

			Getting the engine is relatively easy and only requires a few steps:

			
					First, we’ll need to download a copy of the software. We can do this at https://godotengine.org/download.

			

			
				
					[image: Figure 1.1 – The download page of Godot Engine 4.0 for the Windows platform]
				

			

			Figure 1.1 – The download page of Godot Engine 4.0 for the Windows platform

			
					Usually, the page will automatically direct you to the download page of the operating system you are using to browse the website and you can press the big blue button in the middle of the page to download the engine. If it doesn’t, you’ll need to select your computer’s platform (Windows, macOS, Linux, and so on) when scrolling down the page.

			

			
				
					[image: Figure 1.2 – Select your computer’s platform if the download page was not able to detect it]
				

			

			Figure 1.2 – Select your computer’s platform if the download page was not able to detect it

			
					The download page should also detect whether you’re using a 64- or 32-bit system. If it did not do this correctly, then you can find the other versions under the All downloads section:

			

			
				
					[image: Figure 1.3 – The All Downloads section, where you can find different versions of the engine]
				

			

			Figure 1.3 – The All Downloads section, where you can find different versions of the engine

			
					What we downloaded is a ZIP file. So, unzip it to get to the actual engine.	On Windows: Right-click the zip file and select Extract All.... Now follow the prompt that pops up to choose a location.
	On macOS: Double-click the zip file, the file will be unzipped into a new folder.
	On Linux: Run the following command in the terminal:
unzip Godot_v4.2.1-stable_linux.x86_64.zip -d Godot

					Put the extracted files somewhere on your computer where it will be safe, such as the desktop, applications, or any other location besides the Downloads folder. Otherwise, if you are anything like me, you might accidentally remove it in a clean-up spree of the Downloads folder.

			

			For this book, we will be using version 4.0.0, as it just came out. But any version with a 4 at the beginning should work fine. Unfortunately, this is not a guarantee. We’ll do our best to keep this book’s content up to date, but open-source software can move quickly.

			The download size of Godot Engine is tiny, about 30 to 100 MB, depending on your platform. This small package is all we need to create awesome games. Compare this to Unity’s 10 GB and Unreal Engine’s whopping 34 GB! Of course, these all come without any assets, such as visuals or audio.

			That’s it for getting the engine. You don’t need to install anything else to use it.

			Other versions of the engine

			Because Godot Engine is open-source, there are also a lot of complete game projects that are open-source too. If you ever want to run one of those game projects on your machine, make sure you use the correct version of Godot; otherwise, the game could crash and weird things might happen. You can find and download all official versions of Godot from https://godotengine.org/download/.

			Creating a new project

			Now, let’s go ahead and create our first Godot Engine project, hopefully with many others to come in the future!

			
					First, open the engine by double-clicking the file we downloaded in the Downloading the engine section. A screen like this will greet you:

			

			
				
					[image: Figure 1.4 – Creating a new project by pressing the New button]
				

			

			Figure 1.4 – Creating a new project by pressing the New button

			
					Choose + New; a new window will pop up:

			

			
				
					[image: Figure 1.5 – Setting up the new project]
				

			

			Figure 1.5 – Setting up the new project

			
					Call the project Hello World.

					Select a Project Path area to put the project. Create a new folder by using the Create Folder button or use an existing one but note that this folder should preferably be empty. Although the folder you select can contain files already, starting from a clean directory will keep everything we do more organized.

					Select Compatibility under the Renderer category. The compatibility renderer is made to make sure that our game can run on a wide variety of hardware and supports older graphics cards and web exports. The Forward+ renderer is used for cutting-edge graphics but demands a better graphics card, while the mobile renderer is optimized for mobile devices. For what we are doing, the compatibility renderer is more than capable enough and it makes sure that we can export to the biggest amount of platforms possible.

					Finally, press Create & Edit!

			

			Godot will now set up the basic structure of our project within the selected folder and, after a few seconds, show us the editor:

			
				
					[image: Figure 1.6 – The Godot Engine 4.0 editor]
				

			

			Figure 1.6 – The Godot Engine 4.0 editor

			At first sight, this may look quite daunting – little windows everywhere, multiple controls here and there, and a giant 3D space in the middle. Don’t worry. By the end of this book, you’ll know the ins and outs of almost everything that lies before you. You’re in good hands.

			Fun fact

			The Godot developers used Godot Engine to create the editor itself. Try to wrap your brain around that! They did this to easily extend and maintain the editor.

			Light mode

			Because of the limitations of printed media, dark screenshots might look grainy and unsharp. That is why, from this point on, we’ll switch to the light version of Godot. There is no difference but the appearance of the editor.

			If you also want to follow along in light mode, perform these optional steps:

			
					Go to Editor | Editor Settings… at the top of the screen:

			

			
				
					[image: Figure 1.7 – The Editor Settings… option in the Editor menu]
				

			

			Figure 1.7 – The Editor Settings… option in the Editor menu

			
					Find the Theme settings.

					Select the Light theme within the Preset dropdown:

			

			
				
					[image: Figure 1.8 – Selecting the Light theme preset in the Theme settings]
				

			

			Figure 1.8 – Selecting the Light theme preset in the Theme settings

			Now, the editor will look like what’s shown in Figure 1.9:

			
				
					[image: Figure 1.9 – The Godot Engine editor with the Light theme applied]
				

			

			Figure 1.9 – The Godot Engine editor with the Light theme applied

			With that out of the way, let’s get back to creating a game by learning how to create a scene.

			Creating the main scene

			Let’s continue by setting up our first scene:

			
					In the leftmost panel of Figure 1.10, which shows the Scene panel, select 2D Scene. This button will set up the scene for a 2D game, as shown here:

			

			
				
					[image: Figure 1.10 – Selecting 2D Scene in the left panel]
				

			

			Figure 1.10 – Selecting 2D Scene in the left panel

			You’ll see that there is one node in the Scene panel called Node2D and that the 3D space in the middle window got replaced with a 2D plane.

			
					Right-click the node called Node2D and rename it Main. This node will be our main node to work with for now:

			

			
				
					[image: Figure 1.11 – Renaming the Node2D node to Main]
				

			

			Figure 1.11 – Renaming the Node2D node to Main

			
					Save the scene by going to Scene | Save Scene or by pressing Ctrl/Cmd + S:

			

			
				
					[image: Figure 1.12 – Saving the scene]
				

			

			Figure 1.12 – Saving the scene

			
					We’ll be asked where we wish to save the scene. Choose the project’s root folder and name the file main.tscn:

			

			
				
					[image: Figure 1.13 – Selecting the root folder to save the scene and naming it main.tscn]
				

			

			Figure 1.13 – Selecting the root folder to save the scene and naming it main.tscn

			That’s all for creating our first scene. What we just added is a node. These nodes represent everything in Godot. Images, sounds, menus, special effects – everything is a node. You can think of them as game objects, each having a separate function in the game. The player could be a node, just like enemies or coins.

			On the other hand, scenes are collections of nodes or collections of game objects. For now, you can think of scenes as levels. For a level, you need a player node, some enemy nodes, and a bunch of coin nodes; the collection of these is a scene. It’s like nodes are the paint and scenes are our canvases.

			We’ll come back to nodes and scenes throughout this book.

			A brief UI overview

			Now would be a great time to review some of the more prominent features of the editor’s UI. As we saw earlier, it looks something like this:

			
				
					[image: Figure 1.14 – An overview of the editor]
				

			

			Figure 1.14 – An overview of the editor

			The prominent elements of the editor are as follows:

			
					The Scene Tree area shows all the nodes in the current scene. For now, there is only one.

					The FileSystem area provides access to the files within the project folder.

					The middle window is the currently active main editor. For now, we can see the 2D editor, which will allow us to place nodes in 2D space within the scene.

				
			

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
						
			
						
						
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/image/B19358_01_09.jpg
General

Interface Preset
Editor e Do
Inspector

L theme

oucriscre
Scene Tabs
Multi Window Extr]
Editors I

Filesystem
External Programs
Directories
on save i
File Dialog add)
File Server o T
Import

Docks
Scene Tree
Filesystem
Property Editor

Text Editor
Theme

Appearance

Close

[pefautt v
@ Default

Breeze Dark

Godot 2

Gray

Light

olarized (Dark)
Solarized (Light)
Black (OLED)

Custom

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/image/B19358_01_04.jpg
All downloads

Windows - Standard (x86_64)
64 bit

Windows - Standard (x86)
32 bit
Windows - NET - Standard (x86_64)
64 bit - C# support
Windows - NET - Standard (x86)
32 bit - C# support
Export templates
Used to export your games to all supported platforms
Export templates - .NET

Used to export your games to all supported platforms - C# support

Note: The 32-bit .NET binaries do not run on 64-bit Windows systems at
the time being. Make sure to export 64-bit .NET binaries for your 64-bit
target platforms.

OEBPS/image/B19358_01_12.jpg
Scene Import ¢ O main(*) X

+ @ Filter:name, titypeQ & ¢ . BT

O Node2D L~
+ Add Child Node... Ctri+A

& Instantiate Child Scene... Ctrl+Shift+A

~ Expand/Collapse Branch

M Cut Ctri+X
10 Copy Ctri+C

X Attach Script...

I Rename F2

) Change Type...

OEBPS/image/B19358_01_13.jpg
Project Debug
New Scene
New Inherited Scene...
Open Scene...
Reopen Closed Scene

Open Recent

Save Scene
Save Scene As...

Save All Scenes

Quick Open...
Quick Open Scene...

Quick Open Script...
EXPOIt AS...

Undo
Redo

Reload Saved Scene

Close Scene

Quit

Editor Help
ctri+n
CtrlsshiftsN
ctr+o
CtrisshiftsT
>

Ctriss
Ctrl+shift+s
Ctrl+shift+Alt+S

shift+Alt+O
Ctrl+shift+O
Ctri+Alt+0

>

ctri+z
Ctrl+shiftsZ

Ctrl+shiftsW.

ctri+Q

[unsaved)(*) X +

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/toc.xhtml

		

		Contents

			

						Learning GDScript by Developing a Game with Godot 4

						Contributors

						About the author

						About the reviewers

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Part 1:Learning How to Program

						Chapter 1: Setting Up the Environment

					

								Technical requirements

								Godot game engine and open-source software

							

										Some background on the engine

										What is open-source software?

							

						

								Getting and preparing Godot

							

										Downloading the engine

										Creating a new project

										Light mode

										Creating the main scene

										A brief UI overview

										Writing our first script

							

						

								The Godot Engine Documentation

								Join our community!

								Summary

								Quiz time

					

				

						Chapter 2: Getting Familiar with Variables and Control Flow

					

								Technical requirements

								What are variables?

							

										Variables – Drawers in a filing cabinet full of data

										Naming variables

										Variables in GDScript

										Printing out variables

										Changing a variable’s value

										Mathematical operators

										Other assignment operators

							

						

								Data types – Integers, floats, and strings

							

										Integers

										Floats

										Strings

							

						

								What are constants?

							

										Constants in GDScript

										Magic numbers

							

						

								Creating new scenes

								Getting started with control flow

							

										The if statement

										The if-else statement

										The elif statement

										Commenting in code

										Indentation

							

						

								Boolean logic

							

										The match statement

										The ternary-if statement

							

						

								Additional exercises – Sharpening the axe

								Summary

								Quiz time

					

				

						Chapter 3: Grouping Information in Arrays, Loops, and Dictionaries

					

								Technical requirements

								Arrays

							

										Creating an array

										Accessing values

										Accessing elements backward

										Changing the elements of an array

										Data types in arrays

										Strings are secretly arrays

										Manipulating arrays

										Don’t be scared of errors or warnings

							

						

								Loops

							

										For loops

										While loops

										Continuing or breaking a loop

							

						

								Dictionaries

							

										Creating a dictionary

										Data types in dictionaries

										Accessing and changing values

										Creating a new key-value pair

										Useful functions

										Looping through dictionaries

										Nested loops

							

						

								Null

								Additional exercises – Sharpening the axe

								Summary

								Quiz time

					

				

						Chapter 4: Bringing Structure with Methods and Classes

					

								Technical requirements

								Methods are reusable bits of code

								What is a function?

							

										Defining a function

										Naming a function

										The return keyword

										The pass keyword

										Optional parameters

							

						

								Classes group code and data together

							

										Defining a class

										Instancing a class

										Naming a class

										Extending a class

										Each script is a class!

										When are certain variables available?

										The scope of a function

							

						

								Types help us to know how to use a variable

								What is type hinting?

							

										Type hinting variables

										Type hinting arrays

										Learning about the Variant type

										Type hinting function parameters

										Type hinting function returns

										Using void as a function return

										Inferred types

										null can be any type

										Autocompletion

										Using type hinting for named classes

										Performance

										Editor adding type hints

							

						

								OOP primer

							

										Inheritance

										Abstraction

										Encapsulation

										Polymorphism

							

						

								Additional exercises – Sharpening the axe

								Summary

								Quiz time

					

				

						Chapter 5: How and Why to Keep Your Code Clean

					

								Technical requirements

								Back to naming things

							

										Naming conventions

										General naming tips

										Public and private class members

										Make short functions

							

						

								DRY

								Do one thing (KISS)

								Defensive programming

								Programming style guides

							

										White spacing

										Blank lines

										Line length

							

						

								Utilizing the documentation

							

										Accessing a class’s documentation

										Directly accessing a function or variable’s documentation

										Going to the definition of a function or variable

										Searching the documentation

										Accessing the online documentation

							

						

								Summary

								Quiz time

					

				

						Part 2: Making a Game in Godot Engine

						Chapter 6: Creating a World of Your Own in Godot

					

								Technical requirements

								Game design

							

										Genre

										Mechanics

										Story

							

						

								Creating a player character

							

										Adding a sprite

										Displaying health

										Manipulating nodes in the editor

							

						

								Creating the player script

							

										Referencing nodes in a script

										Caching node references

										Trying out the player script

							

						

								Exporting variables to the editor

							

										Setters and getters

										Changing values while the game is running

										Different types of exported variables

							

						

								Creating a little world

							

										Changing the background color

										Adding Polygon2D boulders

										Node drawing order

										Creating an outer wall

										Getting creative

							

						

								Additional exercises – Sharpening the axe

								Summary

								Quiz time

					

				

						Chapter 7: Making the Character Move

					

								Technical requirements

								Vector math refresher

							

										The 2D coordinate system

										What is a vector?

										Scaling vectors

										Adding and subtracting vectors

										More vector operations

							

						

								Moving the player character

							

										Changing the current player node

										Applying forces to the player

										Process and physics process functions

										Mapping input

										Using the input

										Smoothing out the movement

							

						

								Debugging a running game

							

										Breakpoints

										Remote tree

							

						

								Additional exercises – Sharpening the axe

								Summary

								Quiz time

					

				

						Chapter 8: Splitting and Reusing Scenes

					

								Technical requirements

								Saving a branch as a new scene

							

										Creating a separate player scene

										The root node of a scene

							

						

								Using saved scenes

								Organizing scene files

								Additional exercises – Sharepening the axe

								Summary

								Quiz time

					

				

						Chapter 9: Cameras, Collisions, and Collectibles

					

								Technical requirements

								Making a camera that follows the player

							

										Setting up a basic camera

										Adding drag margins

										Making the camera look ahead

										Smoothing out the look ahead

							

						

								Collisions

							

										The different physics bodies

										The Area2D node

										Adding a collision shape to the player node

										Creating static bodies for the boulders

										Creating static bodies for the walls

							

						

								Creating collectibles

							

										Creating the base collectible scene

										Inheriting from a base scene

										Connecting to a signal

										Writing the code for collectibles

										Using collision layers and masks

										Your turn!

							

						

								Additional exercises – Sharpening the axe

								Summary

								Quiz time

					

				

						Chapter 10: Creating Menus, Making Enemies, and Using Autoloads

					

								Technical requirements

								Creating a menu

							

										Control nodes

										Creating a basic start menu

										Setting the main scene

							

						

								Making enemies

							

										Constructing the base scene

										Navigating enemies

										Writing the enemy script

										Damaging the player in a collision

										Spawning enemies and collectibles

										Making a Game Over screen

							

						

								Shooting projectiles

							

										Creating the base scene

										Writing the logic of the projectile

										Spawning projectiles

							

						

								Storing highscores in autoloads

							

										Using an autoload

										Creating a HighscoreManager autoload

										Autoloads in the remote tree

										Adding a UI in the main menu and game scene

										Using the highscore in the main menu

							

						

								Additional exercises – Sharpening the axe

								Summary

								Quiz time

					

				

						Chapter 11: Playing Together with Multiplayer

					

								Technical requirements

								A crash course in computer networking

							

										What is a Transport Layer?

										What is an Application Layer?

										Networking in Godot Engine

										Learning about IP addresses

										Using port numbers

							

						

								Setting up the base networking code

							

										Creating the client-server connection

										Adding UI

										Running multiple debug instances at the same time

							

						

								Synchronizing different clients

							

										Updating the player scene for multiplayer

										Synchronizing EntitySpawner

										Synchronizing the enemy and collectibles

										Synchronizing the projectile

							

						

								Fixing the timer and end game

							

										Synchronizing the timer

										Synchronizing the end of the game

							

						

								Running the game on multiple computers

							

										Showing the IP address of the server

										Connecting from another computer

							

						

								Additional exercises – Sharpening the axe

								Summary

								Quiz time

					

				

						Part 3: Deepening Our Knowledge

						Chapter 12: Exporting to Multiple Platforms

					

								Technical requirements

								Exporting for Windows, Mac, and Linux

							

										Downloading the export template

										Making the actual exports of the game

							

						

								Uploading our game to Itch.io

							

										What is Itch.io?

										Exporting our game to the web

										Uploading to Itch.io

							

						

								Exporting our game to other platforms

							

										Mobile platforms

										Consoles

							

						

								Summary

								Quiz time

					

				

						Chapter 13: OOP Continued and Advanced Topics

					

								Technical requirements

								The super keyword

								Static variables and functions

								Enumerations

								Lambda functions

							

										Creating a lambda function

										Where to use lambda functions

							

						

								Passing parameters by value or reference

							

										Passing by value

										Passing by reference

							

						

								The @tool annotation

								Summary

								Quiz time

					

				

						Chapter 14: Advanced Programming Patterns

					

								Technical requirements

								What are programming patterns?

								Exploring the Event Bus

							

										The problem

										The solution

							

						

								Understanding Object Pooling

							

										The problem

										The solution

										Implementing the Object Pool in our game

							

						

								Working with State Machines

							

										The problem

										The solution

										An example state

							

						

								Additional exercises – Sharpening the axe

								Summary

								Quiz time

					

				

						Chapter 15: Using the File System

					

								Technical requirements

								What is the file system?

							

										File paths

										User path

							

						

								Creating a save system

							

										Writing data to the disk

										Reading data from disk

										Preparing the save manager for use in the game

										Adjusting the game to use the save manager

										Having a look at the save file

							

						

								Summary

								Quiz time

					

				

						Chapter 16: What Next?

					

								Ideas for your next projects

							

										Starting a new project

										Extending the survivor-like game

										Creating another game

										Free game assets

							

						

								Learning about new topics

							

										Following specific tutorials

										Reading more books

										Reading the Godot Engine documentation

										Looking at the game code of other people’s projects

							

						

								Joining the community

							

										Joining the Forum, Discord, Reddit, or any other platform

										Contributing to the Godot Engine project

										Joining a game jam

							

						

								Goodbyes

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

	

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/image/B19358_01_05.jpg
Local Projects Asset Libr:

y Projects v4.2.1 stable.official [b09f79375] @ [en] English v

+ New [Import Q Scan Filter Projects Q sort: LastEdited v
i Edit
> Run

I Rename
&F Manage Tags
@ Remove
&

Remove Missing

About

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/image/B19358_01_11.jpg
Scene Import
+ @ Filter: name, titype, g:gr& ~ §

Create Root Node: w

[e] 2D Scene

[e] 3D Scene
o User Interface
+

Other Node

OEBPS/image/B19358_01_14.jpg
¢) ~ Ppath: ress/ Create Folder

Favorites: 1 | Directories &Files:

Recent:

scn All Recognized (*tscn, *s v

save Cancel

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/image/B19358_01_06.jpg
Project Name:

Hello World Create Folder
Project Path:
C:/Godot/Project/Folder/HelloWorld © Browse
Renderer:

Forward+ + supports desktop, mobile + web platforms.

+ Least advanced 3D graphics (currently work-in-progress),
+ Intended for low-end/older devices.

@ Compatibility * Uses OpenGL 3 backend (OpenGL 3.3/ES 3.0/WebGL2).

+ Fastest rendering of simple scenes.

Mobile

The renderer can be changed later, but scenes may need to be adjusted.
Version Control Metadata: Git v

Cancel

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

OEBPS/image/B19358_01_10.jpg
Scene Project Debug Editor Help 2
Scene
+ & Filter Nodes Q

Create Root Node:

B

% Perspective
2D Scene

o 3D Scene
o User Interface

Other Node

FileSystem
resi// =

Filter Files

* Favorites:
res://
addons
@ default_env.tres
@ iconpng

sOutput Debugger Audio Animation Shader Editor

& script i AssetLib »

Transform View

-]
Inspector

E E

Filter Properties

Forward+ v

OEBPS/image/B19358_01_15.jpg
Scene Project Debug Editor Help 20 %30 Fscript &Assetlib > & & & Compatibility v

Scene Tinspector
+ & FiterNodess Q B 3 . e : =
© main) 0 Main v e
Filter Properties Qi
© Nodezn
Transform
canvasitem
Visibility
Ordering
Texture
Material
© Node
Process
Editor Description
cript empty> v
i + AddMetadata
res/ =
Filter Files Q
* Favorites
= resu/
= addons
© default_envires
& icon.png
@ maintscn

eOutput Debugger Audio Animation Shader Editor 4 41.1stable

OEBPS/image/B19358_01_02.jpg
Supported platforms

& Android { Linux @ macos 2% Windows B web Editor

OEBPS/image/B19358_01_01.jpg
‘GODOT Features Blog Community About Assets Download Learn Contribute

Download Godot 4
for Windows

64 bit - 12 December 2023

Godot Engine - .NET

64 bit - C¥ support - 12 December 2023

For the LTS version, Download Godot 3.

You can find previous releases in the download archive.

Looking for other platforms? See below!

OEBPS/image/Packt_Logo_New.png
<PACKD

OEBPS/image/Cover.jpg
Learning GDScript
by Developing a Game
with Godot 4

A fun introduction to programming in GDScript 2.0 and
game development using the Godot Engine

<> SANDER VANHOVE

OEBPS/image/B19358_QR_Free_PDF.jpg

OEBPS/image/B19358_01_07.jpg
Scene Project Debug Editor Help P20 %3D KFScript & Assetlib > I B 2 §E G @& Compatibility v
Scene Import iofempty] X+ %I Inspector de

x &0 s R a ®

+ & Filter:name, ttype, Q Transform View

=

Create Root Node: *

o

o 2D Scene
3D Scene

User Interface

+J]o|o

Other Node

FileSystem

) resi/

Filter Files

* Favorites:

A —

@ iconsvg

eOutput Debugger Audio Animation Shader Editor 421 stable

OEBPS/Fonts/CourierStd.otf

OEBPS/image/B19358_01_08.jpg
Scene Project Debug _Editor _Help

Scene

o [Curf¥ShiferP
Create Root Node: Editor Layout >
o 2D Scene Take Screenshot

o 3D scene Toggle Fullscreen

© User Interfa Open Editor Data/Settings Folder

5 Other Nods

Manage Editor Features..
Manage Export Templates...

Configure FBX Importer...

