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    Foreword

    In the modern ocean of GPU APIs, Vulkan is gaining popularity for rendering, thanks to its high performance and cross-platform nature. Thanks to the dedication of the authors, this book covers a lot of ground, from the very first steps to modern and advanced topics. A graphics programmer who wants to start with Vulkan can find an easy-to-follow guide on how to set up the system and get to the first frame. A seasoned practitioner can find modern practices of physically based rendering, advanced resource management, and GPU-side optimizations. What I really like is the “There’s more…” section at the end of every section, where the authors make the topic truly open-ended, leaving useful references, suggestions, and room for you to improve upon the material in the future. 

    One thing that makes this book special is its practicality, with the abundance of code available and explained right in the book. This way, you can both immediately see how Vulkan works and read about the reasons behind it. The book also goes way beyond just the API level, introducing higher-level rendering pipeline architecture and related concepts, such as the material system or geometry and asset formats. This enables you to be able to write not just a Vulkan-based renderer but also a small end-to-end experience with user interaction and advanced content. 

    The authors are well-renowned experts in the field with a lot of experience writing real-time engines and shipping AAA game titles, so you are in good hands. I was delighted to see the second edition of this book coming out with more elaborate and advanced topics. If you were looking for a comprehensive handbook on Vulkan and modern real-time rendering, you are holding it!

    Anton Kaplanyan

    VP, Graphics Research at Intel Corp.
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    Preface

    The Vulkan 3D Graphics Rendering Cookbook is a practical, all-in-one guide to mastering modern graphics rendering techniques and algorithms using C++ and Vulkan 1.3. You’ll begin by setting up your Vulkan development environment, then move on to key aspects of graphics programming, such as working with graphics debugging tools, creating physically-based rendering pipelines, and handling large geometric data.

    As you progress, the book walks you through building a 3D rendering engine step by step, presenting a series of small, self-contained recipes. Each recipe allows you to incrementally expand your codebase while integrating various 3D graphics techniques into a cohesive project. Along the way, you’ll explore essential rendering methods, including glTF 2.0 shading model, image-based techniques, and GPU-driven rendering. You’ll also learn how to manage large datasets for 3D rendering, apply optimization techniques, and develop high-performance, feature-rich graphics applications. By the end of the book, you’ll have the skills to create fast and flexible 3D rendering frameworks and a solid understanding of best practices in modern Vulkan development. Rather than focusing on individual Vulkan API features in isolation, this book emphasizes integrating multiple Vulkan capabilities to create fully realized rendering demos. Throughout, we’ll use Vulkan 1.3 along with the bindless rendering approach. To do this, we introduce LightweightVK https://github.com/corporateshark/lightweightvk, a standalone framework designed for Vulkan development, which we’ll explore in depth as we progress.

    Who this book is for

    We expect our readers to have a solid understanding of real-time 3D graphics based on older rendering APIs. The first few chapters will cover what you need to get started with Vulkan, but we won’t dwell on the basics for long. Instead, we’ll quickly move on to more advanced topics. If you’re familiar with OpenGL 4 or OpenGL ES 3 and want to explore modern rendering techniques and migration paths to current rendering APIs, this book is likely a great fit for you. While graphics programming may seem like an easy and fun entry point into software development, it actually requires mastering many advanced programming concepts. Readers should have a strong grasp of modern C++ and some foundational math skills, such as basic linear algebra and computational geometry.

    What this book covers

    This book is structured into distinct chapters, each focusing on a specific aspect of 3D rendering. As you progress, you’ll gradually build a set of versatile 3D graphics demos, starting with the fundamentals, then exploring more complex techniques, and finally incorporating advanced rendering methods into your code. 

    Chapter 1, Establishing a Build Environment, guides you through setting up a Vulkan 1.3 development environment. You’ll learn which tools and dependencies are needed to work with the book’s source code and how to configure them. This chapter also introduces essential Vulkan recipes, including compiling Vulkan shaders from GLSL at runtime.

    Chapter 2, Getting Started with Vulkan, introduces the fundamental components of the Vulkan API, including instance and device creation, swapchain management, debugging setup, and command buffer usage. You’ll also learn how to create Vulkan rendering pipelines and explore a collection of recipes for quickly building minimal graphical applications from scratch using open-source libraries like GLFW, GLM, STB, and LightweightVK.

    Chapter 3, Working with Vulkan Objects, explores handling various buffers and textures in Vulkan, as well as organizing a staging buffer. You’ll learn how to wrap low-level Vulkan objects into user-friendly abstractions and get introduced to descriptor indexing.

    Chapter 4, Adding User Interaction and Productivity Tools, focuses on debugging, profiling, and user interaction mechanisms. You’ll learn various techniques for debugging and profiling graphical applications, starting with on-screen counters and graphs, then exploring open-source instrumenting profiler capabilities, and finally implementing helper classes for interactive application debugging.

    Chapter 5, Working with Geometry Data, covers handling geometry in a modern 3D rendering pipeline and introduces concepts like Level-of-Detail (LOD) and tessellation. You’ll also explore GLSL techniques for implementing various utility functions for geometry rendering, and introduce you to Vulkan compute shaders.

    Chapter 6, Physically Based Rendering Using the glTF 2.0 Shading Model, introduces the glTF 2.0 physically based shading model and its implementation using GLSL in Vulkan. You’ll explore various data preprocessing techniques, including the precalculation of Bidirectional Reflectance Distribution Function (BRDF) look-up tables and irradiance maps, with all necessary tooling built from scratch.

    Chapter 7, Advanced PBR Extensions, explores advanced glTF PBR extensions from Khronos that extend the base metallic-roughness model. You’ll learn how to integrate each of these extensions into GLSL shader code.

    Chapter 8, Graphics Rendering Pipeline, goes the representation of complex 3D scene data with multiple dependencies and cross-references. You’ll learn how to apply performance-oriented techniques, such as data-oriented design, to build a high-performance 3D rendering system. This chapter marks the beginning of real 3D engine design, demonstrating how to scale a scene graph approach to develop a practical graphics engine.

    Chapter 9, glTF Animations, introduces a framework for supporting glTF animations in your rendering code. You’ll learn the fundamentals of node-based animations, skeletal animations, morph targets, and animation blending.

    Chapter 10, Image-Based Techniques, presents a series of recipes for enhancing rendering realism using image-based techniques, such as screen space ambient occlusion, high dynamic range rendering with light adaptation, and projective shadow mapping.

    Chapter 11, Advanced Rendering Techniques and Optimizations, dives deeper into constructing GPU-driven rendering pipelines, multi-threaded resources loading, and other advanced techniques for feature-rich graphics applications. The book concludes by integrating various recipes and techniques into a single application.

    To get the most out of this book

    You’ll need a machine that supports Vulkan 1.3 with the latest GPU drivers. All code examples in this book have been tested with Vulkan SDK 1.4.304.1, using Visual Studio 2022 on Windows 10 and 11, and GCC 12 on Ubuntu. While macOS is not officially supported, its users should be able to run some very first demos from this book.

    Download the example code files

    The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/3D-Graphics-Rendering-Cookbook-Second-Edition. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

    Download the color images

    We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781803248110_ColorImages.pdf.

    Conventions used

    There are a number of text conventions used throughout this book.

    CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “In OpenGL, presenting an offscreen buffer to the visible area of a window is done using system-dependent functions, such as wglSwapBuffers() on Windows, eglSwapBuffers() on OpenGL ES embedded systems, glXSwapBuffers() on Linux, or automatically on macOS. Vulkan, however, gives us much more fine-grained control.”

    A block of code is set as follows:

      while (!glfwWindowShouldClose(window)) {
    glfwPollEvents();
    glfwGetFramebufferSize(window, &width, &height);
    if (!width || !height) continue;
    lvk::ICommandBuffer& buf = ctx->acquireCommandBuffer();
    ctx->submit(buf, ctx->getCurrentSwapchainTexture());
  }


    Bold: Indicates a new term, an important word, or words that you see on the screen. For instance, words in menus or dialog boxes appear in the text like this. For example: “Here, we use the SPIRV-Reflect library to introspect the SPIR-V code and retrieve the size of the push constants from it.”

    Warnings or important notes appear like this.

    Tips and tricks appear like this.

    Get in touch

    Feedback from our readers is always welcome.

    General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

    Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

    Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

    If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

  

  
    

    Share your thoughts

    Once you’ve read Vulkan 3D Graphics Rendering Cookbook, Second edition, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

    Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.
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    Establishing a Build Environment

    In this chapter, you will learn how to set up a 3D graphics development environment on your computer for Windows and Linux operating systems. You will learn which software tools are needed to run the demos from this book’s source code bundle: https://github.com/PacktPublishing/3D-Graphics-Rendering-Cookbook-Second-Edition.

    We will cover the following topics:

    
      	Setting up our development environment on Microsoft Windows

      	Setting up our development environment on Linux

      	Installing the Vulkan SDK for Microsoft Windows and Linux

      	Managing dependencies

      	Getting the demo data

      	Creating utilities for CMake projects

      	Using the GLFW library

      	Multithreading with Taskflow

      	Compiling Vulkan shaders at runtime

      	Compressing textures into the BC7 format

    

    Getting the most out of this book – get to know your free benefits

    Unlock exclusive free benefits that come with your purchase, thoughtfully crafted to supercharge your learning journey and help you learn without limits.

    Here’s a quick overview of what you get with this book:

    Next-gen reader

    [image: ]
    Figure 1.1: Illustration of the next-gen Packt Reader’s features

    Our web-based reader, designed to help you learn effectively, comes with the following features: 

    [image: A black background with a black square  AI-generated content may be incorrect.] Multi-device progress sync: Learn from any device with seamless progress sync.

    [image: A black background with a black square  AI-generated content may be incorrect.] Highlighting and notetaking: Turn your reading into lasting knowledge.

    [image: A black background with a black square  AI-generated content may be incorrect.] Bookmarking: Revisit your most important learnings anytime.

    [image: A black background with a black square  AI-generated content may be incorrect.] Dark mode: Focus with minimal eye strain by switching to dark or sepia mode. 

    Interactive AI assistant (beta)

    [image: ]
    Figure 1.2: Illustration of Packt’s AI assistant 

    Our interactive AI assistant has been trained on the content of this book, so it can help you out if you encounter any issues. It comes with the following features:

    [image: A black background with a black square  AI-generated content may be incorrect.] Summarize it: Summarize key sections or an entire chapter. 

    [image: A black background with a black square  AI-generated content may be incorrect.] AI code explainers: In the next-gen Packt Reader, click the Explain button above each code block for AI-powered code explanations. 

    Note: The AI assistant is part of next-gen Packt Reader and is still in beta. 

    DRM-free PDF or ePub version 

    [image: ]
    Figure 1.3: Free PDF and ePub

    Learn without limits with the following perks included with your purchase:

    [image: ] Learn from anywhere with a DRM-free PDF copy of this book. 

    [image: ] Use your favorite e-reader to learn using a DRM-free ePub version of this book.

    
      
        
          	
            Unlock this book’s exclusive benefits now

            Take a moment to get the most out of your purchase and enjoy the complete learning experience. 

          
          	
            [image: ]
            [image: ]
            https://www.packtpub.com/unlock/9781803248110

          
        

        
          	
            Note: Have your purchase invoice ready before you begin.

          
        

      
    

    Setting up our development environment on Microsoft Windows

    In this recipe, we will get started by setting up our development environment on Windows. We will go through the installation of each of the required tools individually and in detail.

    Getting ready

    In order to start working with the examples from this book in a Microsoft Windows environment, you will need some essential tools to be installed in your system.

    The most important one is Microsoft Visual Studio 2022. Additional tools include the Git version control system, the CMake build tool, and the Python programming language. Throughout this book, we use these tools on the command line only, so no GUI add-ons will be required.

    How to do it...

    Let’s install each of the required tools individually.

    Microsoft Visual Studio 2022

    Follow the given steps to install Microsoft Visual Studio 2022:

    
      	Open https://visualstudio.microsoft.com and download the Visual Studio 2022 Community Edition installer.

      	Start the installer and follow the on-screen instructions. For the purposes of this book, you need to have a native C++ compiler for the 64-bit Intel platform. Other components of the Visual Studio development environment are not required to run this book’s bundled sample code.

    

    Git

    Follow the given steps to install Git:

    
      	Download the latest Git installer from https://git-scm.com/downloads, run it, and follow the on-screen instructions. We assume that Git is added to the system PATH variable. Enable the option shown in the following image during installation:

    

    [image: ]
    Figure 1.4: Git from the command line and also from third-party software

    
      	Select Use Windows’ default console window, as shown in the next screenshot. This option will allow you to build the scripts in this book from any directory on your computer:

    

    [image: A screenshot of a computer  Description automatically generated]
    Figure 1.5: Use Windows’ default console window

    
      Read more

      Git is complex software and a huge topic in itself. We recommend the book Mastering Git, 2nd edition written by Jakub Narębski and published by Packt Publishing, https://www.packtpub.com/en-us/product/mastering-git-9781835080054, along with Git Essentials: Developer’s Guide to Git by François Dupire and the downloadable ebook ProGit, Second Edition, by Scott Chacon and Ben Straub, https://git-scm.com/book/en/v2.

    

    CMake

    To install CMake, please follow the given steps:

    
      	Download the latest 64-bit CMake installer from https://cmake.org/download/.

      	Run it and follow the on-screen instructions. If you already have an earlier version of CMake installed, it is recommended to uninstall it first.

      	Select the Add CMake to the system PATH for all users option, as shown here:

    

    [image: A screenshot of a computer program  Description automatically generated]
    Figure 1.6: Add CMake to the system PATH for all users

    Python

    To install Python, please follow the given steps:

    
      	Download the latest Python 3 installer for 64-bit systems from https://www.python.org/downloads/.

      	Run it and follow the on-screen instructions.

      	During the installation, you also need to install the pip feature. Choose Custom Installation and make sure that the pip checkbox is checked, as shown:

    

    [image: A screenshot of a computer  Description automatically generated]
    Figure 1.7: Custom installation

    
      	Once the installation has completed, make sure to add the folder containing python.exe to the PATH environment variable.

    

    There’s more...

    Besides Git, there are other popular version control systems, like SVN and Mercurial. While developing large software systems, you will inevitably face the need to download some libraries from a non-Git repository. We recommend getting familiar with Mercurial.

    While working in the command-line environment, it is useful to have some tools from the Unix environment, like wget, grep, find, etc. The GnuWin32 project provides precompiled binaries of these tools, which can be downloaded from http://gnuwin32.sourceforge.net.

    Furthermore, in the Windows environment, orthodox file managers make file manipulation a lot easier. We definitely recommend giving the open-source Far Manager a try. You can download it from https://farmanager.com. It looks like this:

    [image: ]
    Figure 1.8: The look and feel of Far Manager

    Setting up our development environment on Linux

    Linux is becoming more and more attractive for 3D graphics development, including gaming technology. Let’s go through a list of tools necessary to start working with this book on Linux.

    Getting ready

    We assume you have a desktop computer with a Debian-based GNU/Linux operating system installed. We also assume you are familiar with the apt package manager.

    To start developing modern graphics programs on Linux, you need to have up-to-date video card drivers installed that support Vulkan 1.3. To build examples from this book, a C++ compiler with C++20 support is required. We tested our code with Clang and the GNU Compiler Collection.

    How to do it...

    On a Debian-based system, the installation process is straightforward; however, before installing any of the required packages, we recommend running the following command to ensure your system is up to date:

    sudo apt-get update


    Let us go through the list of essential software and install whatever is missing.

    
      	GCC Compiler: Assuming you have a properly configured apt package manager, run the following command to install the GCC compiler and related tools. We tested GCC 12:
        sudo apt-get install build-essential


      

    

    
      
        [image: ]
      

      [image: ] Quick tip: Enhance your coding experience with the AI Code Explainer and Quick Copy features. Open this book in the next-gen Packt Reader. Click the Copy button (1) to quickly copy code into your coding environment, or click the Explain button (2) to get the AI assistant to explain a block of code to you.

      [image: ]

      [image: ] The next-gen Packt Reader is included for free with the purchase of this book. Unlock it by scanning the QR code below or visiting https://www.packtpub.com/unlock/9781803248110.
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      	CMake: The CMake build tool is also available in the standard repositories. To install CMake, type the following command:
        sudo apt-get install cmake


      

    

    
      Note

      CMake 3.19 or above is sufficient for the code samples in this book.

    

    
      	Git: To install the Git version control system, run the following command:
        sudo apt-get install git


      

      	Python 3: To install the Python 3 package, run the following command:
        sudo apt-get install python3.7


      

    

    The exact version of Python may vary between Linux distributions. Any version of Python 3 will suffice for the scripts in this book.

    Now we are done with the basic packages and can install graphics-related software. Let us move on to the next recipe to learn how to set up the Vulkan SDK.

    Installing the Vulkan SDK for Windows and Linux

    In this recipe, you will learn how to get started with the Vulkan SDK. We will describe the requirements and procedure for installing the LunarG Vulkan SDK for Windows and Linux.

    In principle, it is possible to write Vulkan applications without the Vulkan SDK, using only C/C++ header files provided by Khronos. You can get these header files by cloning the Git repository: https://github.com/KhronosGroup/Vulkan-Headers. However, it is advised to install the complete Vulkan SDK to be able to use Vulkan validation layers and a standalone GLSL compiler.

    Getting ready

    Make sure you have the latest up-to-date video card drivers for your operating system. On Windows, you can download video drivers from your GPU vendor’s website. For Ubuntu, refer to the documentation: https://ubuntu.com/server/docs/nvidia-drivers-installation.

    How to do it...

    To install Vulkan 1.3 on Linux, follow these steps:

    
      	Open the https://www.lunarg.com/vulkan-sdk/ page in a browser and download the latest Vulkan SDK for Windows or Linux.

      	After the download has finished, run the Windows installer file and follow the on-screen instructions. If you have Ubuntu 22.04 installed, use the following commands provided on LunarG’s website:
        wget -qO- https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo tee /etc/apt/trusted.gpg.d/lunarg.asc
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-1.3.296-jammy.list https://packages.lunarg.com/vulkan/1.3.296/lunarg-vulkan-1.3.296-jammy.list
sudo apt update
sudo apt install vulkan-sdk


      

      	For other Linux distributions, you may need to download the .tar.gz SDK archive from https://vulkan.lunarg.com/sdk/home#linux and unpack it manually. You need to set environment variables to locate the Vulkan SDK components. Use the source command to run a config script that will do it for you:
        source ~/vulkan/1.3.296.1/setup-env.sh


      

    

    There’s more...

    When developing cross-platform applications, it is good to use similar tools for each platform. Since Linux supports GCC and Clang compilers, using GCC or Clang on Windows ensures that you avoid the most common portability issues. A complete package of C and C++ compilers can be downloaded from http://www.equation.com/servlet/equation.cmd?fa=fortran.

    An alternative way to use GCC on Windows is to install the MSYS2 environment from https://www.msys2.org. It features the package management system used in Arch Linux, Pacman.

    Managing dependencies

    This book’s examples use multiple open-source libraries. To manage these dependencies, we use a free and open-source tool called Bootstrap. The tool is similar to Google’s repo tool and works on both Windows and Linux, as well as on macOS for that matter.

    In this recipe, we will learn how to use Bootstrap to download libraries using the Vulkan Headers repository as an example.

    Getting ready

    Make sure you have Git and Python installed as described in the previous recipes. After that, clone the Bootstrap repository from GitHub:

    git clone https://github.com/corporateshark/bootstrapping


    How to do it...

    Let’s look into the source code bundle and run the bootstrap.py script:

    bootstrap.py


    The script will start downloading all the third-party libraries required to compile and run the source code bundle for this book. On Windows, the tail of the output should look as follows.

    Cloning into 'M:\Projects.CPP\Book_Rendering2\Sources\deps\src\assimp'...
remote: Enumerating objects: 25, done.
remote: Counting objects: 100% (25/25), done.
remote: Compressing objects: 100% (24/24), done.
remote: Total 51414 (delta 2), reused 10 (delta 1), pack-reused 51389
Receiving objects: 100% (51414/51414), 148.46 MiB | 3.95 MiB/s, done.
Resolving deltas: 100% (36665/36665), done.
Checking out files: 100% (2163/2163), done.


    Once the download process is complete, we are ready to build the project.

    How it works...

    Bootstrap takes a JSON file as input, opening bootstrap.json from the current directory by default. It contains metadata of libraries we want to download; for example, their names, where to retrieve them from, a specific version to download, and so on. Besides that, each used library can have some additional instructions on how to build it. Those can be patches applied to the original library, unpacking instructions, SHA hashes to check archive integrity, and many others.

    The source code for each library can be represented by either a URL of a version control system repository or by an archive file with the library source files.

    A typical JSON file entry corresponding to one library looks like this snippet:

    [{
  "name": "vulkan",
  "source": {
    "type": "git",
    "url" : "https://github.com/KhronosGroup/Vulkan-Headers.git",
    "revision": "v1.3.296"
 }
}]


    The field type can have one of these values: archive, git, hg, or svn. The first value corresponds to an archive file, such as .zip, .tar.gz, or .tar.bz2, while the last three types describe different version control system repositories. The url field contains a URL of the archive file to be downloaded or a URL of the repository. The revision field can specify a particular revision, tag, or branch to check out.

    The complete JSON file is a comma-separated list of such entries. For this recipe, we have only one library to download. We will add more libraries in the next chapters. The accompanying source code bundle contains a JSON file with all the libraries used in this book.

    There’s more...

    There is comprehensive documentation for this tool that describes other command-line options and JSON fields in great detail. It can be downloaded from https://github.com/corporateshark/bootstrapping.

    The Bootstrap tool does not differentiate between source code and binary assets. All the textures, 3D models, and other resources for your application can also be downloaded and kept up to date and organized in an automated way.

    Getting the demo data

    This book makes use of free 3D graphics datasets as much as possible. The comprehensive list of large 3D datasets is maintained by Morgan McGuire – Computer Graphics Archive, July 2017 (https://casual-effects.com/data). We will use some large 3D models from his archive for demonstration purposes in this book. Let us download one of them.

    How to do it…

    The bundled source code contains a Python script, deploy_deps.py, which will download all the required 3D models automatically. To download the entire Bistro dataset manually, which is not recommended, follow these simple steps:

    
      	Open the https://casual-effects.com/data/ page in a browser and find the Amazon Lumberyard Bistro dataset.

      	Click on the Download link and allow the browser to download all the data files. Below is a screenshot of Morgan McGuire’s site with the download link.

    

    [image: ]
    Figure 1.9: Amazon Lumberyard Bistro as pictured on casualeffects.com as a 2.4 GB download

    Creating utilities for CMake projects

    In this recipe, we will see how CMake is used to configure all the code examples in this book and learn some small tricks along the way.

    
      Read more

      For those who are just starting with CMake, we recommend reading the books CMake Cookbook (Radovan Bast and Roberto Di Remigio) by Packt Publishing and Mastering CMake (Ken Martin and Bill Hoffman) by Kitware.

    

    Getting ready

    For a start, let’s create a minimalistic C++ application with a trivial main() function and build it using CMake:

    int main() {
  printf("Hello World!\n");
  return 0;
}


    How to do it...

    Let’s introduce two helper macros for CMake. You can find them in the CMake/CommonMacros.txt file of our source code bundle at https://github.com/PacktPublishing/3D-Graphics-Rendering-Cookbook-Second-Edition.

    
      	The SETUP_GROUPS macro iterates over a space-delimited list of C and C++ files, whether it is a header or a source file, and assigns each of them to a separate group. The group name is constructed based on the path of each individual file. This way, we end up with a nice structure similar to a filesystem within a directory in the Visual Studio Solution Explorer window, as we can see on the right in the following figure:

    

    [image: ]
    Figure 1.10: Without groups (left) and with groups (right)

    
      	The macro starts by iterating over a list of files passed in the src_files parameter:
        macro(SETUP_GROUPS src_files)
  foreach(FILE ${src_files})
    get_filename_component(PARENT_DIR "${FILE}" PATH)


      

      	We store the parent directory name as a default group name. Regardless of the operating system, replace all forward slashes with backslashes:
            set(GROUP "${PARENT_DIR}")
    string(REPLACE "/" "\\" GROUP "${GROUP}")


      

      	Then, we can tell CMake to assign the current file to a source group with this name.
            source_group("${GROUP}" FILES "${FILE}")
  endforeach()
endmacro()


      

      	The second macro, SETUP_APP, is used as a shortcut to create a new CMake project with all the standard properties we want it to have. It is very convenient when having to deal with a number of very similar subprojects, for example, like in this book.
        macro(SETUP_APP projname chapter)
  set(FOLDER_NAME ${chapter})
  set(PROJECT_NAME ${projname})
  project(${PROJECT_NAME} CXX)


      

      	After setting the project name, this macro uses the GLOB_RECURSE function to collect all source and header files into the SRC_FILES and HEADER_FILES variables.
          file(GLOB_RECURSE SRC_FILES LIST_DIRECTORIES false
       RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} src/*.c??)
  file(GLOB_RECURSE HEADER_FILES LIST_DIRECTORIES false
       RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} src/*.h)


      

      	In all our code samples, we use the directory src containing the source files as an include directory, too.
          include_directories(src)


      

      	All enumerated source and header files are added to an executable inside the current project.
          add_executable(${PROJ_NAME} ${SRC_FILES} ${HEADER_FILES})


      

      	We use the SETUP_GROUP macro from Step 1 to place each source and header file into an appropriate group inside the project.
          SETUP_GROUPS("${SRC_FILES}")
  SETUP_GROUPS("${HEADER_FILES}")


      

      	The next three properties set different executable file names for each supported build configuration. These lines are optional, yet they are really useful when using CMake with the Visual Studio IDE. The reason is that Visual Studio can change build configurations (or “build types”, as they are called in CMake) dynamically directly from the IDE, and each build configuration can have its own output file name. We add suffixes to these file names so that they can co-exist in a single output folder.
          set_target_properties(${PROJ_NAME}
    PROPERTIES OUTPUT_NAME_DEBUG ${PROJ_NAME}_Debug)
  set_target_properties(${PROJ_NAME}
    PROPERTIES OUTPUT_NAME_RELEASE ${PROJ_NAME}_Release)
  set_target_properties(${PROJ_NAME}
    PROPERTIES OUTPUT_NAME_RELWITHDEBINFO ${PROJ_NAME}_ReleaseDebInfo)


      

      	Since we use C++20 throughout this book, we require CMake to enable it.
          set_property(
    TARGET ${PROJ_NAME} PROPERTY CXX_STANDARD 20)
  set_property(
    TARGET ${PROJ_NAME} PROPERTY CXX_STANDARD_REQUIRED ON)


      

      	To ease the debugging with Visual Studio, we enable console output by changing the application type to Console. We also set the local debugger working directory to CMAKE_SOURCE_DIR, which will make finding assets a lot more straightforward and consistent. There are some Apple-specific properties to allow building the source code on Mac machines.
          if(MSVC)
    add_definitions(-D_CONSOLE)
    set_property(TARGET ${PROJ_NAME} PROPERTY
      VS_DEBUGGER_WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}")
  endif()
  if(APPLE)
    set_target_properties(${PROJECT_NAME} PROPERTIES
      XCODE_GENERATE_SCHEME TRUE
      XCODE_SCHEME_WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}")
  endif()
endmacro()


      

      	Finally, the top-level CMakeLists.txt file of our first project will look like this:
        cmake_minimum_required(VERSION 3.19)
project(Chapter01)
include(../../CMake/CommonMacros.txt)
SETUP_APP(Ch01_Sample01_CMake "Chapter 01")


      

    

    
      Note

      You may notice that the line project(Chapter01) above is overridden by a call to project() inside the SETUP_APP macro. This is due to the following CMake warning, which will be emitted if we do not declare a new project right from the get-go.

      CMake Warning (dev) in CMakeLists.txt:
No project() command is present. The top-level CMakeLists.txt file must contain a literal, direct call to the project() command. Add a line of project(ProjectName) near the top of the file, but after cmake_minimum_required().


    

    
      	To build and test the executable, create the build subfolder, change the working directory to build, and run CMake as follows:
          	For Windows and Visual Studio 2022, run the following command to configure our project for the 64-bit target platform architecture.
            cmake .. -G "Visual Studio 17 2022" -A x64


          

          	For Linux, we can use the Unix Makefiles CMake generator as follows:
            cmake .. -G "Unix Makefiles"


          

        

      

      	To build an executable for the release build type, you can use the following command on any platform. To build a debug version, use --config Debug or skip that parameter entirely.
        cmake --build . --config Release


      

    

    All the demo applications from the source code bundle should be run from the folder where the data/ subfolder is located.

    There’s more...

    Alternatively, you can use the cross-platform build system Ninja along with CMake. It is possible to do so simply by changing the CMake project generator name.

    cmake .. -G "Ninja"


    Invoke Ninja from the command line to compile the project.

    ninja
[2/2] Linking CXX executable Ch01_Sample01_CMake.exe


    Notice how fast everything gets built now, compared to the classic cmake --build command. See https://ninja-build.org for more details.

    Now let’s take a look at how to work with some basic open source libraries.

    Using the GLFW library

    The GLFW library hides all the complexity of creating windows, graphics contexts, and surfaces and getting input events from the operating system. In this recipe, we build a minimalistic application with GLFW to get an empty window onto the screen.

    Getting ready

    We build our examples with GLFW 3.4. Here is a JSON snippet for the Bootstrap script so that you can download the proper library version:

    {
     "name": "glfw",
     "source": {
           "type": "git",
           "url": "https://github.com/glfw/glfw.git",
           "revision": "3.4"
     }
}


    The complete source code for this recipe can be found in the source code bundle under the name of Chapter01/02_GLFW.

    How to do it...

    Let’s write a minimalistic application that creates a window and waits for an exit command from the user – pressing the Esc key. This functionality will be used in all of our subsequent demos, so we have wrapped it into a helper function initWindow() declared in shared/HelpersGLFW.h. Let’s take a look at how to use it to create an empty GLFW window:

    
      	Include all necessary headers and decide on the initial window dimensions:
        #include <shared/HelpersGLFW.h>
int main() {
  uint32_t width = 1280;
  uint32_t height = 800;


      

      	Invoke the initWindow() function to create a window. The width and height parameters are passed by reference and, after the call, will contain the actual working area of the created window. If we pass the initial values of 0, the window will be created to span the entire desktop working area without overlapping the system taskbar.
        GLFWwindow* window =
  initWindow("GLFW example", width, height);


      

      	For this application, the main loop and cleanup are trivial:
          while (!glfwWindowShouldClose(window)) {
    glfwPollEvents();
  }
  glfwDestroyWindow(window);
  glfwTerminate();
  return 0;
}


      

    

    Now we will take a look at the internals of initWindow() for some interesting details.

    How it works...

    Let’s use this library to create an application that opens an empty window:

    
      	First, we set the GLFW error callback via a lambda to catch potential errors and then initialize GLFW:
        GLFWwindow* initWindow(const char* windowTitle,
  uint32_t& outWidth, uint32_t& outHeight) {
  glfwSetErrorCallback([](int error,
                          const char* description) {
    printf("GLFW Error (%i): %s\n", error, description);
  });
  if (!glfwInit()) return nullptr;


      

      	Let’s decide if we want to make a desktop full-screen window. Set the resizable flag for windows that aren’t full-screen and retrieve the desired window dimensions. We are going to initialize Vulkan manually, so no graphics API initialization is required to be done by GLFW. The flag wantsWholeArea determines if we want a true full-screen window or a window that does not overlap the system taskbar.
          const bool wantsWholeArea = !outWidth || !outHeight;
  glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
  glfwWindowHint(GLFW_RESIZABLE,
    wantsWholeArea ? GLFW_FALSE : GLFW_TRUE);
  GLFWmonitor* monitor    = glfwGetPrimaryMonitor();
  const GLFWvidmode* mode = glfwGetVideoMode(monitor);
  int x = 0;
  int y = 0;
  int w = mode->width;
  int h = mode->height;
  if (wantsWholeArea) {
    glfwGetMonitorWorkarea(monitor, &x, &y, &w, &h);
  } else {
    w = outWidth;
    h = outHeight;
  }


      

      	Create a window and retrieve the actual window dimensions:
          GLFWwindow* window = glfwCreateWindow(
    w, h, windowTitle, nullptr, nullptr);
  if (!window) {
    glfwTerminate();
    return nullptr;
  }
  if (wantsWholeArea) glfwSetWindowPos(window, x, y);
  glfwGetWindowSize(window, &w, &h);
  outWidth  = (uint32_t)w;
  outHeight = (uint32_t)h;


      

      	Set a default keyboard callback to handle the Esc key. A simple lambda will do this job for us.
          glfwSetKeyCallback(window, [](GLFWwindow* window,
    int key, int, int action, int) {
    if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS) {
      glfwSetWindowShouldClose(window, GLFW_TRUE);
    }
  });
  return window;
}


      

    

    If you run this tiny application, it will create an empty window, as in the following screenshot:

    [image: ]
    Figure 1.11: Our first application

    There’s more...

    Further details about how to use GLFW can be found at https://www.glfw.org/documentation.html.

    Multithreading with Taskflow

    Modern graphical applications require us to harness the power of multiple CPUs to be performant. Taskflow is a fast C++ header-only library that can help you write parallel programs with complex task dependencies quickly. This library is extremely useful as it allows you to jump into the development of multithreaded graphical applications that make use of advanced rendering concepts, such as frame graphs and multithreaded command buffer generation.

    Getting ready

    Here, we use Taskflow version 3.8.0. You can download it using the following Bootstrap snippet:

    {
  "name": "taskflow",
  "source": {
    "type": "git",
    "url" : "https://github.com/taskflow/taskflow.git",
    "revision": "v3.8.0"
  }
}


    To debug dependency graphs produced by Taskflow, it is recommended that you install the GraphViz tool from https://www.graphviz.org.

    The complete source code for this recipe can be found in Chapter01/03_Taskflow.

    How to do it...

    Let’s create and run a set of concurrent dependent tasks via the for_each_index() algorithm. Each task will print a single value from an array in a concurrent fashion. The processing order can vary between different runs of the program:

    
      	Include the taskflow.hpp header file. The tf::Taskflow class is the main place to create a task dependency graph. Declare an instance and a data vector to process.
        #include <taskflow/taskflow.hpp>
int main() {
  tf::Taskflow taskflow;
  std::vector<int> items{ 1, 2, 3, 4, 5, 6, 7, 8 };


      

      	The for_each_index() member function returns a task that implements a parallel for loop algorithm. We specify the range 0..items.size() and the step 1. The returned task can be used for synchronization purposes:
          auto task = taskflow.for_each_index(
    0u, uint32_t(items.size()), 1u, [&](int i) {
      printf("%i", items[i]);
    }).name("for_each_index");


      

      	Let’s attach some work before and after the parallel for task so that we can view Start and End messages in the output. Let’s call the new S and T tasks accordingly:
          taskflow.emplace([]() {
    printf("\nS - Start\n"); }).name("S").precede(task);
  taskflow.emplace([]() {
    printf("\nT - End\n"); }).name("T").succeed(task);


      

      	Save the generated tasks dependency graph in .dot format so that we can process it later with the GraphViz dot tool:
          std::ofstream os(".cache/taskflow.dot");
  taskflow.dump(os);


      

      	Now we can create a tf::executor object and run the constructed Taskflow graph:
          tf::Executor executor;
  executor.run(taskflow).wait();
  return 0;
}


      

    

    An important point to note is that the Taskflow dependency graph is built only once. After that, it can be reused in every frame to efficiently execute concurrent tasks.

    The output from the preceding program should look similar to the following listing:

    S – Start
18345672
T - End


    Here, we can see our S and T tasks. Between them, there are multiple threads with different IDs processing different elements of the items[] vector in parallel. Your output may vary due to concurrency.

    There’s more...

    The application saved the dependency graph inside the .cache/taskflow.dot file. It can be converted into a visual representation by GraphViz, https://graphviz.org, using the following command:

    dot -Tpng taskflow.dot > output.png


    The resulting .png image should look similar to the following screenshot:

    [image: ]
    Figure 1.12: The Taskflow dependency graph for for_each_index()

    This functionality is extremely useful when you are debugging complex dependency graphs (and producing complex-looking images for your books and papers).

    The Taskflow library functionality is vast and provides implementations for numerous parallel algorithms and profiling capabilities. Please refer to the official documentation for in-depth coverage at https://taskflow.github.io/taskflow/index.html.

    Compiling Vulkan shaders at runtime

    Before we can start working with Vulkan, it’s important to speed up the iterative process of writing shaders. Vulkan uses shaders in the binary form called Standard Portable Intermediate Representation, known as SPIR-V, and typically relies on a standalone shader compiler to precompile shaders offline. While this is ideal for a released product, it can slow down early stages of development and rapid prototyping, where shaders are frequently changed and need to be recompiled with every run. In this recipe, we’ll show you how to compile Vulkan shaders at runtime using Khronos’ reference shader compiler glslang.

    Getting ready

    Our application is using LightweightVK which is statically linked to the glslang shader compiler. The compiler version used in this recipe was downloaded using the following Bootstrap snippet.

    {
  "name": "glslang",
  "source": {
    "type": "git",
    "url" : "https://github.com/KhronosGroup/glslang.git",
    "revision": "15.1.0"
  }
}


    The complete source code for this recipe can be found in the source code bundle under the name Chapter01/04_GLSLang. The implementation of shader compilation in LightweightVK is located in deps/src/lightweightvk/lvk/vulkan/VulkanUtils.cpp in the function lvk::compileShader().

    How to do it...

    Let us go through the steps necessary to compile GLSL shaders to SPIR-V using glslang. In this book text, we’ve omitted most error checking for clarity, though it is included in the actual source code.

    
      	We should use this helper function to compile a GLSL shader from its source code for a specific Vulkan pipeline stage and return the resulting SPIR-V binary as a vector bytes. Initializing the compiler input structure can be a bit verbose. We specify the shader’s source language as GLSLANG_SOURCE_GLSL and set the correct targets to generate SPIR-V 1.6 for Vulkan 1.3. With C++20’s designated initializers, this task becomes much simpler. This feature is also helpful in general Vulkan development, where a common task for developers is to populate structure members with specific values.
        lvk::Result compileShader(
  glslang_stage_t stage,
  const char* code,
  std::vector<uint8_t>* outSPIRV,
  const glslang_resource_t* glslLangResource)
{
  const glslang_input_t input = {
    .language                = GLSLANG_SOURCE_GLSL,
    .stage                   = stage,
    .client                  = GLSLANG_CLIENT_VULKAN,
    .client_version          = GLSLANG_TARGET_VULKAN_1_3,
    .target_language         = GLSLANG_TARGET_SPV,
    .target_language_version = GLSLANG_TARGET_SPV_1_6,
    .code                    = code,
    .default_version         = 100,
    .default_profile         = GLSLANG_NO_PROFILE,
    .force_default_version_and_profile = false,
    .forward_compatible      = false,
    .messages                = GLSLANG_MSG_DEFAULT_BIT,
    .resource                = glslLangResource,
  };


      

      	Let`s create a glslang shader object using the abovementioned input. The SCOPE_EXIT macro ensures the shader object is properly deallocated whenever we exit the current scope. Its implementation is beyond the scope of this book. However, we recommend watching the CppCon 2015 presentation Declarative Control Flow by Andrei Alexandrescu which dives deep into the implementation details. The implementation we use is located in deps/src/lightweightvk/third-party/deps/src/ldrutils/lutils/ScopeExit.h.
          glslang_shader_t* shader = glslang_shader_create(&input);
  SCOPE_EXIT {
    glslang_shader_delete(shader);
  };


      

      	The shader needs to be preprocessed by the compiler. The following function returns true if all extensions, pragmas and version strings mentioned in the shader source code are valid. The logShaderSource() function prints to the console the source code of the shader together with line numbers and is very handy for debugging.
          if (!glslang_shader_preprocess(shader, &input)) {
    LLOGW("Shader preprocessing failed:\n");
    LLOGW("  %s\n", glslang_shader_get_info_log(shader));
    LLOGW("  %s\n",
      glslang_shader_get_info_debug_log(shader));
    lvk::logShaderSource(code);
    return Result(Result::Code::RuntimeError);
  }


      

      	Then the shader gets parsed into an internal representation inside the compiler.
          if (!glslang_shader_parse(shader, &input)) {
    LLOGW("Shader parsing failed:\n");
    LLOGW("  %s\n", glslang_shader_get_info_log(shader));
    LLOGW("  %s\n",
      glslang_shader_get_info_debug_log(shader));
    lvk::logShaderSource(
      glslang_shader_get_preprocessed_code(shader));
    return Result(Result::Code::RuntimeError);
  }


      

      	If everything went fine during the previous stages, now we can link the shader into a program and proceed with the binary code generation stage. The same SCOPE_EXIT is applied to program to prevent memory leaks.
          glslang_program_t* program = glslang_program_create();
  glslang_program_add_shader(program, shader);
  SCOPE_EXIT {
    glslang_program_delete(program);
  };
  if (!glslang_program_link(program,
        GLSLANG_MSG_SPV_RULES_BIT |
        GLSLANG_MSG_VULKAN_RULES_BIT)) {
    LLOGW("Shader linking failed:\n");
    LLOGW("  %s\n", glslang_program_get_info_log(program));
    LLOGW("  %s\n",
      glslang_program_get_info_debug_log(program));
    return Result(Result::Code::RuntimeError);
  }


      

      	Now we are ready to generate some binary SPIR-V code. The glslang compiler supports multiple code generation flags to control debug info generation. This is useful if you want to inspect your shaders at run-time with a tool such as RenderDoc.
          glslang_spv_options_t options = {
    .generate_debug_info                  = true,
    .strip_debug_info                     = false,
    .disable_optimizer                    = false,
    .optimize_size                        = true,
    .disassemble                          = false,
    .validate                             = true,
    .emit_nonsemantic_shader_debug_info   = false,
    .emit_nonsemantic_shader_debug_source = false,
  };
  glslang_program_SPIRV_generate_with_options(
    program, input.stage, &options);


      

      	There might be some messages produced by the code generator. Check and print them if there are any. The resulting SPIR-V code can be retrieved in the following way. We return it as a binary blob of uint8_t values.
          if (glslang_program_SPIRV_get_messages(program)) {
    LLOGW("%s\n",
      glslang_program_SPIRV_get_messages(program));
  }
  const uint8_t* spirv = reinterpret_cast<const uint8_t*>(
    glslang_program_SPIRV_get_ptr(program));
  const size_t numBytes = 
    glslang_program_SPIRV_get_size(program) *
    sizeof(uint32_t);
  *outSPIRV = std::vector(spirv, spirv + numBytes);
  return Result();
}


      

    

    Let’s inspect the demo application which loads GLSL shader code from files, compiles it using the abovementioned function, and then saves SPIR-V binaries into files.

    How it works...

    The application is straightforward. It loads the shader source code from a text file and uses the compileShader() function we have just written to compile it into SPIR-V.

    void testShaderCompilation(
  const char* sourceFilename, const char* destFilename)
{
  std::string shaderSource = readShaderFile(sourceFilename);
  std::vector<uint8_t> spirv;
  lvk::Result res = lvk::compileShader(
    vkShaderStageFromFileName(sourceFilename),
    shaderSource.c_str(),
    &spirv,
    glslang_default_resource());
  saveSPIRVBinaryFile(destFilename, spirv.data(), spirv.size());
}


    Each generated SPIR-V binary blob is saved to a file for further inspection.

    void saveSPIRVBinaryFile(
  const char* filename, const uint8_t* code, size_t size)
{
  FILE* f = fopen(filename, "wb");
  fwrite(code, sizeof(uint8_t), size, f);
  fclose(f);
}


    The main() function, which drives the demo application, initializes the glslang compiler and runs the tests.

    int main()
{
  glslang_initialize_process();
  testShaderCompilation("Chapter01/04_GLSLang/src/main.vert",
                        ".cache/04_GLSLang.vert.bin");
  testShaderCompilation("Chapter01/04_GLSLang/src/main.frag",
                        ".cache/04_GLSLang.frag.bin");
  glslang_finalize_process();
  return 0;
}


    The abovementioned program produces the same SPIR-V output as the following console commands:

    glslangValidator
  -g -Os --target-env vulkan1.3 main.vert -o main.vert.bin
glslangValidator
  -g -Os --target-env vulkan1.3 main.frag -o main.frag.bin


    Binary SPIR-V modules can be used to create Vulkan shader modules as follows. One key detail to note in this example is how to determine the size of the push constants used by the shader. This information will be important in later chapters when we build Vulkan pipelines:

    ShaderModuleState VulkanContext::createShaderModuleFromSPIRV(
  const void* spirv,
  size_t numBytes,
  const char* debugName,
  Result* outResult) const
{
  VkShaderModule vkShaderModule = VK_NULL_HANDLE;
  const VkShaderModuleCreateInfo ci = {
    .sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO,
    .codeSize = numBytes,
    .pCode = (const uint32_t*)spirv,
  };
  const VkResult result =
    vkCreateShaderModule(vkDevice_, &ci, nullptr, &vkShaderModule);
  lvk::setResultFrom(outResult, result);
  if (result != VK_SUCCESS) return {.sm = VK_NULL_HANDLE};
  VK_ASSERT(lvk::setDebugObjectName(
    vkDevice_,
    VK_OBJECT_TYPE_SHADER_MODULE,
    (uint64_t)vkShaderModule,
    debugName));


    After creating the Vulkan shader module, we can determine the size of the push constants used by the shader. To do this, we use the SPIRV-Reflect library, which makes it easy to extract this information:

      SpvReflectShaderModule mdl;
  SpvReflectResult result = spvReflectCreateShaderModule(
    numBytes, spirv, &mdl);
  SCOPE_EXIT {
    spvReflectDestroyShaderModule(&mdl);
  };
  uint32_t pushConstantsSize = 0;
  for (uint32_t i = 0; i < mdl.push_constant_block_count; ++i) {
    const SpvReflectBlockVariable& block =
      mdl.push_constant_blocks[i];
    pushConstantsSize =
      std::max(pushConstantsSize, block.offset + block.size);
  }
  return { .sm = vkShaderModule,
           .pushConstantsSize = pushConstantsSize };
}


    This function is used throughout the LightweightVK library to create all Vulkan shader modules. It is located in deps/src/lightweightvk/lvk/vulkan/VulkanClasses.cpp.

    There’s more...

    While it may be convenient to include a full compiler during the development phase, shipping a large compiler with the release version of your application is generally not recommended. Unless your application specifically needs to compile shaders at runtime, it’s better to include precompiled SPIR-V shader binaries in the release version. One way to handle this is by implementing a shader caching mechanism. When a shader is needed, the application can first check if a compiled version already exists. If it doesn’t, the app can load the glslang compiler from a .dll or .so file at runtime to compile the shader. Once all shaders are cached, the cached shaders can be shipped with the app without any GLSL source code. This approach ensures that compiled shaders are always available in the release version without bundling the compiler’s shared libraries.

    Compressing textures into the BC7 format

    A major downside of high-resolution texture data is that it uses a lot of GPU memory for storage. To address this, all modern real-time rendering APIs offer texture compression, which lets us store textures in compressed formats on the GPU. One common format is BC7, a standard texture compression format for Vulkan that is supported on many devices.

    bc7enc is an open-source library that can compress RGBA bitmaps into the BC7 format. In this recipe, you will learn how to integrate this library into your own applications to create tools for your custom graphics pre-processing pipelines.

    The BC7 format is described in great detail in https://learn.microsoft.com/en-us/windows/win32/direct3d11/bc7-format and we will use it in our book to store textures for the large Lumberyard Bistro dataset.

    Let’s learn how to compress 2D .jpg or .png images into BC7.

    Getting ready

    The source code for this recipe is located at Chapter01/05_BC7Compression. We use an the STB_Image library by Sean Barrett https://github.com/nothings/stb to load .jpg and .png files, and an open-source library KTX-Software from Khronos https://github.com/KhronosGroup/KTX-Software to compress images and save the compressed BC7 images in the .ktx file format, making them suitable for runtime use.

    How to do it...

    Let’s check the code in Chapter01/05_BC7Compression/src/main.cpp to load a .jpg file data/wood.jpg, compress it and save into .cache/image.ktx:

    
      	First, we load the file using the STB_Image library.
        int main()
{
  const int numChannels = 4;
  int origW, origH;
  const uint8_t* pixels = stbi_load(
    "data/Chapter02/03_STB.jpg",
    &origW, &origH, nullptr, numChannels);


      

      	Next, we create a KTX texture object to store the compressed image. We calculate the number of mip-levels to generate the full BC7-compressed mip-pyramid for this image.
          const uint32_t numMipLevels =
    lvk::calcNumMipLevels(origW, origH);
  ktxTextureCreateInfo createInfo = {
    .glInternalformat = GL_COMPRESSED_RGBA_BPTC_UNORM,
    .vkFormat         = VK_FORMAT_BC7_UNORM_BLOCK,
    .baseWidth        = (uint32_t)origW,
    .baseHeight       = (uint32_t)origH,
    .baseDepth        = 1u,
    .numDimensions    = 2u,
    .numLevels        = numMipLevels,
    .numLayers        = 1u,
    .numFaces         = 1u,
    .generateMipmaps  = KTX_FALSE,
  };
  ktxTexture1* texture = nullptr;
  ktxTexture1_Create(&createInfo,
    KTX_TEXTURE_CREATE_ALLOC_STORAGE, &texture);


      

      	Let’s go through each mip-level, generate a down-sampled version of the image for each one, and store it in the KTX texture.
          int w = origW;
  int h = origH;
  for (uint32_t i = 0; i != numMipLevels; ++i) {
    size_t offset = 0;
    ktxTexture_GetImageOffset(
      ktxTexture(textureKTX2), i, 0, 0, &offset);
    stbir_resize_uint8_linear(
      (const unsigned char*)pixels, origW, origH, 0,
      ktxTexture_GetData(ktxTexture(textureKTX2)) + offset,
      w, h, 0, STBIR_RGBA);
    h = h > 1 ? h >> 1 : 1;
    w = w > 1 ? w >> 1 : 1;
  }


      

      	Use KTX-Software to compress the image, including its entire mip-pyramid, into the Basis format. Then, transcode the Basis format to BC7.
          ktxTexture2_CompressBasis(textureKTX2, 255);
  ktxTexture2_TranscodeBasis(
    textureKTX2, KTX_TTF_BC7_RGBA, 0);


      

      	Use KTX-Software to save the image in the KTX1 file format. We choose the older KTX1 format because viewing tools for it are more widely available than those for KTX2. For instance, you can use PicoPixel to view the resulting files.
          ktxTextureCreateInfo createInfoKTX1 = {
    .glInternalformat = GL_COMPRESSED_RGBA_BPTC_UNORM,
    .vkFormat         = VK_FORMAT_BC7_UNORM_BLOCK,
    .baseWidth        = (uint32_t)origW,
    .baseHeight       = (uint32_t)origH,
    .baseDepth        = 1u,
    .numDimensions    = 2u,
    .numLevels        = numMipLevels,
    .numLayers        = 1u,
    .numFaces         = 1u,
    .generateMipmaps  = KTX_FALSE,
  };
  ktxTexture1* textureKTX1 = nullptr;
  ktxTexture1_Create(&createInfoKTX1,
    KTX_TEXTURE_CREATE_ALLOC_STORAGE, &textureKTX1);
  for (uint32_t i = 0; i != numMipLevels; ++i) {
    size_t offset1 = 0;
    ktxTexture_GetImageOffset(
      ktxTexture(textureKTX1), i, 0, 0, &offset1);
    size_t offset2 = 0;
    ktxTexture_GetImageOffset(ktxTexture(
      textureKTX2), i, 0, 0, &offset2);
    memcpy(
      ktxTexture_GetData(ktxTexture(textureKTX1)) + offset1,
      ktxTexture_GetData(ktxTexture(textureKTX2)) + offset2,
      ktxTexture_GetImageSize(ktxTexture(textureKTX1), i));
  }
  ktxTexture_WriteToNamedFile(
    ktxTexture(textureKTX1), ".cache/image.ktx");
  ktxTexture_Destroy(ktxTexture(textureKTX1));
  ktxTexture_Destroy(ktxTexture(textureKTX2));
  stbi_image_free(pixels);
  return 0;
}


      

    

    The image is now saved in the cache/image.ktx file. In the following chapters, we’ll load it into a Vulkan texture.

    There’s more...

    The KTX File Format Specification is maintained by Khronos and is located at https://registry.khronos.org/KTX/specs/1.0/ktxspec.v1.html. We use KTX Version 1.0 throughout this book for compatibility with PicoPixel.

    PicoPixel is a great tool that you can use to view .ktx files and other texture formats https://pixelandpolygon.com. It is freeware but not open source. There is a publicly available issues tracker on GitHub. You can find it at https://github.com/inalogic/pico-pixel-public/issues.

    For those who want to jump into the latest state-of-the-art texture compression techniques, check out please refer to the Basis project from Binomial at https://github.com/BinomialLLC/basis_universal.

    Let’s move on to the next chapter and learn how to start working with Vulkan.
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    Getting Started with Vulkan

    In this chapter, we’ll take our first steps with Vulkan, focusing on swapchains, shaders, and pipelines. The recipes in this chapter will guide you through getting your first triangle on the screen using Vulkan. The Vulkan implementation we’ll use is based on the open-source library LightweightVK https://github.com/corporateshark/lightweightvk, which we’ll explore throughout the book.

    In the chapter, we will cover the following recipes:

    
      	Initializing Vulkan instance and graphical device

      	Initializing Vulkan swapchain

      	Setting up Vulkan debugging capabilities

      	Using Vulkan command buffers

      	Initializing Vulkan shader modules

      	Initializing Vulkan pipelines

    

    Technical requirements

    To run the recipes from this chapter, you have to use a Windows or Linux computer with a video card and drivers supporting Vulkan 1.3. Read the Chapter 1 if you want to learn how to configure it properly.

    Initializing Vulkan instance and graphical device

    As some readers may recall from the first edition of our book, the Vulkan API is significantly more verbose than OpenGL. To make things more manageable, we’ve broken down the process of creating our first graphical demo apps into a series of smaller, focused recipes. In this recipe, we’ll cover how to create a Vulkan instance, enumerate all physical devices in the system capable of 3D graphics rendering, and initialize one of these devices to create a window with an attached surface.

    Getting ready

    We recommend starting with beginner-friendly Vulkan books, such as The Modern Vulkan Cookbook by Preetish Kakkar and Mauricio Maurer (published by Packt) or Vulkan Programming Guide: The Official Guide to Learning Vulkan by Graham Sellers and John Kessenich (Addison-Wesley Professional).

    The most challenging aspect of transitioning from OpenGL to Vulkan—or to any similar modern graphics API—is the extensive amount of explicit code required to set up the rendering process, which, fortunately, only needs to be done once. It’s also helpful to familiarize yourself with Vulkan’s object model. A great starting point is Adam Sawicki’s article, Understanding Vulkan Objects https://gpuopen.com/understanding-vulkan-objects. In the recipes that follow, our goal is to start rendering 3D scenes with the minimal setup needed, demonstrating how modern bindless Vulkan can be wrapped into a more user-friendly API.

    All our Vulkan recipes rely on the LightweightVK library, which can be downloaded from https://github.com/corporateshark/lightweightvk using the provided Bootstrap snippet. This library implements all the low-level Vulkan wrapper classes, which we will discuss in detail throughout this book.

    {
  "name": "lightweightvk",
  "source": {
    "type": "git",
    "url" : "https://github.com/corporateshark/lightweightvk.git",
    "revision": "v1.3"
  }
}


    The complete Vulkan example for this recipe can be found in Chapter02/01_Swapchain.

    How to do it...

    Before diving into the actual implementation, let’s take a look at some scaffolding code that makes debugging Vulkan backends a bit easier. We will begin with error-checking facilities.

    
      	Any function call from a complex API can fail. To handle failures, or at least provide the developer with the exact location of the failure, LightweightVK wraps most Vulkan calls in the VK_ASSERT() and VK_ASSERT_RETURN() macros, which check the results of Vulkan operations. When starting a new Vulkan implementation from scratch, having something like this in place from the beginning can be very helpful.
        #define VK_ASSERT(func) {                                  \
  const VkResult vk_assert_result = func;                  \
  if (vk_assert_result != VK_SUCCESS) {                    \
    LLOGW("Vulkan API call failed: %s:%i\n  %s\n  %s\n",   \
      __FILE__, __LINE__, #func,                           \
    ivkGetVulkanResultString(vk_assert_result));           \
    assert(false);                                         \
  }                                                        \
}


      

      	The VK_ASSERT_RETURN() macro is very similar and returns the control to the calling code.
        #define VK_ASSERT_RETURN(func) {                           \
  const VkResult vk_assert_result = func;                  \
  if (vk_assert_result != VK_SUCCESS) {                    \
    LLOGW("Vulkan API call failed: %s:%i\n  %s\n  %s\n",   \
      __FILE__, __LINE__, #func,                           \
    ivkGetVulkanResultString(vk_assert_result));           \
    assert(false);                                         \
    return getResultFromVkResult(vk_assert_result);        \
  }                                                        \
}


      

    

    Now we can start creating our first Vulkan application. Let’s explore what is going on in the sample application Chapter02/01_Swapchain which creates a window, a Vulkan instance and device together with a Vulkan swapchain, which will be explained in a few moments. The application code is very simple:

    
      	We start by initializing the Minilog logging library and creating a GLFW window as we discussed in the recipe Using the GLFW library from the Chapter 1. All the Vulkan setup magic, including creating a context and swapchain, is handled by the lvk::createVulkanContextWithSwapchain() helper function, which we will examine shortly.
        int main(void) {
  minilog::initialize(nullptr, { .threadNames = false });
  int width  = 960;
  int height = 540;
  GLFWwindow* window = lvk::initWindow(
    "Simple example", width, height);
  std::unique_ptr<lvk::IContext> ctx =
    lvk::createVulkanContextWithSwapchain(
      window, width, height, {});


      

      	The application’s main loop handles updates to the framebuffer size if the window is sized, acquires a command buffer, submits it, and presents the current swapchain image, or texture as it is called in LightweightVK.
          while (!glfwWindowShouldClose(window)) {
    glfwPollEvents();
    glfwGetFramebufferSize(window, &width, &height);
    if (!width || !height) continue;
    lvk::ICommandBuffer& buf = ctx->acquireCommandBuffer();
    ctx->submit(buf, ctx->getCurrentSwapchainTexture());
  }


      

      	The shutdown process is straightforward. The IDevice object should be destroyed before the GLFW window.
          ctx.reset();
  glfwDestroyWindow(window);
  glfwTerminate();
  return 0;
}


      

    

    The application should render an empty black window as in the following screenshot:
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    Figure 2.1: The main loop and swapchain

    Let’s explore lvk::createVulkanContextWithSwapchain() and take a sneak peek at its implementation. As before, we will skip most of the error checking in the book text where it doesn’t contribute to the overall understanding:

    
      	This helper function calls LightweightVK to create a VulkanContext object, taking the provided GLFW window and display properties for our operating system into account. LightweightVK includes additional code paths for macOS/MoltenVK and Android initialization. We’ll skip them here for the sake of brevity and because not all the demos in this book are compatible with MoltenVK or Android.
        std::unique_ptr<lvk::IContext> createVulkanContextWithSwapchain(
  GLFWwindow* window, uint32_t width, uint32_t height,
  const lvk::vulkan::VulkanContextConfig& cfg,
  lvk::HWDeviceType preferredDeviceType)
{
  std::unique_ptr<vulkan::VulkanContext> ctx;
#if defined(_WIN32)
  ctx = std::make_unique<VulkanContext>(cfg,
    (void*)glfwGetWin32Window(window));
#elif defined(__linux__)
  #if defined(LVK_WITH_WAYLAND)
  wl_surface* waylandWindow = glfwGetWaylandWindow(window);
  if (!waylandWindow) {
    LVK_ASSERT_MSG(false, "Wayland window not found");
    return nullptr;
  }
  ctx = std::make_unique<VulkanContext>(cfg,
    (void*)waylandWindow, (void*)glfwGetWaylandDisplay());
  #else
  ctx = std::make_unique<VulkanContext>(cfg,
    (void*)glfwGetX11Window(window), (void*)glfwGetX11Display());
  #endif // LVK_WITH_WAYLAND
#else
#  error Unsupported OS
#endif


      

      	Next, we enumerate Vulkan physical devices and attempt to select the most preferred one. We prioritize choosing a discrete GPU first, and if none is available, we opt for an integrated GPU.
          HWDeviceDesc device;
  uint32_t numDevices =
    ctx->queryDevices(preferredDeviceType, &device, 1);
  if (!numDevices) {
    if (preferredDeviceType == HWDeviceType_Discrete) {
      numDevices =
        ctx->queryDevices(HWDeviceType_Integrated, &device);
    } else if (preferredDeviceType == HWDeviceType_Integrated) {
      numDevices =
        ctx->queryDevices(HWDeviceType_Discrete, &device);
    }
  }


      

      	Once a physical device is selected, we call VulkanContext::initContext(), which creates all Vulkan and LightweightVK internal data structures.
          if (!numDevices) return nullptr;
  Result res = ctx->initContext(device);
  if (!res.isOk()) return nullptr;


      

      	If we have a non-empty viewport, initialize a Vulkan swapchain. The swapchain creation process will be explained in detail in the next recipe Initializing Vulkan swapchain.
          if (width > 0 && height > 0) {
    res = ctx->initSwapchain(width, height);
    if (!res.isOk()) return nullptr;
  }
  return std::move(ctx);
}


      

    

    That covers the high-level code. Now, let’s dive deeper and explore the internals of LightweightVK to see how the actual Vulkan interactions work.

    How it works...

    There are several helper functions involved in getting Vulkan up and running. It all begins with the creation of a Vulkan instance in VulkanContext::createInstance(). Once the Vulkan instance is created, we can use it to acquire a list of physical devices with the required properties.

    
      	First, we need to check if the required Vulkan Validation Layers are available on our system. This ensures we have the flexibility to manually disable validation if no validation layers are present.
        const char* kDefaultValidationLayers[] =
  {"VK_LAYER_KHRONOS_validation"};
void VulkanContext::createInstance() {
  vkInstance_ = VK_NULL_HANDLE;
  uint32_t numLayerProperties = 0;
  vkEnumerateInstanceLayerProperties(
    &numLayerProperties, nullptr);
  std::vector<VkLayerProperties>
    layerProperties(numLayerProperties);
  vkEnumerateInstanceLayerProperties(
    &numLayerProperties, layerProperties.data());


      

      	We use a local C++ lambda to iterate through the available validation layers and update VulkanContextConfig::enableValidation accordingly if none are found.
          [this, &layerProperties]() -> void {
    for (const VkLayerProperties& props : layerProperties) {
      for (const char* layer : kDefaultValidationLayers) {
        if (!strcmp(props.layerName, layer)) return;
      }
    }
    config_.enableValidation = false;
  }();


      

      	Then, we need to specify the names of all Vulkan instance extensions required to run our Vulkan graphics backend. We need VK_KHR_surface and another platform-specific extension which takes an OS window handle and attaches a rendering surface to it. On Linux, we support both libXCB-based window creation and the Wayland protocol. Here is how Wayland support was added to LightweightVK by Roman Kuznetsov: https://github.com/corporateshark/lightweightvk/pull/13.
          std::vector<const char*> instanceExtensionNames = {
    VK_KHR_SURFACE_EXTENSION_NAME,
    VK_EXT_DEBUG_UTILS_EXTENSION_NAME,
#if defined(_WIN32)
    VK_KHR_WIN32_SURFACE_EXTENSION_NAME,
#elif defined(VK_USE_PLATFORM_ANDROID_KHR)
    VK_KHR_ANDROID_SURFACE_EXTENSION_NAME,
#elif defined(__linux__)
  #if defined(VK_USE_PLATFORM_WAYLAND_KHR)
    VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
  #else
    VK_KHR_XLIB_SURFACE_EXTENSION_NAME,
  #endif // VK_USE_PLATFORM_WAYLAND_KHR
#endif
  };


      

      	We add VK_EXT_validation_features when validation features are requested and available. Additionally, a headless rendering extension, VK_EXT_headless_surface, can also be added here together with all custom instance extensions from VulkanContextConfig::extensionsInstance[].
          if (config_.enableValidation)
    instanceExtensionNames.push_back(
      VK_EXT_VALIDATION_FEATURES_EXTENSION_NAME);
  if (config_.enableHeadlessSurface)
    instanceExtensionNames.push_back(
      VK_EXT_HEADLESS_SURFACE_EXTENSION_NAME);
  for (const char* ext : config_.extensionsInstance) {
    if (ext) instanceExtensionNames.push_back(ext);
  }


      

      	Next, we specify the enabled Vulkan validation features when validation is enabled.
          VkValidationFeatureEnableEXT validationFeaturesEnabled[] = {
    VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT,
    VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_
      RESERVE_BINDING_SLOT_EXT,
  };
  const VkValidationFeaturesEXT features = {
    .sType = VK_STRUCTURE_TYPE_VALIDATION_FEATURES_EXT,
    .enabledValidationFeatureCount = config_.enableValidation ?
      (uint32_t)LVK_ARRAY_NUM_ELEMENTS(validationFeaturesEnabled) : 0u,
    .pEnabledValidationFeatures = config_.enableValidation ?
      validationFeaturesEnabled : nullptr,
  };


      

      	The next code snippet might be particularly interesting. Sometimes, we need to disable specific Vulkan validation checks, either for performance reasons or due to bugs in the Vulkan validation layers. Here’s how LightweightVK handles this to work around some known issues with the validation layers (these were the issues at the time of writing this book, of course).
          VkBool32 gpuav_descriptor_checks = VK_FALSE;
  VkBool32 gpuav_indirect_draws_buffers = VK_FALSE;
  VkBool32 gpuav_post_process_descriptor_indexing = VK_FALSE;
#define LAYER_SETTINGS_BOOL32(name, var)              \
  VkLayerSettingEXT {                                 \
    .pLayerName = kDefaultValidationLayers[0],        \
    .pSettingName = name,                             \
    .type = VK_LAYER_SETTING_TYPE_BOOL32_EXT,         \
    .valueCount = 1,                                  \
    .pValues = var }
  const VkLayerSettingEXT settings[] = {
    LAYER_SETTINGS_BOOL32("gpuav_descriptor_checks",
      &gpuav_descriptor_checks),
    LAYER_SETTINGS_BOOL32("gpuav_indirect_draws_buffers",
      &gpuav_indirect_draws_buffers),
    LAYER_SETTINGS_BOOL32(
      "gpuav_post_process_descriptor_indexing",
      &gpuav_post_process_descriptor_indexing),
  };
#undef LAYER_SETTINGS_BOOL32
  const VkLayerSettingsCreateInfoEXT layerSettingsCreateInfo = {
    .sType = VK_STRUCTURE_TYPE_LAYER_SETTINGS_CREATE_INFO_EXT,
    .pNext = config_.enableValidation ? &features : nullptr,
    .settingCount = (uint32_t)LVK_ARRAY_NUM_ELEMENTS(settings),
    .pSettings = settings
  };


      

      	After constructing the list of instance-related extensions, we need to fill in some mandatory information about our application. Here, we request the required Vulkan version, VK_API_VERSION_1_3.
          const VkApplicationInfo appInfo = {
    .sType = VK_STRUCTURE_TYPE_APPLICATION_INFO,
    .pApplicationName = "LVK/Vulkan",
    .applicationVersion = VK_MAKE_VERSION(1, 0, 0),
    .pEngineName = "LVK/Vulkan",
    .engineVersion = VK_MAKE_VERSION(1, 0, 0),
    .apiVersion = VK_API_VERSION_1_3,
  };


      

      	To create a VkInstance object, we need to populate the VkInstanceCreateInfo structure. We use pointers to the previously mentioned appInfo constant and layerSettingsCreateInfo we created earlier. We also use a list of requested Vulkan layers stored in the global variable kDefaultValidationLayers[], which will allow us to enable debugging output for every Vulkan call. The only layer we use in this book is the Khronos validation layer, VK_LAYER_KHRONOS_validation. Then, we use the Volk library to load all instance-related Vulkan functions for the created VkInstance.

    

    
      Note

      Volk is a meta-loader for Vulkan. It allows you to dynamically load entry points required to use Vulkan without linking to vulkan-1.dll or statically linking the Vulkan loader. Volk simplifies the use of Vulkan extensions by automatically loading all associated entry points. Besides that, Volk can load Vulkan entry points directly from the driver which can increase performance by skipping loader dispatch overhead. https://github.com/zeux/volk

    

      const VkInstanceCreateInfo ci = {
    .sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
    .pNext = &layerSettingsCreateInfo,
    .pApplicationInfo = &appInfo,
    .enabledLayerCount = config_.enableValidation ?
      (uint32_t)LVK_ARRAY_NUM_ELEMENTS(kDefaultValidationLayers) : 0u,
    .ppEnabledLayerNames = config_.enableValidation ?
      kDefaultValidationLayers : nullptr,
    .enabledExtensionCount =
      (uint32_t)instanceExtensionNames.size(),
    .ppEnabledExtensionNames = instanceExtensionNames.data(),
  };
  VK_ASSERT(vkCreateInstance(&ci, nullptr, &vkInstance_));
  volkLoadInstance(vkInstance_);


    
      	Last but not least, let’s print a neatly formatted list of all available Vulkan instance extensions. The function vkEnumerateInstanceExtensionProperties() is called twice: first to get the number of available extensions, and second to retrieve information about them.
          uint32_t count = 0;
  vkEnumerateInstanceExtensionProperties(
    nullptr, &count, nullptr);
  std::vector<VkExtensionProperties>
    allInstanceExtensions(count);
  vkEnumerateInstanceExtensionProperties(
    nullptr, &count, allInstanceExtensions.data()));
  LLOGL("\nVulkan instance extensions:\n");
  for (const VkExtensionProperties& extension : allInstanceExtensions)
    LLOGL("  %s\n", extension.extensionName);
}


      

    

    
      Note

      If you’ve looked at the actual source code in VulkanClasses.cpp, you’ll have noticed that we skipped the Debug Messenger initialization code here. It will be covered later in the recipe Setting up Vulkan debugging capabilities.

    

    Once we’ve created a Vulkan instance, we can access the list of Vulkan physical devices, which are necessary to continue setting up our Vulkan context. Here’s how we can enumerate Vulkan physical devices and choose a suitable one:

    
      	The function vkEnumeratePhysicalDevices() is called twice: first to get the number of available physical devices and allocate std::vector storage for it, and second to retrieve the actual physical device data.
        uint32_t lvk::VulkanContext::queryDevices(
  HWDeviceType deviceType,
  HWDeviceDesc* outDevices,
  uint32_t maxOutDevices)
{
  uint32_t deviceCount = 0;
  vkEnumeratePhysicalDevices(vkInstance_, &deviceCount, nullptr);
  std::vector<VkPhysicalDevice> vkDevices(deviceCount);
  vkEnumeratePhysicalDevices(
    vkInstance_, &deviceCount, vkDevices.data());


      

      	We iterate through the vector of devices to retrieve their properties and filter out non-suitable ones. The local lambda function convertVulkanDeviceTypeToLVK() converts a Vulkan enum, VkPhysicalDeviceType, into a LightweightVK enum, HWDeviceType.

    

    
      More information

      enum HWDeviceType {
  HWDeviceType_Discrete = 1,
  HWDeviceType_External = 2,
  HWDeviceType_Integrated = 3,
  HWDeviceType_Software = 4,
};


    

      const HWDeviceType desiredDeviceType = deviceType;
  uint32_t numCompatibleDevices = 0;
  for (uint32_t i = 0; i < deviceCount; ++i) {
    VkPhysicalDevice physicalDevice = vkDevices[i];
    VkPhysicalDeviceProperties deviceProperties;
    vkGetPhysicalDeviceProperties(
      physicalDevice, &deviceProperties);
    const HWDeviceType deviceType =
      convertVulkanDeviceTypeToLVK(deviceProperties.deviceType);
    if (desiredDeviceType != HWDeviceType_Software &&
        desiredDeviceType != deviceType) continue;
    if (outDevices && numCompatibleDevices < maxOutDevices) {
      outDevices[numCompatibleDevices] =
        {.guid = (uintptr_t)vkDevices[i], .type = deviceType};
      strncpy(outDevices[numCompatibleDevices].name,
              deviceProperties.deviceName,
              strlen(deviceProperties.deviceName));
      numCompatibleDevices++;
    }
  }
  return numCompatibleDevices;
}


    Once we’ve selected a suitable Vulkan physical device, we can create a logical representation of a single GPU, or more precisely, a device VkDevice. We can think of Vulkan devices as collections of queues and memory heaps. To use a device for rendering, we need to specify a queue capable of executing graphics-related commands, along with a physical device that has such a queue. Let’s explore LightweightVK and some parts of the function VulkanContext::initContext(), which, among many other things we’ll cover later, detects suitable queue families and creates a Vulkan device. As before, most of the error checking will be omitted here in the text.

    
      	The first thing we do in VulkanContext::initContext() is retrieve all supported extensions of the physical device we selected earlier and the Vulkan driver. We store them in allDeviceExtensions to later decide which features we can enable. Note how we iterate over the validation layers to check which extensions they bring in.
        lvk::Result VulkanContext::initContext(const HWDeviceDesc& desc)
{
  vkPhysicalDevice_ = (VkPhysicalDevice)desc.guid;
  std::vector<VkExtensionProperties> allDeviceExtensions;
  getDeviceExtensionProps(
    vkPhysicalDevice_, allDeviceExtensions);
  if (config_.enableValidation) {
    for (const char* layer : kDefaultValidationLayers)
      getDeviceExtensionProps(
        vkPhysicalDevice_, allDeviceExtensions, layer);
  }


      

      	Then, we can retrieve all Vulkan features and properties for this physical device.
          vkGetPhysicalDeviceFeatures2(
    vkPhysicalDevice_, &vkFeatures10_);
  vkGetPhysicalDeviceProperties2(
    vkPhysicalDevice_, &vkPhysicalDeviceProperties2_);


      

      	The class member variables vkFeatures10_, vkFeatures11_, vkFeatures12_, and vkFeatures13_ are declared in VulkanClasses.h and correspond to the Vulkan features for Vulkan versions 1.0 to 1.3. These structures are chained together using their pNext pointers as follows:
          // lightweightvk/lvk/vulkan/VulkanClasses.h
  VkPhysicalDeviceVulkan13Features vkFeatures13_ = {
    .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES};
  VkPhysicalDeviceVulkan12Features vkFeatures12_ = {
    .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
    .pNext = &vkFeatures13_};
  VkPhysicalDeviceVulkan11Features vkFeatures11_ = {
    .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
    .pNext = &vkFeatures12_};
  VkPhysicalDeviceFeatures2 vkFeatures10_ = {
    .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2,
    .pNext = &vkFeatures11_};
  // ...


      

      	Let’s get back to initContext() and print some information related to the Vulkan physical device and a list of all supported extensions. This is very useful for debugging.
          const uint32_t apiVersion =
    vkPhysicalDeviceProperties2_.properties.apiVersion;
  LLOGL("Vulkan physical device: %s\n",
        vkPhysicalDeviceProperties2_.properties.deviceName);
  LLOGL("           API version: %i.%i.%i.%i\n",
        VK_API_VERSION_MAJOR(apiVersion),
        VK_API_VERSION_MINOR(apiVersion),
        VK_API_VERSION_PATCH(apiVersion),
        VK_API_VERSION_VARIANT(apiVersion));
  LLOGL("           Driver info: %s %s\n",
        vkPhysicalDeviceDriverProperties_.driverName,
        vkPhysicalDeviceDriverProperties_.driverInfo);
  LLOGL("Vulkan physical device extensions:\n");
  for (const VkExtensionProperties& ext : allDeviceExtensions) {
    LLOGL("  %s\n", ext.extensionName);
  }


      

      	Before creating a VkDevice object, we need to find the queue family indices and create queues. This code block creates one or two device queues—graphical and compute—based on the actual queue availability on the provided physical device. The helper function lvk::findQueueFamilyIndex(), implemented in lvk/vulkan/VulkanUtils.cpp, returns the first dedicated queue family index that matches the requested queue flag. It’s recommended to take a look at it to see how it ensures the selection of dedicated queues first.
          Note

          In Vulkan, queueFamilyIndex is the index of the queue family to which the queue belongs. A queue family is a collection of Vulkan queues with similar properties and functionality. Here deviceQueues_ is member field of VulkanContext holding a structure with queues information:

          struct DeviceQueues {
  const static uint32_t INVALID = 0xFFFFFFFF;
  uint32_t graphicsQueueFamilyIndex = INVALID;
  uint32_t computeQueueFamilyIndex = INVALID;
  VkQueue graphicsQueue = VK_NULL_HANDLE;
  VkQueue computeQueue = VK_NULL_HANDLE;
};


        

      

    

      deviceQueues_.graphicsQueueFamilyIndex =
    lvk::findQueueFamilyIndex(vkPhysicalDevice_,
      VK_QUEUE_GRAPHICS_BIT);
  deviceQueues_.computeQueueFamilyIndex =
    lvk::findQueueFamilyIndex(vkPhysicalDevice_,
      VK_QUEUE_COMPUTE_BIT);
  const float queuePriority = 1.0f;
  const VkDeviceQueueCreateInfo ciQueue[2] = {
    { .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
      .queueFamilyIndex = deviceQueues_.graphicsQueueFamilyIndex,
      .queueCount = 1,
      .pQueuePriorities = &queuePriority, },
    { .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
      .queueFamilyIndex = deviceQueues_.computeQueueFamilyIndex,
      .queueCount = 1,
      .pQueuePriorities = &queuePriority, },
  };


    
      	Sometimes, especially on mobile GPUs, graphics and compute queues might be the same. Here we take care of such corner cases.
          const uint32_t numQueues =
    ciQueue[0].queueFamilyIndex == ciQueue[1].queueFamilyIndex ?
      1 : 2;


      

      	Let’s construct a list of extensions that our logical device is required to support. A device must support a swapchain object, which allows us to present rendered frames onto the screen. We use Vulkan 1.3, which includes all the necessary functionality, so no extra extensions are required. However, users can provide additional custom extensions via VulkanContextConfig::extensionsDevice[].
          std::vector<const char*> deviceExtensionNames = {
    VK_KHR_SWAPCHAIN_EXTENSION_NAME,
  };
  for (const char* ext : config_.extensionsDevice) {
    if (ext) deviceExtensionNames.push_back(ext);
  }


      

      	Let’s request all the necessary Vulkan 1.0–1.3 features we’ll be using in our Vulkan implementation. The most important features are descriptor indexing from Vulkan 1.2 and dynamic rendering from Vulkan 1.3, which we’ll discuss in subsequent chapters. Take a look at how to request these and other features we’ll be using.

    

    
      Note

      Descriptor indexing is a set of Vulkan 1.2 features that enable applications to access all of their resources and select among them using integer indices in shaders.

      Dynamic rendering is a Vulkan 1.3 feature that allows applications to render directly into images without the need to create render pass objects or framebuffers.

    

      VkPhysicalDeviceFeatures deviceFeatures10 = {
      .geometryShader = vkFeatures10_.features.geometryShader,
      .sampleRateShading = VK_TRUE,
      .multiDrawIndirect = VK_TRUE,
    // ...
  };


    
      	The structures are chained together using their pNext pointers. Note how we access the vkFeatures10_ through vkFeatures13_ structures here to enable optional features only if they are actually supported by the physical device. The complete list is quite long, so we skip some parts of it here.
          VkPhysicalDeviceVulkan11Features deviceFeatures11 = {
    .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
    .pNext = config_.extensionsDeviceFeatures,
    .storageBuffer16BitAccess = VK_TRUE,
    .samplerYcbcrConversion = vkFeatures11_.samplerYcbcrConversion,
    .shaderDrawParameters = VK_TRUE,
  };
  VkPhysicalDeviceVulkan12Features deviceFeatures12 = {
    .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
    .pNext = &deviceFeatures11,
    .drawIndirectCount = vkFeatures12_.drawIndirectCount,
    // ...
    .descriptorIndexing = VK_TRUE,
    .shaderSampledImageArrayNonUniformIndexing = VK_TRUE,
    .descriptorBindingSampledImageUpdateAfterBind = VK_TRUE,
    .descriptorBindingStorageImageUpdateAfterBind = VK_TRUE,
    .descriptorBindingUpdateUnusedWhilePending = VK_TRUE,
    .descriptorBindingPartiallyBound = VK_TRUE,
    .descriptorBindingVariableDescriptorCount = VK_TRUE,
    .runtimeDescriptorArray = VK_TRUE,
    // ...
  };
  VkPhysicalDeviceVulkan13Features deviceFeatures13 = {
    .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES,
    .pNext = &deviceFeatures12,
    .subgroupSizeControl = VK_TRUE,
    .synchronization2 = VK_TRUE,
    .dynamicRendering = VK_TRUE,
    .maintenance4 = VK_TRUE,
  };


      

      	A few more steps before we can create the actual VkDevice object. We check our list of requested device extensions against the list of available extensions. Any missing extensions are printed into the log, and the initialization function returns. This is very convenient for debugging.
          std::string missingExtensions;
  for (const char* ext : deviceExtensionNames) {
    if (!hasExtension(ext, allDeviceExtensions))
      missingExtensions += "\n   " + std::string(ext);
  }
  if (!missingExtensions.empty()) {
    MINILOG_LOG_PROC(minilog::FatalError,
      "Missing Vulkan device extensions: %s\n",
      missingExtensions.c_str());
    return Result(Result::Code::RuntimeError);
  }


      

      	One last important thing worth mentioning before we proceed with creating a device: because some Vulkan features are mandatory for our code, we enable them unconditionally. We should check all the requested Vulkan features against the actual available features. With the help of C-macros, we can do this in a very clean way. When we’re missing some Vulkan features, this code will print a neatly formatted list of missing features, each marked with the corresponding Vulkan version. This is invaluable for debugging and makes your Vulkan backend adjustable to fit different devices.
          std::string missingFeatures;
#define CHECK_VULKAN_FEATURE(                       \
  reqFeatures, availFeatures, feature, version)     \
  if ((reqFeatures.feature == VK_TRUE) &&           \
      (availFeatures.feature == VK_FALSE))          \
        missingFeatures.append("\n   " version " ." #feature);
#define CHECK_FEATURE_1_0(feature)                               \
  CHECK_VULKAN_FEATURE(deviceFeatures10, vkFeatures10_.features, \
  feature, "1.0 ");
    CHECK_FEATURE_1_0(robustBufferAccess);
    CHECK_FEATURE_1_0(fullDrawIndexUint32);
    CHECK_FEATURE_1_0(imageCubeArray);
    … // omitted a lot of other Vulkan 1.0 features here
#undef CHECK_FEATURE_1_0
#define CHECK_FEATURE_1_1(feature)                      \
  CHECK_VULKAN_FEATURE(deviceFeatures11, vkFeatures11_, \
    feature, "1.1 ");
    CHECK_FEATURE_1_1(storageBuffer16BitAccess);
    CHECK_FEATURE_1_1(uniformAndStorageBuffer16BitAccess);
    CHECK_FEATURE_1_1(storagePushConstant16);
    … // omitted a lot of other Vulkan 1.1 features here
#undef CHECK_FEATURE_1_1
#define CHECK_FEATURE_1_2(feature)                      \
  CHECK_VULKAN_FEATURE(deviceFeatures12, vkFeatures12_, \
  feature, "1.2 ");
    CHECK_FEATURE_1_2(samplerMirrorClampToEdge);
    CHECK_FEATURE_1_2(drawIndirectCount);
    CHECK_FEATURE_1_2(storageBuffer8BitAccess);
    … // omitted a lot of other Vulkan 1.2 features here
#undef CHECK_FEATURE_1_2
#define CHECK_FEATURE_1_3(feature)                      \
  CHECK_VULKAN_FEATURE(deviceFeatures13, vkFeatures13_, \
  feature, "1.3 ");
    CHECK_FEATURE_1_3(robustImageAccess);
    CHECK_FEATURE_1_3(inlineUniformBlock);
    … // omitted a lot of other Vulkan 1.3 features here
#undef CHECK_FEATURE_1_3
  if (!missingFeatures.empty()) {
    MINILOG_LOG_PROC(minilog::FatalError,
      "Missing Vulkan features: %s\n", missingFeatures.c_str());
    return Result(Result::Code::RuntimeError);
  }


      

      	Finally, we are ready to create the Vulkan device, load all related Vulkan functions with Volk, and retrieve the actual device queues based on the queue family indices we selected earlier in this recipe.
          const VkDeviceCreateInfo ci = {
    .sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
    .pNext = createInfoNext,
    .queueCreateInfoCount = numQueues,
    .pQueueCreateInfos = ciQueue,
    .enabledExtensionCount = deviceExtensionNames.size(),
    .ppEnabledExtensionNames = deviceExtensionNames.data(),
    .pEnabledFeatures = &deviceFeatures10,
  };
  vkCreateDevice(vkPhysicalDevice_, &ci, nullptr, &vkDevice_);
  volkLoadDevice(vkDevice_);
  vkGetDeviceQueue(vkDevice_,
    deviceQueues_.graphicsQueueFamilyIndex, 0,
    &deviceQueues_.graphicsQueue);
  vkGetDeviceQueue(vkDevice_,
    deviceQueues_.computeQueueFamilyIndex, 0,
    &deviceQueues_.computeQueue);
  // ... other code in initContext() is unrelated to this recipe
}


      

    

    The VkDevice object is now ready to be used, but the initialization of the Vulkan rendering pipeline is far from complete. The next step is to create a swapchain object. Let’s proceed to the next recipe to learn how to do this.

    Initializing Vulkan swapchain

    Normally, each frame is rendered into an offscreen image. After the rendering process is finished, the offscreen image should be made visible or “presented.” A swapchain is an object that holds a collection of available offscreen images, or more specifically, a queue of rendered images waiting to be presented to the screen. In OpenGL, presenting an offscreen buffer to the visible area of a window is done using system-dependent functions, such as wglSwapBuffers() on Windows, eglSwapBuffers() on OpenGL ES embedded systems, glXSwapBuffers() on Linux, or automatically on macOS. Vulkan, however, gives us much more fine-grained control. We need to select a presentation mode for swapchain images and specify various flags.

    In this recipe, we will show how to create a Vulkan swapchain object using the Vulkan instance and device initialized in the previous recipe.

    Getting ready

    Revisit the previous recipe Initializing Vulkan instance and graphical device, which covers the initial steps necessary to initialize Vulkan. The source code discussed in this recipe is implemented in the class lvk::VulkanSwapchain.

    How to do it...

    In the previous recipe, we began learning how Vulkan instances and devices are created by exploring the helper function lvk::createVulkanContextWithSwapchain(). This led us to the function VulkanContext::initContext(), which we discussed in detail. Let’s continue our journey by exploring VulkanContext::initSwapchain() and the related class VulkanSwapchain from LightweightVK.

    
      	First, let us take a look at a function which retrieves various surface format support capabilities and stores them in the member fields of VulkanContext. The function also checks depth format support, but only for those depth formats that might be used by LightweightVK.
        void lvk::VulkanContext::querySurfaceCapabilities() {
  const VkFormat depthFormats[] = {
    VK_FORMAT_D32_SFLOAT_S8_UINT,
    VK_FORMAT_D24_UNORM_S8_UINT,
    VK_FORMAT_D16_UNORM_S8_UINT, VK_FORMAT_D32_SFLOAT,
    VK_FORMAT_D16_UNORM };
  for (const auto& depthFormat : depthFormats) {
    VkFormatProperties formatProps;
    vkGetPhysicalDeviceFormatProperties(
      vkPhysicalDevice_, depthFormat, &formatProps);
    if (formatProps.optimalTilingFeatures)
      deviceDepthFormats_.push_back(depthFormat);
  }
  if (vkSurface_ == VK_NULL_HANDLE) return;


      

      	All the surface capabilities and surface formats are retrieved and stored. First, we get the number of supported formats, then allocate the storage to hold them and read the actual properties.
          vkGetPhysicalDeviceSurfaceCapabilitiesKHR(
    vkPhysicalDevice_, vkSurface_, &deviceSurfaceCaps_);
  uint32_t formatCount;
  vkGetPhysicalDeviceSurfaceFormatsKHR(
    vkPhysicalDevice_, vkSurface_, &formatCount, nullptr);
  if (formatCount) {
    deviceSurfaceFormats_.resize(formatCount);
    vkGetPhysicalDeviceSurfaceFormatsKHR(
      vkPhysicalDevice_, vkSurface_,
      &formatCount, deviceSurfaceFormats_.data());
  }


      

      	In a similar way, store surface present modes as well.
          uint32_t presentModeCount;
  vkGetPhysicalDeviceSurfacePresentModesKHR(
    vkPhysicalDevice_, vkSurface_, &presentModeCount, nullptr);
  if (presentModeCount) {
    devicePresentModes_.resize(presentModeCount);
    vkGetPhysicalDeviceSurfacePresentModesKHR(
      vkPhysicalDevice_, vkSurface_,
      &presentModeCount, devicePresentModes_.data());
  }
}


      

    

    Knowing all supported color surface formats, we can choose a suitable one for our swapchain. Let’s take a look at the chooseSwapSurfaceFormat() helper function to see how it’s done. The function takes a list of available formats and a desired color space as input.

    
      	First, it selects a preferred surface format based on the desired color space and the RGB/BGR native swapchain image format. RGB or BGR is determined by going through all available color formats returned by Vulkan and picking the one—RGB or BGR—that appears first in the list. If BGR is encountered earlier, it will be chosen. Once the preferred image format and color space are selected, the function goes through the list of supported formats to try to find an exact match. Here, colorSpaceToVkSurfaceFormat() and isNativeSwapChainBGR() are local C++ lambdas. Check the full source code to see their implementations.
        VkSurfaceFormatKHR chooseSwapSurfaceFormat(
  const std::vector<VkSurfaceFormatKHR>& formats,
  lvk::ColorSpace colorSpace)
{
  const VkSurfaceFormatKHR preferred =
    colorSpaceToVkSurfaceFormat(
      colorSpace, isNativeSwapChainBGR(formats));
  for (const VkSurfaceFormatKHR& fmt : formats) {
    if (fmt.format == preferred.format &&
        fmt.colorSpace == preferred.colorSpace) return fmt;
  }


      

      	If we cannot find both a matching format and color space, try matching only the format. If we cannot match the format, default to the first available format. On many systems, it will be VK_FORMAT_R8G8B8A8_UNORM or a similar format.
          for (const VkSurfaceFormatKHR& fmt : formats) {
    if (fmt.format == preferred.format) return fmt;
  }
  return formats[0];
}


      

    

    This function is called from the constructor of VulkanSwapchain. Once the format has been selected, we need to do a few more checks before we can create an actual Vulkan swapchain.

    
      	The first check is to ensure that the selected format supports presentation operation on the graphics queue family used to create the swapchain.
        lvk::VulkanSwapchain::VulkanSwapchain(
  VulkanContext& ctx, uint32_t width, uint32_t height) :
  ctx_(ctx),
  device_(ctx.vkDevice_),
  graphicsQueue_(ctx.deviceQueues_.graphicsQueue),
  width_(width), height_(height)
{
  surfaceFormat_ = chooseSwapSurfaceFormat(
    ctx.deviceSurfaceFormats_, ctx.config_.swapChainColorSpace);
  VkBool32 queueFamilySupportsPresentation = VK_FALSE;
  vkGetPhysicalDeviceSurfaceSupportKHR(ctx.getVkPhysicalDevice(),
    ctx.deviceQueues_.graphicsQueueFamilyIndex, ctx.vkSurface_,
    &queueFamilySupportsPresentation));


      

      	The second check is necessary to choose usage flags for swapchain images. Usage flags define if swapchain images can be used as color attachments, in transfer operations, or as storage images to allow compute shaders to operate directly on them. Different devices have different capabilities and storage images are not always supported, especially on mobile GPUs. Here’s a C++ local lambda to do it:
        auto chooseUsageFlags = [](VkPhysicalDevice pd,
  VkSurfaceKHR surface, VkFormat format) -> VkImageUsageFlags
{
  VkImageUsageFlags usageFlags =
    VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
    VK_IMAGE_USAGE_TRANSFER_DST_BIT |
    VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
  VkSurfaceCapabilitiesKHR caps;
  vkGetPhysicalDeviceSurfaceCapabilitiesKHR(pd, surface, &caps);
  const bool isStorageSupported =
    (caps.supportedUsageFlags & VK_IMAGE_USAGE_STORAGE_BIT) > 0;
  VkFormatProperties props;
  vkGetPhysicalDeviceFormatProperties(pd, format, &props);
  const bool isTilingOptimalSupported =
    (props.optimalTilingFeatures & VK_IMAGE_USAGE_STORAGE_BIT) > 0;
  if (isStorageSupported && isTilingOptimalSupported) {
    usageFlags |= VK_IMAGE_USAGE_STORAGE_BIT;
  }
  return usageFlags;
}


      

      	Now we should select the presentation mode. The preferred presentation mode is VK_PRESENT_MODE_MAILBOX_KHR which specifies that the Vulkan presentation system should wait for the next vertical blanking period to update the current image. Visual tearing will not be observed in this case. However, this presentation mode is not guaranteed to be supported. In this situation, we can try picking VK_PRESENT_MODE_IMMEDIATE_KHR for the fastest frames-per-second without V-sync, or we can always fall back to VK_PRESENT_MODE_FIFO_KHR. The differences between all possible presentation mode are described in the Vulkan specification https://www.khronos.org/registry/vulkan/specs/1.3-extensions/man/html/VkPresentModeKHR.html
        auto chooseSwapPresentMode = [](
  const std::vector<VkPresentModeKHR>& modes) -> VkPresentModeKHR
{
#if defined(__linux__) || defined(_M_ARM64)
    if (std::find(modes.cbegin(), modes.cend(),
        VK_PRESENT_MODE_IMMEDIATE_KHR) != modes.cend()) {
      return VK_PRESENT_MODE_IMMEDIATE_KHR;
    }
#endif
    if (std::find(modes.cbegin(), modes.cend(),
        VK_PRESENT_MODE_MAILBOX_KHR) != modes.cend()) {
      return VK_PRESENT_MODE_MAILBOX_KHR;
    }
    return VK_PRESENT_MODE_FIFO_KHR;
  };


      

      	The last helper lambda we need will choose the number of images in the swapchain object. It is based on the surface capabilities we retrieved earlier. Instead of using minImageCount directly, we request one additional image to make sure we are not waiting on the GPU to complete any operations.
        auto chooseSwapImageCount = [](
  const VkSurfaceCapabilitiesKHR& caps) -> uint32_t
{
  const uint32_t desired = caps.minImageCount + 1;
  const bool exceeded = caps.maxImageCount > 0 &&
                        desired > caps.maxImageCount;
  return exceeded ? caps.maxImageCount : desired;
};


      

      	Let’s go back to the constructor VulkanSwapchain::VulkanSwapchain() and explore how it uses all abovementioned helper functions to create a Vulkan swapchain object. The code here becomes rather short and consists only of filling in the VkSwapchainCreateInfoKHR structure.
          const VkImageUsageFlags usageFlags = chooseUsageFlags(
    ctx.getVkPhysicalDevice(), ctx.vkSurface_,
    surfaceFormat_.format);
  const bool isCompositeAlphaOpaqueSupported =
    (ctx.deviceSurfaceCaps_.supportedCompositeAlpha &
     VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR) != 0;
  const VkSwapchainCreateInfoKHR ci = {
    .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
    .surface = ctx.vkSurface_,
    .minImageCount = chooseSwapImageCount(ctx.deviceSurfaceCaps_),
    .imageFormat = surfaceFormat_.format,
    .imageColorSpace = surfaceFormat_.colorSpace,
    .imageExtent = {.width = width, .height = height},
    .imageArrayLayers = 1,
    .imageUsage = usageFlags,
    .imageSharingMode = VK_SHARING_MODE_EXCLUSIVE,
    .queueFamilyIndexCount = 1,
    .pQueueFamilyIndices = &ctx.deviceQueues_.graphicsQueueFamilyIndex,
    .preTransform = ctx.deviceSurfaceCaps_.currentTransform,
    .compositeAlpha = isCompositeAlphaOpaqueSupported ?
      VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR :
      VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR,
    .presentMode = chooseSwapPresentMode(ctx.devicePresentModes_),
    .clipped = VK_TRUE,
    .oldSwapchain = VK_NULL_HANDLE,
  };
  vkCreateSwapchainKHR(device_, &ci, nullptr, &swapchain_);


      

      	After the swapchain object has been created, we can retrieve swapchain images.
          VkImage swapchainImages[LVK_MAX_SWAPCHAIN_IMAGES];
  vkGetSwapchainImagesKHR(
    device_, swapchain_, &numSwapchainImages_, nullptr);
  if (numSwapchainImages_ > LVK_MAX_SWAPCHAIN_IMAGES) {
    numSwapchainImages_ = LVK_MAX_SWAPCHAIN_IMAGES;
  }
  vkGetSwapchainImagesKHR(
    device_, swapchain_, &numSwapchainImages_, swapchainImages);


      

    

    The retrieved VkImage objects can be used to create VkImageView objects for textures and attachments. This topic will be discussed in the recipe Using texture data in Vulkan in the next chapter.

    With Vulkan now initialized, we can run our first application, Chapter02/01_Swapchain, which displays an empty black window. In the next recipe, we’ll explore Vulkan’s built-in debugging capabilities to move closer to actual rendering.

    Setting up Vulkan debugging capabilities

    After creating a Vulkan instance, we can start monitoring all potential errors and warnings generated by the validation layers. This is done by using the VK_EXT_debug_utils extension to create a callback function and register it with the Vulkan instance. In this recipe, we’ll learn how to set up and use this feature.

    Getting ready

    Please revising the first recipe Initializing Vulkan instance and graphical device for details how to initialize Vulkan in your applications and enable the instance extension VK_EXT_debug_utils.

    How to do it...

    We have to provide a callback function to Vulkan to catch the debug output. In LightweightVK it is called vulkanDebugCallback(). Here’s how it can be passed into Vulkan to intercept logs.

    
      	Let’s create a debug messenger to forward debug messages to an application-provided callback function, vulkanDebugCallback(). This can be done right after the VkInstance object has been created.
        ...
vkCreateInstance(&ci, nullptr, &vkInstance_);
volkLoadInstance(vkInstance_);
const VkDebugUtilsMessengerCreateInfoEXT ci = {
  .sType =
    VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT,
  .messageSeverity =
    VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT |
    VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT |
    VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT |
    VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT,
  .messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |
                 VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT |
                 VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT,
  .pfnUserCallback = &vulkanDebugCallback,
  .pUserData = this,
};
vkCreateDebugUtilsMessengerEXT(
  vkInstance_, &ci, nullptr, &vkDebugUtilsMessenger_);


      

      	The callback code is more elaborate and can provide information about the Vulkan object causing an error or warning. However, we won’t cover tagged object allocation or associating custom data. Some performance warnings are suppressed to keep the debug output easier to read.
        VKAPI_ATTR VkBool32 VKAPI_CALL vulkanDebugCallback(
  VkDebugUtilsMessageSeverityFlagBitsEXT msgSeverity,
  VkDebugUtilsMessageTypeFlagsEXT msgType,
  const VkDebugUtilsMessengerCallbackDataEXT* cbData,
  void* userData)
{
  if (msgSeverity < VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT)
    return VK_FALSE;
  const bool isError = (msgSeverity &
    VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT) != 0;
  const bool isWarning = (msgSeverity &
    VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT) != 0;
  lvk::VulkanContext* ctx = static_cast<lvk::VulkanContext*>(userData);
  minilog::eLogLevel level = minilog::Log;
  if (isError) {
    level = ctx->config_.terminateOnValidationError ?
      minilog::FatalError : minilog::Warning;
  }
  MINILOG_LOG_PROC(
    level, "%sValidation layer:\n%s\n", isError ?
    "\nERROR:\n" : "", cbData->pMessage);
  if (isError) {
    lvk::VulkanContext* ctx =
      static_cast<lvk::VulkanContext*>(userData);
    if (ctx->config_.terminateOnValidationError) {
      std::terminate();
    }
  }
  return VK_FALSE;
}


      

    

    This code is enough to get you started with reading validation layer messages and debugging your Vulkan applications. Remember to destroy the validation layer callbacks just before destroying the Vulkan instance. Refer to the full source code for all the details https://github.com/corporateshark/lightweightvk/blob/master/lvk/vulkan/VulkanClasses.cpp.

    There’s more…

    The extension VK_EXT_debug_utils provides the ability to identify specific Vulkan objects using a textual name or tag to improve Vulkan objects tracking and debugging experience.

    For example, in LightweightVK, we can assign a name to our VkDevice object.

    lvk::setDebugObjectName(vkDevice_, VK_OBJECT_TYPE_DEVICE,
  (uint64_t)vkDevice_, "Device: VulkanContext::vkDevice_");


    This helper function is implemented in lvk/vulkan/VulkanUtils.cpp and looks as follows:

    VkResult lvk::setDebugObjectName(VkDevice device, VkObjectType type,
  uint64_t handle, const char* name)
{
  if (!name || !*name) return VK_SUCCESS;
  const VkDebugUtilsObjectNameInfoEXT ni = {
    .sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT,
    .objectType = type,
    .objectHandle = handle,
    .pObjectName = name,
  };
  return vkSetDebugUtilsObjectNameEXT(device, &ni);
}


    Using Vulkan command buffers

    In the previous recipes, we learned how to create a Vulkan instance, a device for rendering, and a swapchain. In this recipe, we will learn how to manage command buffers and submit them using command queues which will bring us a bit closer to rendering our first image with Vulkan.

    Vulkan command buffers are used to record Vulkan commands which can be then submitted to a device queue for execution. Command buffers are allocated from pools which allow the Vulkan implementation to amortize the cost of resource creation across multiple command buffers. Command pools are be externally synchronized which means one command pool should not be used between multiple threads. Let’s learn how to make a convenient user-friendly wrapper on top of Vulkan command buffers and pools.

    Getting ready…

    We are going to explore the command buffers management code from the LightweightVK library. Take a look at the class VulkanImmediateCommands from lvk/vulkan/VulkanClasses.h. In the previous edition of our book, we used very rudimentary command buffers management code which did not suppose any synchronization because every frame was “synchronized” with vkDeviceWaitIdle(). Here we are going to explore a more pragmatic solution with some facilities for synchronization.

    Let’s go back to our demo application from the recipe Initializing Vulkan swapchain which renders a black empty window Chapter02/01_Swapchain. The main loop of the application looks as follows:

      while (!glfwWindowShouldClose(window)) {
    glfwPollEvents();
    glfwGetFramebufferSize(window, &width, &height);
    if (!width || !height) continue;
    lvk::ICommandBuffer& buf = ctx->acquireCommandBuffer();
    ctx->submit(buf, ctx->getCurrentSwapchainTexture());
  }


    Here we acquire a next command buffer and then submit it without writhing any commands into it so that LightweightVK can run its swapchain presentation code and render a black window. Let’s dive deep into the implementation and learn how lvk::VulkanImmediateCommands does all the heavy lifting behind the scenes.

    How to do it...

    
      	First, we need a helper struct, SubmitHandle, to identify previously submitted command buffers. It will be essential for implementing synchronization when scheduling work that depends on the results of a previously submitted command buffer. The struct includes an internal index for the submitted buffer and an integer ID for the submission. For convenience, handles can be converted to and from 64-bit integers.
        struct SubmitHandle {
  uint32_t bufferIndex_ = 0;
  uint32_t submitId_ = 0;
  SubmitHandle() = default;
  explicit SubmitHandle(uint64_t handle) :
    bufferIndex_(uint32_t(handle & 0xffffffff)),
    submitId_(uint32_t(handle >> 32)) {}
  bool empty() const { return submitId_ == 0; }
  uint64_t handle() const
  { return (uint64_t(submitId_) << 32) + bufferIndex_; }
};


      

      	Another helper struct, CommandBufferWrapper, is needed to encapsulate all Vulkan objects associated with a single Vulkan command buffer. This struct stores the originally allocated and currently active command buffers, the most recent SubmitHandle linked to the command buffer, a Vulkan fence, and a Vulkan semaphore. The fence is used for GPU-CPU synchronization, while the semaphore ensures that command buffers are processed by the GPU in the order they were submitted. This sequential processing, enforced by LightweightVK, simplifies many aspects of rendering.
        struct CommandBufferWrapper {
  VkCommandBuffer cmdBuf_ = VK_NULL_HANDLE;
  VkCommandBuffer cmdBufAllocated_ = VK_NULL_HANDLE;
  SubmitHandle handle_ = {};
  VkFence fence_ = VK_NULL_HANDLE;
  VkSemaphore semaphore_ = VK_NULL_HANDLE;
  bool isEncoding_ = false;
};


      

    

    Now let’s take a look at the interface of lvk::VulkanImmediateCommands.

    
      	Vulkan command buffers are preallocated and used in a round-robin manner. The maximum number of preallocated command buffers is defined by kMaxCommandBuffers. If all buffers are in use, VulkanImmediateCommands waits for an existing command buffer to become available by waiting on a fence. Typically, 64 command buffers are sufficient to ensure non-blocking operation in most cases. The constructor takes a queueFamilyIdx parameter to retrieve the appropriate Vulkan queue.
        class VulkanImmediateCommands final {
 public:
   static constexpr uint32_t kMaxCommandBuffers = 64;
  VulkanImmediateCommands(VkDevice device,
    uint32_t queueFamilyIdx, const char* debugName);
  ~VulkanImmediateCommands();


      

      	The acquire() method returns a reference to the next available command buffer. If all command buffers are in use, it waits on a fence until one becomes available. The submit() method submits a command buffer to the assigned Vulkan queue.
          const CommandBufferWrapper& acquire();
  SubmitHandle submit(const CommandBufferWrapper& wrapper);


      

      	The next three methods provide GPU-GPU and GPU-CPU synchronization mechanisms. The waitSemaphore() method ensures the current command buffer waits on a given semaphore before execution. A common use case is using an “acquire semaphore” from our VulkanSwapchain object, which signals a semaphore when acquiring a swapchain image, ensuring the command buffer waits for it before starting to render into the swapchain image. The signalSemaphore() method signals a corresponding Vulkan timeline semaphore when the current command buffer finishes execution. The acquireLastSubmitSemaphore() method retrieves the semaphore signaled when the last submitted command buffer completes. This semaphore can be used by the swapchain before presentation to ensure that rendering into the image is complete. We’ll take a closer look at how this works in a moment.
          void waitSemaphore(VkSemaphore semaphore);
  void signalSemaphore(VkSemaphore semaphore, uint64_t signalValue);
  VkSemaphore acquireLastSubmitSemaphore();


      

      	The next set of methods manages GPU-CPU synchronization. As we’ll see later in this recipe, submit handles are implemented using Vulkan fences and can be used to wait for specific GPU operations to complete.
          SubmitHandle getLastSubmitHandle() const;
  bool isReady(SubmitHandle handle) const;
  void wait(SubmitHandle handle);
  void waitAll();


      

      	The private section of the class contains all the local state, including an array of preallocated CommandBufferWrapper objects called buffers_[].
         private:
  void purge();
  VkDevice device_ = VK_NULL_HANDLE;
  VkQueue queue_ = VK_NULL_HANDLE;
  VkCommandPool commandPool_ = VK_NULL_HANDLE;
  uint32_t queueFamilyIndex_ = 0;
  const char* debugName_ = "";
  CommandBufferWrapper buffers_[kMaxCommandBuffers];


      

      	Note how the VkSemaphoreSubmitInfo structures are preinitialized with generic stageMask values. For submitting Vulkan command buffers, we use the function vkQueueSubmit2() introduced in Vulkan 1.3, which requires pointers to these structures.
          VkSemaphoreSubmitInfo lastSubmitSemaphore_ = {
    .sType = VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO,
    .stageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT};
  VkSemaphoreSubmitInfo waitSemaphore_ = {
    .sType = VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO,
    .stageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT};
  VkSemaphoreSubmitInfo signalSemaphore_ = {
    .sType = VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO,
    .stageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT};
  uint32_t numAvailableCommandBuffers_ = kMaxCommandBuffers;
  uint32_t submitCounter_ = 1;
};


      

    

    The VulkanImmediateCommands class is central to the entire operation of our Vulkan backend. Let’s dive into its implementation, examining each method in detail.

    Let’s begin with the class constructor and destructor. The constructor preallocates all command buffers. For simplicity, error checking and debugging code will be omitted here; please refer to the LightweightVK library source code for full error-checking details.

    
      	First, we should retrieve a Vulkan device queue and allocate a command pool. The VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag is used to specify that any command buffers allocated from this pool can be individually reset to their initial state using the Vulkan function vkResetCommandBuffer(). To indicate that command buffers allocated from this pool will have a short lifespan, we use the VK_COMMAND_POOL_CREATE_TRANSIENT_BIT flag, meaning they will be reset or freed within a relatively short timeframe.
        lvk::VulkanImmediateCommands::VulkanImmediateCommands(
  VkDevice device,
  uint32_t queueFamilyIndex, const char* debugName) :
  device_(device), queueFamilyIndex_(queueFamilyIndex),
  debugName_(debugName)
{
  vkGetDeviceQueue(device, queueFamilyIndex, 0, &queue_);
  const VkCommandPoolCreateInfo ci = {
      .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
      .flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT |
               VK_COMMAND_POOL_CREATE_TRANSIENT_BIT,
      .queueFamilyIndex = queueFamilyIndex,
  };
  vkCreateCommandPool(device, &ci, nullptr, &commandPool_);


      

      	Now, we can preallocate all the command buffers from the command pool. In addition, we create one semaphore and one fence for each command buffer to enable our synchronization system.
          const VkCommandBufferAllocateInfo ai = {
      .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO,
      .commandPool = commandPool_,
      .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY,
      .commandBufferCount = 1,
  };
  for (uint32_t i = 0; i != kMaxCommandBuffers; i++) {
    CommandBufferWrapper& buf = buffers_[i];
    char fenceName[256] = {0};
    char semaphoreName[256] = {0};
    if (debugName) {
      // ... assign debug names to fenceName and semaphoreName
    }
    buf.semaphore_ = lvk::createSemaphore(device, semaphoreName);
    buf.fence_ = lvk::createFence(device, fenceName);
    vkAllocateCommandBuffers(
      device, &ai, &buf.cmdBufAllocated_);
    buffers_[i].handle_.bufferIndex_ = i;
  }
}


      

      	The destructor is almost trivial. We simply wait for all command buffers to be processed before destroying the command pool, fences, and semaphores.
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url = {http://developer.nvidia.con/orca/anazon-1unberyard-bistro}





OEBPS/Images/New_Packt_Logo.png
<PACKD





OEBPS/Images/B18589_01_09.png
Taskflow: p000000F46D4FEE10






OEBPS/Images/highlighter.png





OEBPS/Images/bookmark-white.png





OEBPS/Images/1.png
& g
LUNLOCK NOW‘





OEBPS/Images/lightbulb_1.png





OEBPS/Images/B18589_01_05.png
Chapter1
Chapter2
Chapter3
Chaptera
Chapters
Chaptere
Chapter?
Chapterg
Chaptery
Chapter10
crake

data

deps

shared
bootstrap. py
chakeL ists. txt

X:\Projects. CPP\Book_Rendering\Sources

Natie

n Narie

Commonacros.. txt-

Name

8.42 K (2/14)

u
241 6

X\Brajects. Cholaook Renderng sources\chake

EVvicw. Wedit. JEprint |

19-04-23 23:19)

1.74 K (1/0)

Up  22-10-22 18:18]
21 6

ik Link | Eiiistry Kevideo [Rliiree  [EENiewHs [ERiFoldHs






OEBPS/Images/B18589_02_01.png
am






OEBPS/Images/image_(2).png
Copy  Explain

function calculate(a, b) { @ [ ]
return {sum: a + b};

Y





OEBPS/Images/pdf.png





