
		
			[image: Cover.jpg]
		

	
		
			Mastering PostgreSQL 17

			Elevate your database skills with advanced deployment, optimization, and security strategies

			Hans-Jürgen Schönig

			[image: Packt Logo]

			Mastering PostgreSQL 17

			Copyright © 2024 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Apeksha Shetty

			Publishing Product Manager: Chayan Majumdar

			Book Project Manager: Aparna Nair

			Senior Editor: Rohit Singh

			Technical Editor: Rahul Limbachiya

			Copy Editor: Safis Editing

			Proofreader: Rohit Singh

			Indexer: Tejal Soni

			Production Designer: Gokul Raj S.T

			DevRel Marketing Executive: Nivedita Singh

			First published: January 2018

			Second edition: October 2018

			Third edition: November 2019

			Fourth edition: November 2020

			Fifth edition: January 2023

			Sixth edition: December 2024

			Production reference: 1061224

			Published by Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB, UK.

			ISBN 978-1-83620-597-5

			www.packtpub.com

		

	Contributors

			About the author

			Hans-Jürgen Schönig has 25 years of experience with PostgreSQL. He is the CEO of a PostgreSQL consulting and support company called CYBERTEC PostgreSQL International GmbH, which has successfully served countless customers around the globe. Before founding CYBERTEC PostgreSQL International GmbH in 2000, he worked as a database developer at a private research company that focused on the Austrian labor market, where he primarily worked on data mining and forecast models. He has also written several books about PostgreSQL.

		

	About the reviewer

			Rajneesh Verma is a seasoned technology leader with over 18 years of experience, currently heading IT and security at CYBERTEC PostgreSQL Services. Specializing in enterprise design and architecture, he is passionate about building reliable platforms, including database-as-a-service solutions and innovative setups for cloud and on-premises environments, IAAS, PAAS, and security. His technical stack includes PostgreSQL, SQL Server, Python, Flask, HTML, and CSS. Curious by nature, Rajneesh loves figuring out “how things work” and shares this enthusiasm through book reviews, exploring tech, leadership, and innovation with technical depth and approachable storytelling.

		

	
		
			Table of Contents

			Preface

			1

			What is New in PostgreSQL 17

			Understanding DBA and administration features

			Terminating long transactions

			Improved event triggers

			Inspecting wait events in PostgreSQL

			Digging into checkpoints and background writing

			Improving pg_stat_statements

			Adding permissions for maintenance tasks

			Using SQL and developer features

			Teaching COPY error handling

			Splitting and merging partitions

			Tuning numbers into binary and octal values

			Improving MERGE even more

			Additional JSON functionality

			Creating BRIN indexes in parallel

			Making use of new replication and backup add-ons

			More powerful pg_dump, again

			Handling incremental base backups

			Logical replication upgraded

			Adding pg_createsubscriber

			Considering breaking changes in PostgreSQL 17

			Summary

			2

			Understanding Transactions and Locking

			Working with PostgreSQL transactions

			Handling errors inside a transaction

			Making use of SAVEPOINT

			Transactional DDLs

			Understanding basic locking

			Avoiding typical mistakes and explicit locking

			Making use of FOR SHARE and FOR UPDATE

			Understanding transaction isolation levels

			Considering serializable snapshot isolation transactions

			Observing deadlocks and similar issues

			Utilizing advisory locks

			Optimizing storage and managing cleanup

			Configuring VACUUM and autovacuum

			Watching VACUUM at work

			Making use of more VACUUM features

			Summary

			3

			Making Use of Indexes

			Understanding simple queries and the cost model

			Making use of EXPLAIN

			Digging into the PostgreSQL cost model

			Deploying simple indexes

			Making use of sorted output

			Using more than one index at a time

			Using bitmap scans effectively

			Using indexes intelligently

			Understanding index de-duplication

			Improving speed using clustered tables

			Clustering tables

			Making use of index-only scans

			Understanding additional B-tree features

			Combined indexes

			Adding functional indexes

			Reducing space consumption

			Adding data while indexing

			Introducing operator classes

			Creating an operator class for a B-tree

			Understanding PostgreSQL index types

			Hash indexes

			GiST indexes

			GIN indexes

			SP-GiST indexes

			BRINs

			Adding additional indexes

			Achieving better answers with fuzzy searching

			Taking advantage of pg_trgm

			Speeding up LIKE queries

			Handling regular expressions

			Understanding full-text searches

			Comparing strings

			Defining GIN indexes

			Debugging your search

			Gathering word statistics

			Taking advantage of exclusion operators

			Summary

			4

			Handling Advanced SQL

			Supporting range types

			Querying ranges efficiently

			Handling multirange types

			When to use range types

			Introducing grouping sets

			Loading some sample data

			Applying grouping sets

			Investigating performance

			Combining grouping sets with the FILTER clause

			Making use of ordered sets

			Understanding hypothetical aggregates

			Utilizing windowing functions and analytics

			Partitioning data

			Ordering data inside a window

			Using sliding windows

			Abstracting window clauses

			Using on-board windowing functions

			Writing your own aggregates

			Creating simple aggregates

			Adding support for parallel queries

			Improving efficiency

			Writing hypothetical aggregates

			Handling recursions

			UNION versus UNION ALL

			Inspecting a practical example

			Working with JSON and JSONB

			Displaying and creating JSON documents

			Turning JSON documents into rows

			Accessing a JSON document

			Making use of JSONPath

			Summary

			5

			Log Files and System Statistics

			Gathering runtime statistics

			pg_stat_activity – checking live traffic

			Inspecting databases

			Inspecting tables

			Making sense of pg_stat_user_tables

			Digging into indexes

			Tracking the background writer

			Inspecting I/O statistics

			Tracking, archiving, and streaming

			Checking SSL connections

			Inspecting transactions in real time

			Tracking VACUUM and CREATE INDEX progress

			Using pg_stat_statements

			Creating log files

			Defining log destination and rotation

			Configuring syslog

			Logging slow queries

			Defining what and how to log

			Monitoring replication conflicts

			Summary

			6

			Optimizing Queries for Good Performance

			Learning what the PostgreSQL optimizer does

			A practical example – how the query optimizer handles a sample query

			Understanding execution plans

			Approaching plans systematically

			Spotting problems

			Understanding and fixing joins

			Getting joins right

			Processing outer joins

			Understanding the join_collapse_limit variable

			Enabling and disabling optimizer settings

			Understanding genetic query optimization

			Partitioning data

			Creating inherited tables

			Applying table constraints

			Modifying inherited structures

			Moving tables in and out of partitioned structures

			Cleaning up data

			Understanding PostgreSQL 17.x partitioning

			Handling partitioning strategies

			Using range partitioning

			Utilizing list partitioning

			Handling hash partitions

			Adjusting parameters for good query performance

			Speeding up sorting

			Speeding up administrative tasks

			Making use of parallel queries

			What’s PostgreSQL able to do in parallel?

			Parallelism in practice

			Introducing just-in-time (JIT) compilation

			Configuring JIT

			Running queries

			Summary

			7

			Writing Stored Procedures

			Understanding stored procedure languages

			Understanding the fundamentals of stored procedures versus functions

			The anatomy of a function

			Exploring various stored procedure languages

			Introducing PL/pgSQL

			Writing stored procedures in PL/pgSQL

			Introducing PL/Perl

			Introducing PL/Python

			Improving functions

			Reducing the number of function calls

			Using functions for various purposes

			Summary

			8

			Managing PostgreSQL Security

			Managing network security

			Understanding bind addresses and connections

			Managing the pg_hba.conf file

			Inspecting the content of pg_hba.conf via SQL

			Handling instance-level security

			Defining database-level security

			Adjusting schema-level permissions

			Working with tables

			Handling column-level security

			Configuring default privileges

			Digging into row-level security

			Inspecting and handling permissions

			Reassigning objects and dropping users

			Summary

			9

			Handling Backup and Recovery

			Performing simple dumps

			Running pg_dump

			Passing passwords and using the service file

			Extracting subsets of data

			Handling various formats

			Replaying backups

			Handling global data

			Summary

			10

			Making Sense of Backups and Replication

			Understanding the transaction log

			Looking at the transaction log

			Understanding checkpoints

			Optimizing the transaction log

			Transaction log archiving and recovery

			Configuring for archiving

			Using archiving libraries

			Configuring the pg_hba.conf file

			Creating base backups

			Replaying the transaction log

			Cleaning up the transaction log archive

			Making use of incremental backups

			Setting up asynchronous replication

			Performing a basic setup

			Halting and resuming replication

			Checking replication to ensure availability

			Performing failovers and understanding timelines

			Managing conflicts

			Making replication more reliable

			Upgrading to synchronous replication

			Adjusting durability

			Making use of replication slots

			Handling physical replication slots

			Handling logical replication slots

			Making use of the CREATE PUBLICATION and CREATE SUBSCRIPTION commands

			Summary

			11

			Deciding on Useful Extensions

			Understanding how extensions work

			Checking for available extensions

			Making use of contrib modules

			Applying bloom filters

			Deploying btree_gist and btree_gin

			dblink – make sure it is outphased

			Fetching files with file_fdw

			Inspecting storage using pageinspect

			Investigating caching with pg_buffercache

			Encrypting data with pgcrypto

			Prewarming caches with pg_prewarm

			Inspecting performance with pg_stat_statements

			Inspecting storage with pgstattuple

			Fuzzy searching with pg_trgm

			Connecting to remote servers using postgres_fdw

			Other useful extensions

			Summary

			12

			Troubleshooting PostgreSQL

			Approaching an unknown database

			Inspecting pg_stat_activity

			Querying pg_stat_activity

			Checking for slow queries

			Inspecting individual queries

			Digging deeper with perf

			Inspecting the log

			Checking for missing indexes

			Checking for memory and I/O

			Understanding noteworthy error scenarios

			Facing clog corruption

			Understanding checkpoint messages

			Managing corrupted data pages

			Careless connection management

			Fighting table bloat

			Classical cloud and Kubernetes problems

			CPU throttling – capacity control unleashed

			Summary

			13

			Migrating to PostgreSQL

			Migrating SQL statements to PostgreSQL

			Using LATERAL joins

			Using grouping sets

			Using the WITH clause – common table expressions

			Using the WITH RECURSIVE clause

			Using the FILTER clause

			Using windowing functions

			Using ordered sets – the WITHIN GROUP clause

			Using the TABLESAMPLE clause

			Using the FETCH FIRST clause

			Using the OFFSET clause

			Using temporal tables

			Matching patterns in time series

			Moving from Oracle to PostgreSQL

			Using the oracle_fdw extension to move data

			CYBERTEC Migrator – large-scale migrations

			Using Ora2Pg to migrate from Oracle

			Common pitfalls

			Summary

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			Welcome to Mastering PostgreSQL 17, the ultimate guide to unlocking the full potential of one of the world’s most popular open source relational databases – PostgreSQL. With decades of history and a community-driven development process, PostgreSQL has become the go-to choice for organizations seeking a robust, scalable, and reliable database solution. This has been true for many years and this will be the case for many years to come.

			In this book, we’ll take you on a comprehensive journey through the latest features and enhancements in PostgreSQL 17, the newest major release of the database system. Whether you’re a seasoned DBA looking to expand your skillset or a developer seeking to improve your application’s performance and scalability, this book is designed to help you master the art of working with PostgreSQL and it will hopefully be an enjoyable thing to read that helps you to understand things better, be more productive, and simply have a better time.

			Mastering the art of handling data is an ever more important skill that is important to have. In a digital world, “data” is more or less the “new oil” – an important asset that drives the world and the importance of data is growing as we speak. Every sector of IT is data-driven. It does not matter whether you are at the forefront of machine learning or whether you are working on bookkeeping software – at the end of the day, IT is all about data.

			PostgreSQL has become a hot technology in the area of open source, and it is an excellent technology to store and process data in the most efficient way possible. This book will teach you how to use PostgreSQL in the most professional way and explain how to operate, optimize, and monitor this core technology, which has become so popular over the years.

			By the end of the book, you will be able to use PostgreSQL to its utmost capacity by applying advanced technology and cutting-edge features.

			Who this book is for

			This book is tailored for database administrators, PostgreSQL developers, and IT professionals aiming to implement advanced functionalities and tackle complex administrative tasks using PostgreSQL 17. A foundational understanding of PostgreSQL and core database concepts is essential, along with familiarity with SQL. Prior experience in database administration will enhance your ability to leverage the advanced techniques discussed throughout the book.

			What this book covers

			Chapter 1, What is New in PostgreSQL 17, guides you through the most important features that have made it into the new release of PostgreSQL and explains how those features can be used.

			Chapter 2, Understanding Transactions and Locking, explains the fundamental concepts of transactions and locking. Both topics are key requirements to understand storage management in PostgreSQL.

			Chapter 3, Making Use of Indexes, introduces the concept of indexes, which are the key ingredient when dealing with performance in general. You will learn about simple indexes as well as more sophisticated concepts.

			Chapter 4, Handling Advanced SQL, unleashes the full power of SQL and outlines the most advanced functionality a query language has to offer. You will learn about windowing functions, ordered sets, hypothetical aggregates, and a lot more. All those techniques will open a totally new world of functionality.

			Chapter 5, Log Files and System Statistics, explains how you can use runtime statistics collected by PostgreSQL to make operations easier and to debug the database. You will be guided through the internal information-gathering infrastructure.

			Chapter 6, Optimizing Queries for Good Performance, is all about good query performance and outlines optimization techniques that are essential to bringing your database up to speed to handle even bigger workloads.

			Chapter 7, Writing Stored Procedures, introduces you to the concept of server-side code such as functions, stored procedures, and a lot more. You will learn how to write triggers and dive into server-side logic.

			Chapter 8, Managing PostgreSQL Security, helps you to make your database more secure and explains what can be done to ensure safety and data protection at all levels.

			Chapter 9, Handling Backup and Recovery, helps you to make copies of your database to protect yourself against crashes and database failure.

			Chapter 10, Making Sense of Backups and Replication, follows up on backups and recovery and explains additional techniques, such as streaming replication, redundancy, and a lot more. It covers the most advanced topics.

			Chapter 11, Deciding on Useful Extensions, explores extensions and additional useful features that can be added to PostgreSQL.

			Chapter 12, Troubleshooting PostgreSQL, completes the circle of topics and explains what can be done if things don’t work as expected. You will learn how to find the most common issues and understand how problems can be fixed.

			Chapter 13, Migrating to PostgreSQL, teaches you how to move your databases to PostgreSQL efficiently and quickly. It covers the most common database systems people will migrate from.

			To get the most out of this book

			This book has been written for a broad audience. However, some basic knowledge of SQL is necessary to follow along and make full use of the examples presented. In general, it is also a good idea to familiarize yourself with basic Unix commands as most of the book has been produced on Linux and macOS.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

				
				
					
							
							pgAdmin4

						
							
							Windows, macOS, or Linux

						
					

					
							
							PostgreSQL 17

						
							
					

					
							
							SQL Shell (psql)

						
							
					

				
			

			Note

			Some parts of chapters, that is, 8, 9, 10, 11, 12, and 13 are mostly dedicated to Unix/Linux and macOS users, and the rest run fine on Windows.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The community has removed this feature and introduced a new variable called transaction_timeout, which can be set per session.”

			A block of code is set as follows:

			
CREATE OR REPLACE FUNCTION on_login_proc()
RETURNS event_trigger AS
$$
BEGIN
 INSERT INTO user_lo (w) VALUES (SESSION_USER);
 RAISE NOTICE 'You are welcome!';
END;
$$ LANGUAGE plpgsql;
			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
test=# SHOW event_triggers;
 event_triggers
			Any command-line input or output is written as follows:

			
test=# CREATE TABLE t_data (
 id int,
 data text
);
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “A new process called summarizer was added to PostgreSQL.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Mastering PostgreSQL 17 – Sixth Edition, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image: Download a free PDF copy of this book]
				

			

			https://packt.link/free-ebook/978-1-83620-597-5

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	

		
			1

			What is New in PostgreSQL 17

			PostgreSQL has come a long way since its first release in 1986. Today, it’s one of the most widely used open source databases in the world. In this chapter, you will be introduced to all the most important and shiny features of PostgreSQL 17. Of course, the list of new stuff is almost infinite; therefore, this chapter will focus on those things that are expected to be most relevant to the majority of users.

			We will cover the following topics in this chapter:

			
					Understanding DBA and administration features

					Using SQL and developer features

					Making use of new replication and backup add-ons

					Considering breaking changes in PostgreSQL 17

			

			By the end of this chapter, you will know all about these shiny new features and you will understand how to use the new functionality in more detail.

			Understanding DBA and administration features

			In every release, a comprehensive set of features is added to make the lives of database administrators (DBAs) easier and more effective. The same is true for PostgreSQL. So, let us take a look and dive into the new features of PostgreSQL 17.

			Terminating long transactions

			PostgreSQL supports various features to limit the duration of statements, the maximum time a query will wait for locks, and a lot more. However, there is one feature that has been requested by customers for some time and has finally made it into the next release of PostgreSQL – the ability to limit the duration of a transaction. In the past, PostgreSQL supported an instance-wide configuration variable called old_snapshot_threshold. The idea of this variable was to limit the maximum length of a transaction to avoid table bloat as well as some other issues that are dangerous for the server. However, the old_snapshot_threshold variable could only be set per instance and not in a more fine-grained way. Thus, the community has removed this feature and introduced a new variable called transaction_timeout, which can be set per session.

			The default value of this new setting is “unlimited” (0):

			
test=# SHOW transaction_timeout ;
 transaction_timeout

 0
(1 row)
			However, if you want to limit the duration of your transaction, you can simply set a value inside your session. The following command sets the configuration variable to 5 seconds (5000 milliseconds):

			
test=# SET transaction_timeout TO 5000;
SET
test=# BEGIN;
BEGIN
test=*# SELECT now();
 now

 2024-06-21 19:37:35.81715+00
(1 row)
test=*# SELECT now();
 now

 2024-06-21 19:37:35.81715+00
(1 row)
test=*# SELECT now();
FATAL: terminating connection due to transaction timeout
server closed the connection unexpectedly
 This probably means the server terminated abnormally
 before or while processing the request.
The connection to the server was lost. Attempting reset: Succeeded.
test=#
			After 5 seconds, our transaction will terminate and PostgreSQL closes the connection entirely. It is the easiest way to eliminate unnecessarily long transactions and prevent table bloat.

			However, PostgreSQL 17 has more to offer.

			Improved event triggers

			Event triggers are an important feature and were introduced in PostgreSQL many years ago. What is the main idea behind an event trigger? Imagine somebody changes your data structure by creating a table, an index, or some other kind of object. An event trigger allows us to react to those events and execute code as needed.

			In PostgreSQL, some functionality has been added. First of all, we now have a configuration variable that looks as follows:

			
test=# SHOW event_triggers;
 event_triggers

 on
(1 row)
			When this one is enabled, event triggers will fire for all applicable statements. The important part here is that only superusers can change this value to a different setting.

			In PostgreSQL, there is also the possibility to create an event trigger on REINDEX. However, this is not as critical as the next new feature that has to be discussed – the ability to trigger LOGIN. Now, what is a LOGIN trigger? It basically calls a function (or fires) when a new connection to the database is established. Needless to say, this is an incredibly powerful footgun and can cause serious issues because many things can go wrong.

			But before we discuss running a trigger during LOGIN, it makes sense to take a look at a simple example and understand how things work in general. The most basic example is to write a trigger that is supposed to track login attempts in a table. To do that, we can create a simple table:

			
login_trigger=# CREATE TABLE user_logins (
 id serial,
 who text
);
CREATE TABLE
			In PostgreSQL, a trigger will always launch a function. Therefore, the first step is to come up with the function we want to run:

			
CREATE FUNCTION on_login_proc()
RETURNS event_trigger AS
$$
BEGIN
 INSERT INTO user_logins (who)
 VALUES (SESSION_USER);
 RAISE NOTICE 'You are welcome!';
END;
$$ LANGUAGE plpgsql;
			What we see here is that the return value of this function is event_trigger – it is a special data type specifically designed for this purpose. The rest is plain and simple PL/pgSQL code that does not require a return value.

			Finally, we can define the trigger itself:

			
CREATE EVENT TRIGGER on_login_event
ON ddl_command_start
EXECUTE FUNCTION on_login_proc();
			Note that the event we are interested in is login. The rest is like a normal event trigger that calls a function of our choice. In the next step, we can already enable the trigger:

			
login_trigger=# ALTER EVENT TRIGGER on_login_trigger ENABLE ALWAYS;
ALTER EVENT TRIGGER
			Congratulations, the trigger has been deployed successfully. Let us log out and reconnect to the database. After we have reestablished the new connection, we can already see the content of our audit table:

			
login_trigger=# SELECT * FROM user_logins;
 id | who
----+-----
 1 | hs
(1 row)
			This looks pretty successful but why did we just call this type of trigger a footgun? Let us modify the function and see what happens:

			
CREATE OR REPLACE FUNCTION on_login_proc()
RETURNS event_trigger AS
$$
BEGIN
 INSERT INTO user_lo (w) VALUES (SESSION_USER);
 RAISE NOTICE 'You are welcome!';
END;
$$ LANGUAGE plpgsql;
			The function is essentially buggy. The consequences are nothing short of a total failure:

			
linux$ psql login_trigger
psql: error: connection to server
 on socket "/tmp/.s.PGSQL.5432"
 failed: FATAL: relation "user_lo" does not exist
LINE 1: INSERT INTO user_lo (w) VALUES (SESSION_USER)
QUERY: INSERT INTO user_lo (w) VALUES (SESSION_USER)
CONTEXT: PL/pgSQL function on_login_proc() line 3 at SQL statement
			The entire authentication process will fail. That is important because small mistakes can lead to large-scale outages. It is therefore highly recommended to think twice before deploying event triggers to handle login attempts. What is important to understand is that PostgreSQL does exactly what it has been designed to do – it just does so in a sensitive area that can cause a lot of trouble.

			The problem is that when you have installed a broken event trigger and you want to get rid of it, you have a hard time ahead. First of all, you have to shut down the database and then you have to start it in single-user mode (https://www.postgresql.org/docs/17/app-postgres.html). In single-user mode, you can then drop the event trigger because, in single-user mode, event triggers are actually disabled – you can therefore log in without those functions being fired.

			Inspecting wait events in PostgreSQL

			PostgreSQL provides a shiny new system view called pg_wait_events. For many years, wait events have been an integral feature of PostgreSQL, and allowed us to monitor and inspect all kinds of performance problems. However, in real life, DBAs often had to switch between the database and the documentation to figure out which type of wait events actually do exist.

			pg_wait_events puts an end to this type of problem and provides an easy way to understand which events are there and what they mean. Here is an example:

			
test=# \x
Expanded display is on.
test=# SELECT *
FROM pg_wait_events
WHERE name = 'DataFileFlush';
-[RECORD1]---
type | IO
name | DataFileFlush
description | Waiting for a relation data file to
 reach durable storage
			What we can see here is that DataFileFlush means that we are waiting for the operating system to write the data to your physical storage device.

			The beauty is that this new view provides a comprehensive overview that might surprise many people:

			
test=# SELECT type, count(*)
FROM pg_wait_events
GROUP BY ROLLUP (1)
ORDER BY 1;
 type | count
-----------+-------
 Activity | 16
 BufferPin | 1
 Client | 9
 Extension | 1
 IO | 77
 IPC | 57
 LWLock | 81
 Lock | 12
 Timeout | 10
 | 264
(10 rows)
			Yes, this is true: PostgreSQL knows a grand total of 264 different types of events, which is a huge number.

			Digging into checkpoints and background writing

			The background writer and the checkpoint process have been around for many years. In the latest release of PostgreSQL, the system statistics related to those processes have been changed. First of all, a couple of fields have been removed from the pg_stat_bgwriter system view:

			
test=# \d pg_stat_bgwriter
 View "pg_catalog.pg_stat_bgwriter"
 Column | Type ...
------------------+-------------------------
 buffers_clean | bigint
 maxwritten_clean | bigint
 buffers_alloc | bigint
 stats_reset | timestamp with time zone
			The view is way more compact now because a great deal of this information has been moved to a new system view that is defined as follows:

			
test=# \d pg_stat_checkpointer
 View "pg_catalog.pg_stat_checkpointer"
 Column | Type ...
---------------------+--------------------------
 num_timed | bigint
 num_requested | bigint
 restartpoints_timed | bigint
 restartpoints_req | bigint
 restartpoints_done | bigint
 write_time | double precision
 sync_time | double precision
 buffers_written | bigint
 stats_reset | timestamp with time zone
			The pg_stat_checkpointer view contains most of the information previously found in pg_stat_bgwriter. Therefore, it is necessary to adjust your monitoring queries to reflect those changes.

			Improving pg_stat_statements

			The pg_stat_statements module is an extension for PostgreSQL that is shipped as part of the contrib package. To me, it has always been the gold standard for performance analysis; therefore, I am happy to see even more changes made to improve the data provided by this view. There are various interesting ones worth mentioning:

			
					CALL statements now support parameters as placeholders

					Allows placeholders for savepoint and 2PC-related commands

					Tracks DEALLOCATE statements

					Adds support for local block I/O statistics

					Adds more details to JIT statistics

					Adds an optional argument to pg_stat_statements_reset()

			

			Overall, these improvements will make pg_stat_statements more compact and thus make it easier to find relevant information.

			Adding permissions for maintenance tasks

			In the past, maintenance was often done by the superuser. The goal is to avoid this. Therefore, more and more permissions and roles have been added over the years to reduce the need for the superuser.

			PostgreSQL 17 has added the MAINTAIN permission to a couple of commands, which allows us to execute various important tasks such as the following:

			
					VACUUM and ANALYZE

					CLUSTER

					REINDEX

					REFRESH MATERIALIZED VIEW

					LOCK TABLE

			

			The feature works as follows:

			
test=# CREATE USER joe;
CREATE ROLE
test=# GRANT MAINTAIN ON …
			The tab completion will reveal the full power of this new feature. The number of options you have are quite numerous:

			
					ALL FUNCTIONS IN SCHEMA DATABASE

					TABLE

					ALL PROCEDURES IN SCHEMA

					DOMAIN

					LANGUAGE

					ROUTINE

					TABLESPACE

					ALL ROUTINES IN SCHEMA

					FOREIGN DATA WRAPPER

					LARGE OBJECT

					SCHEMA

					TYPE

					ALL SEQUENCES IN SCHEMA

					FOREIGN SERVER

					PARAMETER

					SEQUENCE

					ALL TABLES IN SCHEMA

					FUNCTION

					PROCEDURE

			

			After dealing with DBA-related functionalities, we can now turn our attention to some more developer-oriented functionalities.

			Using SQL and developer features

			In this section, we will discuss some of the most desired developer and SQL features that have made it into PostgreSQL 17.

			Teaching COPY error handling

			Let us start with my personal favorite: COPY is finally able to handle errors in a reasonably good way. Many people were frustrated by the error-handling behavior. Standard PostgreSQL will stop COPY when it hits an error. It is good to see that this vital functionality has made it into the official release of PostgreSQL.

			The main question arising is: how can we make use of this feature? Here is a simple command to create a sample table:

			
test=# CREATE TABLE t_data (
 id int,
 data text
);
CREATE TABLE
			The goal is to import the following dataset into the table and make sure those errors are handled properly:

			
1 hans
2 paul
abc joe
4 jane
def james
5 laura
			What we see here is that the data is definitely wrong. The following listing proves this beyond doubt:

			
test=# COPY t_data FROM '/tmp/file.txt';
ERROR: invalid input syntax for type integer: "abc"
CONTEXT: COPY t_data, line 3, column id: "abc"
			Fortunately, we can handle this kind of problem in PostgreSQL 17 and simply ignore the error:

			
test=# COPY t_data FROM '/tmp/file.txt'
WITH (ON_ERROR 'ignore');
NOTICE: 2 rows were skipped due to data type incompatibility
COPY 4
test=# SELECT * FROM t_data ;
 id | data
----+-------
 1 | hans
 2 | paul
 4 | jane
 5 | laura
(4 rows)
			PostgreSQL will import the data and simply skip over invalid data. A NOTICE label will indicate how many rows have been skipped. As of version 17, two types of ON_ERROR settings are supported: stop and ignore. In the future, it is likely that more options will be available.

			Splitting and merging partitions

			In the previous years, there has not been a single version of PostgreSQL that has not provided relevant improvements to partitioning as a whole. The same holds true for the new release. This time, the development team has been working on splitting and merging partitions, which has been a frequent requirement over the years.

			The following listing shows how a simple table including a partition can be created:

			
CREATE TABLE t_timeseries (
 id serial,
 d date,
 payload text
) PARTITION BY RANGE (d);
CREATE TABLE t_timeseries_2024
PARTITION OF t_timeseries
FOR VALUES FROM ('2024-01-01')
TO ('2025-01-01');
			Here is a typical example one would encounter in real life. We have some kind of time series and we are using range partitions to split the data into smaller chunks for various reasons (faster cleanup, scalability, and so on). However, tables are often too large and we have to break them up into smaller chunks. This is when PostgreSQL can do some of the heavy lifting for us:

			
ALTER TABLE t_timeseries
 SPLIT PARTITION t_timeseries_2024
 INTO (
 PARTITION t_timeseries_2024_h1
 FOR VALUES FROM ('2024-01-01') TO ('2024-07-01'),
 PARTITION t_timeseries_2024_h2
 FOR VALUES FROM ('2024-07-01') TO ('2025-01-01')
);
			What we do here is take our partition and split it into two new chunks that contain roughly half of the data. Note that this is a single command that takes care of this operation.

			While splitting partitions into various pieces might be by far the most common new operation, it is also possible to reverse this decision and unify various partitions into a single entity. The way to do that is by using the ALTER TABLE … MERGE PARTITIONS … command, which is equally as easy to use as the SPLIT command that we have observed and tested before:

			
ALTER TABLE t_timeseries
MERGE PARTITIONS (
 t_timeseries_2024_h1,
 t_timeseries_2024_h2
)
INTO t_timeseries_2024;
			All we have to do here is to tell PostgreSQL which partitions are supposed to form the new entity and let the database engine do its magic.

			Tuning numbers into binary and octal values

			One of the lesser-known features that made it into PostgreSQL is the ability to convert numbers to a binary and, respectively, octal representation. Two overloaded functions have been added – to_bin and to_oct:

			
test=# \df *to_bin*
 List of functions
 Schema | Name | Result data type | Argument data types | Type
------------+--------+------------------+---------------------+------
 pg_catalog | to_bin | text | bigint | func
 pg_catalog | to_bin | text | integer | func
(2 rows)
test=# \df *to_oct*
 List of functions
 Schema | Name | Result data type | Argument data types | Type
------------+--------+------------------+---------------------+------
 pg_catalog | to_oct | text | bigint | func
 pg_catalog | to_oct | text | integer | func
(2 rows)
			Both functions can be called with 32- or 64-bit integer values. The following listing shows an example of those functions in action:

			
test=# SELECT to_bin(4711), to_oct(4711);
 to_bin | to_oct
---------------+--------
 1001001100111 | 11147
(1 row)
			Improving MERGE even more

			MERGE has been around for various releases. In SQL, the MERGE command is used to merge data from two tables into one table. This command is useful when you need to update or insert rows based on a common column between the two tables.

			The new release of PostgreSQL has also introduced another feature, namely, WHEN NOT MATCHED BY SOURCE THEN. This additional syntax allows us to define the behavior even better and adds some flexibility.

			Here is how it works:

			
CREATE TABLE t_demo (
 a int PRIMARY KEY,
 b int
);
INSERT INTO t_demo
VALUES (1, 4711),
 (2, 5822),
 (3, 6933);
CREATE TABLE t_source (
 a int PRIMARY KEY,
 b int
);
INSERT INTO t_source
VALUES (2, 6822),
 (3, 6933),
 (4, 1252);
MERGE INTO t_demo AS t1
USING t_source AS t2
ON t1.a = t2.a
WHEN MATCHED THEN
 UPDATE SET b = t1.b * 100
WHEN NOT MATCHED THEN
 INSERT (a, b) VALUES (t2.a, t2.b)
WHEN NOT MATCHED BY SOURCE THEN
 DELETE
RETURNING t1.*, t2.*;
			This MERGE statement will return the following data:

			
 a | b | a | b
---+--------+---+------
 1 | 4711 | |
 2 | 582200 | 2 | 6822
 3 | 693300 | 3 | 6933
 4 | 1252 | 4 | 1252
(4 rows)
			RETURNING * can be really useful to debug the statement as a whole. The same is true in my example: a = 1 is available in the original table but not in the source table and the row is therefore deleted. In the case of a = 2 and a = 3, we got a full match and, therefore, the UPDATE statement will execute. a = 4 is only present in the t_source table and is therefore inserted into the t_demo table.

			The following table shows what we can expect to find after the MERGE operation:

			
 a | b
---+--------
 2 | 582200
 3 | 693300
 4 | 1252
(3 rows)
			As you can see, all three cases defined in the MERGE statement have been executed successfully. The question is: which row was touched by which rule? We can modify the RETURNING clause a bit:

			
RETURNING merge_action(), t1.*, t2.*
			In this case, PostgreSQL will provide us with even more information, as we can see in the following listing:

			
 merge_action | a | b | a | b
--------------+---+--------+---+------
 DELETE | 1 | 4711 | |
 UPDATE | 2 | 582200 | 2 | 6822
 UPDATE | 3 | 693300 | 3 | 6933
 INSERT | 4 | 1252 | 4 | 1252
(4 rows)
			Additional JSON functionality

			The number of JSON-related functionalities has skyrocketed over the years. The same is true for version 17, which provides many more features that will make JSON easier to use and more powerful overall. The first thing that caught my attention was the fact that more standard compliant functions have been added – namely, JSON_EXISTS(), JSON_QUERY(), and JSON_VALUE().

			What is also noteworthy is JSON_TABLE, which allows us to turn a JSON document into a tabular format in one go. This is pretty similar to what XMLTABLE does.

			The syntax might look as follows:

			
SELECT jt.*
FROM customers,
 JSON_TABLE (
 js, '$.favorites[*]' COLUMNS (
 id FOR ORDINALITY,
 country text PATH '$.country',
 branch text PATH '$.industry[*].branch' WITH WRAPPER,
 ceo text PATH '$.company[*].ceo' WITH WRAPPER
)
) AS jt;
			What this does is to address various elements in the JSON document and return it in a format we can actually and safely read.

			Creating BRIN indexes in parallel

			Technically, this is not a developer feature, but given the fact that performance topics are often hard to categorize, I decided to include this here. BRIN indexes are often used in data warehouses to quickly filter data without carrying the overhead of full-blown B-tree indexes. Creating B-trees has long been possible using more than one CPU. However, in PostgreSQL 17, it is now possible to create BRIN indexes in parallel, which can greatly speed up the process

			Making use of new replication and backup add-ons

			As you’ve worked your way through some of the new developer-related features, you’re now ready to address the new version’s powerful set of advanced features related to database administration. In this section, we’ll delve into the more complex world of database management, exploring topics that are new to PostgreSQL 17.

			More powerful pg_dump, again

			pg_dump is the single most well-known tool to run a basic backup in PostgreSQL. It is a command-line utility that comes with PostgreSQL, used for backing up a PostgreSQL database or extracting its schema and data in a format suitable for loading into another PostgreSQL database. The main question is: after 38 years of development, what might have been added to this tool that is not already there? Well, the answer is that you can now define a file that configures what you want to dump and what you want to ignore. By adding the --filter option, we can feed a file containing all our desired rules.

			Handling incremental base backups

			Talking about backups in general, pg_basebackup has also been extended. PostgreSQL 17 supports the idea of incremental base backups. Why is that important? Often, we might want to use a simple backup policy such as “Take a base backup every night and keep it for 7 days.” The problem is that if your database is large (say, 50 TB) but static (virtually no changes), you will waste a lot of space just to store the backup, which can, of course, lead to serious cost considerations. Incremental base backup addresses this issue:

			
summarize_wal = on
wal_summary_keep_time = '7d'
			A new process called summarizer was added to PostgreSQL. It will keep track of all those blocks that have been changed and help pg_basebackup to only copy those blocks that have indeed been touched, which reduces the amount of space needed for the backups to drop significantly.

			Here is how it works:

			
pg_basebackup -h source_server.com \
 -D /data/full --checkpoint=fast
...
pg_basebackup -h source_server.com \
 --checkpoint=fast \
 --incremental=/data/full/backup_manifest \
 -D /backup/incremental
			The secret to success is the backup manifest that is needed to run the incremental backup. It contains all the necessary information to tell the tooling what has to be done.

			After running those two commands, we have a full backup as well as an incremental one. The question now is: how can we combine those things together and turn them into something usable? The following command shows how this works:

			
$ pg_combinebackup --help
pg_combinebackup reconstructs full backups from incrementals.
Usage:
 pg_combinebackup [OPTION]... DIRECTORY...
Options:
 -d, --debug generate lots of debugging output
 -n, --dry-run do not actually do anything
 -N, --no-sync do not wait for changes to be written
 safely to disk
 -o, --output output directory
 -T, --tablespace-mapping=OLDDIR=NEWDIR
 relocate tablespace in OLDDIR to NEWDIR
 --clone clone (reflink) instead of copying files
 --copy-file-range copy using copy_file_range() syscall
 --manifest-checksums=SHA{224,256,384,512}|CRC32C|NONE
 use algorithm for manifest checksums
 --no-manifest suppress generation of backup manifest
 --sync-method=METHOD set method for syncing files to disk
 -V, --version output version information, then exit
 -?, --help show this help, then exit
			pg_combinebackup does exactly what we want. It creates the desired set of files that are then needed for recovery. Given our example, we could use the following instruction to combine our full backup with our incremental backup:

			
pg_combinebackup -o /data/combined \
 /data/full \
 /backup/incremental
			What is noteworthy here is that this process works for one base backup and exactly one incremental backup. However, in real life, we might have to apply a set of incremental backups to reach the desired state. In this case, we can simply list all those incremental ones one after the other, as shown in the next listing:

			
pg_combinebackup -o /data/combined \
 /data/full \
 /backup/incremental \
 /backup/incremental2 \
 /backup/incremental3
			Simply list all the incremental backups to produce the desired state.

			Logical replication upgraded

			In PostgreSQL, there are two types of replication: physical (binary) and logical (text) replication. While binary replication is ideal for all kinds of backup, logical replication has become more and more widespread in heterogeneous environments to achieve cross-cloud portability.

			The trouble is that publications and subscriptions (the backbone of logical replication) were lost during pg_upgrades prior to PostgreSQL 17. This has now changed and has significantly eased the burden.

			Adding pg_createsubscriber

			In the new release, we can all enjoy a new command-line tool called pg_createsubscriber. What is the purpose of this new tool? When people decide to use logical replication, the initial sync phase can take quite a while – especially when the database instance is large. pg_createsubscriber has been designed to help solve this problem. It converts a physical standby (binary replication) and turns it into a logical standby by wiring all the publications, subscriptions, and so on for you. For each database, a replication set will be created and automatically configured. The command has to be executed on the target system.

			Considering breaking changes in PostgreSQL 17

			PostgreSQL tries to keep the user interface as constant as possible. However, once in a while, breaking changes are necessary. This is, of course, also true for the current release.

			Let us take a look at some of those changes. The first thing that has happened is the fact that support for AIX has dropped. This somehow makes sense because nobody here at CYBERTEC nor any other fellow PostgreSQL consultant I know has seen deployment on AIX in years.

			The next thing is that --disable-thread-safety and MSVC builds have been dropped. All those things won’t hurt users at all.

			What is more important is that some toolings have been removed from the contrib section. The one module I am referring to is adminpack, which has not been widely used anyway. The same is true for snapshot too old, which has been replaced with a way better implementation (transaction_timeout).

			Finally, search_path is now fully secured during maintenance operations, which means that maintenance scripts should use fully qualified object names.

			Summary

			The new release has countless new features and it is close to impossible to mention them all. During the development cycle, well over 2,000 commits have happened and thousands of things have been improved.

			Some of the key features, such as fault-tolerant COPY and improved partitioning, have long been awaited and finally made it into the core. Things such as incremental base backups will significantly reduce the cost of large-scale PostgreSQL deployments. And other features simply lead to a way better user experience.

			Therefore, relax, lean back, and enjoy the brand-new release of PostgreSQL, which will be covered in this book in great detail.

			In Chapter 2, Understanding Transactions and Locking, we will discuss important concepts such as transactions and locking, which form a core component of every relational database system.

		

	
		
			2

			Understanding Transactions and Locking

			Now that we’ve been introduced to PostgreSQL 17 and all the new shiny features it brings to the table, we want to focus our attention on the next important topic. Locking is a vital concept for any kind of database. It is not enough to understand how locking works just to write proper or better applications – it is also essential from a performance point of view and, therefore, proper locking behavior will directly translate to an excellent user experience. Without handling locks properly, your applications might not only be slow – they might also behave in very unexpected ways (for example, timeouts, unpredictable results, and a lot more). In my opinion, locking is the key to performance. Why is that the case? There is no slower form of execution than waiting on something. Even more CPUs will not speed up waiting. Therefore, understanding locking and transactions is important for administrators and developers alike.

			In this chapter, you will learn about the following topics:

			
					Working with PostgreSQL transactions

					Understanding basic locking

					Making use of FOR SHARE and FOR UPDATE

					Understanding transaction isolation levels

					Observing deadlocks and similar issues

					Utilizing advisory locks

					Optimizing storage and managing cleanup

			

			By the end of this chapter, you will be able to understand and utilize PostgreSQL transactions in the most efficient way possible. You will see that many applications can benefit from improved performance.

			Working with PostgreSQL transactions

			PostgreSQL provides you with highly advanced transaction machinery that offers countless features to developers and administrators alike. In this section, we will look at the basic concept of transactions. The first important thing to know is that, in PostgreSQL, everything is a transaction. If you send a simple query to the server, it is already a transaction. Here is an example:

			
test=# SELECT now(), now();
 now | now
-------------------------------+-------------------------------
 2024-05-24 12:59:33.594603+02 | 2024-05-24 12:59:33.594603+02
(1 row)
			In this case, the SELECT statement will be a separate transaction. If the same command is executed again, different timestamps will be returned.

			Tip

			Keep in mind that the now() function will return the transaction time. The SELECT statement will, therefore, always return two identical timestamps. If you want the real time, consider using clock_timestamp() instead of now().

			If more than one statement has to be a part of the same transaction, the BEGIN statement must be used, as follows:

			
test=# \h BEGIN
Command: BEGIN
Description: start a transaction block
Syntax:
 BEGIN [WORK | TRANSACTION] [transaction_mode [, ...]]
where transaction_mode is one of:
 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED }
 READ WRITE | READ ONLY
 [NOT] DEFERRABLE
URL: https://www.postgresql.org/docs/17/sql-begin.html
			The BEGIN statement will ensure that more than one command is packed into a transaction. Here is how it works:

			
test=# BEGIN;
BEGIN
test=*# SELECT now();
 now

 2024-05-24 13:00:39.864604+02
(1 row)
test=*# SELECT now();
 now

 2024-05-24 13:00:39.864604+02
(1 row)
test=*# COMMIT;
COMMIT
			The important point here is that both timestamps will be identical. As we mentioned earlier, we are talking about transaction time.

			To end the transaction, COMMIT can be used:

			
test=# \h COMMIT
Command: COMMIT
Description: commit the current transaction
Syntax:
 COMMIT [WORK | TRANSACTION] [AND [NO] CHAIN]
 URL: https://www.postgresql.org/docs/17/sql-commit.html
			There are a few syntax elements here. You can just use COMMIT, COMMIT WORK, or COMMIT TRANSACTION. All three commands have the same meaning. If this is not enough, there’s more – the END command is identical to COMMIT and can be used interchangeably:

			
test=# \h END
Command: END
Description: commit the current transaction
Syntax:
 END [WORK | TRANSACTION] [AND [NO] CHAIN]
 URL: https://www.postgresql.org/docs/17/sql-end.html
			As you can see, the END clause is the same as the COMMIT clause from a feature point of view.

			ROLLBACK is the counterpart of COMMIT. Instead of successfully ending a transaction, it will simply stop the transaction without ever making things visible to other transactions, as shown in the following code:

			
test=# \h ROLLBACK
Command: ROLLBACK
Description: abort the current transaction
Syntax:
 ROLLBACK [WORK | TRANSACTION] [AND [NO] CHAIN]
 URL: https://www.postgresql.org/docs/17/sql-rollback.html
			Some applications use ABORT instead of ROLLBACK (those two commands are interchangeable in PostgreSQL). The meaning is the same. What is really useful in PostgreSQL is the idea of transaction chains. COMMIT AND CHAIN will help you to achieve exactly that:

			
test=# SHOW transaction_read_only;
 transaction_read_only

 Off
 (1 row)
test=# BEGIN TRANSACTION READ ONLY ;
 BEGIN
test=*# SELECT 1;
 ?column?

 1
 (1 row)
test=*# COMMIT AND CHAIN;
 COMMIT
test=*# SHOW transaction_read_only;
 transaction_read_only

 On
 (1 row)
test=*# SELECT 1;
 ?column?

 1
 (1 row)
test=*# COMMIT AND NO CHAIN;
 COMMIT
test=# SHOW transaction_read_only;
 transaction_read_only

 Off
(1 row)
test=# COMMIT;
 WARNING: there is no transaction in progress
COMMIT
			Let’s go through this example step by step:

			
					Display the content of the transaction_read_only setting. It is Off because, by default, we are in read/write mode.

					Start a read-only transaction using BEGIN. This will automatically adjust the transaction_read_only variable.

					Commit the transaction using AND CHAIN, and then PostgreSQL will automatically start a new transaction featuring the same properties as the previous transaction.

			

			In our example, we will also be in read-only mode, just like the transaction before. There is no need to explicitly open a new transaction and set whatever values again, which can dramatically reduce the number of round trips between the application and the server. In the case of high latency systems, saving on commands can really make a difference. If a transaction is committed normally (= NO CHAIN), the read-only attribute of the transaction will be gone.

			Handling errors inside a transaction

			In this section, we will dig deeper into error handling and learn how to handle problems inside a database transaction. It is not always the case that transactions are correct from beginning to end. Things might just go wrong for whatever reason. However, in PostgreSQL, only error-free transactions can be committed. The following listing shows a failing transaction, which errors out due to a division by zero error:

			
test=# BEGIN;
 BEGIN
test=*# SELECT 1;
 ?column?

 1
 (1 row)
test=*# SELECT 1 / 0;
 ERROR: division by zero
test=!# SELECT 1;
 ERROR: current transaction is aborted, commands ignored until end of transaction block
test=!# SELECT 1;
 ERROR: current transaction is aborted, commands ignored until end of transaction block
test=!# COMMIT;
 ROLLBACK
			Note that division by zero did not work out.

			Note

			In any proper database, an instruction similar to this will instantly error out and make the statement fail.

			It is important to point out that PostgreSQL will error out. After an error has occurred, no more instructions will be accepted, even if those instructions are semantically and syntactically correct. It is still possible to issue COMMIT. However, PostgreSQL will roll back the transaction because it is the only correct thing to be done at that point.

			Making use of SAVEPOINT

			In professional applications, it can be pretty hard to write reasonably long transactions without ever encountering a single error. To solve this problem, users can utilize something called SAVEPOINT, as follows:

			
test=# \h SAVEPOINT
Command: SAVEPOINT
Description: define a new savepoint within the current transaction
Syntax:
SAVEPOINT savepoint_name
URL: https://www.postgresql.org/docs/17/sql-savepoint.html
			As the name indicates, a savepoint is a safe place inside a transaction that the application can return to if things go terribly wrong. Here is an example:

			
test=# BEGIN;
BEGIN
test=*# SELECT 1;
 ?column?

 1
 (1 row)
test=*# SAVEPOINT a;
SAVEPOINT
test=*# SELECT 2 / 0;
ERROR: division by zero
test=!# SELECT 2;
ERROR: current transaction is aborted, commands ignored until end of transaction block
test=!# ROLLBACK TO SAVEPOINT a;
ROLLBACK
test=*# SELECT 3;
 ?column?

 3
 (1 row)
test=*# COMMIT;
COMMIT
			After the first SELECT clause, I decided to create a savepoint to make sure that the application can always return to this point inside the transaction. As you can see, the savepoint has a name, which is referred to later.

			After returning to the savepoint called a, the transaction can proceed normally. The code has jumped back to before the error, so everything is fine.

			The number of savepoints inside a transaction is practically unlimited. We have seen customers with over 250,000 savepoints in a single operation. PostgreSQL can easily handle this.

			If you want to remove a savepoint from inside a transaction, there’s the RELEASE SAVEPOINT command:

			
test=# \h RELEASE
Command: RELEASE SAVEPOINT
Description: destroy a previously defined savepoint
Syntax:
 RELEASE [SAVEPOINT] savepoint_name
URL: https://www.postgresql.org/docs/17/sql-release-savepoint.html
			Many people ask what will happen if you try to reach a savepoint after a transaction has ended. The answer is that the life of a savepoint ends as soon as the transaction ends. In other words, there is no way to return to a certain point in time after the transactions have been completed.

			Transactional DDLs

			PostgreSQL has a very nice feature that is unfortunately not present in many commercial database systems. In PostgreSQL, it is possible to run DDLs (commands that change the data structure) inside a transaction block. In a typical commercial system, a DDL will implicitly commit the current transaction by default. This does not occur in PostgreSQL.

			Apart from some minor exceptions (DROP DATABASE, CREATE TABLESPACE, DROP TABLESPACE, and so on), all DDLs in PostgreSQL are transactional, which is a huge advantage and a real benefit to end users.

			Here is an example:

			
test=# BEGIN;
BEGIN
test=*# CREATE TABLE t_test (id int);
CREATE TABLE
test=*# ALTER TABLE t_test ALTER COLUMN id TYPE int8;
ALTER TABLE
test=*# \d t_test
 Table "public.t_test"
 Column | Type | Collation | Nullable | Default
--------+--------+-----------+----------+---------
 id | bigint | | |
test=*# ROLLBACK;
ROLLBACK
test=# \d t_test
Did not find any relation named "t_test".
			In this example, a table has been created and modified, and the entire transaction has been aborted. As you can see, there is no implicit COMMIT command or any other strange behavior. PostgreSQL simply acts as expected.

			Transactional DDLs are especially important if you want to deploy software. Just imagine running a content management system (CMS). If a new version is released, you’ll want to upgrade. Running the old version would still be okay; running the new version would also be okay, but you really don’t want a mixture of old and new. Therefore, deploying an upgrade in a single transaction is highly beneficial, as it upgrades an atomic operation.

			Note

			To facilitate good software practices, we can include several separately coded modules from our source control system into a single deployment transaction.

			After dealing with transaction and error handling in general, it is important to focus our attention more on locking and concurrency.

			Understanding basic locking

			In this section, you will learn about basic locking mechanisms. The goal is to understand how locking works in general and how to get simple applications right.

			To show you how things work, we will create a simple table. For demonstrative purposes, I will add one row to the table using a simple INSERT command:

			
test=# CREATE TABLE t_test (id int);
CREATE TABLE
test=# INSERT INTO t_test VALUES (0);
INSERT 0 1
			The first important thing is that tables can be read concurrently. Many users reading the same data at the same time won’t block each other. This allows PostgreSQL to handle thousands of users without any problems.

			The question now is what happens if reads and writes occur at the same time? Here is an example. Let’s assume that the table contains one row and id = 0:

			
				
					
					
				
				
					
							
							Transaction 1

						
							
							Transaction 2

						
					

				
				
					
							
							BEGIN;

						
							
							BEGIN;

						
					

					
							
							UPDATE t_test SET id = id + 1 RETURNING *;

						
							
					

					
							
							User will see 1

						
							
							SELECT * FROM t_test

						
					

					
							
							
							User will see 0

						
					

					
					
				
			

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
						
			
			
						
			
			
						
			
			
						
			
			
			
						
			
						
			
			
			
			
						
			
			
			
			
			
						
			
			
			
			
			
						
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
						
			
			
			
						
			
						
			
			
			
			
						
			
			
			
			
			
			
			
			
						
			
			
			
			
						
			
			
			
			
			
			
			
			
			
			
						
			
			
			
						
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
						
			
						
			
						
			
			
						
						
						
						
			
						
						
						
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

		
		Contents

			
					Mastering PostgreSQL 17

					Contributors

					About the author

					About the reviewer

					Preface
					
							Who this book is for

							What this book covers

							To get the most out of this book

							Conventions used

							Get in touch

							Share Your Thoughts

							Download a free PDF copy of this book

					

				

					Chapter 1: What is New in PostgreSQL 17
					
							Understanding DBA and administration features
							
									Terminating long transactions

									Improved event triggers

									Inspecting wait events in PostgreSQL

									Digging into checkpoints and background writing

									Improving pg_stat_statements

									Adding permissions for maintenance tasks

							

						

							Using SQL and developer features
							
									Teaching COPY error handling

									Splitting and merging partitions

									Tuning numbers into binary and octal values

									Improving MERGE even more

									Additional JSON functionality

									Creating BRIN indexes in parallel

							

						

							Making use of new replication and backup add-ons
							
									More powerful pg_dump, again

									Handling incremental base backups

									Logical replication upgraded

									Adding pg_createsubscriber

							

						

							Considering breaking changes in PostgreSQL 17

							Summary

					

				

					Chapter 2: Understanding Transactions and Locking
					
							Working with PostgreSQL transactions
							
									Handling errors inside a transaction

									Making use of SAVEPOINT

									Transactional DDLs

							

						

							Understanding basic locking
							
									Avoiding typical mistakes and explicit locking

							

						

							Making use of FOR SHARE and FOR UPDATE

							Understanding transaction isolation levels
							
									Considering serializable snapshot isolation transactions

							

						

							Observing deadlocks and similar issues

							Utilizing advisory locks

							Optimizing storage and managing cleanup
							
									Configuring VACUUM and autovacuum

									Watching VACUUM at work

									Making use of more VACUUM features

							

						

							Summary

					

				

					Chapter 3: Making Use of Indexes
					
							Understanding simple queries and the cost model
							
									Making use of EXPLAIN

									Digging into the PostgreSQL cost model

									Deploying simple indexes

									Making use of sorted output

									Using more than one index at a time

									Using bitmap scans effectively

									Using indexes intelligently

									Understanding index de-duplication

							

						

							Improving speed using clustered tables
							
									Clustering tables

									Making use of index-only scans

							

						

							Understanding additional B-tree features
							
									Combined indexes

									Adding functional indexes

									Reducing space consumption

									Adding data while indexing

							

						

							Introducing operator classes
							
									Creating an operator class for a B-tree

							

						

							Understanding PostgreSQL index types
							
									Hash indexes

									GiST indexes

									GIN indexes

									SP-GiST indexes

									BRINs

									Adding additional indexes

							

						

							Achieving better answers with fuzzy searching
							
									Taking advantage of pg_trgm

									Speeding up LIKE queries

									Handling regular expressions

							

						

							Understanding full-text searches
							
									Comparing strings

									Defining GIN indexes

									Debugging your search

									Gathering word statistics

									Taking advantage of exclusion operators

							

						

							Summary

					

				

					Chapter 4: Handling Advanced SQL
					
							Supporting range types
							
									Querying ranges efficiently

									Handling multirange types

									When to use range types

							

						

							Introducing grouping sets
							
									Loading some sample data

									Applying grouping sets

									Investigating performance

									Combining grouping sets with the FILTER clause

							

						

							Making use of ordered sets

							Understanding hypothetical aggregates

							Utilizing windowing functions and analytics
							
									Partitioning data

									Ordering data inside a window

									Using sliding windows

									Abstracting window clauses

									Using on-board windowing functions

							

						

							Writing your own aggregates
							
									Creating simple aggregates

									Adding support for parallel queries

									Improving efficiency

									Writing hypothetical aggregates

							

						

							Handling recursions
							
									UNION versus UNION ALL

									Inspecting a practical example

							

						

							Working with JSON and JSONB
							
									Displaying and creating JSON documents

									Turning JSON documents into rows

									Accessing a JSON document

									Making use of JSONPath

							

						

							Summary

					

				

					Chapter 5: Log Files and System Statistics
					
							Gathering runtime statistics
							
									pg_stat_activity – checking live traffic

									Inspecting databases

									Inspecting tables

									Making sense of pg_stat_user_tables

									Digging into indexes

									Tracking the background writer

									Inspecting I/O statistics

									Tracking, archiving, and streaming

									Checking SSL connections

									Inspecting transactions in real time

									Tracking VACUUM and CREATE INDEX progress

									Using pg_stat_statements

							

						

							Creating log files
							
									Defining log destination and rotation

									Configuring syslog

									Logging slow queries

									Defining what and how to log

									Monitoring replication conflicts

							

						

							Summary

					

				

					Chapter 6: Optimizing Queries for Good Performance
					
							Learning what the PostgreSQL optimizer does
							
									A practical example – how the query optimizer handles a sample query

							

						

							Understanding execution plans
							
									Approaching plans systematically

									Spotting problems

							

						

							Understanding and fixing joins
							
									Getting joins right

									Processing outer joins

									Understanding the join_collapse_limit variable

							

						

							Enabling and disabling optimizer settings
							
									Understanding genetic query optimization

							

						

							Partitioning data
							
									Creating inherited tables

									Applying table constraints

									Modifying inherited structures

									Moving tables in and out of partitioned structures

									Cleaning up data

									Understanding PostgreSQL 17.x partitioning

									Handling partitioning strategies

									Using range partitioning

									Utilizing list partitioning

									Handling hash partitions

							

						

							Adjusting parameters for good query performance
							
									Speeding up sorting

									Speeding up administrative tasks

							

						

							Making use of parallel queries
							
									What’s PostgreSQL able to do in parallel?

									Parallelism in practice

							

						

							Introducing just-in-time (JIT) compilation
							
									Configuring JIT

									Running queries

							

						

							Summary

					

				

					Chapter 7: Writing Stored Procedures
					
							Understanding stored procedure languages
							
									Understanding the fundamentals of stored procedures versus functions

									The anatomy of a function

							

						

							Exploring various stored procedure languages
							
									Introducing PL/pgSQL

									Writing stored procedures in PL/pgSQL

									Introducing PL/Perl

									Introducing PL/Python

							

						

							Improving functions
							
									Reducing the number of function calls

							

						

							Using functions for various purposes

							Summary

					

				

					Chapter 8: Managing PostgreSQL Security
					
							Managing network security
							
									Understanding bind addresses and connections

									Managing the pg_hba.conf file

									Inspecting the content of pg_hba.conf via SQL

									Handling instance-level security

									Defining database-level security

									Adjusting schema-level permissions

									Working with tables

									Handling column-level security

									Configuring default privileges

							

						

							Digging into row-level security

							Inspecting and handling permissions

							Reassigning objects and dropping users

							Summary

					

				

					Chapter 9: Handling Backup and Recovery
					
							Performing simple dumps
							
									Running pg_dump

									Passing passwords and using the service file

									Extracting subsets of data

							

						

							Handling various formats

							Replaying backups

							Handling global data

							Summary

					

				

					Chapter 10: Making Sense of Backups and Replication
					
							Understanding the transaction log
							
									Looking at the transaction log

									Understanding checkpoints

									Optimizing the transaction log

							

						

							Transaction log archiving and recovery
							
									Configuring for archiving

									Using archiving libraries

									Configuring the pg_hba.conf file

									Creating base backups

									Replaying the transaction log

									Cleaning up the transaction log archive

									Making use of incremental backups

							

						

							Setting up asynchronous replication
							
									Performing a basic setup

									Halting and resuming replication

									Checking replication to ensure availability

									Performing failovers and understanding timelines

									Managing conflicts

									Making replication more reliable

							

						

							Upgrading to synchronous replication
							
									Adjusting durability

							

						

							Making use of replication slots
							
									Handling physical replication slots

									Handling logical replication slots

							

						

							Making use of the CREATE PUBLICATION and CREATE SUBSCRIPTION commands

							Summary

					

				

					Chapter 11: Deciding on Useful Extensions
					
							Understanding how extensions work
							
									Checking for available extensions

							

						

							Making use of contrib modules
							
									Applying bloom filters

									Deploying btree_gist and btree_gin

									dblink – make sure it is outphased

									Fetching files with file_fdw

									Inspecting storage using pageinspect

									Investigating caching with pg_buffercache

									Encrypting data with pgcrypto

									Prewarming caches with pg_prewarm

									Inspecting performance with pg_stat_statements

									Inspecting storage with pgstattuple

									Fuzzy searching with pg_trgm

									Connecting to remote servers using postgres_fdw

							

						

							Other useful extensions

							Summary

					

				

					Chapter 12: Troubleshooting PostgreSQL
					
							Approaching an unknown database

							Inspecting pg_stat_activity
							
									Querying pg_stat_activity

							

						

							Checking for slow queries
							
									Inspecting individual queries

									Digging deeper with perf

							

						

							Inspecting the log

							Checking for missing indexes

							Checking for memory and I/O

							Understanding noteworthy error scenarios
							
									Facing clog corruption

									Understanding checkpoint messages

									Managing corrupted data pages

									Careless connection management

									Fighting table bloat

							

						

							Classical cloud and Kubernetes problems
							
									CPU throttling – capacity control unleashed

							

						

							Summary

					

				

					Chapter 13: Migrating to PostgreSQL
					
							Migrating SQL statements to PostgreSQL
							
									Using LATERAL joins

									Using grouping sets

									Using the WITH clause – common table expressions

									Using the WITH RECURSIVE clause

									Using the FILTER clause

									Using windowing functions

									Using ordered sets – the WITHIN GROUP clause

									Using the TABLESAMPLE clause

									Using the FETCH FIRST clause

									Using the OFFSET clause

									Using temporal tables

									Matching patterns in time series

							

						

							Moving from Oracle to PostgreSQL
							
									Using the oracle_fdw extension to move data

									CYBERTEC Migrator – large-scale migrations

									Using Ora2Pg to migrate from Oracle

									Common pitfalls

							

						

							Summary

					

				

					Index
					
							Why subscribe?

					

				

					Other Books You May Enjoy
					
							Packt is searching for authors like you

							Share Your Thoughts

							Download a free PDF copy of this book

					

				

			

		
		
		Landmarks

			
					Cover

					Table of Contents

					Index

			

		

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/image/B31013_QR_Free_PDF.jpg
s

“-..n..lﬁ.

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

OEBPS/Fonts/MyriadPro-LightIt.otf

OEBPS/image/Packt_Logo_New.png
<PACKD

OEBPS/image/Cover.jpg
Mastering
PostgreSQL 17

Elevate your database skills with advanced deployment,
optimization, and security strategies

HANS-JURGEN SCHONIG

OEBPS/Fonts/CourierStd.otf

