

 [image: [Bild]]

 [image: [Bild]]

Inhaltsverzeichnis

 Vorwort

 Mitwirkende

 Über den Autor

 Über die Fachgutachter

 Kapitel 1: Wartbarkeit

 1.1 Was bedeutet Wartbarkeit überhaupt?

 1.2 Wartbarkeit führt zu Funktionalität

 1.3 Wartbarkeit erzeugt Entwicklerfreude

 1.4 Wartbarkeit unterstützt die Entscheidungsfindung

 1.5 Die Wartbarkeit bewahren

 Kapitel 2: Was ist so falsch an Schichten?

 2.1 Sie fördern ein datenbankgetriebenes Design

 2.2 Sie sind anfällig für Abkürzungen

 2.3 Sie werden immer schwieriger zu testen

 2.4 Sie verbergen die Use Cases

 2.5 Sie erschweren das parallele Arbeiten

 2.6 Wie hilft Ihnen dies, wartbare Software zu entwickeln?

 Kapitel 3: Abhängigkeiten umkehren

 3.1 Das Single-Responsibility-Prinzip

 3.2 Eine Geschichte über Nebenwirkungen

 3.3 Das Dependency-Inversion-Prinzip

 3.4 Clean Architecture

 3.5 Hexagonale Architektur

 3.6 Wie hilft Ihnen dies, wartbare Software zu entwickeln?

 Kapitel 4: Code organisieren

 4.1 Nach Schichten organisieren

 4.2 Nach Features organisieren

 4.3 Eine Architektur-explizite Paketstruktur

 4.4 Die Rolle der Dependency Injection

 4.5 Wie hilft Ihnen dies, wartbare Software zu entwickeln?

 Kapitel 5: Einen Use Case implementieren

 5.1 Das Domänenmodell implementieren

 5.2 Ein Use Case im Überblick

 5.3 Die Eingabe validieren

 5.4 Die Macht von Konstruktoren

 5.5 Unterschiedliche Eingabemodelle für unterschiedliche Use Cases

 5.6 Business-Regeln validieren

 5.7 Reiches versus anämisches Domänenmodell

 5.8 Unterschiedliche Ausgabemodelle für unterschiedliche Use Cases

 5.9 Was ist mit »read only« Use Cases?

 5.10 Wie hilft Ihnen dies, wartbare Software zu entwickeln?

 Kapitel 6: Einen Web-Adapter implementieren

 6.1 Dependency Inversion

 6.2 Die Verantwortlichkeiten eines Web-Adapters

 6.3 Wie hilft Ihnen dies, wartbare Software zu entwickeln?

 Kapitel 7: Einen Persistenz-Adapter implementieren

 7.1 Dependency Inversion

 7.2 Verantwortlichkeiten eines Persistenz-Adapters

 7.3 Portschnittstellen aufteilen

 7.4 Persistenz-Adapter aufteilen

 7.5 Ein Beispiel mit Spring Data JPA

 7.6 Was ist mit Datenbanktransaktionen?

 7.7 Wie hilft Ihnen dies, wartbare Software zu entwickeln?

 Kapitel 8: Architekturelemente testen

 8.1 Die Testpyramide

 8.2 Testen eines Domänen-Entitys mit Unit-Tests

 8.3 Testen eines Use Case mit Unit-Tests

 8.4 Testen eines Web-Adapters mit Integrationstests

 8.5 Testen eines Persistenz-Adapters mit Integrationstests

 8.6 Testen der Hauptpfade mit Systemtests

 8.7 Wie viel Testen ist genug?

 8.8 Wie hilft Ihnen dies, wartbare Software zu entwickeln?

 Kapitel 9: Mapping über Grenzen hinweg

 9.1 Die »No Mapping«-Strategie

 9.2 Die »Zwei-Wege«-Mapping-Strategie

 9.3 Die »vollständige« Mapping-Strategie

 9.4 Die »Ein-Weg«-Mapping-Strategie

 9.5 Wann wird welche Mapping-Strategie benutzt?

 9.6 Wie hilft Ihnen dies, wartbare Software zu entwickeln?

 Kapitel 10: Die Anwendung zusammensetzen

 10.1 Warum ist das Zusammensetzen wichtig?

 10.2 Konfiguration mit einfachem Code

 10.3 Konfiguration mit Classpath-Scanning von Spring

 10.4 Konfiguration mit Java Config von Spring

 10.5 Wie hilft Ihnen dies, wartbare Software zu entwickeln?

 Kapitel 11: Bewusst Abkürzungen nehmen

 11.1 Wieso Abkürzungen wie eingeschlagene Fenster sind

 11.2 Die Verantwortung, sauber zu beginnen

 11.3 Modelle zwischen Use Cases teilen

 11.4 Domänen-Entities als Ein- oder Ausgabemodell benutzen

 11.5 Eingangsports überspringen

 11.6 Services überspringen

 11.7 Wie hilft Ihnen dies, wartbare Software zu entwickeln?

 Kapitel 12: Architekturgrenzen erzwingen

 12.1 Grenzen und Abhängigkeiten

 12.2 Modifier für die Sichtbarkeit

 12.3 Fitnessfunktion nach dem Kompilieren

 12.4 Build-Artefakte

 12.5 Wie hilft Ihnen dies, wartbare Software zu entwickeln?

 Kapitel 13: Mehrere Bounded Contexts verwalten

 13.1 Ein Hexagon pro Bounded Context?

 13.2 Entkoppelte Bounded Contexts

 13.3 Angemessen gekoppelte Bounded Contexts

 13.4 Wie hilft Ihnen dies, wartbare Software zu entwickeln?

 Kapitel 14: Ein komponentenbasierter Ansatz für die Softwarearchitektur

 14.1 Modularität durch Komponenten

 14.2 Fallstudie – eine »Check Engine«-Komponente erstellen

 14.3 Komponentengrenzen validieren

 14.4 Wie hilft Ihnen dies, wartbare Software zu entwickeln?

 Kapitel 15: Sich für einen Architekturstil entscheiden

 15.1 Beginnen Sie einfach

 15.2 Entwickeln Sie die Domäne

 15.3 Vertrauen Sie auf Ihre Erfahrung

 15.4 Es kommt drauf an

Tom Hombergs

Clean Architecture Praxisbuch

für saubere Software-Architektur
und wartbaren Code

Übersetzung aus dem Englischen von Kathrin Lichtenberg

[image: [Bild]]

 Impressum

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

ISBN 978-3-7475-0816-9

1. Auflage 2024

www.mitp.de

E-Mail: mitp-verlag@sigloch.de

Telefon: +49 7953 / 7189 - 079

Telefax: +49 7953 / 7189 - 082

© 2024 mitp Verlags GmbH & Co. KG

 Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

 Dieses E-Book verwendet das EPUB-Format und ist optimiert für die Nutzung mit Apple Books auf dem iPad von Apple. Bei der Verwendung von anderen Readern kann es zu Darstellungsproblemen kommen.

 Der Verlag räumt Ihnen mit dem Kauf des E-Books das Recht ein, die Inhalte im Rahmen des geltenden Urheberrechts zu nutzen. Dieses Werk, einschließlich aller seiner Teile, ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlags unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

 Der Verlag schützt seine E-Books vor Missbrauch des Urheberrechts durch ein digitales Rechtemanagement. Bei Kauf im Webshop des Verlages werden die E-Books mit einem nicht sichtbaren digitalen Wasserzeichen individuell pro Nutzer signiert. Bei Kauf in anderen E-Book-Webshops erfolgt die Signatur durch die Shopbetreiber. Angaben zu diesem DRM finden Sie auf den Seiten der jeweiligen Anbieter.

Lektorat: Janina Vervost

Fachkorrektorat: Tom Hombergs

Sprachkorrektorat: Petra Heubach-Erdmann

Covergestaltung: Christian Kalkert

Coverbild: © Left / stock.adobe.com

Satz: III-satz, Kiel, www.drei-satz.de

electronic publication: III-satz, Kiel, www.drei-satz.de

 Vorwort

 Das Paradies fürs Entwicklungsteam: Domänenlogik ist einfach zu testen, Infrastruktur und Technologie für Tests einfach zu simulieren (zu »mocken«) und es gibt eine ganz saubere Trennung zwischen Domänencode und technischem Code. Selbst die Migration von einer Technologie auf eine andere geht leicht von der Hand. Keine endlosen Diskussionen mehr, welcher Teil des Codes dieses verzwickte kleine Feature implementieren soll, das die Verkaufsleute schon der Fachabteilung versprochen haben. Dieses Paradies heißt »Clean Architecture«, und Tom wird Sie auf Ihrer Reise dorthin begleiten.

 Seit einigen Jahren gibt es diese Clean Architecture unter verschiedenen Namen (etwa: Hexagonale Architektur, Ports-und-Adapter-Architektur, Zwiebelarchitektur). Dem Ganzen liegt eine ziemlich einfache Idee zugrunde: zwei konzentrische Kreise, die Domäne und Technik innerhalb der Software trennen. Abhängigkeiten fließen grundsätzlich nach innen, von der Technologie zur Domäne. Domänenklassen dürfen niemals Abhängigkeiten zu technischen Klassen haben.

 Zu schade nur, dass die meisten der Originalquellen es versäumt haben, die Details der Umsetzung zu erklären, beispielsweise wie Packages und Code organisiert sein sollten. Toms Buch füllt diese Lücke perfekt aus. Anhand eines anschaulichen Beispiels führt Tom Sie (und Ihr Entwicklungsteam) zu einer ausgesprochen gut wartbaren und sauberen architektonischen Struktur.

 Tun Sie sich selbst und Ihrem Entwicklungsteam einen Gefallen, geben Sie der Clean Architecture eine Chance. Ich verspreche Ihnen, dass Sie es nicht bereuen werden!

 Gernot StarkeKöln, Juni 2023Pragmatischer Softwarearchitekt seit den 1990er-Jahren, Gründer von arc42, Mitgründer von iSAQB und Nerd

 Mitwirkende

 Über den Autor

 Tom Hombergs ist Softwareentwickler, Autor und Simplicity Nerd. Komplexität ist sein Kryptonit, also zerlegt er komplexe Probleme stets in ihre Einzelteile, um sie zu verstehen. Das Ergebnis sind einfacher Code und einfache Texte, sei es in Artikeln auf seinem Blog, in seinen Büchern oder in Dokumentationen, die er für andere Entwickler schreibt. Tom arbeitet aktuell bei Atlassian in Sydney, wo er für die Developer Experience (DX) des Java Tech Stacks verantwortlich ist, der von Hunderten Entwicklern weltweit verwendet wird.

 Über die Fachgutachter

 Alexandros Trifyllis ist freiberuflicher Softwareentwickler mit 15-jähriger Erfahrung. Er war an großen Projekten im öffentlichen und privaten Sektor sowie auf EU-Ebene beteiligt.

 Seine Interessenbereiche umfassen Backend-Entwicklung (Spring Boot), Frontend-Entwicklung (Angular) und verschiedene Architekturpraktiken (hexagonal/DDD). Außerdem mischt er sich gern in DevOps-Aufgaben ein (AWS, Terraform und Kubernetes). In den letzten Jahren hat er ein Interesse an DX und Developer Productivity Engineering (DPE) entwickelt sowie ganz allgemein darüber nachgedacht, wie man die Arbeit von Entwicklern einfacher und angenehmer gestalten kann.

 Artem Gorbounov ist Java-Full-Stack-Entwickler mit einer Leidenschaft für saubere Architektur und fünfjähriger Industrieerfahrung. Momentan arbeitet er bei OneUp, wo er sich auf das Bauen robuster und skalierbarer Webanwendungen spezialisiert hat. Artem Gorbounov besitzt eine Amazon-Zertifizierung, die seine Expertise in Cloud-Computing-Technologien beweist. Er ist überzeugt, dass ein wahrer Full-Stack-Programmierer ein umfassendes Verständnis des ganzen technologischen Stacks haben sollte, von der Datenbank bis zur Infrastruktur, mit einer klaren Vorstellung von der Anwendungsarchitektur.

 Dr. Gernot Starke ist Trainer und Berater für Softwarearchitektur, InnoQ-Fellow, Mitgründer von arc42 und iSAQB, Gründer von aim42, ehemaliger technischer Direktor des Sun Microsystems Object-Reality-Center und ein Nerd, der Bulletproof Coffee genießt.

 Jonas Havers ist freiberuflicher Full-Stack-Softwareentwickler mit mehr als 15 Jahren Berufserfahrung bei internationalen E-Commerce-Unternehmen. Als Solution- und Anwendungsarchitekt hilft er Kunden, große Business-Softwaresysteme zu entwerfen und zu bauen, die es ihnen ermöglichen, schnell auf Änderungen zu reagieren und in ihrem Markt erfolgreicher zu werden. Er ist bewandert in einer Vielzahl von Werkzeugen, Methodologien und Programmiersprachen, darunter Java, Kotlin und JavaScript. Jonas erklärt, diskutiert und implementiert regelmäßig verschiedene Softwaredesigns und Softwarearchitekturen und teilt sein Wissen und seine Erfahrungen gern mit den Mitgliedern seines Projektteams sowie seinen Studenten als gefragter Gastdozent an Universitäten.

 Jörg Gellien hilft Teams in einem innovativen Unternehmen, moderne, hochskalierbare Anwendungen zu entwerfen und zu entwickeln, um Geschäftsanforderungen gerecht zu werden. Er ist Experte für Softwarearchitektur und Java/Spring-Entwicklung. Starke Motivationen für seine Arbeit sind die Vorstellung von Ende-zu-Ende-Verantwortlichkeit für ein Produkt und die Benutzung von cloudbasierten Services.

 Jo Vanthournout ist seit fast 20 Jahren Java-Entwickler und -Architekt. Er hatte das Glück, seine Karriere als Entwickler bei einem der ersten Extreme-Programming-Projekte in Belgien beginnen zu können. Seitdem versucht er, die Werte des agilen Entwickelns zu leben und weiterzuverbreiten. Jo Vanthournout hat lebhaftes Interesse an DDD und benutzt deren Prinzipien und Techniken täglich. Er wird nie der beste Entwickler im Team sein, doch man kann immer darauf vertrauen, dass er einen pragmatischen Überblick über die jeweilige Problemdomäne hat, gemeine Fragen stellt und die Teammitglieder an die Einhaltung der Teamwerte erinnert. Er hat eine wunderbare Frau und zwei Töchter. Wenn er nicht programmiert, dann läuft er durch den Wald, besucht Schlachtfelder des Zweiten Weltkriegs oder spielt Minecraft mit seinen Kindern.

 K. Siva Prasad Reddy ist Softwarearchitekt mit mehr als 18 Jahren Erfahrung beim Bauen skalierbarer Softwaresysteme, vor allem mithilfe der Java-Plattform.

 Er ist ein begeisterter Anhänger agiler Praktiken und verfolgt einen pragmatischen Ansatz bei Softwaredesign und -architektur. Seine Erkenntnisse und Gedanken kann man unter https://sivalabs.in verfolgen.

 Lorenzo Bettini (https://www.lorenzobettini.it) ist Informatikdozent beim DISIA der Universität Florenz. Seine Forschung befasst sich mit dem Design, der Theorie und der Implementierung von Programmiersprachen mit IDE-Unterstützung.

 Er hat mehr als 90 Forschungsartikel geschrieben, die bei internationalen Konferenzen und in internationalen Zeitschriften veröffentlicht wurden, ist Autor von zwei Ausgaben des Buches Implementing Domain-Specific Languages with Xtext and Xtend (Packt Publishing) sowie des Buches Test-Driven Development, Build Automation, Continuous Integration (with Java, Eclipse and friends) (Leanpub).

 Maria Luisa Della Vedova ist eine leidenschaftliche Softwareentwicklerin, die sich der Schaffung sinnvoller und benutzerzentrierter Lösungen, dem kontinuierlichen Lernen und der Zusammenarbeit verschrieben hat, um einen positiven Einfluss auf das Leben anderer Menschen auszuüben.

 Matt Penning unterstützt Unternehmen seit mehr als drei Jahrzehnten mit technischen Ratschlägen und Softwareentwicklung. Er ist bekannt für seine wohldefinierten und innovativen Architekturen, die reale Probleme lösen. Zurzeit arbeitet er als technischer Leiter bei Cisco Systems, Inc., wo er für Java-Microservice-Entwicklung, Softwarequalität und Entwicklerproduktivität zuständig ist.

 Mike Davidson ist ein führender Entwickler und Anwendungsarchitekt. Er arbeitet mit Start-ups und Finanzinstituten in Neuseeland, Kanada und den USA zusammen, um ihnen zu helfen, wartbare, sauber strukturierte Software zu erstellen.

 Octavian Nita befasst sich seit mehr als 18 Jahren beruflich und privat mit Java, wobei er von der Sprachimplementierung und Softwareautomatisierung inzwischen zu desktop- und webbasierten Anwendungen gekommen ist. Das macht ihm immer noch sehr viel Spaß.

 Da er heutzutage in Brüssel lebt, hilft er den EU-Verwaltungsorganen dabei, mittels domänenzentrierter Architekturstile sogenannte »Enterprise-Anwendungen« zu implementieren.

 Sven Woltmann ist schon seit den Anfangszeiten der Sprache Java-Entwickler. Er arbeitet als unabhängiger Entwickler, Trainer und Kursleiter und hat sich auf hochskalierbare Java-Enterprise-Anwendungen, Algorithmenoptimierung, sauberen Code und Clean Architecture spezialisiert. Mittels Videos, einem Newsletter und seinem Blog HappyCoders.eu teilt er sein Wissen gern mit anderen.

 Thomas Buss ist IT-Berater bei codecentric in Deutschland. Er hilft Teams, die Komplexität von Softwareprodukten zu reduzieren und somit den Entwicklungsprozess zu beschleunigen. Sein Background liegt in der Sprache Java, aber er hat auch viel Freude daran, sich andere Paradigmen und Sprachen anzuschauen. Außerdem interessiert er sich für domänengetriebene Modellierung, serverlose Technologien und Möglichkeiten, den CO2-Fußabdruck von Systemen zu verkleinern. Darüber hinaus mag er Fernsehsendungen, die mit »Star« beginnen.

 Vivek Ravikumar ist zurzeit technischer Mitarbeiter bei PayPal Indien und hat nahezu ein Jahrzehnt Erfahrungen bei der Entwicklung von Enterprise-Web-Anwendungen. Bei Seminaren und Vorlesungen an Bildungseinrichtungen und Universitäten in Indien hat er die Bedeutung und die besten Vorgehensweisen im Lifecycle der Softwareentwicklung demonstriert, Studenten betreut und Branchenwissen verbreitet.

 In jüngster Zeit ist er bei Jakarta EE, MicroProfile und auf der Payara-Plattform zur Legende aufgestiegen, nachdem er sich den Spitzenplatz im ersten globalen Payara-Hackathon beim Bau einer Enterprise-Webanwendung gesichert hatte.

 Wim Deblauwe ist freiberuflicher Java-Entwickler mit mehr als 20 Jahren Java-Erfahrungen. Er ist der Autor von Taming Thymeleaf und Practical Guide to Building an API Back End with Spring Boot. Außerdem hat er verschiedene Open-Source-Projekte gestartet bzw. an ihnen mitgearbeitet, wie etwa error-handling-spring-boot-starter und testcontainers-cypress.

Einleitung

Wenn Sie dieses Buch in die Hand genommen haben, dann machen
Sie sich vermutlich Gedanken um die Software, die Sie entwickeln.
Sie möchten nicht nur, dass Ihre Software die expliziten Anforderungen
Ihrer Kunden erfüllt, sondern auch die implizite Anforderung der
Wartbarkeit sowie Ihre eigenen Ansprüche hinsichtlich Struktur und
Ästhetik.

Es ist schwer, diesen Anforderungen gerecht zu werden, da Softwareprojekte
(oder Projekte ganz allgemein, wenn wir ehrlich sind) üblicherweise
nicht so verlaufen wie geplant. Manager ziehen um das ganze Projektteam
eine Deadline[1]
, externe Partner bauen ihre APIs
anders als versprochen und die Softwareprodukte, von denen wir abhängig
sind, funktionieren nicht so, wie wir es erwarten.

Und dann ist da noch Ihre eigene Softwarearchitektur. Zu Anfang
war sie so einfach. Alles war klar und schön. Dann zwang die Deadline
Sie dazu, Abkürzungen zu nehmen. Die Abkürzungen sind nun alles,
was von der Architektur geblieben ist, und es dauert länger und
länger, neue Features abzuliefern.

Ihre von Abkürzungen belastete Architektur macht es schwer, auf
eine API zu reagieren, die geändert werden musste, weil ein externer
Partner Mist gebaut hat. Es scheint leichter, einfach Ihren Projektmanager
vorzuschicken, um diesem Partner mitzuteilen, dass er die API abliefern
soll, auf die Sie sich geeinigt hatten.

Inzwischen haben Sie vollständig die Kontrolle über die Situation
verloren. Mit hoher Wahrscheinlichkeit wird eines der folgenden
Dinge passieren:

	Der Projektmanager ist nicht stark genug, um den Kampf
gegen den externen Partner zu gewinnen.

	Der externe Partner findet ein Schlupfloch in der Spezifikation
der API, das ihm recht gibt.

	Der externe Partner braucht weitere <hier Zahl einsetzen>
Monate, um die API anzupassen.

All das führt zum selben Ergebnis, Sie müssen schnell Ihren
Code ändern, weil die Deadline droht.

Sie fügen eine weitere Abkürzung ein.

Anstatt den Zustand Ihrer Softwarearchitektur durch äußere Umstände
diktieren zu lassen, setzt dieses Buch darauf, dass Sie selbst die
Kontrolle übernehmen. Sie erreichen dies, indem Sie eine Architektur
erschaffen, die Ihre Software »soft«, also »weich« macht, im Sinne
von »flexibel«, »erweiterbar« und »anpassbar«. Eine solche Architektur
erlaubt es Ihnen problemlos, auf externe Faktoren zu reagieren und
nimmt eine große Last von Ihren Schultern.

Das Ziel
dieses Buches

Ich habe dieses Buch geschrieben, weil ich von der Praktikabilität
der verfügbaren Ressourcen über domänenzentrierte Architekturstile
enttäuscht war. Zu diesen Architekturstilen gehören Clean Architecture von
Robert C. Martin und Hexagonal Architecture von Alistair
Cockburn.

Viele Bücher und Online-Ressourcen beschreiben wertvolle Konzepte,
aber nicht, wie man diese tatsächlich implementieren kann. Das liegt
vermutlich daran, dass es mehr als eine Möglichkeit gibt, einen
Architekturstil zu implementieren.

Mit einer praktischen Diskussion über das Herstellen einer Webanwendung
im Stil einer Hexagonalen Architektur bzw. im »Ports-und-Adapter«-Stil
versuche ich, diese Lücke zu füllen. Um dieses Ziel zu erreichen,
demonstrieren die Codebeispiele und Konzepte in diesem Buch meine
Interpretation der Implementierung einer Hexagonalen Architektur.
Es gibt ganz sicher andere Interpretationen und ich erhebe auch
nicht den Anspruch, dass meine die allgemeingültige Lösung
ist.

Ich hoffe jedoch, dass die Konzepte in diesem Buch Ihnen eine
gewisse Inspiration bieten, sodass Sie Ihre eigene Interpretation
der Hexagonalen/Clean Architecture finden.

An wen sich dieses Buch
richtet

Dieses Buch ist für Softwareentwickler aller Erfahrungsstufen
gedacht, die sich mit dem Erstellen von Webanwendungen befassen.

Als Einsteiger oder Einsteigerin lernen Sie, wie Sie Softwarekomponenten
und ganze Anwendungen auf saubere und wartbare Art und Weise entwerfen.
Sie erfahren auch etwas darüber, wann Sie eine bestimmte Technik
einsetzen können und sollten. Um wirklich den größten Nutzen aus
diesem Buch zu ziehen, sollten Sie allerdings bereits einmal an
der Erstellung einer Webanwendung mitgewirkt haben.

Als Entwicklerin und Entwickler mit größerer Erfahrung haben
Sie Gelegenheit, die Konzepte aus dem Buch mit Ihrer eigenen Vorgehensweise
zu vergleichen und hoffentlich einige davon in Ihren eigenen Entwicklungsstil
zu integrieren.

Die Codebeispiele sind in Java und Kotlin geschrieben, aber alle
Erörterungen lassen sich gleichermaßen auf andere objektorientierte
Programmiersprachen anwenden. Falls Sie kein Java-Programmierer
sind, aber objektorientierten Code in anderen Sprachen lesen können,
ist alles gut. An den wenigen Stellen, an denen wir Java- oder Framework-Spezifika
benötigen, werde ich diese erklären.

Die Beispielanwendung

Um einen thematischen roten Faden in diesem Buch zu haben, zeigen
die meisten Codebeispiele Ausschnitte einer beispielhaften Webanwendung
für Online-Überweisungen. Sie trägt den Namen »BuckPal«[2]
.

Die BuckPal-Anwendung erlaubt es einem Benutzer, ein Konto zu
registrieren, Geld zwischen Konten zu transferieren und die Aktivitäten
auf dem Konto (Ein- und Auszahlungen) einzusehen.

Ich bin kein Finanzspezialist, also versuchen Sie nicht, den
Beispielcode anhand seiner rechtlichen oder funktionalen Korrektheit
zu bewerten. Bewerten Sie ihn lieber anhand seiner Struktur und
seiner Wartbarkeit.

Der Fluch von Beispielanwendungen für Softwaretechnikbücher und
Online-Ressourcen liegt darin, dass sie zu einfach sind, um tatsächlich
die realen Probleme anzusprechen, mit denen Sie sich jeden Tag auseinandersetzen
müssen. Andererseits muss eine Beispielanwendung einfach genug bleiben,
um die diskutierten Konzepte effektiv zu vermitteln.

Ich hoffe, das richtige Gleichgewicht zwischen »zu einfach« und
»zu komplex« gefunden zu haben, wenn wir die Anwendungsfälle der
BuckPal-Anwendung in diesem Buch diskutieren.

Der Code der Beispielanwendung ist auf GitHub zu finden.[3]

Treten Sie in Kontakt

Falls Sie etwas zu diesem Buch sagen möchten, würde ich mich
freuen, von Ihnen zu hören. Schreiben Sie mir direkt eine E-Mail
an tom@reflectoring.io oder auf Twitter über @TomHombergs.

Sollte es zu diesem Buch bereits eine Errata-Liste geben, ist
sie unter www.mitp.de/0814 zu
finden.

[1] Das Wort »Deadline« stammt angeblich aus
dem 19. Jahrhundert und beschrieb eine Linie, die um ein Gefängnis
oder Gefangenenlager gezogen wurde. Ein Gefangener, der diese Linie
überquerte, wurde erschossen. Behalten Sie das im Hinterkopf, wenn
wieder einmal jemand eine »Deadline« zieht! Im Deutschen gibt es
den viel harmloseren – wenn auch bürokratischer klingenden – Begriff
des »Fälligkeitstermins«. Falls Sie gern gefährlicher leben, können
Sie auch von einer »Galgenfrist« sprechen – das ist die kurze Zeit,
die einem noch bis zu einem unangenehmen Ereignis (dem Gang zum
Galgen) bleibt.

[2] 	Eine
schnelle Online-Suche hat ergeben, dass ein Unternehmen namens PayPal
meine Idee gestohlen und sogar einen Teil des Namens kopiert hat.
Scherz beiseite: Versuchen Sie einmal, einen Namen zu finden, der
so ähnlich ist wie »PayPal«, aber nicht der Name eines existierenden
Unternehmens ist. Zum Schreien komisch!

[3] Das BuckPal-GitHub-Repository: https://github.com/thombergs/buckpal.

 Kapitel 1:
Wartbarkeit

 Dieses Buch dreht sich um Softwarearchitektur. Eine der Definitionen von Architektur ‌‌ist die Struktur eines Systems oder Prozesses. In unserem Fall ist es die Struktur eines Softwaresystems.

 Architektur ist das Entwerfen dieser Struktur mit einem Zweck. Sie gestalten Ihr Softwaresystem bewusst so, dass es bestimmte Anforderungen erfüllt. Es gibt funktionale Anforderungen, die eine Software erfüllen muss, um einen Nutzen für ihre Benutzer zu haben. Ohne Funktionalität ist Software wertlos, da sie keinen Nutzen besitzt.

 Außerdem gibt es Qualitätsanforderungen‌ (auch nichtfunktionale Anforderungen‌ genannt), die eine Software erfüllen sollte, um von ihren Benutzern, Entwicklern und anderen Stakeholdern als qualitativ hochwertig betrachtet zu werden. Eine solche Qualitätsanforderung ist die Wartbarkeit‌.

 Was würden Sie sagen, wenn ich behauptete, dass Wartbarkeit als Qualitätsmerkmal in gewisser Weise viel wichtiger ist als die Funktionalität und Sie die Wartbarkeit beim Entwurf von Software daher über alles andere stellen sollten? Nachdem wir die Wartbarkeit als wichtige Qualität etabliert haben, werden wir im Rest des Buches untersuchen, wie wir diese Wartbarkeit verbessern können, indem wir die Konzepte von Clean Architecture und Hexagonaler Architektur anwenden.

 1.1 Was bedeutet Wartbarkeit überhaupt?

 ‌Bevor Sie mich für verrückt erklären und versuchen, das Buch zurückzugeben, lassen Sie mich Ihnen erklären, was ich mit Wartbarkeit meine.

 Wartbarkeit ist nur eine der vielen Qualitätsanforderungen, die potenziell eine Softwarearchitektur ausmachen. Ich habe ChatGPT nach einer Liste von Qualitätsanforderungen gefragt und folgendes Ergebnis erhalten:

 	Skalierbarkeit

 	Flexibilität

 	Wartbarkeit

 	Sicherheit

 	Zuverlässigkeit

 	Modularität

 	Performance

 	Interoperabilität

 	Testbarkeit

 	Kosteneffizienz

 Und das ist nur eine kleine Auswahl.[1]

OEBPS/Images/9783747508145.jpg
Tom Hombergs

OEBPS/Images/00_SocialMedia.jpg
ie finden uns hier:

S

www.instagram.com/mitp_verlag/

www.facebook.com/mitp.Verlag

blog.mitp.de

www.pinterest.de/mitpverlag/

www.linkedin.com/company/mitp-verlag/

OEBPS/Images/mitp.png
mitp

OEBPS/Images/00_AADRM.jpg
Hinweis des Verlages zum Urheberrecht und Digitalen
Rechtemanagement (DRM)

Liebe Leserinnen und Leser,

dieses E-Book, einschlieRlich aller seiner Teile, ist
urheberrechtlich geschiitzt. Mit dem Kauf raumen wir
lhnen das Recht ein, die Inhalte im Rahmen des
geltenden Urheberrechts zu nutzen. Jede Verwertung
auBerhalb dieser Grenzen ist ohne unsere Zustimmung
unzuladssig und strafbar. Das gilt besonders fiir
Vervielfiltigungen, Ubersetzungen sowie
Einspeicherung und Verarbeitung in elektronischen
Systemen.

Je nachdem wo Sie Ihr E-Book gekauft haben, kann
dieser Shop das E-Book vor Missbrauch durch ein
digitales Rechtemanagement schiitzen. Haufig erfolgt
dies in Form eines nicht sichtbaren digitalen
Wasserzeichens, das dann individuell pro Nutzer
signiert ist. Angaben zu diesem DRM finden Sie auf den
Seiten der jeweiligen Anbieter.

Beim Kauf des E-Books in unserem Verlagsshop ist lhr
E-Book DRM-frei.

Viele GriiRe und viel Spalk beim Lesen, .

Ohr mér‘,o—(/eré@ﬁ‘em

