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 Vorwort

 Das Paradies fürs Entwicklungsteam: Domänenlogik ist einfach zu testen, Infrastruktur und Technologie für Tests einfach zu simulieren (zu »mocken«) und es gibt eine ganz saubere Trennung zwischen Domänencode und technischem Code. Selbst die Migration von einer Technologie auf eine andere geht leicht von der Hand. Keine endlosen Diskussionen mehr, welcher Teil des Codes dieses verzwickte kleine Feature implementieren soll, das die Verkaufsleute schon der Fachabteilung versprochen haben. Dieses Paradies heißt »Clean Architecture«, und Tom wird Sie auf Ihrer Reise dorthin begleiten.

 Seit einigen Jahren gibt es diese Clean Architecture unter verschiedenen Namen (etwa: Hexagonale Architektur, Ports-und-Adapter-Architektur, Zwiebelarchitektur). Dem Ganzen liegt eine ziemlich einfache Idee zugrunde: zwei konzentrische Kreise, die Domäne und Technik innerhalb der Software trennen. Abhängigkeiten fließen grundsätzlich nach innen, von der Technologie zur Domäne. Domänenklassen dürfen niemals Abhängigkeiten zu technischen Klassen haben.

 Zu schade nur, dass die meisten der Originalquellen es versäumt haben, die Details der Umsetzung zu erklären, beispielsweise wie Packages und Code organisiert sein sollten. Toms Buch füllt diese Lücke perfekt aus. Anhand eines anschaulichen Beispiels führt Tom Sie (und Ihr Entwicklungsteam) zu einer ausgesprochen gut wartbaren und sauberen architektonischen Struktur.

 Tun Sie sich selbst und Ihrem Entwicklungsteam einen Gefallen, geben Sie der Clean Architecture eine Chance. Ich verspreche Ihnen, dass Sie es nicht bereuen werden!

 Gernot StarkeKöln, Juni 2023Pragmatischer Softwarearchitekt seit den 1990er-Jahren, Gründer von arc42, Mitgründer von iSAQB und Nerd
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Einleitung

Wenn Sie dieses Buch in die Hand genommen haben, dann machen
Sie sich vermutlich Gedanken um die Software, die Sie entwickeln.
Sie möchten nicht nur, dass Ihre Software die expliziten Anforderungen
Ihrer Kunden erfüllt, sondern auch die implizite Anforderung der
Wartbarkeit sowie Ihre eigenen Ansprüche hinsichtlich Struktur und
Ästhetik.

Es ist schwer, diesen Anforderungen gerecht zu werden, da Softwareprojekte
(oder Projekte ganz allgemein, wenn wir ehrlich sind) üblicherweise
nicht so verlaufen wie geplant. Manager ziehen um das ganze Projektteam
eine Deadline[1]
, externe Partner bauen ihre APIs
anders als versprochen und die Softwareprodukte, von denen wir abhängig
sind, funktionieren nicht so, wie wir es erwarten. 

Und dann ist da noch Ihre eigene Softwarearchitektur. Zu Anfang
war sie so einfach. Alles war klar und schön. Dann zwang die Deadline
Sie dazu, Abkürzungen zu nehmen. Die Abkürzungen sind nun alles,
was von der Architektur geblieben ist, und es dauert länger und
länger, neue Features abzuliefern.

Ihre von Abkürzungen belastete Architektur macht es schwer, auf
eine API zu reagieren, die geändert werden musste, weil ein externer
Partner Mist gebaut hat. Es scheint leichter, einfach Ihren Projektmanager
vorzuschicken, um diesem Partner mitzuteilen, dass er die API abliefern
soll, auf die Sie sich geeinigt hatten.

Inzwischen haben Sie vollständig die Kontrolle über die Situation
verloren. Mit hoher Wahrscheinlichkeit wird eines der folgenden
Dinge passieren:

	Der Projektmanager ist nicht stark genug, um den Kampf
gegen den externen Partner zu gewinnen.


	Der externe Partner findet ein Schlupfloch in der Spezifikation
der API, das ihm recht gibt.


	Der externe Partner braucht weitere <hier Zahl einsetzen>
Monate, um die API anzupassen.




All das führt zum selben Ergebnis, Sie müssen schnell Ihren
Code ändern, weil die Deadline droht.

Sie fügen eine weitere Abkürzung ein.

Anstatt den Zustand Ihrer Softwarearchitektur durch äußere Umstände
diktieren zu lassen, setzt dieses Buch darauf, dass Sie selbst die
Kontrolle übernehmen. Sie erreichen dies, indem Sie eine Architektur
erschaffen, die Ihre Software »soft«, also »weich« macht, im Sinne
von »flexibel«, »erweiterbar« und »anpassbar«. Eine solche Architektur
erlaubt es Ihnen problemlos, auf externe Faktoren zu reagieren und
nimmt eine große Last von Ihren Schultern.

Das Ziel
dieses Buches

Ich habe dieses Buch geschrieben, weil ich von der Praktikabilität
der verfügbaren Ressourcen über domänenzentrierte Architekturstile
enttäuscht war. Zu diesen Architekturstilen gehören Clean Architecture von
Robert C. Martin und Hexagonal Architecture von Alistair
Cockburn.

Viele Bücher und Online-Ressourcen beschreiben wertvolle Konzepte,
aber nicht, wie man diese tatsächlich implementieren kann. Das liegt
vermutlich daran, dass es mehr als eine Möglichkeit gibt, einen
Architekturstil zu implementieren.

Mit einer praktischen Diskussion über das Herstellen einer Webanwendung
im Stil einer Hexagonalen Architektur bzw. im »Ports-und-Adapter«-Stil
versuche ich, diese Lücke zu füllen. Um dieses Ziel zu erreichen,
demonstrieren die Codebeispiele und Konzepte in diesem Buch meine
Interpretation der Implementierung einer Hexagonalen Architektur.
Es gibt ganz sicher andere Interpretationen und ich erhebe auch
nicht den Anspruch, dass meine die allgemeingültige Lösung
ist. 

Ich hoffe jedoch, dass die Konzepte in diesem Buch Ihnen eine
gewisse Inspiration bieten, sodass Sie Ihre eigene Interpretation
der Hexagonalen/Clean Architecture finden.

An wen sich dieses Buch
richtet

Dieses Buch ist für Softwareentwickler aller Erfahrungsstufen
gedacht, die sich mit dem Erstellen von Webanwendungen befassen.

Als Einsteiger oder Einsteigerin lernen Sie, wie Sie Softwarekomponenten
und ganze Anwendungen auf saubere und wartbare Art und Weise entwerfen.
Sie erfahren auch etwas darüber, wann Sie eine bestimmte Technik
einsetzen können und sollten. Um wirklich den größten Nutzen aus
diesem Buch zu ziehen, sollten Sie allerdings bereits einmal an
der Erstellung einer Webanwendung mitgewirkt haben.

Als Entwicklerin und Entwickler mit größerer Erfahrung haben
Sie Gelegenheit, die Konzepte aus dem Buch mit Ihrer eigenen Vorgehensweise
zu vergleichen und hoffentlich einige davon in Ihren eigenen Entwicklungsstil
zu integrieren.

Die Codebeispiele sind in Java und Kotlin geschrieben, aber alle
Erörterungen lassen sich gleichermaßen auf andere objektorientierte
Programmiersprachen anwenden. Falls Sie kein Java-Programmierer
sind, aber objektorientierten Code in anderen Sprachen lesen können,
ist alles gut. An den wenigen Stellen, an denen wir Java- oder Framework-Spezifika
benötigen, werde ich diese erklären.

Die Beispielanwendung

Um einen thematischen roten Faden in diesem Buch zu haben, zeigen
die meisten Codebeispiele Ausschnitte einer beispielhaften Webanwendung
für Online-Überweisungen. Sie trägt den Namen »BuckPal«[2]
.

Die BuckPal-Anwendung erlaubt es einem Benutzer, ein Konto zu
registrieren, Geld zwischen Konten zu transferieren und die Aktivitäten
auf dem Konto (Ein- und Auszahlungen) einzusehen.

Ich bin kein Finanzspezialist, also versuchen Sie nicht, den
Beispielcode anhand seiner rechtlichen oder funktionalen Korrektheit
zu bewerten. Bewerten Sie ihn lieber anhand seiner Struktur und
seiner Wartbarkeit.

Der Fluch von Beispielanwendungen für Softwaretechnikbücher und
Online-Ressourcen liegt darin, dass sie zu einfach sind, um tatsächlich
die realen Probleme anzusprechen, mit denen Sie sich jeden Tag auseinandersetzen
müssen. Andererseits muss eine Beispielanwendung einfach genug bleiben,
um die diskutierten Konzepte effektiv zu vermitteln.

Ich hoffe, das richtige Gleichgewicht zwischen »zu einfach« und
»zu komplex« gefunden zu haben, wenn wir die Anwendungsfälle der
BuckPal-Anwendung in diesem Buch diskutieren.

Der Code der Beispielanwendung ist auf GitHub zu finden.[3]

Treten Sie in Kontakt

Falls Sie etwas zu diesem Buch sagen möchten, würde ich mich
freuen, von Ihnen zu hören. Schreiben Sie mir direkt eine E-Mail
an tom@reflectoring.io oder auf Twitter über @TomHombergs.

Sollte es zu diesem Buch bereits eine Errata-Liste geben, ist
sie unter www.mitp.de/0814 zu
finden. 



[1] Das Wort »Deadline« stammt angeblich aus
dem 19. Jahrhundert und beschrieb eine Linie, die um ein Gefängnis
oder Gefangenenlager gezogen wurde. Ein Gefangener, der diese Linie
überquerte, wurde erschossen. Behalten Sie das im Hinterkopf, wenn
wieder einmal jemand eine »Deadline« zieht! Im Deutschen gibt es
den viel harmloseren – wenn auch bürokratischer klingenden – Begriff
des »Fälligkeitstermins«. Falls Sie gern gefährlicher leben, können
Sie auch von einer »Galgenfrist« sprechen – das ist die kurze Zeit,
die einem noch bis zu einem unangenehmen Ereignis (dem Gang zum
Galgen) bleibt.



[2] 	Eine
schnelle Online-Suche hat ergeben, dass ein Unternehmen namens PayPal
meine Idee gestohlen und sogar einen Teil des Namens kopiert hat.
Scherz beiseite: Versuchen Sie einmal, einen Namen zu finden, der
so ähnlich ist wie »PayPal«, aber nicht der Name eines existierenden
Unternehmens ist. Zum Schreien komisch!



[3] Das BuckPal-GitHub-Repository: https://github.com/thombergs/buckpal.







 Kapitel 1: 
Wartbarkeit

 Dieses Buch dreht sich um Softwarearchitektur. Eine der Definitionen von Architektur ‌‌ist die Struktur eines Systems oder Prozesses. In unserem Fall ist es die Struktur eines Softwaresystems.

 Architektur ist das Entwerfen dieser Struktur mit einem Zweck. Sie gestalten Ihr Softwaresystem bewusst so, dass es bestimmte Anforderungen erfüllt. Es gibt funktionale Anforderungen, die eine Software erfüllen muss, um einen Nutzen für ihre Benutzer zu haben. Ohne Funktionalität ist Software wertlos, da sie keinen Nutzen besitzt.

 Außerdem gibt es Qualitätsanforderungen‌ (auch nichtfunktionale Anforderungen‌ genannt), die eine Software erfüllen sollte, um von ihren Benutzern, Entwicklern und anderen Stakeholdern als qualitativ hochwertig betrachtet zu werden. Eine solche Qualitätsanforderung ist die Wartbarkeit‌.

 Was würden Sie sagen, wenn ich behauptete, dass Wartbarkeit als Qualitätsmerkmal in gewisser Weise viel wichtiger ist als die Funktionalität und Sie die Wartbarkeit beim Entwurf von Software daher über alles andere stellen sollten? Nachdem wir die Wartbarkeit als wichtige Qualität etabliert haben, werden wir im Rest des Buches untersuchen, wie wir diese Wartbarkeit verbessern können, indem wir die Konzepte von Clean Architecture und Hexagonaler Architektur anwenden.

 1.1  Was bedeutet Wartbarkeit überhaupt?

 ‌Bevor Sie mich für verrückt erklären und versuchen, das Buch zurückzugeben, lassen Sie mich Ihnen erklären, was ich mit Wartbarkeit meine.

 Wartbarkeit ist nur eine der vielen Qualitätsanforderungen, die potenziell eine Softwarearchitektur ausmachen. Ich habe ChatGPT nach einer Liste von Qualitätsanforderungen gefragt und folgendes Ergebnis erhalten:

 	Skalierbarkeit


 	Flexibilität


 	Wartbarkeit


 	Sicherheit


 	Zuverlässigkeit


 	Modularität


 	Performance


 	Interoperabilität


 	Testbarkeit


 	Kosteneffizienz




 Und das ist nur eine kleine Auswahl.[1]
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Hinweis des Verlages zum Urheberrecht und Digitalen
Rechtemanagement (DRM)

Liebe Leserinnen und Leser,

dieses E-Book, einschlieRlich aller seiner Teile, ist
urheberrechtlich geschiitzt. Mit dem Kauf raumen wir
lhnen das Recht ein, die Inhalte im Rahmen des
geltenden Urheberrechts zu nutzen. Jede Verwertung
auBerhalb dieser Grenzen ist ohne unsere Zustimmung
unzuladssig und strafbar. Das gilt besonders fiir
Vervielfiltigungen, Ubersetzungen sowie
Einspeicherung und Verarbeitung in elektronischen
Systemen.

Je nachdem wo Sie Ihr E-Book gekauft haben, kann
dieser Shop das E-Book vor Missbrauch durch ein
digitales Rechtemanagement schiitzen. Haufig erfolgt
dies in Form eines nicht sichtbaren digitalen
Wasserzeichens, das dann individuell pro Nutzer
signiert ist. Angaben zu diesem DRM finden Sie auf den
Seiten der jeweiligen Anbieter.

Beim Kauf des E-Books in unserem Verlagsshop ist lhr
E-Book DRM-frei.

Viele GriiRe und viel Spalk beim Lesen, .

Ohr mér‘,o—(/eré@ﬁ‘em






