

 [image: 9781805123026-cov.png]

 Unity Cookbook

 Fifth Edition

 Over 160 recipes to craft your own masterpiece in Unity 2023

 Matt Smith

 Shaun Ferns

 Sinéad Murphy

 [image:]

 BIRMINGHAM—MUMBAI

 Unity Cookbook

 Fifth Edition

 Copyright © 2023 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Senior Publishing Product Manager: Larissa Pinto

 Acquisition Editor – Peer Reviews: Gaurav Gavas and Jane D’Souza

 Project Editor: Meenakshi Vijay

 Content Development Editor: Davide Oliveri

 Assitant Development Editor: Elliot Dallow

 Copy Editor: Safis Editing

 Technical Editor: Kushal Sharma

 Proofreader: Safis Editing

 Indexer: Subalakshmi Govindhan

 Presentation Designer: Rajesh Shirsath

 Developer Relations Marketing Executive: Sohini Ghosh

 First published: June 2013

 Second edition: October 2015

 Third edition: August 2018

 Fourth edition: September 2021

 Fifth edition: November 2023

 Production reference: 1281123

 Published by Packt Publishing Ltd.

 Grosvenor House

 11 St Paul’s Square

 Birmingham

 B3 1RB, UK.

 ISBN 9781805123026

 www.packt.com

 We dedicate this book to Bobby O’Brien.

 – Matt Smith & Sinéad Murphy

 Dedicated to my amazing son, Sénan, a hero in the making.

 – Shaun Ferns

 Foreword

 Not so long ago, developing professional quality games meant licensing an expensive game engine or writing your own from scratch. Then, you needed to hire a small army of developers to use it. Today, game engines like Unity have democratized game development to the point where you can simply download the tools and start making the game of your dreams right away.

 Well... kinda. Having a powerful game creation tool is not the same thing as having the technical knowledge and skills to use it effectively.

 I started coding games as a kid on my trusty ZX Spectrum, Commodore 64, and later the Amiga. I’ve been working as a professional game developer since 2003. When I first took the plunge into learning Unity development to create the Fungus storytelling tool, I found a huge amount of online documentation, tutorials, and forum answers available for Unity developers. This makes getting started with Unity development relatively easy, but the information can also be quite fragmented. Often, the last piece of the puzzle you need is buried 40 minutes into an hour-long tutorial video or on the 15th page of a forum thread. The hours you spend looking for these nuggets of wisdom is time that would be better spent working on your game.

 The beauty of the Unity Cookbook is that Matt, Chico, Shaun, and Sinéad have distilled this knowledge into a neat collection of easy-to-follow recipes, and they have provided the scripts and complete working projects so that you can put it to use straight away.

 In this latest edition, Matt, Shaun, and Sinéad have updated the recipes from the previous book and added new recipes to introduce many of the latest Unity features. There are some new chapters focusing on ProBuilder and mobile development; and other chapters include new topics such as non-horizonal AI NavMesh surfaces (think spiders crawling up walls and ceilings!), and advanced visual effects including vignettes and realistic animated water surfaces.

 Getting started with Unity development is free and easy. When you’re ready to take your skills to the next level, this book is an effective way to do just that. It covers a great deal in its hundreds of pages, and if you can master even half of what’s here, you’ll be well on the way to becoming a great Unity developer!

 Chris Gregan

 Chief Architect, Romero Games: www.romerogames.ie

 Author of Fungus: fungusgames.com

 Contributors

 About the authors

 Matt Smith is senior lecturer at TU Dublin, the Technological University of Dublin, Ireland, specialising in XR and interactive multimedia. He leads the university’s DRIVE (Digital Realities, Interaction, and Virtual Environments) research group, and is currently supervising several PhD students in interaction design and XR technologies. In 1980, Matt started computer programming (on a ZX80). A few years later he submitted his first two games for the programming project component of his ‘O’-level computing certificate (aged 16). In 1985, Matt wrote the lyrics, and was a member of the band that played (and sang, sorry about that by the way) the music on the B-side of the audio cassette carrying the computer game Confuzion (the game/song has a Wikipedia page...). In 2024, No Starch Press will publish his PHP Crash Course. Matt is still (pleasantly!) surprised at the popularity of his Unity Cookbook series – whose beginning was a book proposal sent to Packt Publishing over 10 years ago.

 I’m grateful to my coauthors, Shaun and Sinéad, without whom this book wouldn’t have been possible.

 Many thanks to all my family. Thanks also to the editors, reviewers, and readers for their feedback. Thanks to my students, who continue to challenge and surprise me with their enthusiasm for multimedia and game development.

 Shaun Ferns is an academic at TU Dublin, the Technological University of Dublin, Ireland, where he is a researcher in the DRIVE (Digital Realities, Interaction, and Virtual Environments) research group and an associate researcher at the Educational Informatics Lab (EILab) at OntarioTechU. Since 2016, he has been primarily researching and teaching multimedia development, and prior to that was involved in the delivery of several engineering programs. He is currently exploring the opportunities transmedia provides in improving user experience and engagement in cultural archive artifacts and serious games for the built environment. Shaun began to “play” with Unity when designing and building his house in 2010, developing an architectural walk-through to support the development of the design of the new home. Since then, he has been working on several Unity-based cultural projects and hopes to complete one soon! Shaun has taken up the challenge of playing the Irish tenor banjo and currently enjoys playing in Irish traditional music sessions with his friends.

 When not practicing, he can be found wandering the cliffs and mountains around Donegal or swimming its Atlantic shores.

 First and foremost, I am grateful to the students I have had the privilege of teaching and learning alongside over the past two decades. Your energy, excitement, and courage have challenged me to think more deeply and creatively. I am deeply inspired by your commitment to making the world a better place.

 I am also indebted to the editors, reviewers, and readers who have provided feedback on this book. Your insights and suggestions have helped me to refine my arguments and improve the clarity and accessibility of my writing.

 I am especially grateful to Matt, who has been a steadfast supporter, both professionally and personally. Your guidance, encouragement, and shared love of Game design and development through Unity have made this journey even more rewarding. Delighted to also welcome Sinéad to the authorship team. I hope this is the start of a long-lasting collaboration!

 I am also grateful to my family and friends, who have provided me with unwavering support throughout this process. Finally, I would like to thank the many people who have made contributions to my education and professional development over the years. I am grateful for your mentorship and guidance.

 Sinéad Murphy is currently Data Analytics Manager for the Irish NGO Trócaire. She has over 25 years of computing experience, including freelance IT training and database consulting, university lecturing in mathematics, IT skills, and programming at TU Dublin (Ireland) and Middlesex University (London). She is a published academic, with undergraduate and postgraduate degrees in mathematics, computing, and data science. She is passionate about the use of IT for understanding and visualising data, and using that understanding to make meaningful differences in the world. She is currently exploring the use of Python and Unity for data analytics and interactive visualisations.

 Many thanks to my coauthors, Matt and Shaun, it’s been a great experience working on my first book.

 Thanks to my family for all their support. Thanks also to the editors and reviewers who provided feedback and suggestions.

 About the reviewer

 Jerry Medeiros is a seasoned professional with over a decade of hands-on experience in immersive technology, focusing on games and extended reality. With a robust background in artificial intelligence, Jerry brings a unique perspective to the intersection of technology and interactive experiences. Holding a degree in game development with a specialization in interaction design, as well as a Master of Computer Science with research expertise in artificial intelligence, Jerry is well versed in cutting-edge technologies and their applications. Additionally, an MBA in Innovation further underscores Jerry’s commitment to driving creative and forward-thinking solutions in the tech industry.

 Learn more on Discord

 To join the Discord community for this book – where you can share feedback, ask questions to the author, and learn about new releases – follow the QR code below:

 https://packt.link/unitydev

 [image:]

 Contents

 	Preface

 	Who this book is for

 	What this book covers

 	Technical requirements to get the most out of this book

 	Get in touch

 	Displaying Data with Core UI Elements

 	Creating a Font Asset file for use with TextMeshPro

 	Getting ready

 	How to do it...

 	How it works...

 	Displaying a “Hello World” UI text message

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Styling substrings with rich text

 	Exploring the TextMeshPro Examples and Extras

 	Displaying a digital clock

 	Getting ready

 	How to do it…

 	How it works...

 	Displaying a digital countdown timer

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Automatically add components with [RequireComponent(...)]

 	Creating a message that fades away

 	Getting ready

 	How to do it...

 	How it works...

 	Displaying an image

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Working with 2D sprites and UI Image components

 	See also

 	Further reading

 	Learn more on Discord

 	Responding to User Events for Interactive UIs

 	Creating a UI Button to reveal an image

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Creating a UI Button to move between scenes

 	How to do it...

 	How it works...

 	There’s more...

 	Animating UI Button properties on mouseover

 	How to do it...

 	How it works...

 	Organizing image panels and changing panel depths via buttons

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Moving up or down by just one position, using scripted methods

 	Displaying the value of an interactive UI Slider

 	How to do it...

 	How it works...

 	Displaying a countdown timer graphically with a UI Slider

 	Getting ready

 	How to do it...

 	How it works...

 	Setting custom mouse cursors for 2D and 3D GameObjects

 	Getting ready

 	How to do it...

 	How it works...

 	Setting custom mouse cursors for UI controls

 	Getting ready

 	How to do it...

 	How it works...

 	Interactive text entry with Input Field

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Detecting interactions with a single Toggle UI component

 	Getting ready

 	How to do it...

 	How it works...

 	Creating related radio buttons using UI Toggles

 	Getting ready

 	How to do it...

 	How it works...

 	Creating text UI Dropdown menus

 	How to do it...

 	How it works...

 	Creating image icon UI Dropdown menus

 	Getting ready

 	How to do it...

 	How it works...

 	Displaying a radar to indicate the relative locations of objects

 	Getting ready

 	How to do it...

 	How it works...

 	The Start() method

 	The Update() method

 	The FindAndDisplayBlipsForTag(...) method

 	The CalculateBlipPositionAndDrawBlip (...) method

 	The NormalizedPosition(...) method

 	The CalculateBlipPosition(...) method

 	The DrawBlip() method

 	There’s more...

 	Further reading

 	Inventory and Advanced UIs

 	Creating a simple 2D mini-game – SpaceGirl

 	Getting ready

 	How to do it...

 	How it works...

 	Displaying single object pickups with carrying and not-carrying text

 	Getting ready

 	How to do it...

 	How it works...

 	The PlayerInventory script class

 	The PlayerInventoryDisplay script class

 	There’s more...

 	Collecting multiple items and displaying the total number carried

 	Alternative – combining all the responsibilities into a single script

 	Displaying single-object pickups with carrying and not-carrying icons

 	Getting ready

 	How to do it...

 	How it works...

 	Displaying multiple pickups of the same object with multiple status icons

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Revealing icons for multiple object pickups by changing the size of a tiled image

 	How it works...

 	Using panels to visually outline the inventory UI area and individual items

 	Getting ready

 	How to do it…

 	How it works...

 	Creating a C# inventory slot UI to display scripted components

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Modifying the game for a second inventory panel for keys

 	Displaying multiple pickups of different objects as a list of text via a dynamic List<> of scripted PickUp objects

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Ordering items in the inventory list alphabetically

 	Displaying multiple pickups of different objects as text totals via a dynamic Dictionary<> of PickUp objects and enum pickup types

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Separating responsibilities with MVC

 	Further reading

 	Learn more on Discord

 	Playing and Manipulating Sounds

 	Setting up the Third Person Character Controller project

 	How to do it...

 	How it works...

 	There’s more...

 	Fixing pink textures

 	Playing sound when a scene begins

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Create a GameObject with AudioSource linked to an AudioClip in a single step

 	Make the sound clip keep looping

 	Customizing other AudioSource settings

 	Removing redundant AudioListener components

 	Getting ready

 	How to do it...

 	How it works...

 	Enabling and customizing 3D sound effects

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Changing the way the volume changes with distance

 	Adding keys to customize the volume falloff curve

 	Adding effects with Audio Reverb Zones

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Customize Reverb settings with the User preset

 	Playing different one-off sound effects with a single AudioSource component

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Playing a sound at a static point in 3D world space

 	Playing and controlling different sounds, each with its own AudioSource component

 	Getting ready

 	How to do it...

 	How it works...

 	Creating just-in-time AudioSource components at runtime through C# scripting

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Adding the CreateAudioSource(...) method as an extension to the MonoBehavior class

 	A button to play a sound with no scripting

 	Getting ready

 	How to do it...

 	How it works...

 	Preventing an audio clip from restarting if it is already playing

 	Getting ready

 	How to do it...

 	How it works...

 	Waiting for the audio to finish playing before auto-destructing an object

 	Getting ready

 	How to do it...

 	How it works...

 	See also

 	Creating audio visualization from sample spectral data

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Adding visualizations to a second AudioSource component

 	Trying out different Fast Fourier Transform (FFT) window types

 	Synchronizing simultaneous and sequential music to create a simple 140 bpm music-loop manager

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Adding visualizations to the four playing loops

 	Recording sound clips with the free Audacity application

 	Getting ready

 	How to do it...

 	How it works...

 	Further reading

 	Textures, Materials, and 3D Objects

 	Creating a scene with 3D primitives and a texture

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Enhancing the scene – adding a spotlight

 	Creating material asset files and setting Albedo textures

 	Getting ready

 	How to do it...

 	How it works...

 	Exporting Blender files as FBX for use in Unity

 	Getting ready

 	How to do it...

 	How it works...

 	Importing FBX models into a Unity project

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Using Blender files directly in a Unity project

 	Highlighting GameObject materials on mouseover

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	A collider needed for custom meshes

 	Changing the material’s color in response to mouse events

 	Fading the transparency of a material

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Destroying objects when fading is complete

 	Using the GameObject’s alpha as our starting alpha value

 	Using a coroutine for our fading loop

 	Further reading

 	Learn more on Discord

 	Creating 3D Environments with Terrains

 	Creating and texture-painting terrains

 	Getting ready

 	How to do it...

 	How it works...

 	Unity terrain tools and samples for powerful height-painting

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more…

 	Adding terrain holes

 	Getting ready

 	How to do it...

 	How it works...

 	Adding trees and vegetation

 	Getting ready

 	How to do it…

 	How it works...

 	Realistic water features for HDRP projects

 	How to do it...

 	How it works...

 	Further reading

 	Creating 3D Geometry with ProBuilder

 	Getting started with ProBuilder

 	Getting ready

 	How to do it...

 	How it works...

 	Transforming an object through scaling and coloring

 	Getting ready

 	How to do it...

 	How it works...

 	Creating a house with ProBuilder

 	Getting ready

 	How to do it...

 	How it works...

 	Exploring ProBuilder Boolean operations to add a window to our house

 	Getting ready

 	How to do it...

 	How it works...

 	Organizing level geometry as empty GameObject children

 	Getting ready

 	How to do it...

 	How it works...

 	Further reading

 	Learn more on Discord

 	2D Animation and Physics

 	Flipping a sprite horizontally – the DIY approach

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Flipping a sprite horizontally – using Animator State chart and transitions

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Instantaneous swapping

 	Animating body parts for character movement events

 	Getting ready

 	How to do it...

 	How it works...

 	Creating a three-frame animation clip to make a platform continually animate

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Copying the animation relative to a new parent GameObject

 	Making a platform start falling once stepped on using a Trigger to move the animation from one state to another

 	Getting ready

 	How to do it...

 	How it works...

 	Creating animation clips from sprite sheet sequences

 	Getting ready

 	How to do it...

 	How it works...

 	Creating a platform game with Tiles and Tilemaps

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Tile palettes for objects and walls

 	Using sprite placeholders to create a simple physics scene

 	Getting ready

 	How to do it...

 	How it works...

 	Editing polygon Colliders for more realistic 2D physics

 	Getting ready

 	How to do it...

 	How it works...

 	Creating an explosionForce method for 2D physics objects

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Clipping via Sprite Masking

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Further reading

 	Animated Characters

 	Unity’s Third Person Character Controller assets

 	How to do it...

 	How it works...

 	Adding a Third Person Character Controller to a scene

 	Getting ready

 	How to do it...

 	How it works...

 	Adding a clothing accessory pickup for a character

 	Getting ready

 	How to do it...

 	How it works...

 	Swapping the Third Person Armature for a different character

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Extracting textures when colors are not showing

 	Creating a 3D character with Autodesk Character Generator

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Replace the robot character with your created character

 	Remove the Light child GameObject from the character Hierarchy

 	Selecting and downloading a character from Mixamo

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Using Mixamo to convert and fix character models

 	Selecting and downloading an animation clip from Mixamo

 	Getting ready

 	How to do it...

 	How it works...

 	Creating an animated NPC in Unity using a character and animation clip

 	Getting ready

 	How to do it...

 	How it works...

 	Using scripts to control 3D animations (old input system)

 	Getting ready

 	How to do it...

 	How it works...

 	Using scripts to control 3D animations (new input system)

 	Getting ready

 	How to do it...

 	How it works...

 	Further reading

 	Learn more on Discord

 	Saving and Loading Data

 	Saving data between scenes using static properties

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Hiding the score before the first attempt is completed

 	See also

 	Saving data between scenes and games using PlayerPrefs

 	Getting ready

 	How to do it...

 	How it works...

 	See also

 	Reading data from a text file

 	Getting ready

 	How to do it...

 	How it works...

 	Loading game data from a text file map

 	How to do it...

 	How it works...

 	Writing data to a file

 	How to do it...

 	How it works...

 	There’s more...

 	Writing lists of objects to a JSON text file

 	Logging player actions and game events to a file

 	How to do it...

 	How it works...

 	There’s more...

 	Automatically log the username of the system user

 	See also

 	Reading data from the web

 	Getting ready

 	How to do it...

 	How it works...

 	Setting up a leaderboard using PHP and a database

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	SQLite, PHP, and database servers

 	phpLiteAdmin

 	See also

 	Unity game communication with a web server leaderboard

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Extracting the full leaderboard data for display within Unity

 	Using secret game codes to secure your leaderboard scripts

 	Further reading

 	Controlling and Choosing Positions

 	Using a rectangle to constrain 2D Player object movement

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Drawing a gizmo yellow rectangle to visually show a bounding rectangle

 	An alternative approach to defining movement bounds

 	Player control of a 3D GameObject (and limiting movement within a rectangle)

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Drawing a thick gizmo yellow rectangle to visually show a bounding rectangle

 	Choosing destinations – finding a random spawn point

 	Getting ready

 	How to do it...

 	How it works...

 	See also

 	Choosing destinations – finding the nearest spawn point

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Avoiding errors due to an empty array

 	See also

 	Choosing destinations – respawning to the most recently passed checkpoint

 	Getting ready

 	How to do it...

 	How it works...

 	Moving objects by clicking on them

 	Getting ready

 	How to do it...

 	How it works...

 	Firing projectiles in the direction of movement

 	Getting ready

 	How to do it...

 	How it works...

 	Further reading

 	Learn more on Discord

 	Navigation Meshes and Agents

 	NPC to travel to destination while avoiding obstacles

 	Getting ready

 	How to do it...

 	How it works...

 	NPC to seek or flee from a moving object

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Using a Debug Ray to show a source-to-destination line

 	Constantly updating the NavMeshAgent’s destination to flee from the player’s current location

 	Maintaining a constant distance from the target (“lurking” mode!)

 	Point-and-click move to object

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Creating a mouseover yellow highlight

 	Point-and-click move to tile

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Using a yellow Debug Ray to show the destination of the AI agent

 	Point-and-click raycast with user-defined, higher-cost navigation areas

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	More intelligent pathfinding by setting different costs for custom-defined navigation areas such as mud and water

 	Improving the UX by updating a “gaze” cursor in each frame

 	NPC NavMeshAgent to follow waypoints in sequence

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Working with arrays of waypoints

 	Increased flexibility with the WayPoint class

 	Creating a movable NavMesh Obstacle

 	Getting ready

 	How to do it...

 	How it works...

 	Joining several NavMeshes with a single NavMeshSurface

 	Getting ready

 	How to do it...

 	How it works...

 	Non-horizontal NavMeshes with multiple NavMeshSurfaces and NavMeshLinks

 	Getting ready

 	How to do it...

 	How it works...

 	Further reading

 	Cameras, Lighting, and Visual Effects

 	Creating the basic scene for this chapter

 	Getting ready

 	How to do it…

 	How it works...

 	There’s more...

 	Fixing pink textures

 	Working with a fixed Main Camera

 	Getting ready

 	How to do it...

 	How it works...

 	Changing how much of the screen a Camera renders

 	Getting ready

 	How to do it...

 	How it works...

 	Adding a top-down orthographic minimap Camera

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Adding a floating arrow to indicate the direction the player is facing in the minimap

 	Using a culling mask to avoid the sphere being rendered unintentionally

 	Creating an in-game mirror using a RenderTexture to send Camera output to a Plane

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Inverting our mirror Camera horizontally

 	Saving screenshots and RenderTextures to files

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Automate screenshot capture with OnTriggerEnter()

 	Capture screenshots as a Texture or RenderTexture

 	Using Cinemachine ClearShot to switch cameras to keep the player in shot

 	Getting ready

 	How to do it...

 	How it works...

 	A Camera to always look at and follow the Third Person Controller

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Adding the option to switch between a following camera and multiple ClearShot cameras

 	Adding film grain and vignette effects with URP postprocessing

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Adding a vignette effect

 	Creating an HDRP project with an HDRI skybox

 	Getting ready

 	How to do it…

 	How it works...

 	There’s more...

 	Using a skybox for default ground image

 	Creating and applying a cookie texture to a spotlight

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Adding more content and creating ground shadows

 	Using Cookies with Directional Lights

 	Baking light from an emissive material onto other scene GameObjects

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Emissive materials that do not contribute to lighting other objects in the scene

 	Further reading

 	Learn more on Discord

 	Shader Graphs and Video Players

 	Playing videos with the Video Player API

 	Playing videos by manually adding a VideoPlayer component to a GameObject

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Using scripting to control video playback on scene textures

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Downloading an online video (rather than a clip)

 	Ensuring a movie is prepared before playing

 	Getting ready

 	How to do it...

 	How it works...

 	Outputting video playback to a RenderTexture asset

 	Getting ready

 	How to do it...

 	How it works...

 	Using scripting to play a sequence of videos back to back

 	Getting ready

 	How to do it...

 	How it works...

 	Creating and using a simple shader

 	How to do it...

 	How it works...

 	Creating a glow effect with Shader Graph

 	Getting ready

 	How to do it...

 	How it works...

 	Toggling a Shader Graph color glow effect through C# code

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Further reading

 	Shader Graph online resources

 	Video player online resources

 	Particle Systems and Other Visual Effects

 	Exploring Unity’s Particle Pack and reusing samples for your own games

 	How to do it...

 	How it works...

 	Creating a simple Particle Systems from scratch

 	How to do it...

 	How it works...

 	Using Texture Sheets to simulate fire with a Particle System

 	Getting ready

 	How to do it...

 	How it works...

 	Making particles collide with scene objects

 	How to do it...

 	How it works...

 	There’s more...

 	Simulating an explosion

 	Getting ready

 	How to do it...

 	How it works...

 	Using Invoke to delay the execution of an explosion

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Destroying or damaging objects in a bomb blast radius

 	Adding camera shake when the bomb explodes

 	Using a Line Renderer to create a spinning laser trap

 	How to do it...

 	How it works...

 	There’s more...

 	Triggering an explosion when the player’s character collides with the beam

 	Further reading

 	Learn more on Discord

 	Mobile Games and Applications

 	Setting up your system for Android mobile app development

 	How to do it...

 	How it works...

 	Setting up your system for Apple iOS mobile app development

 	Getting ready

 	How to do it...

 	How it works...

 	Deploying the Third Person Character Controller Starter project for an Android device

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Changing the name of the app as it appears on a device

 	Copying APK files from a Windows PC to an Android device

 	Sideloading APK files from a Mac to an Android device

 	Downloading Android APK files on your phone

 	Deploying the Third Person Character Controller Starter project for an Apple device

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	The device will not prepare for development

 	Creating and deploying a mobile game with Unity’s Runner Game project template

 	How to do it...

 	How it works...

 	Further reading

 	Augmented Reality (AR)

 	Exploring the Unity AR samples

 	How to do it...

 	How it works...

 	Creating an AR project with the AR (Core) template

 	How to do it...

 	How it works...

 	There’s more...

 	Deprecation warnings with the AR (Core) template

 	Build failure due to Vulkan graphics API settings

 	Build failure due to Android version

 	Building for Apple iOS

 	Adding the AR Foundation package and GameObjects to a 3D scene

 	How to do it...

 	How it works...

 	Detecting and highlighting planes with AR Foundation

 	Getting ready

 	How to do it...

 	How it works...

 	Creating an AR furniture previewer by detecting horizontal planes

 	Getting ready

 	How to do it...

 	How it works...

 	Creating a floating 3D model over an image target

 	Getting ready

 	How to do it...

 	How it works...

 	Further reading

 	Learn more on Discord

 	Virtual and Extended Reality (VR/XR)

 	Setting up the Oculus Quest 2 for Unity development

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Speed up Windows development with Oculus Link/Air Link

 	Oculus Link is not possible on most Macs

 	Oculus Link Linux

 	Online guides to help you set up your Quest for VR development with Unity

 	Creating and running a Unity project on a VR headset

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Cannot choose the Quest device due to Android tools unknown location

 	Build failure due to Android version

 	Build failure due to “namespace cannot be found” error

 	Beginning with the XR Interaction Toolkit

 	Getting ready

 	How to do it...

 	How it works...

 	Creating a 360-degree video VR project

 	Getting ready

 	How to do it...

 	How it works...

 	Exploring and building the Desert WebXR demo project

 	How to do it...

 	How it works...

 	There’s more...

 	Fixing pink (shader/material) problems

 	The OpenUPM community maintains more up-to-date XR resources

 	Latest releases from De-Panther

 	Missing packages error

 	Using GitHub Pages to publish your WebXR project for free

 	Getting ready

 	How to do it...

 	How it works...

 	Creating a simple WebXR scene from scratch

 	Getting ready

 	How to do it...

 	How it works...

 	Further reading

 	Advanced Topics – Gizmos, Automated Testing, and More

 	Using a gizmo to show the currently selected object in the Scene panel

 	How to do it...

 	How it works...

 	Creating an Editor snap-to-grid drawn by a gizmo

 	How to do it...

 	How it works...

 	There’s more...

 	Generating and running a default test script class

 	How to do it...

 	How it works...

 	There’s more...

 	Creating a default test script from the Project window’s Create menu

 	EditMode minimum skeleton unit test script

 	Making a simple unit test

 	How to do it...

 	How it works...

 	There’s more...

 	Shorter tests with values in the assertion

 	Expected value followed by the actual value

 	Parameterizing tests with a DataProvider

 	How to do it...

 	How it works...

 	Unit testing a simple health script class

 	How to do it...

 	How it works...

 	Health.cs

 	TestHealth.cs

 	Creating and executing a unit test in PlayMode

 	How to do it...

 	How it works...

 	PlayMode testing a door animation

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	PlayMode and unit testing a player health bar with events, logging, and exceptions

 	Getting ready

 	How to do it...

 	How it works...

 	PlayMode testing

 	Unit tests

 	See also

 	Reporting Code Coverage testing

 	Getting ready

 	How to do it...

 	How it works...

 	Running simple Python scripts inside Unity

 	How to do it...

 	How it works...

 	Further reading

 	Learn more on Discord

 	Other Books You May Enjoy

 	Index

 Landmarks

 	
 Cover

 	
 Index

 Preface

 Game development is a broad and complex task. It is an interdisciplinary field, covering subjects as diverse as artificial intelligence, character animation, digital painting, and sound editing. All these areas of knowledge can materialize as the production of hundreds (or thousands!) of multimedia and data assets. A special software application—the game engine—is required to consolidate all these assets into a single product. Game engines are specialized pieces of software, which used to belong to an esoteric domain. They were expensive, inflexible, and extremely complicated to use. They were for big studios or hardcore programmers only. Then, along came Unity.

 Unity represents the true democratization of game development. It is an engine and multimedia editing environment that is user-friendly and versatile. It has free and Pro versions; the latter includes even more features. Unity offers deployment to many platforms, including the following:

 	Mobile: Android, iOS and Windows Phone

 	Web: WebGL (and WebXR)

 	Desktop: PC, Mac, and Linux platforms

 	Console: Nintendo Switch, PS5/4/3, Xbox SeriesX/One/360, PlayStation Mobile, PlayStation Vita, and Wii U

 	Virtual Reality (VR)/Augmented Reality (AR): Oculus Quest/2/3/Pro and Rift, Samsung Gear VR, HTC Vive Focus, Google Daydream, Microsoft Hololens, and the Apple Vision Pro

 Today, Unity is used by a diverse community of developers all around the world. Some are students and hobbyists, but many are commercial organizations, ranging from garage developers to international studios, who use Unity to make a huge number of games—you might have already played some on one platform or another.

 This book provides over 150 Unity game development recipes. Some recipes demonstrate Unity application techniques for multimedia features, including working with animations and using preinstalled package systems. Other recipes develop game components with C# scripts, ranging from working with data structures and data file manipulation to artificial intelligence algorithms for computer-controlled characters.

 If you want to develop quality games in an organized and straightforward way, and you want to learn how to create useful game components and solve common problems, then both Unity and this book are for you.

 Who this book is for

 This book is for anyone who wants to explore a wide range of Unity scripting and multimedia features and find ready-to-use solutions for many game features. Programmers can explore multimedia features, and multimedia developers can try their hand at scripting. From intermediate to advanced users, from artists to coders, this book is for you, and everyone in your team! It is intended for everyone who has the basics of using Unity and a little programming knowledge in C#.

 What this book covers

 Chapter 1, Displaying Data with Core UI Elements, is filled with User Interface (UI) recipes to help you increase the entertainment and enjoyment value of your games through the quality of the visual elements displaying text and data. You’ll learn a wide range of UI techniques for displaying text and images.

 Chapter 2, Responding to User Events for Interactive UIs, teaches you about updating displays, and detecting and responding to user input actions, such as mouseovers. There are recipes for panels in visual layers, radio buttons and toggle groups, interactive text entry, directional radars, countdown timers, and custom mouse cursors.

 Chapter 3, Inventory and Advanced UIs, relates to the many games that involve the player collecting items, such as keys to open doors and ammo for weapons, or choosing from a selection of items, such as from a collection of spells to cast. The recipes in this chapter offer a range of text and graphical solutions for displaying inventory status to the player, including whether they are carrying an item or not and the maximum number of items they are able to collect.

 Chapter 4, Playing and Manipulating Sounds, suggests ways to use sound effects and soundtrack music to make your game more interesting. The chapter demonstrates how to manipulate sound at runtime through the use of scripts, Reverb Zones, and the Audio Mixer. It also includes recipes for real-time graphics visualizations of playing sounds, and a recipe to create a simple 140 bpm loop manager.

 Chapter 5, Textures, Materials, and 3D Objects, contains recipes that will give you a better understanding of how to create, import, and modify 3D objects in Scenes. Recipes for this chapter include controlling how objects look by changing their textures and transparency, as well as creating GameObjects by creating and manipulating geometric primitives such as cubes and spheres.

 Chapter 6, Creating 3D Environments with Terrains, contains recipes that will give you a better understanding of how to create and modify the large-scale geography of a Scene using the Unity terrain tools. You’ll learn how to texture and height paint terrains, add holes, trees and vegetation, and also begin to explore the powerful, dynamic, realistic water features possible in HDRP (High Definition Render Pipeline) projects.

 Chapter 7, Creating 3D Geometry with ProBuilder, contains recipes that will give you a better understanding of how to create and modify 3D objects within the Unity Editor using the powerful ProBuilder toolkit. As well as the basics of working with geometric meshes, you’ll learn to extrude, texture, and vertex paint objects, gaining the skills to quickly prototype terrains and objects for complex game levels.

 Chapter 8, 2D Animation and Physics, introduces some of Unity’s powerful 2D animation and physics features. In this chapter, we present recipes to help you understand the relationships between the different animation elements in Unity, exploring the movement of different parts of the body and the use of sprite-sheet image files that contain sequences of sprite frame pictures. In this chapter, core Unity Animation concepts are presented, including Animation State Machines, Transitions, and Trigger events, as well as clipping via Sprite Masks. In addition, this chapter introduces the use of Tiles and Tilemaps for 2D games.

 Chapter 9, Animated Character, focuses on character animation and demonstrates how to take advantage of Unity’s Mecanim animation system. It covers a range of subjects, from basic character setup to controlling character animations with the old and new input systems.

 Chapter 10, Saving and Loading Data,explores how games running on devices can benefit from persistent file-based data, and also communication with other networked applications. In this chapter, a range of recipes are presented that illustrate how to save and load data between Scenes, how to read data from text files, how to set up an online, database-driven leaderboard, and how to write Unity games that can communicate with such online systems.

 Chapter 11, Controlling and Choosing Positions, presents a range of recipes for 2D and 3D user- and computer-controlled objects and characters, which can lead to games with a richer and more exciting user experience. Examples of these recipes include spawn-points, checkpoints, and physics-based approaches, such as applying forces when clicking on objects and firing projectiles into the Scene.

 Chapter 12, Navigation Meshes and Agents, explores ways that Unity’s NavMeshes and NavMesh Agents offer for the automation of object and character movement and pathfinding in your games. For example, recipes include ways to make objects follow predefined sequences of waypoints, or be controlled by mouse clicks for point-and-click control.

 Chapter 13, Cameras, Lighting, and Visual Effects, presents recipes covering techniques for controlling and enhancing your game’s cameras. It offers solutions to work with both single and multiple cameras, illustrates how to apply post-processing effects, such as vignettes and grainy grayscale videos. The chapter also introduces ways to work with Unity’s powerful Cinemachine components. Other recipes in this chapter introduce visual effects including emissive materials and “cookie” textures, simulating objects casting shadows between the light source and the surfaces lights shine onto.

 Chapter 14, Shader Graphs and Video Players, covers two powerful visual components in Unity: Shader Graphs and the Video Player. Both make it easy to add impressive visuals to your games with little or no programming. It includes recipes on how to simulate CCTV playback and download and play an online video, as well as an introduction to applying Shader Graphs in projects. Several recipes are presented for each of these features in this chapter.

 Chapter 15, Particle Systems and Other Visual Effects, offers a hands-on approach to both using and repurposing Unity’s particle systems package, and also creating your own particle system from scratch.

 Chapter 16, Mobile Games and Apps, provides an overview of and introduction to mobile projects in Unity. Since AR/VR/XR projects are mobile applications, this chapter acts as a foundation for those chapters too (Chapters 17 and 18).

 Chapter 17, Augmented Reality (AR), provides an overview of and introduction to AR projects in Unity. The recipes guide you through exploring the Unity AR examples, then creating and configuring your own AR projects.

 Chapter 18, Virtual and Extended Reality (VR/XR), provides an overview of and introduction to VR projects in Unity. Recipes include creating and configuring projects for VR, adding content, and building apps and deploying them onto devices or publishing them as WebXR via the web.

 Chapter 19, Advanced Topics: Gizmos, Automated Testing, and More, explores a range of advanced topics, including creating your own gizmos to enhance design-time work in the Scene through visual grid guides with snapping. Automated code and runtime testing is also introduced, in addition to different approaches to saving and loading game data, and a final recipe introduces the new Python for Unity package, allowing scripting in the popular Python programming language.

 Technical requirements to get the most out of this book

 To complete the recipes in this book, there are some things that you will need.

 For all chapters, you will need Unity 2023.1 or later, plus one of the following computer systems:

 	Microsoft Windows 10 (64-bit)/GPU: DX10, DX11, and DX12-capable

 	macOS GPU Metal-capable Intel or AMD
 	Mojave 10.14+ / Intel x64 with SSE2 instruction set support

 	Big Sur 11.0 / Apple Silicon M1 or later

 	Linux Ubuntu 20.04 or Ubuntu 18.04 / Gnome desktop running on X11 / GPU: OpenGL 3.2+ or Vulkan-capable Nvidia or AMD

 For each chapter, there is a folder in the book’s GitHub repository that contains the asset files you will need; you can find these at https://github.com/PacktPublishing/Unity-2023-Cookbook-Fifth-Edition.

 For recipes in some chapters, additional hardware/software will be helpful:

 	Chapter 4, Playing and Manipulating Sounds

 To edit and create audio files yourself, you can download and install the free Audacity application for your computer system (Windows/Mac/Linux). You can find it at https://www.audacityteam.org/download/.

 	Chapter 5, Textures, Materials, and 3D Objects

 To work with 3D objects in the Blender editor, you can download it for free at www.blender.org.

 	Chapter 10, Saving and Loading Data

 	Since some of the recipes in this chapter make use of web servers and a database, for those recipes, you will require either the PHP 8 language (which comes with its own web server and SQLite database features) or an AMP package.

 	If you are installing the PHP language, refer to the installation guide and download links:
 	https://www.php.net/manual/en/install.php

 	https://www.php.net/downloads

 	If you do want to install a web server and database server application, a great choice is XAMPP. It is a free, cross-platform collection of everything you need to set up a database and web server on your local computer. The download page also contains FAQs and installation instructions for Windows, Mac, and Linux: https://www.apachefriends.org/download.html.

 	Chapter 15, Particle Systems and Other Visual Effects

 If you wish to create your own image files, you will also need an image editor, such as Adobe Photoshop, which can be found at www.adobe.com, or GIMP, which is a free alternative and can be found at www.gimp.org/.

 	Chapter 16, Mobile Games and Apps

 	If developing for Android, you’ll need an Android mobile device.

 	If developing for Apple iOS, you’ll need:
 	An Apple iOS mobile device.

 	A free Apple ID, which you can create on an Apple device or at https://appleid.apple.com/.

 	A Mac computer with the free Xcode program editor installed.

 	Note: If you don’t have access to a Mac computer and Xcode, another way to develop for Apple iOS is to use Unity’s Cloud Build services. Learn more about Cloud Build for iOS at https://docs.unity3d.com/2020.1/Documentation/Manual/UnityCloudBuildiOS.html.

 	Chapter 17, Augmented Reality (AR)

 To get the most from this chapter’s recipes, you will need an AR device. For this, you can use a dedicated device such as an AR headset, or you can use smartphone apps to begin experiencing AR.

 	Chapter 18, Virtual Reality (VR)

 You will need a device to view VR apps. For this, you can use a dedicated device, such as a VR headset like the Meta Quest 1/2/3, Samsung Gear VR, or Apple Vision Pro. If you wish to use a smartphone for VR projects, there are many low-cost devices to choose from, such as Google Cardboard: https://developers.google.com/cardboard.

 Download the example code files

 You’ll find the chapter figures, recipe assets, and completed Unity projects for each chapter at https://github.com/PacktPublishing/Unity-2023-Cookbook-Fifth-Edition.

 You can either download these files as ZIP archives or use free Git software to download (clone) these files. These GitHub repositories will be updated with any improvements.

 We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Download the color images

 We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/gbp/9781805123026.

 Conventions used

 There are a number of text conventions used throughout this book.

 CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The playerInventoryDisplay variable is a reference to an instance object of the PlayerInventoryDisplay class.”

 A block of code is set as follows:

 public class PlayerInventoryDisplay : MonoBehaviour {
 public Text starText;
 public void OnChangeStarTotal(int numStars) {
 string starMessage = "total stars = " + numStars;
 starText.text = starMessage;
 }
}

 When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold, like this:

 public class PlayerInventoryDisplay : MonoBehaviour {
 public Text starText;
 public void OnChangeStarTotal(int numStars) {
 string starMessage = "total stars = " + numStars;
 starText.text = starMessage;
 }
}

 Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this: “In the Inspector panel, set the font of Text-carrying-star to Xolonium-Bold, and set its color to yellow.”

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

 Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

 Share your thoughts

 Once you’ve read Unity Cookbook, Fifth Edition, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

 Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

 Download a free PDF copy of this book

 Thanks for purchasing this book!

 Do you like to read on the go but are unable to carry your print books everywhere?Is your eBook purchase not compatible with the device of your choice?

 Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

 Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

 The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

 Follow these simple steps to get the benefits:

 	Scan the QR code or visit the link below[image:]

 https://packt.link/free-ebook/9781805123026

 	Submit your proof of purchase

 	That’s it! We’ll send your free PDF and other benefits to your email directly

 1

 Displaying Data with Core UI Elements

 A key element that contributes to the entertainment and enjoyment of most games is the quality of the player’s visual experience, and an important part of this is the user interface (UI). UI elements involve ways for the user to interact with the game (such as buttons, cursors, and text boxes), as well as ways for the game to present up-to-date information to the user (such as the time remaining, current health, score, lives left, or location of enemies). This chapter is filled with UI recipes to give you a range of examples and ideas for creating game UIs.

 This chapter is all about the Unity UI system. This is based on GameObjects and their components, and the recommended system for runtime player visual UIs. There are other UI systems in Unity (UI Toolkit and IMGUI), but these are mostly used for Unity Editor design-time interfaces.

 Every game and interactive multimedia application is different, and so this chapter attempts to fulfill two key roles:

 	The first aim is to provide step-by-step instructions on how to create a range of Unity basic UI elements and, where appropriate, associate them with game variables in code.

 	The second aim is to provide a rich illustration of how UI components can be used for a variety of purposes. This will help you get good ideas about how to make the Unity UI set of controls deliver the particular visual experience and interactions for the games that you are developing.

 Basic UI components can provide static images and text to just make the screen look more interesting. By using scripts, we can change the content of these images and text objects so that the players’ numeric scores can be updated, or we can show stickmen images to indicate how many lives the player has left. Other UI elements are interactive, allowing users to click on buttons, choose options, enter text, and so on.

 More sophisticated kinds of UI can involve collecting and calculating data about the game (such as percentage time remaining or enemy hit damage; or the positions and types of key GameObjects in the scene and their relationship to the location and orientation of the player), and then displaying these values in a natural, graphical way (such as with progress bars or radar screens).

 Core GameObjects, components, and concepts relating to Unity UI development include the following:

 	Canvas: Every UI element is a child (or sub-child) of a Canvas. There can be multiple Canvas GameObjects in a single scene. If a Canvas is not already present, then one will automatically be created when a new UI GameObject is created, with that UI object as the child of the new Canvas GameObject.

 	EventSystem: An EventSystem GameObject is required to manage the interaction events for UI controls. One will automatically be created with the first UI element. Unity only allows one EventSystem in any scene.

 	Visual UI controls: The visible UI controls include Button, Image, TextMeshPro, and Toggle.

 	The Rect Transform component: UI GameObjects are GameObjects that take up a rectangle on a 2D plane, and so have a Rect Transform component rather than a Transform component. The special Rect Transform component has some different properties from the scene’s GameObject Transform component (with its straightforward X/Y/Z position, rotation, and scale properties). Associated with Rect Transforms are pivot points (reference points for scaling, resizing, and rotations) and anchor points.

 The following diagram shows the four main categories of UI controls, each in a Canvas GameObject and interacting via an EventSystem GameObject. UI controls can have their own Canvas, or several UI controls can be in the same Canvas. The four categories are display-only and interactive UI controls, non-visible interactive components (such as ones to group a set of mutually exclusive radio buttons), and C# script classes to manage UI control behavior through logic written in the program code.

 Note that UI controls must be a child or descendant of a Canvas, otherwise, they will not work properly. Also, interactive UI controls will not work properly if the EventSystem GameObject is missing.

 Both the Canvas and EventSystem GameObjects are automatically added to the Hierarchy panel as soon as the first UI GameObject is added to a scene:

 [image: A diagram of a computer system Description automatically generated]
 Figure 1.1: Canvas and EventSystem

 Rect Transforms for UI GameObjects represent a rectangular area rather than a single point, which is the case for scene GameObject transforms. Rect Transforms describe how a UI element should be positioned, sized, scaled, and rotated. UI GameObjects have a Pivot Point, indicated in the Scene panel by a small blue circle. All transformations are made relative to this pivot point, for example, rotations of a GameObject are around this point. If a UI GameObject is moved, its pivot point is moved too.

 [image: A screenshot of a video game Description automatically generated]
 Figure 1.2: Transformations relative to pivot point and anchors

 UI GameObjects also have Anchors, which determine the position and size of a UI GameObject relative to its parent. There are four anchors, indicating how a UI GameObject will be sized relative to its parent from the top, bottom, left, and right. Each anchor is indicated by a white triangle. UI GameObjects can be direct children of a canvas, or they can be child GameObjects of some other UI GameObject. The pivot point is relative to the immediate parent of each UI GameObject.

 Rect Transforms have a width and height that can be changed without affecting the local Scale of the component. When the scale is changed for the Rect Transform of a UI element, this will also scale font sizes and borders on sliced images, and so on. If all four anchors are at the same point, resizing the Canvas will not stretch the Rect Transform. It will only affect its position. In this case, we’ll see the Pos X and Pos Y properties and the Width and Height properties of the rectangle in the Inspector panel. However, if the anchors are not all at the same point, Canvas resizing will result in stretching the element’s rectangle. So, instead of Width, we’ll see the values for left and right – the position of the horizontal sides of the rectangle to the sides of the Canvas, where Width will depend on the actual Canvas width (and the same for top/bottom/height).

 Unity provides a set of preset values for pivots and anchors, making the most common values very quick and easy to assign to an element’s Rect Transform. The following screenshot shows the 3 x 3 grid of the Anchor Presets panel, which allows you to make quick choices about the left, right, top, bottom, middle, horizontal, and vertical values. Also, the extra column on the right offers horizontal stretch presets, while the extra row at the bottom offers vertical stretch presets. Pressing the Shift + Alt keys sets the pivot and anchors when a preset is clicked. Pressing just Shift sets the pivot but not the position, and pressing just Alt sets the position but not the pivot. Figure 1.3 shows the Anchor Presets panel when both the Shift + Alt keys are pressed, whose icons illustrate the result of choosing vertical and horizontal positions for the anchors.

 [image: A screenshot of a computer Description automatically generated]
 Figure 1.3: The Rect Transform Anchor Presets panel, when Shift and Alt pressed

 There are three Canvas render modes:

 	Screen Space: Overlay: In this mode, the UI elements are displayed without any reference to any camera (there is no need for any Camera in the scene). The UI elements are presented in front of (overlaying) any sort of camera display of the scene’s contents.

 	Screen Space: Camera: In this mode, the Canvas is treated as a flat plane in the frustum (viewing space) of a Camera scene – where this plane is always facing the camera. So, any scene objects in front of this plane will be rendered in front of the UI elements on the Canvas. The Canvas GameObject is automatically resized if the screen size, resolution, or camera settings are changed.

 	World Space: In this mode, the Canvas acts as a flat plane in the frustum (viewing space) of a Camera scene – but the plane is not made to always face the Camera. The Canvas GameObject appears just as with any other objects in the scene, relative to where (if anywhere), in the camera’s viewing frustum, the Canvas panel is located and oriented.

 In this chapter, we are going to use the Screen Space: Overlay mode. However, all these recipes can be used with the other two modes as well.

 Be creative! This chapter aims to act as a launching pad of ideas, techniques, and reusable C# scripts for your own projects. Get to know the range of Unity UI elements and try to work smart. Often, a UI component exists with most of the components that you may need for something in your game, but you may need to adapt it somehow. An example of this can be seen in the recipe that makes a UI Slider non-interactive, instead using it to display a red-green progress bar for the status of a countdown timer. We will take a detailed look at this in the Displaying countdown times graphically with a UI Slider section in Chapter 2, Responding to User Events for Interactive UIs.

 Many of these recipes involve C# script classes that make use of the Unity scene-start event sequence of Awake() for all GameObjects, Start() for all GameObjects, and then Update() every frame to every GameObject. Therefore, you’ll see many recipes in this chapter (and the whole book) where we cache references to GameObject components in the Awake() method, and then make use of these components in Start() and other methods once the scene is up and running.

 Since there is no 3D content in the recipes for this chapter, the projects created all use the 2D (Core) template. However, Unity UI works with all 2D and 3D projects.

 In this chapter, we will cover the following recipes:

 	Creating a Font Asset file for use with TextMeshPro

 	Displaying a “Hello World” UI text message

 	Displaying a digital clock

 	Displaying a digital countdown timer

 	Creating a message that fades away

 	Displaying an image

 Before you get started, in the Preface of the book you will find a list of the technical requirements needed to be able to complete all the recipes within this book. Overall requirements are listed first, then details of any additional hardware or software useful for individual chapters is also provided.

 Creating a Font Asset file for use with TextMeshPro

 The powerful TextMeshPro system is now core to Unity’s UI system. While the TMP (TextMeshPro) Essentials comes with two fonts (Arial and Liberation Sans), and there are more available in the TMP examples, often you may have an existing font, or perhaps one from a client, that you will wish to use with your Unity project. In this recipe, we’ll go through the steps of creating a Font Asset file, so you can then use whatever fonts you wish in your Unity projects.

 Note: ensure you have a license appropriate for any fonts you use.

 Getting ready

 For this recipe, we have prepared the font that you need in a folder named Fonts in the 01_01 folder. Many thanks to Severin Meyer for making this font freely available at dafont.com.

 How to do it...

 To create a Font Asset file for use with TextMeshPro, follow these steps:

 	Create a new 2D (Core) project.

 	Import the provided Fonts folder, as described in the Getting ready section, so once you’ve copied these font files into your Unity project they’ll be in the Assets folder in the Project panel.

 	Load the TextMeshPro essentials resources by choosing Window | TextMeshPro | Import TMP Essential Resources.

 	Now open the Font Asset Creator, by choosing Window | TextMeshPro | Font Asset Creator.

 	In the Font Asset Creator set the Source Font File to Xolonium-Bold file. Then click the Generate Font Atlas button.

 [image:]
 Figure 1.4: Using the Font Asset Creator tool

 	After a few seconds, the font atlas should have been created, and you can click the Save button. Select the Fonts folder as the destination for this new Xolonium-Bold SDF file.

 	When working with UI TextMeshPro text and button assets, you will now have the Xolonium-Bold font available in the list of fonts to choose from.

 How it works...

 The TestMeshPro feature requires Font Asset files in the SDF font atlas format. By following the steps in this recipe, you are able to create such files for any fonts you have on your computer.

 Signed Distance Field (SDF) fonts are a font encoding that makes text look crisp even after scaling and transformations.

 Displaying a “Hello World” UI text message

 The first traditional problem to be solved with new computing technology is to display the Hello World message, as shown in the following screenshot:

 [image:]
 Figure 1.5: Displaying the “Hello World” message

 In this recipe, you’ll learn how to create a simple UI text object with this message, in large white text with a selected font, in the center of the screen.

 Getting ready

 This recipe follows on from the previous recipe, so make a copy of that and work on that copy.

 How to do it...

 To display a Hello World text message, follow these steps:

 	Open the copy of the project from the previous recipe.

 	In the Hierarchy panel, add a TextMeshPro GameObject to the scene by going to GameObject | UI | Text - TextMeshPro. Name this GameObject Text-hello. A Canvas and EventSystem GameObject will also be automatically added to the scene.

 Alternatively, you can use the Create menu immediately below the Hierarchy tab. To do so, go to Create | UI | Text - TextMeshPro.

 	Ensure that your new Text-hello GameObject is selected in the Hierarchy panel.

 	Now, in the Inspector panel, ensure the following properties are set (see screenshot):
 	Text Input set to read Hello World

 	Font Asset set to Xolonium-Bold SDF

 	Font Size as per your requirements (large – this depends on your screen; try 50 or 100)

 	Vertex Color set to white

 	Alignment set to horizontal-center and vertical-center

 	Wrapping set to Enabled

 	Overflow set to Overflow

 [image: Graphical user interface, application Description automatically generated]
 Figure 1.6: TMP text settings in the Inspector panel

 	In the Inspector panel, click Rect Transform to make a dropdown appear, and click on the Anchor Presets square icon (at the top left of the Rect Transform component in the Inspector panel). This should result in several rows and columns of preset position squares appearing.
 Holding down Shift + Alt, click on the middle center one (middle row and center column).

 [image: Diagram Description automatically generated]
 Figure 1.7: Selecting the horizontal center and vertical middle in the Rect Transform

 	Your Hello World text will now appear, centered nicely in the Game panel.

 How it works...

 In this recipe, you added a new Text-hello GameObject to the scene. A parent Canvas and UI EventSystem will have also been automatically created. Also, note that by default, new UI GameObjects are added to the UI layer – we can see this illustrated at the top right of the Inspector panel in Figure 1.6. This is useful since, for example, it is easy to hide/reveal all UI elements by hiding/revealing this layer in the Culling Mask property of the Camera component of the Main Camera GameObject.

 You set the text content and presentation properties and used the Rect Transform anchor presets to ensure that whatever way the screen is resized, the text will stay horizontally and vertically centered.

 There’s more...

 Here are some more details you don’t want to miss.

 Styling substrings with rich text

 Each separate UI TextMeshPro component can have its own color, size, boldness styling, and so on. However, if you wish to quickly add a highlighting style to the part of a string to be displayed to the user, you can apply HTML-style markups. The following are examples that are available without the need to create separate UI text objects:

 	Change the font to Xolonium-Regular (created by following the first recipe of this chapter)

 	Embolden text with the b markup: I am bold

 	Italicize text with the i markup: I am <i>italic</i>

 	Set the text color with hex values or a color name: I am a <color=green>green text </color>, but I am <color=#FF0000>red</color>

 You can learn more by reading the Unity online manual’s Rich Text page at https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/StyledText.html

 Exploring the TextMeshPro Examples and Extras

 There are additional Text Mesh Pro resources and examples that are worth exploring to see a good range of the effects possible with this feature of Unity. You can load the TextMeshPro examples and extra resources by choosing Window | TextMeshPro | Import TMP Examples and Extras.

 A new folder will be created in the Project panel: TextMeshpro | Examples & Extras. In this folder, you’ll find scenes illustrating gradients, fonts, sprites, and more. There is also a Resources folder, offering additional fonts, gradient presets, and more.

 Displaying a digital clock

 Whether it is real-world time or an in-game countdown clock, many games are enhanced by some form of clock or timer display. The following screenshot shows the kind of clock we will be creating in this recipe:

 [image:]
 Figure 1.8: Displaying a digital clock when the scene is run

 The most straightforward type of clock to display is a string composed of integers for hours, minutes, and seconds, which is what we’ll create in this recipe.

 Getting ready

 For this recipe, we have prepared the font that you will need in a folder named Fonts in the 01_01 folder. If you have not done so already, create a Xolonium-Bold SDF Font Asset file for the imported fonts, as described in the first recipe of this chapter.

 How to do it…

 To create a digital clock, follow these steps:

 	Create a new Unity 2D project.

 	Import the provided Fonts folder, containing your Xolonium-Bold SDF Font Asset file.

 	Add a Text TMP GameObject to the scene named Text-clock by choosing GameObject | UI | Text - TextMeshPro.

 	Ensure that the Text-clock GameObject is selected in the Hierarchy panel. Now, in the Inspector panel, ensure that the following properties are set:
 	Font Type set to Xolonium Bold

 	Font Size set to 20

 	Alignment set to horizontal and vertical-center

 	Overflow settings set to Overflow

 	Color set to white

 	In Rect Transform, click on the Anchor Presets square icon, which will result in the appearance of several rows and columns of preset position squares. Holding down Shift + Alt, click on the top center item (top row, center column).

 	In the Project panel, create a folder named _Scripts and create a C# script class (menu: Create | C# Script) called ClockDigital in this new folder:
 using UnityEngine;
using TMPro;
using System;
public class ClockDigital : MonoBehaviour {
 private TextMeshProUGUI textClock;
 void Awake (){
 textClock = GetComponent<TextMeshProUGUI>();
 }
 void Update (){
 DateTime time = DateTime.Now;
 string hour = LeadingZero(time.Hour);
 string minute = LeadingZero(time.Minute);
 string second = LeadingZero(time.Second);
 textClock.text = hour + ":" + minute + ":" + second;
 }
 string LeadingZero (int n){
 return n.ToString().PadLeft(2, '0');
 }
}

 Note: In the Project panel, it can be useful to prefix important folders with an underscore character so that items appear first in a sequence.

 Since scripts and scenes are things that are most often accessed, prefixing their folder names with an underscore character, as in _Scenes and _Scripts, means they are always easy to find at the top in the Project panel.

 	Ensure the Text-clock GameObject is selected in the Hierarchy panel.

 	In the Inspector panel, add an instance of the ClockDigital script class as a component by clicking the Add Component button, selecting Scripts, and choosing the ClockDigital script class:
 [image: Graphical user interface, application Description automatically generated]
 Figure 1.9: Adding scripted component Clock Digital in the Inspector

 Note: You can add script components through dragging and dropping.

 Script components can also be added to GameObjects via dragging and dropping. For example, with the Text-clock GameObject selected in the Hierarchy panel, drag your ClockDigital script onto it to add an instance of this script class as a component of the Text-clock GameObject.

 	When you run the scene, you will now see a digital clock that shows hours, minutes, and seconds in the top-center part of the screen.

 How it works...

 In this recipe, you added a Text GameObject to a scene. Then, you added an instance of the ClockDigital C# script class to that GameObject.

 Notice that as well as the standard two C# packages (UnityEngine and System.Collections) that are written by default for every new script, you added the using statements to two more C# script packages, TMPro and System.

 The TMPro package is needed since our code uses the TextMestPro text object, and the System package is needed since it contains the DateTime class that we need to access the clock on the computer where our game is running.

 There is one variable, textClock, which will be a reference to the Text component, whose text content we wish to update in each frame with the current time in hours, minutes, and seconds.

 The Awake() method (executed when the scene begins) sets the textClock variable to be a reference to the Text component in the GameObject, to which our scripted object has been added. Storing a reference to a component in this way is referred to as caching – this means that code that’s executed later does not need to repeat the computationally expensive task of searching the GameObject hierarchy for a component of a particular type.

 Note that an alternative approach would be to make textClock a public variable. This would allow us to assign it via draging and dropping in the Inspector panel.

 The Update() method is executed in every frame. The current time is stored in the time variable, and strings are created by adding leading zeros to the number values for the hours, minutes, and seconds properties of the variable. Finally, this method updates the text property (that is, the letters and numbers that the user sees) to be a string, concatenating the hours, minutes, and seconds with colon separator characters.

 Although the code we have provided is useful for illustrating how to access the time component of a DateTime object individually, the Format(...) method of the String class can be used to format a DateTime object all in a single statement. For example, the preceding could be written more succinctly in a single statement; that is, String.Format(“HH:mm:ss”, DateTime.Now). For more examples, see http://www.csharp-examples.net/string-format-datetime/.

 The LeadingZero(...) method takes an integer as input and returns a string of this number with leading zeros added to the left if the value is less than 10.

 Displaying a digital countdown timer

 As a game mechanic, countdown clocks are a popular feature in many games:

 [image:]
 Figure 1.10: Countdown clock

 This recipe, which will adapt the digital clock shown in the previous recipe, will show you how to display a digital countdown clock that will count down from a predetermined time to zero.

 Getting ready

 This recipe adapts to the previous one. So, make a copy of the project for the previous recipe and work on that copy.

 For this recipe, we have prepared the CountdownTimer script that you need in a folder named _Scripts inside the 01_03 folder.

 How to do it...

 To create a digital countdown timer, follow these steps:

 	Import the provided _Scripts folder.

 	In the Inspector panel, remove the scripted component, ClockDigital, from the Text-clock GameObject. You can do this by choosing Remove Component from the 3-dot options menu icon for this component in the Inspector panel.

 	In the Inspector panel, add an instance of the CountdownTimer script class as a component by clicking the Add Component button, selecting Scripts, and choosing the CountdownTimer script class.

 	Create a DigitalCountdown C# script class that contains the following code, and add an instance as a scripted component to the Text-clock GameObject:
 using UnityEngine;
using TMPro;
public class DigitalCountdown : MonoBehaviour {
 private TextMeshProUGUI textClock;
 private CountdownTimer countdownTimer;
 void Awake() {
 textClock = GetComponent<TextMeshProUGUI>();
 countdownTimer = GetComponent<CountdownTimer>();
 }
 void Start() {
 countdownTimer.ResetTimer(30);
 }
 void Update () {
 int timeRemaining = countdownTimer.GetSecondsRemaining();
 string message = TimerMessage(timeRemaining);
 textClock.text = message;
 }
 private string TimerMessage(int secondsLeft) {
 if (secondsLeft <= 0){
 return "countdown has finished";
 } else {
 return "Countdown seconds remaining = " + secondsLeft;
 }
 }
}

 	When you run the scene, you will now see a digital clock counting down from 30. When the countdown reaches zero, a message stating Countdown has finished will be displayed.

 How it works...

 In this recipe, you added instances of the DigitalCountdown and CountdownTimer C# script classes to your scene’s UI TextMeshProUGUI GameObject.

 The Awake() method caches references to the TextMeshProUGUI and CountdownTimer components in the countdownTimer and textClock variables. The textClock variable will be a reference to the UI Text component, whose text content we wish to update in each frame with a time-remaining message (or a timer-complete message).

 The Start() method calls the countdown timer object’s CountdownTimerReset(...) method, passing an initial value of 30 seconds.

 The Update() method is executed in every frame. This method retrieves the countdown timer’s remaining seconds and stores this value as an integer (whole number) in the timeRemaining variable. This value is passed as a parameter to the TimerMessage() method, and the resulting message is stored in the string (text) variable message. Finally, this method updates the text property (that is, the letters and numbers that the user sees) of the textClock TextMeshProUGUI GameObject to be equal to the string message about the remaining seconds.

 The TimerMessage() method takes an integer as input, and if the value is zero or less, a message stating the timer has finished is returned. Otherwise (if more than zero seconds remain), a message stating the number of remaining seconds is returned.

 There’s more...

 Here are some more details you don’t want to miss.

 Automatically add components with [RequireComponent(...)]

 The DigitalCountdown script class requires the same GameObject to also have an instance of the CountdownTimer script class. Rather than having to manually attach an instance of a required script, you can use the [RequireComponent(...)] C# attribute immediately before the class declaration statement. This will result in Unity automatically attaching an instance of the required script class.

 If the script class or component cannot be found, an error will occur, and be reported in the Console panel.

 For example, by writing the following code, Unity will add an instance of CountdownTimer as soon as an instance of the DigitalCountdown script class has been added as a component of a GameObject:

 using UnityEngine;
using TMPro;
[RequireComponent (typeof (CountdownTimer))]
public class DigitalCountdown : MonoBehaviour {

 You can learn more by reading the Unity documentation at https://docs.unity3d.com/ScriptReference/RequireComponent.html.

 Creating a message that fades away

 Sometimes, we want a message to only be displayed for a certain time, and then fade away and disappear. This recipe will describe the process for displaying a text message and then making it fade away completely after 5 seconds. It could be used for providing instructions or warnings to a player that disappears so as not to take up screen space.

 Getting ready

 This recipe adapts the previous one (Displaying a digital countdown timer). So, make a copy of the project for that recipe and work on that copy.

 How to do it...

 To display a text message that fades away, follow these steps:

 	In the Inspector panel, remove the scripted component, DigitalCountdown, from the Text-clock GameObject.

 	Select the Text-clock GameObject in the Hierarchy panel. Then, in the Inspector for the TextMeshPro – Text (UI) component, set its Text Input default text to hello world.

 	Create a C# script class called FadeAway that contains the following code, and add an instance as a scripted component to the Text-clock GameObject:
 using UnityEngine;
using TMPro;
[RequireComponent(typeof(CountdownTimer))]
public class FadeAway : MonoBehaviour
{
 private CountdownTimer countdownTimer;
 private TextMeshProUGUI textUI;
 void Awake()
 {
 textUI = GetComponent<TextMeshProUGUI>();
 countdownTimer = GetComponent<CountdownTimer>();
 }
 void Start()
 {
 countdownTimer.ResetTimer(5);
 }
 void Update()
 {
 float alphaRemaining =
 countdownTimer.GetProportionTimeRemaining();
 print(alphaRemaining);
 Color c = textUI.color;
 c.a = alphaRemaining;
 textUI.color = c;
 }
}

 	When you run the scene, you will see that the hello world message on the screen slowly fades away, disappearing after 5 seconds.

 How it works...

 In this recipe, you added an instance of the FadeAway scripted class to the Text-clock GameObject. Due to the RequireComponent(...) attribute, an instance of the CountdownTimer script class was also automatically added.

 The Awake() method caches references to the TextMeshProUGUI and CountdownTimer components in the countdownTimer and textUI variables.

 The Start() method resets the countdown timer so that it starts counting down from 5 seconds.

 The Update() method (executed every frame) retrieves the proportion of time remaining in our timer by calling the GetProportionTimeRemaining() method of the CountdownTimer script class. This method returns a value between 0.0 and 1.0, which also happens to be the range of values for the alpha (transparency) property of the color property of a UI TextMeshPro GameObject.

 The flexible range of 0.0–1.0. It is often a good idea to represent proportions as values between 0.0 and 1.0. Either this will be just the value we want for something, or we can multiply the maximum value by our decimal proportion, and we get the appropriate value. For example, if we wanted the number of degrees of a circle for a given 0.0–0.1 proportion, we would just multiply by the maximum of 360, and so on.

 The Update() method then retrieves the current color of the text being displayed (via textUI.color), updates its alpha property, and resets the text object to having this updated color value. The result is that each frame in the text object’s transparency represents the current value of the proportion of the timer remaining until it fades to fully transparent when the timer gets to zero.

 Displaying an image

 There are many cases where we wish to display an image onscreen, including logos, maps, icons, and splash graphics. In this recipe, we will display an image centered at the top of the screen.

 The following screenshot shows Unity displaying an image:

 [image:]
 Figure 1.11: Displaying the Unity logo as an image

 Getting ready

 For this recipe, we have prepared the image that you need in a folder named Images in the 01_06 folder.

 How to do it...

 To display an image, follow these steps:

 	Create a new Unity 2D project.

 	Set the Game panel to 400 x 300. Do this by displaying the Game panel, and then creating a new Resolution in the Free Aspect drop-down menu at the top of the panel.

 	Click the plus (+) symbol at the bottom of this menu, setting Label to Core UI, Width to 400, and Height to 300. Click OK; the Game panel should be set to this new resolution:
 [image: A screenshot of a computer Description automatically generated]
 Figure 1.12: Adding a new screen resolution to the Game panel

 Alternatively, you can set the default Game panel’s resolution by going to Edit | Project Settings | Player and then the width and height of Resolution and Presentation in the Inspector panel (having turned off the Full-Screen option).

 	Import the provided Images folder.

 	Select the unity_logo image asset file in the Project panel, and in the Inspector panel, ensure that its Texture Type is set to Default. If it has some other type, then choose Default from the drop-down list and click on the Apply button.

 	In the Hierarchy panel, add a UI | RawImage GameObject named RawImage-logo to the scene.

 	Ensure that the RawImage-logo GameObject is selected in the Hierarchy panel. In the Inspector panel for the RawImage component, click the file viewer circle icon at the right-hand side of the Texture property and select the unity_logo image:
 [image: Graphical user interface, text, application Description automatically generated]
 Figure 1.13: Setting a Texture for a Raw Image UI GameObject

 An alternative way of assigning this Texture is to drag the unity_logo image from your Project folder (Images) into the Raw Image public property Texture.

 	Click on the Set Native Size button to resize the image so that it is no longer stretched and distorted.

 	In Rect Transform, click on the Anchor Presets square icon, which will result in several rows and columns of preset position squares appearing. Holding down Shift + Alt, click on the top row and the center column.

 	The image will now be positioned neatly at the top of the Game panel and will be horizontally centered.

 How it works...

 In this recipe, you ensured that an image has its Texture Type set to Default – this is so that this image asset file type matches the type expected by the UI RawImage control. Default images are suitable for texturing 3D meshes, for example. For example, if its type was Sprite (2D and UI), then it could not be used with a UI RawImage control.

 You also added a UI RawImage control to the scene. The RawImage control has been made to display the unity_logo image file. This image has been positioned at the top-center of the Game panel.

 By setting the Raw Image component to Native Size, you resize the image in the scene to its pixel width and height. This makes the image pixel-perfect – it will appear undistorted since at native size it has not been scaled in any way.

 There’s more...

 Here are some details you don’t want to miss.

 Working with 2D sprites and UI Image components

 If you simply wish to display non-animated images, then Texture images and UI RawImage controls are the way to go. However, if you want more options regarding how an image should be displayed (such as tiling and animation), the UI Image control should be used instead. This control needs image files to be imported as the Sprite (2D and UI) type.

 Once an image file has been dragged into the UI Image control’s Sprite property, additional properties will be available, such as Image Type, and options to preserve the aspect ratio.

 If you wish to prevent a UI Sprite GameObject from being distorted and stretched, go to the Inspector panel and check the Preserve Aspect option in its Image component.

 See also

 An example of tiling a sprite image can be found in the Revealing icons for multiple object pickups by changing the size of a tiled image recipe in Chapter 3, Inventory UIs and Advanced UIs.

 Further reading

 The following are some useful resources for learning more about working with core UI elements in Unity:

 	The Unity manual provides a very good introduction to UI TextMesh Pro layouts and Rect Transforms:

 	https://docs.unity3d.com/Packages/com.unity.textmeshpro@4.0/manual/index.html

 	https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/class-RectTransform.html

 	Here is a comparison of the different Unity UI systems:
 	https://docs.unity3d.com/2023.2/Documentation/Manual/UI-system-compare.html

 	In addition, Kodeco’s (formerly Ray Wenderlich) Unity Introduction to TextMeshPro web tutorial also presents a helpful guide to TextMeshPro in Unity:
 	https://www.kodeco.com/22175776-introduction-to-textmesh-pro-in-unity

 	To learn more about TextMeshPro, take a look at the following link:
 	https://blogs.unity3d.com/2018/10/16/making-the-most-of-textmesh-pro-in-unity-2018/

 	Background on how TextMeshPro uses Signed Distance Functions:
 	https://en.wikipedia.org/wiki/Signed_distance_function

 	Google offers a wide range of fonts you can use with your Unity projects:
 	https://fonts.google.com/

 	Learn more about SDF fonts in the TextMeshPro documentation:
 	https://docs.unity3d.com/Packages/com.unity.textmeshpro@4.0/manual/FontAssetsSDF.html

 Learn more on Discord

 To join the Discord community for this book – where you can share feedback, ask questions to the author, and learn about new releases – follow the QR code below:

 https://packt.link/unitydev

 [image:]

 2

 Responding to User Events for Interactive UIs

 Almost all the recipes in this chapter involve different interactive UI controls. Although there are different kinds of interactive UI controls, the basic way to work with them, as well as to have scripted actions respond to user actions, is all based on the same idea: events triggering the execution of object method functions.

 Then, for fun, and as an example of a very different kind of UI, the final recipe will demonstrate how to add sophisticated, real-time communication for the relative positions of objects in the scene to your game - in the form of a radar!

 The UI can be used for three main purposes:

 	To display static (unchanging) values, such as the name or logo image of the game, or word labels such as Level and Score, that tell us what the numbers next to them indicate (the recipes for these can be found in Chapter 1, Displaying Data with Core UI Elements).

 	To display values that change due to our scripts, such as timers, scores, or the distance from our Player character to some other object (an example of this is the radar recipe at the end of this chapter, Displaying a radar to indicate the relative locations of objects).

 	Interactive UI controls, whose purpose is to allow the player to communicate with the game scripts via their mouse or touchscreen. These are the ones we’ll look at in detail in this chapter.

 The core concept of working with Unity interactive UI controls is to register an object’s public method so that we’re informed when a particular event occurs. For example, we can add a UI dropdown to a scene named DropDown1, and then write a MyScript script class containing a NewValueAction() public method to perform an action. However, nothing will happen until we do two things:

 	We need to add an instance of the script class as a component of a GameObject in the scene (which we’ll name go1 for our example – although we can also add the script instance to the UI GameObject itself if we wish to).

 	In the UI dropdown’s properties, we need to register the GameObject’s public method of its script component so that it responds to On Value Changed event messages.

 The NewValueAction() public method of the MyScript script will typically retrieve the value that’s been selected by the user in the dropdown and do something with it. For example, the NewValueAction() public method might confirm the value to the user, change the music volume, or change the game’s difficulty. The NewValueAction() method will be executed each time GameObject go1 receives the NewValueAction() message. In the properties of DropDown1, we need to register go1's scripted component – that is, MyScript's NewValueAction() public method – as an event listener for On Value Changed events. We need to do all this at design time (that is, in the Unity Editor before running the scene):

 [image: A screenshot of a design Description automatically generated]
 Figure 2.1: Graphical representation of the UI at design time

 At runtime (when the scene in the application is running), the following will happen:

 	If the user changes the value in the drop-down menu of the DropDown1 GameObject (step 1 in the following diagram), this will generate an On Value Changed event.

 	DropDown1 will update its display on the screen to show the user the newly selected value (step 2a). It will also send messages to all the GameObject components registered as listeners to On Value Changed events (step 2b).

 	In our example, this will lead to the NewValueAction() method in the go1 GameObject’s scripted component being executed (step 3).

 [image: A diagram of a run-time Description automatically generated]
 Figure 2.2: Graphical representation of the UI at runtime

 Registering public object methods is a very common way to handle events such as user interaction or web communications, which may occur in different orders, may never occur, or may happen several times in a short period. Several software design patterns describe ways to work with these event setups, such as the Observer pattern and the Publisher-Subscriber design pattern (more details can be found at https://unity.com/how-to/create-modular-and-maintainable-code-observer-pattern).

 Core GameObject components related to interactive Unity UI development include the following:

 	Visual UI controls: The visible UI controls themselves include Button, Image, Text, and Toggle. These are the UI controls the user sees on the screen and uses their mouse/touchscreen to interact with. These are the GameObjects that maintain a list of object methods that have subscribed to user-interaction events.

 	Interaction UI controls: These are non-visible components that are added to GameObjects; examples include Input Field and Toggle Group.

 	Panel: UI objects can be grouped together (logically and physically) with UI Panels. Panels can play several roles, including providing a GameObject parent in the Hierarchy window for a related group of controls. They can provide a visual background image to graphically relate controls on the screen, and they can also have scripted resize and drag interactions added if desired.

 In addition, the concept of sibling depth is important when multiple UI components are overlapping. The bottom-to-top display order (what appears on the top of what) for a UI element is determined initially by its place in the sequence in the Hierarchy window. At design time, this can be manually set by dragging GameObjects into the desired sequence in the Hierarchy window. At runtime, we can send messages to the Rect Transforms of GameObjects to dynamically change their Hierarchy position (and, therefore, the display order) as the game or user interaction demands. This is illustrated in the Organizing images inside panels and changing panel depths via buttons recipe in this chapter.

 Often, a UI element exists with most of the components that you may need for something in your game, but you may need to adapt it somehow. An example of this can be seen in the Displaying a countdown timer graphically with a UI Slider recipe, which makes a UI Slider non-interactive so as to display a red-green progress bar for the status of a countdown timer.

 In this chapter, we will cover the following recipes:

 	Creating a UI Button to reveal an image

 	Creating a UI Button to move between scenes

 	Animating UI Button properties on mouseover

 	Organizing image panels and changing panel depths via UI Buttons

 	Displaying the value of an interactive UI Slider

 	Displaying a countdown timer graphically with a UI Slider

 	Setting custom mouse cursors for 2D and 3D GameObjects

 	Setting custom mouse cursors for UI controls

 	Interactive text entry with Input Field

 	Detecting interactions with a single Toggle UI component

 	Creating related radio buttons using UI Toggles

 	Creating text UI Dropdown menus

 	Creating image icon UI Dropdown menus

 	Displaying a radar to indicate the relative locations of objects.

 Creating a UI Button to reveal an image

 In this recipe, we’ll create a button that, when pressed, will make an image appear.

 Getting ready

 For this recipe, we have prepared the image that you need in a folder named Images in the 02_01 folder.

 How to do it...

 To create a UI Button to reveal an image, follow these steps:

 	Create a new Unity 2D project.

 	Import the unity_logo image into the Project folder.

 	Drag the unity_logo image into the scene and in the Inspector panel, set the scale property to X 2 Y 2, and uncheck the check box as per the screenshot to make this GameObject inactive. An inactive GameObject is not displayed, and nor does it have any active behavior (so no scripts run and it does not respond to any event messages).

 	Load the TextMeshPro Essential Resources, by choosing Window | TextMeshPro | Import TMP Essential Resources.

 [image: A screenshot of a computer Description automatically generated with medium confidence]
 Figure 2.3: Inspector properties for an image in the scene

 	In the Hierarchy window, right-click and select Create | UI | Button-TextMeshPro.

 	Select GameObject Button in the Hierarchy window and click on the plus (+) button at the bottom of the Inspector window, to create a new OnClick event handler.

 	Drag the unity_logo image from the Hierarchy window over the Object slot immediately below the menu that says Runtime Only.

 	Select the SetActive (bool) method from the GameObject drop-down list (initially showing No Function) and click on the checkbox.

 [image: A screenshot of a computer Description automatically generated with medium confidence]
 Figure 2.4: Settings for the OnClick event handler for the button

 	Save your changes and run the scene. When you click the button, the image will appear.

 How it works...

 In this recipe, you created a new scene, imported an image, and unchecked the Visible in Runtime checkbox for the image so that it would not be seen at runtime.

 You added a UI Button and a new OnClick event action that executes the GameObject.SetActive() method of the GameObject drop-down list of the button, and you checked the box so that the image (unity_logo) appears when the button is clicked.

 There’s more...

 As an alternative to having the image appear when clicking on a button, the same button could be used to make an image disappear by the checkbox on the image.

 Creating a UI Button to move between scenes

 The majority of games include menu screens that display settings, buttons to start the game playing, messages to the user about instructions, high scores, the level they have reached so far, and so on. Unity provides UI Buttons to offer users a simple way to interact with the game and its settings.

 [image:]
 Figure 2.5: Example of a main menu UI Button

 In this recipe, we’ll create a very simple game consisting of two screens, each with a button to load the other one, as illustrated in the preceding screenshot.

 How to do it...

 To create a button-navigable multi-scene game, follow these steps:

 	Create a new Unity 2D project.

 	Save the current (empty) scene in a new folder called Scenes, naming the scene page1.

 	Load the TextMeshPro Essential Resources, by choosing Window | TextMeshPro | Import TMP Essential Resources.

 	In the Hierarchy panel, add a Text (TMP) GameObject to the scene positioned at the top center of the scene containing large white text that says Main Menu (page 1). Having added a Text (TMP) GameObject to the scene, in the Inspector for the Rect Transform component, click on the Anchor Presets square icon, which will result in several rows and columns of preset position squares appearing. Holding down Shift + Alt, click on the top row and the center column.

 	Add a UI Button-TextMeshPro to the scene positioned in the middle-center of the screen.

 	In the Hierarchy window, click on the Tree View toggle triangle to display the Text child of this GameObject button. Select the Text GameObject and, in the Inspector window for the Text Input property, enter the text goto page 2:

 [image: A screenshot of a computer Description automatically generated]
 Figure 2.6: UI Button Text child

 	Create a second scene, named page2, with the UI text Instructions (page 2) and a UI Button-TextMeshPro with the text goto page 1. You can either repeat the preceding steps or duplicate the page1 scene file, name the duplicate page2, and then edit the UI TMP text and UI Button text appropriately.

 	Add both scenes to the build, which is the set of scenes that will end up in the actual application built by Unity. Open the Build Settings panel by choosing File | Build Settings.... Then drag the two scenes from the Project panel into the top section (Scenes in Build) of the Build Settings panel. Ensure the sequence goes page1 first, then page2 second – drag to rearrange them if necessary.

 We cannot tell Unity to load a scene that has not been added to the list of scenes in the build. This makes sense since when an application is built, we should never try to open a scene that isn’t included as part of that application. The scene that appears first (index 0) in the Build Settings panel will be the first scene opened when the game is run.

 	Ensure you have the page1 scene open.

 	Create a new empty GameObject named SceneManager.

 	Create a C# script class called SceneLoader, in a new folder called _Scripts, that contains the following code. Then, add an instance of SceneLoader as a scripted component to the SceneManager GameObject:
 using UnityEngine;
using UnityEngine.SceneManagement;
public class SceneLoader : MonoBehaviour {
 public void LoadOnClick(int sceneIndex) {
 SceneManager.LoadScene(sceneIndex);
 }
}

 	Select the Button GameObject in the Hierarchy panel and click on the plus (+) button at the bottom of the Button (Script) component in the Inspector. This will create a new OnClick event handler for this button (that is, a method to execute when the button is clicked).

 	Drag the SceneManager GameObject from the Hierarchy window over the Object slot immediately below the menu that says Runtime Only. This means that when the button receives an OnClick event, we can call a public method from a scripted object inside SceneManager.

 	Select the LoadOnClick(int) method from the SceneLoader drop-down list. Type 1 (the index of the scene we want to be loaded when this button is clicked) in the text box, below the method’s drop-down menu.
 This integer, 1, will be passed to the method when the button receives an OnClick event message, as shown here:

 [image: A screenshot of a computer Description automatically generated]
 Figure 2.7: Button (Script) settings

 Save the current scene (page1).

 	Open page2 and follow the same steps to make the page2 button load page1. That is, create a new empty SceneManager GameObject, add an instance of the SceneLoader script class to SceneManager, and then add an OnClick event action to the button that calls LoadOnClick and passes an integer of 0 so that page1 is loaded.

 	Save page2.

 	When you run the page1 scene, you will be presented with your Main Menu text and a button that, when clicked, makes the game load the page2 scene. On page2, you’ll have a button to take you back to page1.

 How it works...

 In this recipe, you created two scenes and added both of these scenes to the game’s build. You added a UI Button and some UI Text to each scene.

 When a UI Button is added to the Hierarchy window, a child UI Text object is also automatically created, and the content of the Text Input property of this UI Text child is the text that the user sees on the button.

 Here, you created a script class and added an instance as a component to GameObject SceneManager. In fact, it didn’t really matter where this script instance was added, so long as it was in one of the GameObjects of the scene. This is necessary since the OnClick event action of a button can only execute a method (function) of a component in a GameObject in the scene.

 For the buttons for each scene, you added a new OnClick() event handler that invokes (executes) the LoadOnClick() method of the SceneLoader scripted component in SceneManager. This method inputs the integer index of the scene in the project’s Build Settings so that the button on the page1 scene gives integer 1 as the scene to be loaded and the button for page2 gives integer 0.

 There’s more...

 There are several ways in which we can visually inform the user that the button is interactive when they move their mouse over it. The simplest way is to add a Color Tint that will appear when the mouse is over the button – this is the default Transition. With Button selected in the Hierarchy window, choose a tint color (for example, red), for the Highlighted Color property of the Button (Script) component in the Inspector panel:

 [image:]
 Figure 2.8: Adjusting the mouseover settings for buttons

 Another form of visual transition to inform the user of an active button is Sprite Swap. In this case, the properties of different images for Targeted/Highlighted/Pressed/Disabled are available in the Inspector window. The default target graphic is the built-in Unity Button (Image) – this is the gray rounded rectangle default when GameObject buttons are created. Dragging in a very different-looking image for the highlighted sprite is an effective alternative to setting a Color Tint:

 [image:]
 Figure 2.9: Example of an image as a button

 We have provided a rainbow.png image in a folder named 02_02 that can be used for the button mouseover’s Highlighted sprite. You will need to ensure this image asset has its Texture Type set to Sprite (2D and UI) in the Inspector window. The preceding screenshot shows the button with this rainbow background image.

 Animating UI Button properties on mouseover

 At the end of the previous recipe, we illustrated two ways to visually communicate buttons to users. The animation of button properties can be a highly effective and visually interesting way to reinforce to the user that the item their mouse is currently over is a clickable, active button. One common animation effect is for a button to become larger when the mouse is over it and then shrink back to its original size when the mouse is moved away. Animation effects are achieved by choosing the Animation option for the Transition property of a Button GameObject, and by creating an Animation Controller with triggers for the Normal, Highlighted, Pressed, and Disabled states.

 How to do it...

 To animate a button for enlargement when the mouse is over it (the Highlighted state), do the following:

 	Create a new Unity 2D project and install TextMeshPro by choosing: Window | TextMeshPro | Import TMP Essential Resources.

 	Create a UI Button-TextMeshPro GameObject.

 	In the Inspector panel, for the Button component, set the Transition property to Animation.

 	Click the Auto Generate Animation button (just below the Disabled Trigger property) for the Button (Script) component. This will create a new Animator Controller asset file defining some default animations for each of the button states.

 [image:]
 Figure 2.10: Auto Generate Animation

 	Save the new controller (in a new folder called Animations), naming it button-animation-controller.

 	Ensure that the Button GameObject is selected in the Hierarchy window. Open Window | Animation | Animation. In the Animation window, select the Highlighted clip from the drop-down menu:

 [image:]
 Figure 2.11: Selecting the Button GameObject in the Hierarchy window

 	In the Animation window, click on the red record circle button, and then click on the Add Property button, choosing to record changes to the Rect Transform | Scale property.

 	Two keyframes will have been created. Delete the second one at 1:00 (since we don’t want a “bouncing” button):

 [image:]
 Figure 2.12: Deleting the keyframe

 	Select the frame at 1:00 by clicking one of the diamonds (both turn blue when selected), and then press the Backspace/Delete key.

 	Select the first keyframe at 0:00 (the only one now!). In the Inspector window, set the X and Y scale properties of the Rect Transform component to (1.2, 1.2).

 	Click on the red record circle button for the second time to stop recording the animation changes.

 	Save and run your scene. You will see that the button smoothly animates and becomes larger when the mouse is over it, and then smoothly returns to its original size when the mouse has moved away.

 How it works...

 In this recipe, you created a button and set its Transition mode to Animation. This makes Unity require an Animation Controller with four states: Normal, Highlighted, Pressed, and Disabled. You then made Unity automatically create an Animation Controller with these four states.

 Then, you edited the animation for the Highlighted (mouseover) state, deleting the second keyframe, and making the only keyframe a version of the button that’s larger so that its scale is 1.2. So, as is the case, if the GameObject has a Scale of 1 initially, when animating it will be scaled up to 1.2.

 When the mouse is not hovering over the button, it’s unchanged, and the Normal state settings are used. When the mouse moves over the button, the Animation Controller smoothly modifies the settings of the button to become those of its Highlighted state (that is, bigger). When the mouse is moved away from the button, the Animation Controller smoothly modifies the settings of the button to become those of its Normal state (that is, its original size).

 The following web pages offer video and web-based tutorials on UI animations:

 	The Unity documentation about UI button animations: https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/UIAnimationIntegration.html

 	Ray Wenderlich’s great tutorial (part 2), including the available button animations, is available at http://www.raywenderlich.com/79031/unity-new-gui-tutorial-part-2

 Organizing image panels and changing panel depths via buttons

 UI Panels are provided by Unity to allow UI controls to be grouped and moved together, and also to visually group elements with an image background (if desired). The sibling depth is what determines which UI elements will appear above or below others. We can see the sibling depth explicitly in the Hierarchy window, since the top-to-bottom sequence of UI GameObjects in the Hierarchy window sets the sibling depth. So, the first item has a depth of 1, the second has a depth of 2, and so on. The UI GameObjects with larger sibling depths (further down the hierarchy, which means they’re drawn later) will appear above the UI GameObjects with smaller sibling depths:

 [image:]
 Figure 2.13: Example of organizing panels

 In this recipe, we’ll begin by creating two UI Panels, each showing a different playing card image, and we’ll use one button to move between them. We’ll then expand the recipe by creating one more UI Panel. We’ll also add four triangle arrangement buttons to change the display order (move to bottom, move to top, move up one, and move down one).

 Getting ready

 For this recipe, we have prepared the images that you need in a folder named Images/ornamental_deck-png and Images /icons in the 02_04 folder.

 How to do it...

 To create the UI Panels whose layering can be changed by clicking buttons, follow these steps:

 	Create a new Unity 2D project and install TextMeshPro by choosing: Window | TextMeshPro | Import TMP Essential Resources.

 	Create a new UI Panel GameObject named Panel-jack-diamonds. Do the following to this panel:
 	For the Image (Script) component, drag the jack_of_diamonds playing card image asset file from the Project window into the Source Image property. Select the Color property and increase the Alpha value to 255 (so that this background image of the panel is no longer partly transparent).

 	For the Rect Transform property, position it in the middle-center part of the screen and set its Width to 200 and its Height to 300.

 	Create a UI Button-TextMeshPro GameObject named Button-move-to-front. In the Hierarchy window, make this button a child of Panel-jack-diamonds. Delete the Text child GameObject of this button (since we’ll use an icon to indicate what this button does).

 	With the Button-move-to-front GameObject selected in the Hierarchy window, do the following in the Inspector window:
 	In Rect Transform, position the button at the top-center of the player card image so that it can be seen at the top of the playing card. Size the image to Width = 16 and Height = 16. Move the icon image down slightly, by setting Pos Y = -5 (to ensure we can see the horizontal bar above the triangle).

 	For the Source Image property of the Image (Script) component, select the arrangement triangle icon image; that is, icon_move_to_front.

 	Add an OnClick event handler by clicking on the plus (+) sign at the bottom of the Button (Script) component.

 	Drag Panel-jack-diamonds from the Hierarchy window over to the Object slot (immediately below the menu saying Runtime Only).

 	Select the RectTransform.SetAsLastSibling method from the drop-down function list (initially showing No Function):

 [image: A screenshot of a computer Description automatically generated]
 Figure 2.14: Addition of an OnClick event handler

 	Repeat step 2 to create a second panel named Panel-2-diamonds with its own move-to-front button and a Source Image of 2_of_diamonds. Move and position this new panel slightly to the right of Panel-jack-diamonds, allowing both move-to-front buttons to be seen.

 	Save your scene and run the game. You will be able to click the move-to-front button on either of the cards to move that card’s panel to the front. If you run the game with the Game window not maximized, you’ll actually see the panels changing the order in the list of the children of Canvas in the Hierarchy window.

 How it works...

 In this recipe, you created two UI Panels, each of which contains a background image of a playing card and a UI Button whose action will make its parent panel move to the front. You set the Alpha (transparency) setting of the background image’s Color setting to 255 (no transparency).

 You then added an OnClick event handler to the button of each UI Panel. This action sends a SetAsLastSibling message to the button’s panel parent. When the OnClick message is received, the clicked panel is moved to the bottom (end) of the sequence of GameObjects in the Canvas, so this panel is drawn last from the Canvas objects. This means that it appears visually in front of all the other GameObjects.

 The button’s action illustrates how the OnClick function does not have to be calling a public method of a scripted component of an object, but it can be sending a message to one of the non-scripted components of the targeted GameObject. In this recipe, we send the SetAsLastSibling message to the Rect Transform component of the panel where the button is located.

 There’s more...

 There are some details you don’t want to miss.

 Moving up or down by just one position, using scripted methods

 While Rect Transform offers SetAsLastSibling (move to front) and SetAsFirstSibling (move to back), and even SetSiblingIndex (if we knew exactly what position in the sequence to type in), there isn’t a built-in way to make an element move up or down just one position in the sequence of GameObjects in the Hierarchy window.

 However, we can write two straightforward methods in C# to do this, and we can add buttons to call these methods, providing full control of the top-to-bottom arrangement of the UI controls on the screen. To implement four buttons (move-to-front/move-to-back/up one/down one), do the following:

 	Create a C# script class called ArrangeActions containing the following code and add an instance as a scripted component to each of your UI Panels:
 using UnityEngine;
public class ArrangeActions : MonoBehaviour {
 private RectTransform panelRectTransform;
 void Awake() {
 panelRectTransform = GetComponent<RectTransform>();
 }
	public void MoveDownOne() {
		print("(before change) " + gameObject.name + " sibling index = " + panelRectTransform.GetSiblingIndex());
		int currentSiblingIndex = panelRectTransform.GetSiblingIndex();
		if (currentSiblingIndex > 0) {}
			panelRectTransform.SetSiblingIndex(currentSiblingIndex - 1);
		}
		print("(after change) " + gameObject.name + " sibling index = " + panelRectTransform.GetSiblingIndex());
	}
	
	public void MoveUpOne() {
		print ("(before change) " + gameObject.name + " sibling index = " + panelRectTransform.GetSiblingIndex());
		
		int currentSiblingIndex = panelRectTransform.GetSiblingIndex();
		int maxSiblingIndex = panelRectTransform.childCount - 1;
		if (currentSiblingIndex < maxSiblingIndex) {
			panelRectTransform.SetSiblingIndex(currentSiblingIndex + 1);
		}
		print ("(after change) " + gameObject.name + " sibling index = " + panelRectTransform.GetSiblingIndex());
	}
}

 	Add a second UI Button to each card panel, this time using the arrangement triangle icon image called icon_move_to_back, and set the OnClick event function for these buttons to SetAsFirstSibling.

 	Add two more UI Buttons to each card panel with the up and down triangle icon images; that is, icon_up_one and icon_down_one. Set the OnClick event handler function for the down-one buttons to call the MoveDownOne() method and set the function for the up-one buttons to call the MoveUpOne() method.

 	Copy one of the UI Panels to create a third card (this time showing the ace of diamonds). Arrange the three cards so that you can see all four buttons for at least two of the cards, even when those cards are at the bottom (see the screenshot at the beginning of this recipe).

 	Save the scene and run your game. You will now have full control over how to layer the three card UI Panels.

 Note that the MoveDownOne() and MoveUpOne() methods subtract and add 1 to the sibling depth of the panel the scripted object is a component of. The methods contain a test, so ensure we don’t try to set a negative panel depth or a depth that is higher than the maximum index for the number of panels.

 Displaying the value of an interactive UI Slider

 A UI Slider is a graphical tool that allows a user to set the numerical value of an object.

 [image: A picture containing icon Description automatically generated]
 Figure 2.15: Example of a UI Slider offering a range of 0 to 20

 This recipe illustrates how to create an interactive UI Slider and execute a C# method each time the user changes the UI Slider value.

 How to do it...

 To create a UI Slider and display its value on the screen, follow these steps:

 	Create a new Unity 2D project and install TextMeshPro by choosing: Window | TextMeshPro | Import TMP Essential Resources.

 	Add a UI Text-TextMeshPro GameObject to the scene with a Font size of 30 and placeholder text, such as Slider value here (this text will be replaced with the slider value when the scene starts). Set Overflow to Overflow. Since we may change the font and message at a later date, it’s useful to allow overflow to prevent some of the message being truncated.

 	In the Hierarchy window, add a UI Slider GameObject to the scene by going to GameObject | UI | Slider.

 	In the Inspector window, modify the settings for the position of the UI Slider GameObject’s Rect Transform to the top-middle part of the screen.

 	In the Inspector window, modify the settings of Position for the UI Text’s Rect Transform so that they’re just below the slider (top, middle, then Pos Y = -30).

 	In the Inspector window, set the UI Slider’s Min Value to 0 and Max Value to 20. Then, check the Whole Numbers checkbox:

 [image:]
 Figure 2.16: Setting the UI Slider’s Min Value and Max Value

 	Create a C# script class called SliderValueToText containing the following code and add an instance as a scripted component to the Text(TMP)GameObject:
 using UnityEngine;
using UnityEngine.UI;
using TMPro;
public class SliderValueToText : MonoBehaviour {
 public Slider sliderUI;
 private TextMeshProUGUI textSliderValue;
 void Awake() {
 textSliderValue = GetComponent<TextMeshProUGUI>();
 }
 void Start() {
 ShowSliderValue();
 }
 public void ShowSliderValue () {
 string sliderMessage = "Slider value = " + sliderUI.value;
 textSliderValue.text = sliderMessage;
 }
}

 	Ensure that the Text(TMP) GameObject is selected in the Hierarchy window. Then, in the Inspector window, drag the Slider GameObject into the public Slider UI variable slot for the Slider Value To Text (Script) scripted component:

 [image: A red arrow pointing to text Description automatically generated]
 Figure 2.17: Dragging Slider into the Slider UI variable

 	Ensure that the Slider GameObject is selected in the Hierarchy window. Then, in the Inspector window, add an OnValue Changed (Single) event handler by clicking on the plus (+) sign at the bottom of the Slider component.

 	Drag the Text(TMP) GameObject from the Hierarchy window over to the Object slot (immediately below the menu that says Runtime Only), as shown in the following screenshot:
 [image: A screenshot of a computer Description automatically generated]
 Figure 2.18: Dragging the Text GameObject into None (Object)

 You have now told Unity which object a message should be sent to each time the slider is changed.

 	From the drop-down menu, select SliderValueToText and the ShowSliderValue method, as shown in the following screenshot. This means that each time the slider is updated, the ShowSliderValue() method, in the scripted object in the Text(TMP) GameObject, will be executed:

 [image:]
 Figure 2.19: Drop-down menu for On Value Changed

 	When you run the scene, you will see a UI Slider. Below it, you will see a text message in the form Slider value = <n>.

 	Each time the UI Slider is moved, the text value that’s shown will be (almost) instantly updated. The values should range from 0 (the leftmost of the slider) to 20 (the rightmost of the slider).

 How it works...

 In this recipe, you created a UI Slider GameObject and set it to contain whole numbers in the range of 0 to 20.

 You also added an instance of the SliderValueToText C# script class to the UI Text(TMP) GameObject.

 The Awake() method caches references to the Text component in the textSliderValue variable.

 The Start() method invokes the ShowSliderValue() method so that the display is correct when the scene begins (that is, the initial slider value is displayed).

 The ShowSliderValue() method gets the value of the slider and then updates the text that’s displayed to be a message in the form of Slider value = <n>.

 Finally, you added the ShowSliderValue() method of the SliderValueToText scripted component to the Slider GameObject’s list of On Value Changed event listeners. So, each time the slider value changes, it sends a message to call the ShowSliderValue() method so that the new value is updated on the screen.

 Displaying a countdown timer graphically with a UI Slider

 There are many cases where we wish to inform the player of how much time is left in a game or how much longer an element will take to download – for example, a loading progress bar, the time or health remaining compared to the starting maximum, or how much the player has filled up their water bottle from the fountain of youth.

 In this recipe, we’ll illustrate how to remove the interactive “handle” of a UI Slider, and then change the size and color of its components to provide us with an easy-to-use, general-purpose progress/proportion bar:

 [image: A screenshot of a computer Description automatically generated]
 Figure 2.20: Example of a countdown timer with a UI Slider

 In this recipe, we’ll use our modified UI Slider to graphically present to the user how much time remains on a countdown timer.

 Getting ready

 For this recipe, we have prepared the script and images that you need in the 02_04 folder, respectively named _Scripts and Images.

 How to do it...

 To create a digital countdown timer with a graphical display, follow these steps:

 	Create a new Unity 2D project and install TextMeshPro by choosing: Window | TextMeshPro | Import TMP Essential Resources.

 	Import the CountdownTimer script and the red_square and green_square images into this project.

 	Add a UI Text(TMP) GameObject to the scene with a Font size of 30 and placeholder text such as a UI Slider value (this text will be replaced with the slider value when the scene starts). Check that Overflow is set to Overflow.

 	In the Hierarchy window, add a Slider GameObject to the scene by going to GameObject | UI | Slider.

 	In the Inspector window, modify the settings for the position of the Slider GameObject’s Rect Transform to the top-center part of the screen.

 	Ensure that the Slider GameObject is selected in the Hierarchy window.

 	Deactivate the Handle Slide Area child GameObject (by unchecking it).

 	You’ll see the “drag circle” disappear in the Game window (the user will not be dragging the slider since we want this slider to be display-only):

 [image: A screenshot of a computer Description automatically generated]
 Figure 2.21: Ensuring Handle Slide Area is deactivated

 	Select the Background child and do the following:
 	Drag the red_square image into the Source Image property of the Image component in the Inspector window.

 	Select the Fill child of the Fill Area child and do the following:
 	Drag the green_square image into the Source Image property of the Image component in the Inspector window.

 	Select the Fill Area child and do the following:
 	In the Rect Transform component, use the Anchors preset position of left-middle.

 	Set Width to 155 and Height to 12:

 [image:]
 Figure 2.22: Selections in the Rect Transform component

 	Create a C# script class called SliderTimerDisplay that contains the following code and add an instance as a scripted component to the Slider GameObject:
 using UnityEngine;
using UnityEngine.UI;
using TMPro;
[RequireComponent(typeof(CountdownTimer))]
public class SliderTimerDisplay : MonoBehaviour {
 private CountdownTimer countdownTimer;
 private Slider sliderUI;
 void Awake() {
 countdownTimer = GetComponent<CountdownTimer>();
 sliderUI = GetComponent<Slider>();
 }
 void Start() {
 SetupSlider();
 countdownTimer.ResetTimer(30);
 }
 void Update () {
 sliderUI.value = countdownTimer.GetProportionTimeRemaining();
 print (countdownTimer.GetProportionTimeRemaining());
 }
 private void SetupSlider () {
 sliderUI.minValue = 0;
 sliderUI.maxValue = 1;
 sliderUI.wholeNumbers = false;
 }
}

 Run your game. You will see the slider move with each second, revealing more and more of the red background to indicate the time remaining.

 How it works...

 In this recipe, you hid the Handle Slide Area child so that the UI Slider is for display only, which means it cannot be interacted with by the user. The Background color of the UI Slider was set to red so that, as the counter goes down, more and more red is revealed, warning the user that the time is running out.

 The Fill property of the UI Slider was set to green so that the proportion remaining is displayed in green – the more green that’s displayed, the greater the value of the slider/timer.

 An instance of the provided CountdownTimer script class was automatically added as a component to the UI Slider via [RequireComponent(...)].

 The Awake() method caches references to the CountdownTimer and Slider components in the countdownTimer and sliderUI variables.

 The Start() method calls the SetupSlider() method and then resets the countdown timer so that it starts counting down from 30 seconds.

 The SetupSlider() method sets up this slider for float (decimal) values between 0.0 and 1.0.

 In each frame, the Update() method sets the slider value to the float that’s returned by calling the GetProportionRemaining() method from the running timer. At runtime, Unity adjusts the proportion of red/green that’s displayed in the UI Slider so that it matches the slider’s value.

 Setting custom mouse cursors for 2D and 3D GameObjects

 Cursor icons are often used to indicate the nature of the interactions that can be done with the mouse. Zooming, for instance, might be illustrated by a magnifying glass; shooting, on the other hand, is usually represented by a stylized target or reticle:

 [image: A picture containing text Description automatically generated]
 Figure 2.23: Mouse pointer represented as a stylized target

 The preceding screenshot shows an example of the Unity logo with the cursor represented as a stylized target. In this recipe, we will learn how to implement custom mouse cursor icons to better illustrate your gameplay – or just to escape the Windows, macOS, and Linux default UI.

 Getting ready

 For this recipe, we have prepared the folders that you’ll need in the 02_07 folder.

 How to do it...

 To make a custom cursor appear when the mouse is over a GameObject, follow these steps:

 	Create a new Unity 2D project.

 	Import the provided folder, called Images. Select the unity_logo image in the Project window. Then, in the Inspector window, change Texture Type to Sprite (2D and UI). This is because we’ll use this image for a 2D Sprite GameObject and it requires this Texture Type (it won’t work with the Default type).

 	Go to GameObject | 2D Object | Sprites | Square to add the necessary GameObject to the scene. Name this New Sprite, if this wasn’t the default name when it was created:
 	In the Inspector window, set the Sprite property of the Sprite Renderer component to the unity_logo image. In the GameObject’s Transform component, set the scaling to (3,3,3) and, if necessary, reposition Sprite so that it’s centered in the Game window when the scene runs.

 	Go to Component | Physics 2D | Box Collider 2D to create a Box Collider and add it to the Sprite GameObject. This is needed for this GameObject to receive OnMouseEnter and OnMouseExit event messages.

 	Import the provided folder called IconsCursors. Select all three images in the Project window and, in the Inspector window, change Texture Type to Cursor. This will allow us to use these images as mouse cursors without any errors occurring.

 	Create a C# script class called CustomCursorPointer containing the following code and add an instance as a scripted component to the New Sprite GameObject:
 using UnityEngine;
public class CustomCursorPointer : MonoBehaviour {
 public Texture2D cursorTexture2D;
 private CursorMode cursorMode = CursorMode.Auto;
 private Vector2 hotSpot = Vector2.zero;
 public void OnMouseEnter() {
 SetCustomCursor(cursorTexture2D);
 }
 public void OnMouseExit() {
 SetCustomCursor(null);
 }
 private void SetCustomCursor(Texture2D curText){
 Cursor.SetCursor(curText, hotSpot, cursorMode);
 }
}

 The OnMouseEnter() and OnMouseExit() event methods have been deliberately declared as public. This will allow these methods to also be called from UI GameObjects when they receive the OnPointerEnterExit events.

 	With the New Sprite item selected in the Hierarchy window, drag the CursorTarget image into the public Cursor Texture 2D variable slot in the Inspector window for the Custom Cursor Pointer (Script) component:

 [image:]
 Figure 2.24: Cursor Texture 2D dragged to the variable slot

 	Save and run the current scene. When the mouse pointer moves over the Unity logo sprite, it will change to the custom CursorTarget image that you chose.

OEBPS/Images/B20993_01_09.png
Xolonium-Bold SDF Material (Material)
Shader | TextMeshPro/Distance Field -

B} Clock Digital

MPro
UnityEngine.EventSystems
UnityEngine.TestTools. TestRunner.C:
UnityEngine.Timeline

OEBPS/Images/B20993_02_17.png
ierarchy © Inspector | # Scene @® Game. 3
B e) | LExtra settings (Click to expana)|
@ SampleScene* :
@ Main Camera ¥ # v Slider Value To Text (Script) ° =
(e script Slidervaiue

Text (TMP) O oText
|M-|, O Siider Slider Ul —> « Slider (Siider))

GIEEEERD LiberationSans SDF Material (Material)

B Shader TextMeshPro/Mobile/Distance Field ~ | Edit

OEBPS/Images/B20993_02_18.png
= Hierarchy
oo

v @ Samplecene*

 Main Camera

v 6 Canvas

) Text (TMP)

» 9 Slider

@ EventSystem

© Inspector | # Scene @®Game.

Min Value 0
Max Value 20
Whole Numbers 2
Value (]

On Value Changed (Single)

Runtime On SliderValueToText.ShowSliderValue
: Text (TMP) (Slider Valu

OEBPS/Images/B20993_02_09.png
goto page 2 |

OEBPS/Images/9781805123026-cov.png
Cookbook

Over 160 recipes to craft your
own masterpiece in Unity 2023

Fifth Edition

Foreword by:
Chris Gregan
Chief Architect, Romero Games

Matt Smith | Shaun Ferns
Sinéad Murphy

<packt>

OEBPS/Images/B20993_02_16.png
= Hierarchy © Inspector

+- ;"” Color Multplier —_
VIO samplescsed J Fade Duration 01
& Main Camera
v 9 Canvas Navigation Automatic -
e -
(D EventSystem Fill Rect $2Fill (Rect Transform) [°)
Handle Rect 3¢Handle (Rect Transform))
Direction Left ToRight -
Win Valie

T
Max Value 20

Whole Numbers 7]

Value [

OEBPS/Images/blockqoute-top.png

OEBPS/Images/tip.png

OEBPS/Images/B20993_01_08.png
15:09:06

OEBPS/Images/B20993_02_08.png
= Hierarchy = W
ary é’;age1‘ @ ¥ @ - Button
) Main Camera Interactable
¥ @ Canvas Transition
> % ;i:t(ogM) Target Graphic
(D) EventSystem Normal Color
) SceneManager Highlighted Color.

et Color
Selected Color
Disabled Color
Color Multiplier
Fade Duration

v
[[Color Tint |
ElRutton (Image)

OEBPS/Images/B20993_02_23.png

OEBPS/Images/B20993_02_10.png
v @ - Button e

*
Interactable v
Transition Animation v
Normal Trigger Normal
Highlighted Trigger Highlighted
Pressed Trigger Pressed
Selected Trigger [selected
Disabled Trigger Disabled

Auto Generate Animation| ¢————

OEBPS/Images/B20993_01_01.png
Canvas
&
EventSystem

/| Toggle

Display-only controls

- Panel, TextMeshPro
- Image, Rawimage

Hello

Interactive controls
- Button, Toggle
- Slider, Scrollbar

Non-visible interaction

components
- Toggle Group

- Input Field

C# scripted
behaviors

OEBPS/Images/B20993_02_07.png
Hierarchy a
+~ (oAl

© Inspector
Seiectea Loior

Disabled Color

~J N

v & pagel -0 —
9 Main Camera Color Multiplier e
¥ @ Canvas Fade Duration 0.1
(D Text (TMP)
G Navigation

VChorose:
ScenelLoader.LoadOnClick()

) Text (TMP)
) EventSystem

[SceneManager] On Click (

= Runtime Only ~ |[Sceneloader.LoadOnClick

+ SceneManager ® (1

OEBPS/Images/QR_Code144885844685269437.png

OEBPS/Images/B20993_02_11.png
IS LUIL AASEL LdiTiIEVUeLl LU

© Animation
B+ & |© Preview | @ | ¢ 14| > | b
Hierarchy Highlighted
4+~ (oAl |7 Disabled
v @ SampleScene* v Highlighted operty
€9 Main Camera Normal
v () Canvas Pressed
Selected

EventSystem

Create New Clip...

OEBPS/Images/B20993_02_05.png
Main Menu (page 1)

goto page 2

OEBPS/Images/B20993_02_24.png
B V< o<
Edge Radius [

» Layer Overrides

» Info

Assets > IconsCursors

B ©

cursorArT..

¥ # Custom Cursor Pointer (Script; @ 3

cursorZoom

CustomCursorPointe

Cursor Texture 2D < cursorTarget

OEBPS/Images/New_Packt_Logo.png
<PACKD

OEBPS/Images/B20993_02_19.png
On Value Changed (Single)

Runtime Only ~ | SliderValueToText.ShowSliderValue
+ Text (TMP) (Slider Value T®

OEBPS/Images/B20993_01_02.png
<’

Rotating about
Pivot Point

ole

Vertical Ul GameObject size unchanged
when parent size changes,
since top & bottom anchors at same location

OEBPS/Images/B20993_02_06.png
ierarchy 8 i v|I v TextMeshPro - Text (Ul)
+v ar 2
v fp pagel g | Text Input
() Main Camera
v () Canvas _
goto page 2
)

v () Button

) Text (TMP)

OEBPS/Images/B20993_01_04.png
B Project & i | FontAsset Creator H
SR |6 & | € % #10| Font settings

- ! [r—
it | Assets > Fonts > xolonium-fonts~2 Source Font File 2 Xolonium-Bold O,
e D rerrr—
v @ hesete onisEe
Padding 5
¥ @ Fonts » Aa Xolonium-Regular
i xolonium-fonts-2.4 Packing Method Fast 2
- Scel;:ssn . Atlas Resolution 512 > 512 =
MaiLextMezhBrof Character Set Ascll -
Render Mode SDFAA v

Get Keming Pairs

Generate Font Atlas

OEBPS/Images/B20993_02_04.png
Hierarchy =} O Inspector

+- Al 2 Navigation Automatic
& SampleScene 3 ——
) Main Camera Visualize
CUlE oD On Click ()
v (P Canvas
» () Button Runtime Only ~ || GameObject SetActive

€ EventSystem @ unity_logo @ v

OEBPS/Images/B20993_01_12.png
v Low Resolution Aspect Ratios

VSync (Game view only)

¥ Free Aspect

e 16:9 Aspect

click "+” to 16:10 Aspect

add a new Full HD (1920x1080)

resolution WXGA (1366x768)
QHD (2560x1440)
4K UHD (3840x2160)

Label

Type Fived Resalifion v |

Width & Heig X 400 Y 300

Core Ul (400x300)

Cancel OK

OEBPS/Images/B20993_02_12.png
(& Animation

© Animation
Preview [@ | ke« | 14| > [b1 oht
Highlighted -

» *%Button : Scale

Add Property

Dopesheet

Curves

Delete the 2nd keyframe

OEBPS/Images/B20993_02_20.png
B Project 2 Console
Clear | ¥ | Collapse | Eror Pause | Editor ~

[16:35:49] 0.5211706
* UnityEngine.MonoBehaviour:print (object)

OEBPS/Images/B20993_02_03.png

OEBPS/Images/B20993_01_05.png
Hello World

OEBPS/Images/B20993_Free_PDF.png

OEBPS/Images/B20993_01_03.png
Anchor Presets

Shift: Also set pivot Alt: Also set position

left center right

0] [@][d

stretch

top

O
=

bottom middle

|

| WT

=
==

B E
m
i

stretch
=
== |
E4 O

OEBPS/Images/B20993_02_22.png
Hierarchy
+v

a A
v & SampleScene
) Main Camera
v @ Canvas
& Text (TMP)
v @ Slider
) Background
) Fill Area
» @ Handle Slide Area
D EventSystem

Inspector.

=)

€ Fill Area Static ~
Tag Untagged v Layer Ul v

v % Rect Transform CES
teft Pos X Pos Y PosZ

midde.

@ Width Height
155 12

» Anchors

0

0

o

OEBPS/Images/B20993_02_13.png
YVAZ

YVAZ

OEBPS/Images/blockqoute-bottom.png

OEBPS/Images/B20993_01_13.png
| e Inspector

Hierarchy H
v [(a Al
+ = @ @ v Rawlmage-logo Static v
v P sceen 1 - logo image H -
&P Main Camera Tag Untagged v | Layer Ul M
v Canvas
®® Text-hello » % Rect Transform @ i i
D Ra age-logo > @ Canvas Renderer o i :
D EventSystem v G | Raw Image
I Project : Texture
+v (a [Z) & | ¢ Color
v (@@ Assets None (Material) [0}
::0"'5 Raycast Target v
B Images o
B Scenes » Raycast Padding
Maskable v

B TextMesh Pro

OEBPS/Images/B20993_02_21.png
Hierarchy © Inspector =0
+v (o4 2 5
Handle Slide Area Static ~
v & SampleScene* @, Q
) Main Camera Tad) Untagged v | Layer Ul v
v & Canvas —
D Text (TMP) o e =
v @ Slider Left Top PosZ
%gg"c:gmunu ST B [o 5 5
» ill Area ® "
@ Handle Siide Area 5 Riofit Eottom)

10 0

&) EventSystem

OEBPS/Images/info.png

OEBPS/Images/B20993_01_10.png

OEBPS/Images/B20993_02_15.png
—
Slider value = 20

OEBPS/Images/B20993_02_14.png
Hierarchy
+v w4
+ @ scene2 - 3 cards
©Main Camera

© Inspector

) Button-move-to-front

On Click ()

Runtime Only ~ | RectTransform SetAsLastSibiig »
5¢Panel-jack-diamonds (Re ©

9 Bution-move-to-front
e

OEBPS/Images/B20993_02_01.png
GameObject got

[Farsom 7]

MySeript

void Awake()

public NewValueAction()

[fonporenz |
(oomporens]

Design Time

GameObject DropDown1

Ul Dropdown

Option A
Option B

| | Rect Transform

On Value Changed
event listeners:

NewValueAction() @ go1->MyScript.NewValueAction()

| | component 3

OEBPS/Images/B20993_01_07.png
Anchor Presets
Shift: Also set pivot _ Alt: Also set position

left

p

center fright stretch
{7

[
tH

OEBPS/Images/B20993_01_11.png

OEBPS/Images/B20993_02_02.png
1

User changes selection to Option B
(On Value Changed event)

Option A

Option A
Option B <<<<

Run Time
2a

DropDown1_updates its display.

2b

DropDown1_sends message to all
registered On Value Changed listeners

Option B

3

GameObject go1 executes the actions
inside method NewValueAction() of
MyScript component

GameObject go1
MyScript
Void Awake()

public NewValueAction() {
action 1
action 2
etc.

OEBPS/Images/B20993_01_06.png
' © Inspector 3

@ V| Text-hello Static v
T Tag Untagged v | Layer Ul =

v| TextMeshPro - Text (Ul) @ i i

Enable RTL Editor

Text Style Normal =
| Main Settings

Font Asset I Xolonium-Bold SDF (TMP_Font Asset)

Material Preset oTonum-BoTd SDF Mate

Font Style R U B ab | AB | SC

Font Size 100

Auto Size

Vertex Color WHITE |2

Color Gradient

Override Tags

Alignment

Wrapping Enabled)

Overflow Overflow

