

[image: Cover: Python Data Structures: Pocket Primer]

PYTHON DATA
STRUCTURES

Pocket Primer

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and companion files (the “Work”), you agree that this license grants permission to use the contents contained herein, including the disc, but does not give you the right of ownership to any of the textual content in the book / disc or ownership to any of the information or products contained in it. This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone involved in the creation, writing, or production of the companion disc, accompanying algorithms, code, or computer programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to ensure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs. The Work is sold “as is” without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book and/or disc, and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” vary from state to state, and might not apply to the purchaser of this product.

Companion files for this title are available by writing to the publisher at info@merclearning.com.

PYTHON DATA
STRUCTURES

Pocket Primer

Oswald Campesato

[image: Images]

MERCURY LEARNING AND INFORMATION

Dulles, Virginia

Boston, Massachusetts

New Delhi

Copyright ©2023 by MERCURY LEARNING AND INFORMATION LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION

22841 Quicksilver Drive

Dulles, VA 20166

info@merclearning.com

www.merclearning.com

800-232-0223

O. Campesato. Python Data Structures Pocket Primer.

ISBN: 978-1-68392-757-0

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2022947023

222324321 This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors. Companion files (figures and code listings) for this title are available by contacting info@merclearning.com. The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the disc, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.

I’d like to dedicate this book to my parents
– may this bring joy and happiness into their lives.

CONTENTS

Preface

Chapter 1: Introduction to Python

Some Standard Modules in Python

Simple Data Types in Python

Working With Numbers

Working With Other Bases

The chr() Function

The round() Function in Python

Unicode and UTF-8

Working With Unicode

Working With Strings

Comparing Strings

Uninitialized Variables and the Value None in Python

Slicing and Splicing Strings

Testing for Digits and Alphabetic Characters

Search and Replace a String in Other Strings

Precedence of Operators in Python

Python Reserved Words

Working With Loops in Python

Python for Loops

Numeric Exponents in Python

Nested Loops

The split() Function With for Loops

Using the split() Function to Compare Words

Python while Loops

Conditional Logic in Python

The break/continue/pass Statements

Comparison and Boolean Operators

The in/not in/is/is not Comparison Operators

The and, or, and not Boolean Operators

Local and Global Variables

Scope of Variables

Pass by Reference Versus Value

Arguments and Parameters

User-Defined Functions in Python

Specifying Default Values in a Function

Returning Multiple Values From a Function

Lambda Expressions

Working With Lists

Lists and Basic Operations

Lists and Arithmetic Operations

Lists and Filter-Related Operations

The join(), range(), and split() Functions

Arrays and the append() Function

Other List-Related Functions

Working With List Comprehensions

Working With Vectors

Working With Matrices

Queues

Tuples (Immutable Lists)

Sets

Dictionaries

Creating a Dictionary

Displaying the Contents of a Dictionary

Checking for Keys in a Dictionary

Deleting Keys From a Dictionary

Iterating Through a Dictionary

Interpolating Data From a Dictionary

Dictionary Functions and Methods

Other Sequence Types in Python

Mutable and Immutable Types in Python

Summary

Chapter 2: Recursion and Combinatorics

What Is Recursion?

Arithmetic Series

Calculating Arithmetic Series (Iterative)

Calculating Arithmetic Series (Recursive)

Calculating Partial Arithmetic Series

Geometric Series

Calculating a Geometric Series (Iterative)

Calculating Arithmetic Series (Recursive)

Factorial Values

Calculating Factorial Values (Iterative)

Calculating Factorial Values (Recursive)

Calculating Factorial Values (Tail Recursion)

Fibonacci Numbers

Calculating Fibonacci Numbers (Recursive)

Calculating Fibonacci Numbers (Iterative)

Task: Reverse a String via Recursion

Task: Check for Balanced Parentheses

Task: Calculate the Number of Digits

Task: Determine if a Positive Integer Is Prime

Task: Find the Prime Factorization of a Positive Integer

Task: Goldbach’s Conjecture

Task: Calculate the GCD (Greatest Common Divisor)

Task: Calculate the LCM (Lowest Common Multiple)

What Is Combinatorics?

Working With Permutations

Working With Combinations

Task: Calculate the Sum of Binomial Coefficients

The Number of Subsets of a Finite Set

Task: Subsets Containing a Value Larger Than k

Summary

Chapter 3: Strings and Arrays

Time and Space Complexity

Task: Maximum and Minimum Powers of an Integer

Task: Binary Substrings of a Number

Task: Common Substring of Two Binary Numbers

Task: Multiply and Divide via Recursion

Task: Sum of Prime and Composite Numbers

Task: Count Word Frequencies

Task: Check if a String Contains Unique Characters

Task: Insert Characters in a String

Task: String Permutations

Task: Find All Subsets of a Set

Task: Check for Palindromes

Task: Check for the Longest Palindrome

Working With Sequences of Strings

The Maximum Length of a Repeated Character in a String

Find a Given Sequence of Characters in a String

Task: Longest Sequences of Substrings

The Longest Sequence of Unique Characters

The Longest Repeated Substring

Task: Match a String With a Word List (Simple Case)

The Harder Case

Working With 1D Arrays

Rotate an Array

Task: Shift Non-Zero Elements Leftward

Task: Sort Array In-Place in O(n) Without a Sort Function

Task: Invert Adjacent Array Elements

Task: Generate 0 That Is Three Times More Likely Than a 1

Task: Invert Bits in Even and Odd Positions

Task: Invert Pairs of Adjacent Bits

Task: Find Common Bits in Two Binary Numbers

Task: Check for Adjacent Set Bits in a Binary Number

Task: Count Bits in a Range of Numbers

Task: Find the Right-Most Set Bit in a Number

Task: The Number of Operations to Make All Characters Equal

Task: Compute XOR Without XOR for Two Binary Numbers

Working With 2D Arrays

The Transpose of a Matrix

Summary

Chapter 4: Search and Sort Algorithms

Search Algorithms

Linear Search

Binary Search Walk-Through

Binary Search (Iterative Solution)

Binary Search (Recursive Solution)

Well-Known Sorting Algorithms

Bubble Sort

Find Anagrams in a List of Words

Selection Sort

Insertion Sort

Comparison of Sort Algorithms

Merge Sort

Merge Sort With a Third Array

Merge Sort Without a Third Array

Merge Sort: Shift Elements From End of Lists

How Does Quick Sort Work?

Quick Sort Code Sample

Shellsort

Summary

Chapter 5: Linked Lists

Types of Data Structures

Linear Data Structures

Nonlinear Data Structures

Data Structures and Operations

Operations on Data Structures

What Are Singly Linked Lists?

Trade-Offs for Linked Lists

Singly Linked Lists: Create and Append Operations

A Node Class for Singly Linked Lists

Appending a Node in a Linked List

Python Code for Appending a Node

Singly Linked Lists: Finding a Node

Singly Linked Lists: Update and Delete Operations

Updating a Node in a Singly Linked List

Python Code to Update a Node

Deleting a Node in a Linked List: Method #1

Python Code for Deleting a Node: Method #2

Circular Linked Lists

Python Code for Updating a Circular Linked List

Working With Doubly Linked Lists (DLL)

A Node Class for Doubly Linked Lists

Appending a Node in a Doubly Linked List

Python Code for Appending a Node

Python Code for Inserting an Intermediate Node

Searching and Updating a Node in a Doubly Linked List

Updating a Node in a Doubly Linked List

Python Code to Update a Node

Deleting a Node in a Doubly Linked List

Python Code to Delete a Node

Summary

Chapter 6: Linked Lists and Common Tasks

Task: Adding Numbers in a Linked List (1)

Task: Reconstructing Numbers in a Linked List (1)

Task: Reconstructing Numbers in a Linked List (2)

Task: Display the First k Nodes

Task: Display the Last k Nodes

Display a Singly Linked List in Reverse Order via Recursion

Task: Remove Duplicate Nodes

Task: Concatenate Two Lists

Task: Merge Two Lists

Task: Split a Single List into Two Lists

Task: Find the Middle Element in a List

Task: Reversing a Linked List

Task: Check for Palindromes in a Linked List

Summary

Chapter 7: Queues and Stacks

What Is a Queue?

Types of Queues

Creating a Queue Using a Python List

Creating a Rolling Queue

Creating a Queue Using an Array

What Is a Stack?

Use Cases for Stacks

Operations With Stacks

Working With Stacks

Task: Reverse and Print Stack Values

Task: Display the Min and Max Stack Values (1)

Creating Two Stacks Using an Array

Task: Reverse a String Using a Stack

Task: Balanced Parentheses

Task: Tokenize Arithmetic Expressions

Task: Evaluate Arithmetic Expressions

Infix, Prefix, and Postfix Notations

Summary

Index

PREFACE

WHAT IS THE PRIMARY VALUE PROPOSITION FOR THIS BOOK?

This book contains a fast-paced introduction to as much relevant information about data structures that within reason can possibly be included in a book of this size. In addition, this book has a task-oriented approach, so you will see code samples that use data structures to solve various tasks.

Chapter 1 starts with an introduction to Python for beginners, recursion is discussed in Chapter 2, strings and arrays are covered in Chapter 3, search and sort algorithms are discussed in Chapter 4, various types of linked lists and explained in Chapter 5 and Chapter 6, and then queues and stacks are covered in Chapter 7.

Please keep in mind that a full treatment of all the topics in this book could easily triple the length of this book (and besides, such books are already available).

THE TARGET AUDIENCE

This book is intended primarily for people who have a limited background in data structures. This book is also intended to reach an international audience of readers with highly diverse backgrounds. While many readers know how to read English, their native spoken language is not English (which could be their second, third, or even fourth language). Consequently, this book uses standard English rather than colloquial expressions in order to maximize clarity.

WHAT WILL I LEARN FROM THIS BOOK?

The introductory section of the preface contains a brief outline of the topics in each of the chapters of this book. As the title suggests, you will acquire a basic level of knowledge about a variety of data structures.

Incidentally, you will discover that many code samples contain “commented out” code snippets, which are usually Python print() statements. Feel free to “uncomment” those code snippets, which will enable you to see the various execution paths in the code. In essence, you will see the debugging process that was used during the development of the code samples.

WHY ARE THE CODE SAMPLES PRIMARILY IN PYTHON?

Most of the code samples are short (usually less than one page and sometimes less than half a page), and if necessary, you can easily and quickly copy/paste the code into a new Jupyter notebook. Moreover, the code samples execute quickly, so you won’t need to avail yourself of the free GPU that is provided in Google Colaboratory.

DO I NEED TO LEARN THE THEORY PORTIONS OF THIS BOOK?

Alas, an understanding of the theoretical underpinnings of data structures does not translate into the ability to solve tasks involving data structures: it’s necessary knowledge (but not necessarily sufficient). Strive for an understanding of concepts and minimize the amount of memorization of code samples. For example, you can determine whether or not a positive integer n is a power of 2 with a single line of code:

(n > 0) and (n & (n-1)) == 0

Although the preceding code snippet might seem nonintuitive, you can convince yourself that this is true by setting n=8 and then observe the following:

n: 1000
n-1: 0111

The key point is this: the binary representation of a power of 2 has a single 1 in the left-most position, and zeroes to the right of the digit 1 (for n>=2), whereas the number n-1 contains a 0 in the left-most position, and all 1s to the right of the digit 0. Therefore, the logical and of n and (n-1) is clearly 0.

Now that you understand the key idea, there is no need to memorize anything, and you can write the solution in any programming language for which you have a very modest level of experience.

The theoretical aspects will help you improve your conceptual understanding of the differences and similarities (if any) among various types of data structures. However, you will gain confidence and also a better understanding of data structures by writing code because knowledge is often gained through repetition of tasks that provide reinforcement of concepts.

GETTING THE MOST FROM THIS BOOK

Some programmers learn well from prose, others learn well from sample code (and lots of it), which means that there’s no single style that can be used for everyone.

Moreover, some programmers want to run the code first, see what it does, and then return to the code to delve into the details (and others use the opposite approach).

Consequently, there are various types of code samples in this book: some are short, some are long, and other code samples “build” from earlier code samples.

WHAT DO I NEED TO KNOW FOR THIS BOOK?

Current knowledge of Python 3.x is useful because all the code samples are in Python. Knowledge of data structures will enable you to progress through the related chapters more quickly. The less technical knowledge you have, the more diligence will be required in order to understand the various topics that are covered.

If you want to be sure that you can grasp the material in this book, glance through some of the code samples to get an idea of how much is familiar to you and how much is new for you.

DOES THIS BOOK CONTAIN PRODUCTION-LEVEL CODE SAMPLES?

The primary purpose of the code samples in this book is to show you solutions to tasks that involve data structures. Therefore, clarity has higher priority than writing more compact or highly optimized code, For example, inspect the loops in the Python code sample to see if they can be made more efficient. Suggestion: treat such code samples as opportunities for you to optimize the code samples in this book.

If you decide to use any of the code in this book in a production website, you ought to subject that code to the same rigorous analysis as the other parts of your code base.

WHAT ARE THE NONTECHNICAL PREREQUISITES FOR THIS BOOK?

Although the answer to this question is difficult to quantify, it’s especially important to have a strong desire to learn about data analytics, along with the motivation and discipline to read and understand the code samples.

HOW DO I SET UP A COMMAND SHELL?

If you are a Mac user, there are three ways to set up a command shell. The first method is to use Finder to navigate to Applications > Utilities and then double click on the Utilities application. Next, if you already have a command shell available, you can launch a new command shell by typing the following command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on a MacBook from a command shell that is already visible simply by clicking command+n in that command shell, and your Mac will launch another command shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.com/) that simulates bash commands, or use another toolkit such as MKS (a commercial product). Please read the online documentation that describes the download and installation process. Note that custom aliases are not automatically set if they are defined in a file other than the main start-up file (such as .bash_login).

COMPANION FILES

All the code samples in this book may be obtained by writing to the publisher at info@merclearning.com.

WHAT ARE THE “NEXT STEPS” AFTER FINISHING THIS BOOK?

The answer to this question varies widely, mainly because the answer depends heavily on your objectives. If you are interested primarily in learning more about data structures, then this book is a “stepping stone” to other books that contain more complex data structures as well as code samples for the tasks that are not covered in this book (such as deleting a node from a tree or a doubly linked list).

If you are primarily interested in machine learning, there are some subfields of machine learning, such as deep learning and reinforcement learning (and deep reinforcement learning) that might appeal to you. Fortunately, there are many resources available, and you can perform an Internet search for those resources. One other point: the aspects of machine learning for you to learn depend on who you are—the needs of a machine learning engineer, data scientist, manager, student, or software developer all differ from one another.

CHAPTER 1

INTRODUCTION TO PYTHON

This chapter provides an introduction to basic features of Python, including examples of working with Python strings, arrays, and dictionaries. Please keep in mind that this chapter does not contain details about the Python interpreter: you can find that information online in various tutorials.

You will also learn about useful tools for installing Python modules, basic Python constructs, and how to work with some data types in Python.

The first part of this chapter shows you how to work with simple data types, such as numbers, fractions, and strings. The third part of this chapter discusses exceptions and how to use them in Python scripts.

The second part of this chapter introduces you to various ways to perform conditional logic in Python, as well as control structures and user-defined functions in Python. Virtually every Python program that performs useful calculations requires some type of conditional logic or control structure (or both). Although the syntax for these Python features is slightly different from other languages, the functionality will be familiar to you.

The third part of this chapter contains examples that involve nested loops and user-defined Python functions. The remaining portion of the chapter discusses tuples, sets, and dictionaries.

NOTE The Python scripts in this book are for Python 3.x.

SOME STANDARD MODULES IN PYTHON

The Python Standard Library provides many modules that can simplify your own Python scripts. A list of the Standard Library modules is here:

http://www.python.org/doc/

Some of the most important Python modules include cgi, math, os, pickle, random, re, socket, sys, time, and urllib.

The code samples in this book use the modules math, os, random, and re. You need to import these modules in order to use them in your code. For example, the following code block shows you how to import standard Python modules:

import re
import sys
import time

The code samples in this book import one or more of the preceding modules, as well as other Python modules. The next section discusses primitive data types in Python.

SIMPLE DATA TYPES IN PYTHON

Python supports primitive data types, such as numbers (integers, floating point numbers, and exponential numbers), strings, and dates. Python also supports more complex data types, such as lists (or arrays), tuples, and dictionaries, all of which are discussed later in this chapter. The next several sections discuss some of the Python primitive data types, along with code snippets that show you how to perform various operations on those data types.

WORKING WITH NUMBERS

Python provides arithmetic operations for manipulating numbers a straightforward manner that is similar to other programming languages. The following examples involve arithmetic operations on integers:

>>> 2+2
4
>>> 4/3
1
>>> 3*8
24

The following example assigns numbers to two variables and computes their product:

>>> x = 4
>>> y = 7
>>> x * y
28

The following examples demonstrate arithmetic operations involving integers:

>>> 2+2
4
>>> 4/3
1
>>> 3*8
24

Notice that division (“/”) of two integers is actually truncation in which only the integer result is retained. The following example converts a floating point number into exponential form:

>>> fnum = 0.00012345689000007
>>> "%.14e"%fnum
'1.23456890000070e-04'

You can use the int() function and the float() function to convert strings to numbers:

word1 = "123"
word2 = "456.78"
var1 = int(word1)
var2 = float(word2)
print("var1: ",var1," var2: ",var2)

The output from the preceding code block is here:

var1: 123 var2: 456.78

Alternatively, you can use the eval() function:

word1 = "123"
word2 = "456.78"
var1 = eval(word1)
var2 = eval(word2)
print("var1: ",var1," var2: ",var2)

If you attempt to convert a string that is not a valid integer or a floating point number, Python raises an exception, so it’s advisable to place your code in a try/except block (discussed later in this chapter).

Working With Other Bases

Numbers in Python are in base 10 (the default), but you can easily convert numbers to other bases. For example, the following code block initializes the variable x with the value 1234, and then displays that number in base 2, 8, and 16, respectively:

>>> x = 1234
>>> bin(x) '0b10011010010'
>>> oct(x) '0o2322'
>>> hex(x) '0x4d2'

Use the format() function if you want to suppress the 0b, 0o, or 0x prefixes, as shown here:

>>> format(x, 'b') '10011010010'
>>> format(x, 'o') '2322'
>>> format(x, 'x') '4d2'

Negative integers are displayed with a negative sign:

>>> x = -1234
>>> format(x, 'b') '-10011010010'
>>> format(x, 'x') '-4d2'

The chr() Function

The Python chr() function takes a positive integer as a parameter and converts it to its corresponding alphabetic value (if one exists). The letters A through Z have decimal representation of 65 through 91 (which corresponds to hexadecimal 41 through 5b), and the lowercase letters a through z have decimal representation 97 through 122 (hexadecimal 61 through 7b).

Here is an example of using the chr() function to print uppercase A:

>>> x=chr(65)
>>> x
'A'

The following code block prints the ASCII values for a range of integers:

result = ""
for x in range(65,90):
 print(x, chr(x))
 result = result+chr(x)+' '
print("result: ",result)

NOTE Python 2 uses ASCII strings whereas Python 3 uses UTF-8.

You can represent a range of characters with the following line:

for x in range(65,90):

However, the following equivalent code snippet is more intuitive:

for x in range(ord('A'), ord('Z')):

If you want to display the result for lowercase letters, change the preceding range from (65,91) to either of the following statements:

for x in range(65,90):
for x in range(ord('a'), ord('z')):

The round() Function in Python

The Python round() function enables you to round decimal values to the nearest precision:

>>> round(1.23, 1)
1.2
>>> round(-3.42,1)
-3.4

Before delving into Python code samples that work with strings, the next section briefly discusses Unicode and UTF-8, both of which are character encodings.

UNICODE AND UTF-8

A Unicode string consists of a sequence of numbers that are between 0 and 0x10ffff, where each number represents a group of bytes. An encoding is the manner in which a Unicode string is translated into a sequence of bytes. Among the various encodings, UTF-8 (Unicode Transformation Format) is perhaps the most common, and it’s also the default encoding for many systems. The digit 8 in UTF-8 indicates that the encoding uses 8-bit numbers, whereas UTF-16 uses 16-bit numbers (but this encoding is less common).

The ASCII character set is a subset of UTF-8, so a valid ASCII string can be read as a UTF-8 string without any re-encoding required. In addition, a Unicode string can be converted into a UTF-8 string.

WORKING WITH UNICODE

Python supports Unicode, which means that you can render characters in different languages. Unicode data can be stored and manipulated in the same way as strings. Create a Unicode string by prepending the letter “u,” as shown here:

>>> u'Hello from Python!'
u'Hello from Python!'

Special characters can be included in a string by specifying their Unicode value. For example, the following Unicode string embeds a space (which has the Unicode value 0x0020) in a string:

>>> u'Hello\u0020from Python!'
u'Hello from Python!'

Listing 1.1 displays the contents of Unicode1.py that illustrates how to display a string of characters in Japanese and another string of characters in Chinese (Mandarin).

LISTING 1.1: Unicode1.py

chinese1 = u'\u5c07\u63a2\u8a0e HTML5 \u53ca\u5176\u4ed6'
hiragana = u'D3 \u306F \u304B\u3063\u3053\u3043\u3043 \u3067\u3059!'

print('Chinese:',chinese1)
print('Hiragana:',hiragana)

The output of Listing 1.1 is here:

Chinese: 將探討 HTML5 及其他
Hiragana: D3 は かっこぃぃ です!

The next portion of this chapter shows you how to “slice and dice” text strings with built-in Python functions.

WORKING WITH STRINGS

Literal strings in Python 3 are Unicode by default. You can concatenate two strings using the ‘+’ operator. The following example prints a string and then concatenates two single-letter strings:

>>> 'abc'
'abc'
>>> 'a' + 'b'
'ab'

You can use ‘+’ or ‘*’ to concatenate identical strings, as shown here:

>>> 'a' + 'a' + 'a'
'aaa'
>>> 'a' * 3
'aaa'

You can assign strings to variables and print them using the print() statement:

>>> print('abc')
abc
>>> x = 'abc'
>>> print(x)
abc
>>> y = 'def'
>>> print(x + y)
abcdef

You can “unpack” the letters of a string and assign them to variables, as shown here:

>>> str = "World"
>>> x1,x2,x3,x4,x5 = str
>>> x1
'W'
>>> x2
'o'
>>> x3
'r'
>>> x4
'l'
>>> x5
'd'

The preceding code snippets shows you how easy it is to extract the letters in a text string. You can also extract substrings of a string as shown in the following examples:

>>> x = "abcdef"
>>> x[0]
'a'
>>> x[-1]
'f'
>>> x[1:3]
'bc'
>>> x[0:2] + x[5:]
'abf'

However, you will cause an error if you attempt to subtract two strings, as you probably expect:

>>> 'a' - 'b'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'str' and 'str'

The try/except construct in Python (discussed later in this chapter) enables you to handle the preceding type of exception more gracefully.

Comparing Strings

You can use the methods lower() and upper() to convert a string to lowercase and uppercase, respectively, as shown here:

>>> 'Python'.lower()
'python'
>>> 'Python'.upper()
'PYTHON'
>>>

The methods lower() and upper() are useful for performing a case insensitive comparison of two ASCII strings. Listing 1.2 displays the contents of Compare.py that uses the lower() function in order to compare two ASCII strings.

LISTING 1.2: Compare.py

x = 'Abc'
y = 'abc'
if(x == y):
 print('x and y: identical')
elif (x.lower() == y.lower()):
 print('x and y: case insensitive match')
else:
 print('x and y: different')

Since x contains mixed case letters and y contains lowercase letters, Listing 1.2 displays the following output:

x and y: different

Uninitialized Variables and the Value None in Python

Python distinguishes between an uninitialized variable and the value None. The former is a variable that has not been assigned a value, whereas the value None is a value that indicates “no value.” Collections and methods often return the value None, and you can test for the value None in conditional logic (shown later in this chapter).

The next portion of this chapter shows you how to “slice and dice” text strings with built-in Python functions.

SLICING AND SPLICING STRINGS

Python enables you to extract substrings of a string (called “slicing”) using array notation. Slice notation is start:stop:step, where the start, stop, and step values are integers that specify the start value, end value, and the increment value. The interesting part about slicing in Python is that you can use the value -1, which operates from the right side instead of the left side of a string. Some examples of slicing a string are here:

text1 = "this is a string"
print('First 7 characters:',text1[0:7])
print('Characters 2-4:',text1[2:4])
print('Right-most character:',text1[-1])
print('Right-most 2 characters:',text1[-3:-1])

The output from the preceding code block is here:

First 7 characters: this is
Characters 2-4: is
Right-most character: g
Right-most 2 characters: in

Later in this chapter you will see how to insert a string in the middle of another string.

Testing for Digits and Alphabetic Characters

Python enables you to examine each character in a string and then test whether that character is a bona fide digit or an alphabetic character. This section provides a precursor to regular expressions that are discussed in Chapter 8.

Listing 1.3 displays the contents of CharTypes.py that illustrates how to determine if a string contains digits or characters. In case you are unfamiliar with the conditional “if” statement in Listing 1.3, more detailed information is available later in this chapter.

LISTING 1.3: CharTypes.py

str1 = "4"
str2 = "4234"
str3 = "b"
str4 = "abc"
str5 = "a1b2c3"

if(str1.isdigit()):
 print("this is a digit:",str1)

if(str2.isdigit()):
 print("this is a digit:",str2)

if(str3.isalpha()):
 print("this is alphabetic:",str3)

if(str4.isalpha()):
 print("this is alphabetic:",str4)

if(not str5.isalpha()):
 print("this is not pure alphabetic:",str5)

print("capitalized first letter:",str5.title())

Listing 1.3 initializes some variables, followed by two conditional tests that check whether or not str1 and str2 are digits using the isdigit() function. The next portion of Listing 1.3 checks if str3, str4, and str5 are alphabetic strings using the isalpha() function. The output of Listing 1.3 is here:

this is a digit: 4
this is a digit: 4234
this is alphabetic: b
this is alphabetic: abc
this is not pure alphabetic: a1b2c3
capitalized first letter: A1B2C3

SEARCH AND REPLACE A STRING IN OTHER STRINGS

Python provides methods for searching and also for replacing a string in a second text string. Listing 1.4 displays the contents of FindPos1.py that shows you how to use the find() function to search for the occurrence of one string in another string.

LISTING 1.4 FindPos1.py

item1 = 'abc'
item2 = 'Abc'
text = 'This is a text string with abc'

pos1 = text.find(item1)
pos2 = text.find(item2)

print('pos1=',pos1)
print('pos2=',pos2)

OEBPS/xhtml/nav.xhtml

Table of Contents

		Cover

		Title Page

		Copyright Page

		Dedication

		Contents

		Preface

		Chapter 1: Introduction to Python

		Some Standard Modules in Python

		Simple Data Types in Python

		Working With Numbers

		Working With Other Bases

		The chr() Function

		The round() Function in Python

		Unicode and UTF-8

		Working With Unicode

		Working With Strings

		Comparing Strings

		Uninitialized Variables and the Value None in Python

		Slicing and Splicing Strings

		Testing for Digits and Alphabetic Characters

		Search and Replace a String in Other Strings

		Precedence of Operators in Python

		Python Reserved Words

		Working With Loops in Python

		Python for Loops

		Numeric Exponents in Python

		Nested Loops

		The split() Function With for Loops

		Using the split() Function to Compare Words

		Python while Loops

		Conditional Logic in Python

		The break/continue/pass Statements

		Comparison and Boolean Operators

		The in/not in/is/is not Comparison Operators

		The and, or, and not Boolean Operators

		Local and Global Variables

		Scope of Variables

		Pass by Reference Versus Value

		Arguments and Parameters

		User-Defined Functions in Python

		Specifying Default Values in a Function

		Returning Multiple Values From a Function

		Lambda Expressions

		Working With Lists

		Lists and Basic Operations

		Lists and Arithmetic Operations

		Lists and Filter-Related Operations

		The join(), range(), and split() Functions

		Arrays and the append() Function

		Other List-Related Functions

		Working With List Comprehensions

		Working With Vectors

		Working With Matrices

		Queues

		Tuples (Immutable Lists)

		Sets

		Dictionaries

		Creating a Dictionary

		Displaying the Contents of a Dictionary

		Checking for Keys in a Dictionary

		Deleting Keys From a Dictionary

		Iterating Through a Dictionary

		Interpolating Data From a Dictionary

		Dictionary Functions and Methods

		Other Sequence Types in Python

		Mutable and Immutable Types in Python

		Summary

		Chapter 2: Recursion and Combinatorics

		What Is Recursion?

		Arithmetic Series

		Calculating Arithmetic Series (Iterative)

		Calculating Arithmetic Series (Recursive)

		Calculating Partial Arithmetic Series

		Geometric Series

		Calculating a Geometric Series (Iterative)

		Calculating Arithmetic Series (Recursive)

		Factorial Values

		Calculating Factorial Values (Iterative)

		Calculating Factorial Values (Recursive)

		Calculating Factorial Values (Tail Recursion)

		Fibonacci Numbers

		Calculating Fibonacci Numbers (Recursive)

		Calculating Fibonacci Numbers (Iterative)

		Task: Reverse a String via Recursion

		Task: Check for Balanced Parentheses

		Task: Calculate the Number of Digits

		Task: Determine if a Positive Integer Is Prime

		Task: Find the Prime Factorization of a Positive Integer

		Task: Goldbach’s Conjecture

		Task: Calculate the GCD (Greatest Common Divisor)

		Task: Calculate the LCM (Lowest Common Multiple)

		What Is Combinatorics?

		Working With Permutations

		Working With Combinations

		Task: Calculate the Sum of Binomial Coefficients

		The Number of Subsets of a Finite Set

		Task: Subsets Containing a Value Larger Than k

		Summary

		Chapter 3: Strings and Arrays

		Time and Space Complexity

		Task: Maximum and Minimum Powers of an Integer

		Task: Binary Substrings of a Number

		Task: Common Substring of Two Binary Numbers

		Task: Multiply and Divide via Recursion

		Task: Sum of Prime and Composite Numbers

		Task: Count Word Frequencies

		Task: Check if a String Contains Unique Characters

		Task: Insert Characters in a String

		Task: String Permutations

		Task: Find All Subsets of a Set

		Task: Check for Palindromes

		Task: Check for the Longest Palindrome

		Working With Sequences of Strings

		The Maximum Length of a Repeated Character in a String

		Find a Given Sequence of Characters in a String

		Task: Longest Sequences of Substrings

		The Longest Sequence of Unique Characters

		The Longest Repeated Substring

		Task: Match a String With a Word List (Simple Case)

		The Harder Case

		Working With 1D Arrays

		Rotate an Array

		Task: Shift Non-Zero Elements Leftward

		Task: Sort Array In-Place in O(n) Without a Sort Function

		Task: Invert Adjacent Array Elements

		Task: Generate 0 That Is Three Times More Likely Than a 1

		Task: Invert Bits in Even and Odd Positions

		Task: Invert Pairs of Adjacent Bits

		Task: Find Common Bits in Two Binary Numbers

		Task: Check for Adjacent Set Bits in a Binary Number

		Task: Count Bits in a Range of Numbers

		Task: Find the Right-Most Set Bit in a Number

		Task: The Number of Operations to Make All Characters Equal

		Task: Compute XOR Without XOR for Two Binary Numbers

		Working With 2D Arrays

		The Transpose of a Matrix

		Summary

		Chapter 4: Search and Sort Algorithms

		Search Algorithms

		Linear Search

		Binary Search Walk-Through

		Binary Search (Iterative Solution)

		Binary Search (Recursive Solution)

		Well-Known Sorting Algorithms

		Bubble Sort

		Find Anagrams in a List of Words

		Selection Sort

		Insertion Sort

		Comparison of Sort Algorithms

		Merge Sort

		Merge Sort With a Third Array

		Merge Sort Without a Third Array

		Merge Sort: Shift Elements From End of Lists

		How Does Quick Sort Work?

		Quick Sort Code Sample

		Shellsort

		Summary

		Chapter 5: Linked Lists

		Types of Data Structures

		Linear Data Structures

		Nonlinear Data Structures

		Data Structures and Operations

		Operations on Data Structures

		What Are Singly Linked Lists?

		Trade-Offs for Linked Lists

		Singly Linked Lists: Create and Append Operations

		A Node Class for Singly Linked Lists

		Appending a Node in a Linked List

		Python Code for Appending a Node

		Singly Linked Lists: Finding a Node

		Singly Linked Lists: Update and Delete Operations

		Updating a Node in a Singly Linked List

		Python Code to Update a Node

		Deleting a Node in a Linked List: Method #1

		Python Code for Deleting a Node: Method #2

		Circular Linked Lists

		Python Code for Updating a Circular Linked List

		Working With Doubly Linked Lists (DLL)

		A Node Class for Doubly Linked Lists

		Appending a Node in a Doubly Linked List

		Python Code for Appending a Node

		Python Code for Inserting an Intermediate Node

		Searching and Updating a Node in a Doubly Linked List

		Updating a Node in a Doubly Linked List

		Python Code to Update a Node

		Deleting a Node in a Doubly Linked List

		Python Code to Delete a Node

		Summary

		Chapter 6: Linked Lists and Common Tasks

		Task: Adding Numbers in a Linked List (1)

		Task: Reconstructing Numbers in a Linked List (1)

		Task: Reconstructing Numbers in a Linked List (2)

		Task: Display the First k Nodes

		Task: Display the Last k Nodes

		Display a Singly Linked List in Reverse Order via Recursion

		Task: Remove Duplicate Nodes

		Task: Concatenate Two Lists

		Task: Merge Two Lists

		Task: Split a Single List into Two Lists

		Task: Find the Middle Element in a List

		Task: Reversing a Linked List

		Task: Check for Palindromes in a Linked List

		Summary

		Chapter 7: Queues and Stacks

		What Is a Queue?

		Types of Queues

		Creating a Queue Using a Python List

		Creating a Rolling Queue

		Creating a Queue Using an Array

		What Is a Stack?

		Use Cases for Stacks

		Operations With Stacks

		Working With Stacks

		Task: Reverse and Print Stack Values

		Task: Display the Min and Max Stack Values (1)

		Creating Two Stacks Using an Array

		Task: Reverse a String Using a Stack

		Task: Balanced Parentheses

		Task: Tokenize Arithmetic Expressions

		Task: Evaluate Arithmetic Expressions

		Infix, Prefix, and Postfix Notations

		Summary

		Index

Guide

		Cover

		Title Page

		Copyright Page

		Dedication

		Contents

		Preface

		Chapter 1: Introduction to Python

		Index

Page List

		Cover

		i

		ii

		iii

		iv

		v

		vi

		vii

		viii

		ix

		x

		xi

		xii

		xiii

		xiv

		xv

		xvi

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

		79

		80

		81

		82

		83

		84

		85

		86

		87

		88

		89

		90

		91

		92

		93

		94

		95

		96

		97

		98

		99

		100

		101

		102

		103

		104

		105

		106

		107

		108

		109

		110

		111

		112

		113

		114

		115

		116

		117

		118

		119

		120

		121

		122

		123

		124

		125

		126

		127

		128

		129

		130

		131

		132

		133

		134

		135

		136

		137

		138

		139

		140

		141

		142

		143

		144

		145

		146

		147

		148

		149

		150

		151

		152

		153

		154

		155

		156

		157

		158

		159

		160

		161

		162

		163

		164

		165

		166

		167

		168

		169

		170

		171

		172

		173

		174

		175

		176

		177

		178

		179

		180

		181

		182

		183

		184

		185

		186

		187

		188

		189

		190

		191

		192

		193

		194

		195

		196

		197

		198

		199

		200

		201

		202

		203

		204

		205

		206

		207

		208

		209

		210

		211

		212

		213

		214

		215

		216

		217

		218

		219

		220

		221

		222

		223

		224

		225

		226

		227

		228

OEBPS/images/9781683927570.jpg
PYTHON ‘
DATA STRUCTURES

O. CAMPESATO

OEBPS/images/pub.jpg

