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PREFACE




WHAT IS THE PRIMARY VALUE PROPOSITION FOR THIS BOOK?


This book contains a fast-paced introduction to as much relevant information about data structures that within reason can possibly be included in a book of this size. In addition, this book has a task-oriented approach, so you will see code samples that use data structures to solve various tasks.

Chapter 1 starts with an introduction to Python for beginners, recursion is discussed in Chapter 2, strings and arrays are covered in Chapter 3, search and sort algorithms are discussed in Chapter 4, various types of linked lists and explained in Chapter 5 and Chapter 6, and then queues and stacks are covered in Chapter 7.

Please keep in mind that a full treatment of all the topics in this book could easily triple the length of this book (and besides, such books are already available).




THE TARGET AUDIENCE


This book is intended primarily for people who have a limited background in data structures. This book is also intended to reach an international audience of readers with highly diverse backgrounds. While many readers know how to read English, their native spoken language is not English (which could be their second, third, or even fourth language). Consequently, this book uses standard English rather than colloquial expressions in order to maximize clarity.




WHAT WILL I LEARN FROM THIS BOOK?


The introductory section of the preface contains a brief outline of the topics in each of the chapters of this book. As the title suggests, you will acquire a basic level of knowledge about a variety of data structures.

Incidentally, you will discover that many code samples contain “commented out” code snippets, which are usually Python print() statements. Feel free to “uncomment” those code snippets, which will enable you to see the various execution paths in the code. In essence, you will see the debugging process that was used during the development of the code samples.




WHY ARE THE CODE SAMPLES PRIMARILY IN PYTHON?


Most of the code samples are short (usually less than one page and sometimes less than half a page), and if necessary, you can easily and quickly copy/paste the code into a new Jupyter notebook. Moreover, the code samples execute quickly, so you won’t need to avail yourself of the free GPU that is provided in Google Colaboratory.




DO I NEED TO LEARN THE THEORY PORTIONS OF THIS BOOK?


Alas, an understanding of the theoretical underpinnings of data structures does not translate into the ability to solve tasks involving data structures: it’s necessary knowledge (but not necessarily sufficient). Strive for an understanding of concepts and minimize the amount of memorization of code samples. For example, you can determine whether or not a positive integer n is a power of 2 with a single line of code:


(n > 0) and (n & (n-1)) == 0


Although the preceding code snippet might seem nonintuitive, you can convince yourself that this is true by setting n=8 and then observe the following:


n:   1000
n-1: 0111


The key point is this: the binary representation of a power of 2 has a single 1 in the left-most position, and zeroes to the right of the digit 1 (for n>=2), whereas the number n-1 contains a 0 in the left-most position, and all 1s to the right of the digit 0. Therefore, the logical and of n and (n-1) is clearly 0.

Now that you understand the key idea, there is no need to memorize anything, and you can write the solution in any programming language for which you have a very modest level of experience.

The theoretical aspects will help you improve your conceptual understanding of the differences and similarities (if any) among various types of data structures. However, you will gain confidence and also a better understanding of data structures by writing code because knowledge is often gained through repetition of tasks that provide reinforcement of concepts.




GETTING THE MOST FROM THIS BOOK


Some programmers learn well from prose, others learn well from sample code (and lots of it), which means that there’s no single style that can be used for everyone.

Moreover, some programmers want to run the code first, see what it does, and then return to the code to delve into the details (and others use the opposite approach).

Consequently, there are various types of code samples in this book: some are short, some are long, and other code samples “build” from earlier code samples.




WHAT DO I NEED TO KNOW FOR THIS BOOK?


Current knowledge of Python 3.x is useful because all the code samples are in Python. Knowledge of data structures will enable you to progress through the related chapters more quickly. The less technical knowledge you have, the more diligence will be required in order to understand the various topics that are covered.

If you want to be sure that you can grasp the material in this book, glance through some of the code samples to get an idea of how much is familiar to you and how much is new for you.




DOES THIS BOOK CONTAIN PRODUCTION-LEVEL CODE SAMPLES?


The primary purpose of the code samples in this book is to show you solutions to tasks that involve data structures. Therefore, clarity has higher priority than writing more compact or highly optimized code, For example, inspect the loops in the Python code sample to see if they can be made more efficient. Suggestion: treat such code samples as opportunities for you to optimize the code samples in this book.

If you decide to use any of the code in this book in a production website, you ought to subject that code to the same rigorous analysis as the other parts of your code base.




WHAT ARE THE NONTECHNICAL PREREQUISITES FOR THIS BOOK?


Although the answer to this question is difficult to quantify, it’s especially important to have a strong desire to learn about data analytics, along with the motivation and discipline to read and understand the code samples.




HOW DO I SET UP A COMMAND SHELL?


If you are a Mac user, there are three ways to set up a command shell. The first method is to use Finder to navigate to Applications > Utilities and then double click on the Utilities application. Next, if you already have a command shell available, you can launch a new command shell by typing the following command:


open /Applications/Utilities/Terminal.app


A second method for Mac users is to open a new command shell on a MacBook from a command shell that is already visible simply by clicking command+n in that command shell, and your Mac will launch another command shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.com/) that simulates bash commands, or use another toolkit such as MKS (a commercial product). Please read the online documentation that describes the download and installation process. Note that custom aliases are not automatically set if they are defined in a file other than the main start-up file (such as .bash_login).




COMPANION FILES


All the code samples in this book may be obtained by writing to the publisher at info@merclearning.com.




WHAT ARE THE “NEXT STEPS” AFTER FINISHING THIS BOOK?


The answer to this question varies widely, mainly because the answer depends heavily on your objectives. If you are interested primarily in learning more about data structures, then this book is a “stepping stone” to other books that contain more complex data structures as well as code samples for the tasks that are not covered in this book (such as deleting a node from a tree or a doubly linked list).

If you are primarily interested in machine learning, there are some subfields of machine learning, such as deep learning and reinforcement learning (and deep reinforcement learning) that might appeal to you. Fortunately, there are many resources available, and you can perform an Internet search for those resources. One other point: the aspects of machine learning for you to learn depend on who you are—the needs of a machine learning engineer, data scientist, manager, student, or software developer all differ from one another.







CHAPTER 1

INTRODUCTION TO PYTHON


This chapter provides an introduction to basic features of Python, including examples of working with Python strings, arrays, and dictionaries. Please keep in mind that this chapter does not contain details about the Python interpreter: you can find that information online in various tutorials.

You will also learn about useful tools for installing Python modules, basic Python constructs, and how to work with some data types in Python.

The first part of this chapter shows you how to work with simple data types, such as numbers, fractions, and strings. The third part of this chapter discusses exceptions and how to use them in Python scripts.

The second part of this chapter introduces you to various ways to perform conditional logic in Python, as well as control structures and user-defined functions in Python. Virtually every Python program that performs useful calculations requires some type of conditional logic or control structure (or both). Although the syntax for these Python features is slightly different from other languages, the functionality will be familiar to you.

The third  part of this chapter contains examples that involve nested loops and user-defined Python functions. The remaining portion of the chapter discusses tuples, sets, and dictionaries.

NOTE The Python scripts in this book are for Python 3.x.




SOME STANDARD MODULES IN PYTHON


The Python Standard Library provides many modules that can simplify your own Python scripts. A list of the Standard Library modules is here:

http://www.python.org/doc/

Some of the most important Python modules include cgi, math, os, pickle, random, re, socket, sys, time, and urllib.

The code samples in this book use the modules math, os, random, and re. You need to import these modules in order to use them in your code. For example, the following code block shows you how to import standard Python modules:


import re
import sys
import time


The code samples in this book import one or more of the preceding modules, as well as other Python modules. The next section discusses primitive data types in Python.




SIMPLE DATA TYPES IN PYTHON


Python supports primitive data types, such as numbers (integers, floating point numbers, and exponential numbers), strings, and dates. Python also supports more complex data types, such as lists (or arrays), tuples, and dictionaries, all of which are discussed later in this chapter. The next several sections discuss some of the Python primitive data types, along with code snippets that show you how to perform various operations on those data types.




WORKING WITH NUMBERS


Python provides arithmetic operations for manipulating numbers a straightforward manner that is similar to other programming languages. The following examples involve arithmetic operations on integers:


>>> 2+2
4
>>> 4/3
1
>>> 3*8
24


The following example assigns numbers to two variables and computes their product:


>>> x = 4
>>> y = 7
>>> x * y
28


The following examples demonstrate arithmetic operations involving integers:


>>> 2+2
4
>>> 4/3
1
>>> 3*8
24


Notice that division (“/”) of two integers is actually truncation in which only the integer result is retained. The following example converts a floating point number into exponential form:


>>> fnum = 0.00012345689000007
>>> "%.14e"%fnum
'1.23456890000070e-04'


You can use the int() function and the float() function to convert strings to numbers:


word1 = "123"
word2 = "456.78"
var1 = int(word1)
var2 = float(word2)
print("var1: ",var1," var2: ",var2)


The output from the preceding code block is here:


var1:  123  var2:  456.78


Alternatively, you can use the eval() function:


word1 = "123"
word2 = "456.78"
var1 = eval(word1)
var2 = eval(word2)
print("var1: ",var1," var2: ",var2)


If you attempt to convert a string that is not a valid integer or a floating point number, Python raises an exception, so it’s advisable to place your code in a try/except block (discussed later in this chapter).



Working With Other Bases


Numbers in Python are in base 10 (the default), but you can easily convert numbers to other bases. For example, the following code block initializes the variable x with the value 1234, and then displays that number in base 2, 8,  and 16, respectively:


>>> x = 1234
>>> bin(x) '0b10011010010'
>>> oct(x) '0o2322'
>>> hex(x) '0x4d2'


Use the format() function if you want to suppress the 0b, 0o, or 0x prefixes, as shown here:


>>> format(x, 'b') '10011010010'
>>> format(x, 'o') '2322'
>>> format(x, 'x') '4d2'


Negative integers are displayed with a negative sign:


>>> x = -1234
>>> format(x, 'b') '-10011010010'
>>> format(x, 'x') '-4d2'





The chr() Function


The Python chr() function takes a positive integer as a parameter and converts it to its corresponding alphabetic value (if one exists). The letters A through Z have decimal representation of 65 through 91 (which corresponds to hexadecimal 41 through 5b), and the lowercase letters a through z have decimal representation 97 through 122 (hexadecimal 61 through 7b).

Here is an example of using the chr() function to print uppercase A:


>>> x=chr(65)
>>> x
'A'


The following code block prints the ASCII values for a range of integers:


result = ""
for x in range(65,90):
  print(x, chr(x))
  result = result+chr(x)+' '
print("result: ",result)


NOTE Python 2 uses ASCII strings whereas Python 3 uses UTF-8.

You can represent a range of characters with the following line:


for x in range(65,90):


However, the following equivalent code snippet is more intuitive:


for x in range(ord('A'), ord('Z')):


If you want to display the result for lowercase letters, change the preceding range from (65,91) to either of the following statements:


for x in range(65,90):
for x in range(ord('a'), ord('z')):





The round() Function in Python


The Python round() function enables you to round decimal values to the nearest precision:


>>> round(1.23, 1)
1.2
>>> round(-3.42,1)
-3.4


Before delving into Python code samples that work with strings, the next section briefly discusses Unicode and UTF-8, both of which are character encodings.





UNICODE AND UTF-8


A Unicode string consists of a sequence of numbers that are between 0 and 0x10ffff, where each number represents a group of bytes. An encoding is the manner in which a Unicode string is translated into a sequence of bytes. Among the various encodings, UTF-8 (Unicode Transformation Format) is perhaps the most common, and it’s also the default encoding for many systems. The digit 8 in UTF-8 indicates that the encoding uses 8-bit numbers, whereas UTF-16 uses 16-bit numbers (but this encoding is less common).

The ASCII character set is a subset of UTF-8, so a valid ASCII string can be read as a UTF-8 string without any re-encoding required. In addition, a Unicode string can be converted into a UTF-8 string.




WORKING WITH UNICODE


Python supports Unicode, which means that you can render characters in different languages. Unicode data can be stored and manipulated in the same way as strings. Create a Unicode string by prepending the letter “u,” as shown here:


>>> u'Hello from Python!'
u'Hello from Python!'


Special characters can be included in a string by specifying their Unicode value. For example, the following Unicode string embeds a space (which has the Unicode value 0x0020) in a string:


>>> u'Hello\u0020from Python!'
u'Hello from Python!'


Listing 1.1 displays the contents of Unicode1.py that illustrates how to display a string of characters in Japanese and another string of characters in Chinese (Mandarin).

LISTING 1.1: Unicode1.py


chinese1 = u'\u5c07\u63a2\u8a0e HTML5 \u53ca\u5176\u4ed6'
hiragana = u'D3 \u306F \u304B\u3063\u3053\u3043\u3043 \u3067\u3059!'

print('Chinese:',chinese1)
print('Hiragana:',hiragana)


The output of Listing 1.1 is here:


Chinese: 將探討 HTML5 及其他
Hiragana: D3 は かっこぃぃ です!


The next portion of this chapter shows you how to “slice and dice” text strings with built-in Python functions.




WORKING WITH STRINGS


Literal strings in Python 3 are Unicode by default. You can concatenate two strings using the ‘+’ operator. The following example prints a string and then concatenates two single-letter strings:


>>> 'abc'
'abc'
>>> 'a' + 'b'
'ab'


You can use ‘+’ or ‘*’ to concatenate identical strings, as shown here:


>>> 'a' + 'a' + 'a'
'aaa'
>>> 'a' * 3
'aaa'


You can assign strings to variables and print them using the print() statement:


>>> print('abc')
abc
>>> x = 'abc'
>>> print(x)
abc
>>> y = 'def'
>>> print(x + y)
abcdef


You can “unpack” the letters of a string and assign them to variables, as shown here:


>>> str = "World"
>>> x1,x2,x3,x4,x5 = str
>>> x1
'W'
>>> x2
'o'
>>> x3
'r'
>>> x4
'l'
>>> x5
'd'


The preceding code snippets shows you how easy it is to extract the letters in a text string. You can also extract substrings of a string as shown in the following examples:


>>> x = "abcdef"
>>> x[0]
'a'
>>> x[-1]
'f'
>>> x[1:3]
'bc'
>>> x[0:2] + x[5:]
'abf'


However, you will cause an error if you attempt to subtract two strings, as you probably expect:


>>> 'a' - 'b'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'str' and 'str'


The try/except construct in Python (discussed later in this chapter) enables you to handle the preceding type of exception more gracefully.



Comparing Strings


You can use the methods lower() and upper() to convert a string to lowercase and uppercase, respectively, as shown here:


>>> 'Python'.lower()
'python'
>>> 'Python'.upper()
'PYTHON'
>>>


The methods lower() and upper() are useful for performing a case insensitive comparison of two ASCII strings. Listing 1.2 displays the contents of Compare.py that uses the lower() function in order to compare two ASCII strings.

LISTING 1.2: Compare.py


x = 'Abc'
y = 'abc'
if(x == y):
  print('x and y: identical')
elif (x.lower() == y.lower()):
  print('x and y: case insensitive match')
else:
  print('x and y: different')


Since x contains mixed case letters and y contains lowercase letters, Listing 1.2 displays the following output:


x and y: different





Uninitialized Variables and the Value None in Python


Python distinguishes between an uninitialized variable and the value None. The former is a variable that has not been assigned a value, whereas the value None is a value that indicates “no value.” Collections and methods often return the value None, and you can test for the value None in conditional logic (shown later in this chapter).

The next portion of this chapter shows you how to “slice and dice” text strings with built-in Python functions.





SLICING AND SPLICING STRINGS


Python enables you to extract substrings of a string (called “slicing”) using array notation. Slice notation is start:stop:step, where the start, stop, and step values are integers that specify the start value, end value, and the increment value. The interesting part about slicing in Python is that you can use the value -1, which operates from the right side instead of the left side of a string. Some examples of slicing a string are here:


text1 = "this is a string"
print('First 7 characters:',text1[0:7])
print('Characters 2-4:',text1[2:4])
print('Right-most character:',text1[-1])
print('Right-most 2 characters:',text1[-3:-1])


The output from the preceding code block is here:


First 7 characters: this is
Characters 2-4: is
Right-most character: g
Right-most 2 characters: in


Later in this chapter you will see how to insert a string in the middle of another string.



Testing for Digits and Alphabetic Characters


Python enables you to examine each character in a string and then test whether that character is a bona fide digit or an alphabetic character. This section provides a precursor to regular expressions that are discussed in Chapter 8.

Listing 1.3 displays the contents of CharTypes.py that illustrates how to determine if a string contains digits or characters. In case you are unfamiliar with the conditional “if” statement in Listing 1.3, more detailed information is available later in this chapter.

LISTING 1.3: CharTypes.py


str1 = "4"
str2 = "4234"
str3 = "b"
str4 = "abc"
str5 = "a1b2c3"

if(str1.isdigit()):
  print("this is a digit:",str1)

if(str2.isdigit()):
  print("this is a digit:",str2)

if(str3.isalpha()):
  print("this is alphabetic:",str3)

if(str4.isalpha()):
  print("this is alphabetic:",str4)

if(not str5.isalpha()):
  print("this is not pure alphabetic:",str5)

print("capitalized first letter:",str5.title())


Listing 1.3 initializes some variables, followed by two conditional tests that check whether or not str1 and str2 are digits using the isdigit() function. The next portion of Listing 1.3 checks if str3, str4, and str5 are alphabetic strings using the isalpha() function. The output of Listing 1.3 is here:


this is a digit: 4
this is a digit: 4234
this is alphabetic: b
this is alphabetic: abc
this is not pure alphabetic: a1b2c3
capitalized first letter: A1B2C3






SEARCH AND REPLACE A STRING IN OTHER STRINGS


Python provides methods for searching and also for replacing a string in a second text string. Listing 1.4 displays the contents of FindPos1.py that shows you how to use the find() function to search for the occurrence of one string in another string.

LISTING 1.4 FindPos1.py


item1 = 'abc'
item2 = 'Abc'
text = 'This is a text string with abc'

pos1 = text.find(item1)
pos2 = text.find(item2)

print('pos1=',pos1)
print('pos2=',pos2)
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