
		
			[image: Cover.png]
		

	
		
			Kubernetes Secrets Handbook

			Design, implement, and maintain production-grade Kubernetes Secrets management solutions

			Emmanouil Gkatziouras

			Rom Adams

			Chen Xi

			[image: Packt Logo]

			Kubernetes Secrets Handbook

			Copyright © 2024 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Preet Ahuja

			Publishing Product Manager: Suwarna Rajput

			Senior Editor: Arun Nadar

			Technical Editor: Irfa Ansari

			Copy Editor: Safis Editing

			Project Coordinator: Uma Devi

			Proofreader: Safis Editing

			Indexer: Tejal Daruwale Soni

			Production Designer: Shankar Kalbhor

			Marketing Coordinator: Rohan Dobhal

			First published: January 2024

			Production reference: 1120124

			Published by

			Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB

			ISBN 978-1-80512-322-4

			www.packtpub.com

			To my father. A mentor for life and the best teacher I had. At every milestone reached, you have your own share of credit.

			– Emmanouil Gkatziouras

			To my grandmother for her kindness, my grandfather for his wisdom, and my partner and best friend, Mercedes Adams, for her love, patience, and continuous support.

			– Rom Adams

			To my wife. A beacon of love and strength in my life. Your support and care have shaped every success I’ve achieved. In every moment, your presence is a blessing beyond measure.

			– Chen Xi

			Foreword

			In today’s digital landscape, the orchestration of containers has revolutionized how we build, deploy, manage, monitor, and scale cloud-native applications. Among the myriad tools available, Kubernetes has emerged as the de facto platform for container orchestration, empowering teams to streamline development and deployment processes like never before.

			However, as we venture deeper into this realm of agility and efficiency, the critical aspect of security often becomes a concern relegated to the background. The management of Secrets – those sensitive pieces of information ranging from credentials, API keys, and other sensitive data – is a paramount challenge to organizations. Mismanagement of these Secrets can lead to substantial cyberattacks that jeopardize not just an organization’s data but also its reputation and trust. Even the accidental mismanagement of Secrets, such as Secrets being mistakenly stored in a code repository such as GitHub, can greatly increase the attack vector on both Kubernetes platforms and the applications that they host.

			This book stands as a beacon in the sea of Kubernetes knowledge, guiding practitioners and enthusiasts alike through the intricate landscape of security and Secrets management within Kubernetes. It is a comprehensive guide that not only illuminates the potential vulnerabilities but also offers robust strategies and best practices to fortify your cloud-native applications and Kubernetes platforms.

			With a meticulous approach, the authors delve into the core concepts of Kubernetes security, dissecting every layer of its architecture to unveil potential vulnerabilities and common pitfalls. Furthermore, they navigate the complex terrain of Secrets management, presenting battle-tested methodologies and tools to safeguard these invaluable assets.

			From encryption in transit and encryption at rest to Secrets integration with CI/CD pipelines and mechanisms for identity and access management, this book thoroughly details the arsenal of security features Kubernetes offers, empowering you to craft and deliver a robust security strategy. It will arm you with practical insights and real-world examples, providing a hands-on approach to managing your Kubernetes Secrets against ever-evolving cyber threats.

			As cloud-native application development continues its rapid evolution, the importance of securing our digital environments and artifacts cannot be overstated. This book is an indispensable companion, a guiding light for anyone navigating the Kubernetes ecosystem, ensuring that security and Secrets management remain at the forefront of their endeavors. It will cover Secrets management across multiple cloud providers and secure integration with other third-party vendors.

			Prepare to embark on a journey that not only enhances your knowledge but also empowers you to fortify the foundation of your digital endeavors. When it comes to Kubernetes Secrets management, security should be built in, not bolt-on, and this book will arm you with the tools, techniques, and processes to ensure that your Secrets remain just that…secret!

			Chris Jenkins, Principal Chief Architect, Global CTO Organization, Red Hat Inc.

			Contributors

			About the authors

			Emmanouil Gkatziouras started his career in software as a Java developer. Since 2015, he has worked daily with cloud providers such as GCP, AWS, and Azure, and container orchestration tools such as Kubernetes. He has fulfilled many roles, either in lead positions or as an individual contributor. He enjoys being a versatile engineer and collaborating with development, platform, and architecture teams. He loves to give back to the developer community by contributing to open source projects and blogging on various software topics. He is committed to continuous learning and is a holder of certifications such as CKA, CCDAK, PSM, CKAD, and PSO. He is the author of A Developer’s Essential Guide to Docker Compose.

			Rom Adams (né Romuald Vandepoel) is an open source and C-Suite advisor with 20 years of experience in the IT industry. He is a cloud-native expert who helps organizations to modernize and transform with open source solutions. He is advising companies and lawmakers on their open and inner-source strategies. He has previously worked as a principal architect at Ondat, a cloud-native storage company acquired by Akamai, where he designed products and hybrid cloud solutions. He has also held roles at Tyco, NetApp, and Red Hat, becoming a subject matter expert in hybrid cloud. He has been a moderator and speaker for several events, sharing his insights on culture, process, and technology adoption, as well as his passion for open innovation.

			Chen Xi is a highly skilled Uber platform engineer. As a tech leader, he contributed to the secret and key management platform service, leading and delivering Secrets as a service with a 99.99% SLA for thousands of Uber container services across hybrid environments. His cloud infrastructure prowess is evident from his work on Google Kubernetes Engine (GKE) and the integration of Spire-based PKI systems. Prior to joining Uber, he worked at VMware, where he developed microservices for VMware’s Hybrid Kubernetes management platform (Tanzu Mission Control) and VMware Kubernetes Engine for multi-cloud (Cloud PKS). Chen is also a contributing author to the Certified Kubernetes Security Specialist (CKS) exam.

			About the reviewers

			Brad Blackard is an industry veteran with nearly 20 years of experience at companies such as Uber, Microsoft, and Boeing. At Uber, Brad led multiple technical initiatives as a leader in the Core Security organization, including Secrets management at scale. Most recently, Brad has served as head of engineering for DevZero, a start-up focused on securely improving developer experience and productivity, and he continues to serve there as an advisor.

			Ethan Walton is a staff security engineer with a background in Kubernetes, DevOps, and cloud security. He has been active in the space since 2019, with work spanning platform engineering, cloud infrastructure consulting at Google, and leading cloud security initiatives within growing engineering organizations. Ethan is certified as a Google Cloud Professional Cloud Network Engineer and is an avid technology enthusiast. Outside of work, Ethan is also heavily invested in Venture Capital and helping to discover transformational technology start-up companies that will help shape the future.

			I’d like to thank my family and especially my mother, father, and better half, Alexandra, for understanding the time and commitment it takes to continue pursuing my passion in the ever-changing world of technology. Day in and day out, this would not have been possible without them every step of the way. Thank you, and thanks to all the great technology trailblazers who continue to make every day an exciting day to work in this field.

			James Skliros, a seasoned lead engineer, has shaped the digital landscape for over two decades, and he is renowned for spearheading projects and showcasing exceptional expertise in DevOps, the cloud, and Kubernetes. His adeptness at developing innovative initiatives and enhancing operational efficiency in DevOps is evident throughout his career. Evolving from a system administration background, he now focuses on architecture and solution design, emphasizing a passion for cloud security. Beyond his professional endeavors, he remains dedicated to technology, contributing insightful blogs and articles to his employer and personal platform.

			I want to extend my deepest gratitude to my incredible wife, who has been my unwavering support during both the highs and lows of my career journey. Her steadfast encouragement has allowed me to persist in achieving my goals. Additionally, I appreciate Innablr for providing a growth-oriented workplace. Their support has played a key role in my career progression, and I am sincerely thankful for the opportunities they’ve offered.

		

	
		
			Table of Contents

			Preface

			Part 1: Introduction to Kubernetes Secrets Management

			1

			Understanding Kubernetes Secrets Management

			Technical requirements

			Understanding Kubernetes’ origins and design principles

			From bare metal to containers

			Kubernetes overview

			Kubernetes design principles

			Kubernetes architecture

			Getting hands-on – from a local container to a Kubernetes Pod

			Secrets within Kubernetes

			Secrets concepts

			Storing Secrets on Kubernetes

			Why should we care?

			Security exposures

			Summary

			2

			Walking through Kubernetes Secrets Management Concepts

			Technical requirements

			What are Kubernetes Secrets, and how do they differ from other Kubernetes objects?

			Different types of Secrets and their usage scenarios

			Opaque

			Kubernetes service account token

			Docker config

			Basic authentication

			TLS client or server

			Token data

			Conclusion

			Creating, modifying, and deleting Secrets in Kubernetes

			data and stringData

			Updating Secrets

			Deleting Secrets

			Conclusion

			Kubernetes Secrets configuration in different deployment scenarios

			Secret usage among environments

			From development to deployment

			Conclusion

			Requirement for managing Secrets, including secure storage and access control

			Secure storage

			Access control

			Git and encryption

			Conclusion

			Securing access to Secrets with RBAC

			RBAC introduction

			RBAC and Secrets

			Conclusion

			Auditing and monitoring secret usage

			minikube note

			Summary

			3

			Encrypting Secrets the Kubernetes-Native Way

			Technical requirements

			Kubernetes-native encryption

			Standalone native encryption

			Native encryption with an external component

			Going further with securing etcd

			Linux system hardening

			Linux data encryption

			Transport

			Summary

			4

			Debugging and Troubleshooting Kubernetes Secrets

			Technical requirements

			Discussion of common issues with Kubernetes Secrets

			Helm and Helm Secrets

			Secret application pitfalls

			Debugging and troubleshooting Secrets

			The describe command

			Non-existing Secrets

			Badly configured Secrets

			Troubleshooting and observability solutions

			Best practices for debugging and troubleshooting Secrets

			Avoiding leaking Secrets

			Summary

			Part 2: Advanced Topics – Kubernetes Secrets in a Production Environment

			5

			Security, Auditing, and Compliance

			Technical requirements

			Cybersecurity versus cyber risk

			Cybersecurity

			Cyber risk

			Conclusion

			Compliance standards

			Adopting a DevSecOps mindset

			Tools

			Trivy

			kube-bench

			Compliance Operator

			StackRox

			Kubernetes logging

			Summary

			6

			Disaster Recovery and Backups

			Technical requirements

			Introduction to Secrets disaster recovery and backups

			Importance of disaster recovery and backups for Secrets management

			Practical case studies – the importance of backup Secrets

			Backup strategies for Kubernetes Secrets

			Geo-replication/cross-region replication

			Point-in-time snapshots to immutable storage

			Writing to multiple places during transit

			Secrets versioning and backup considerations

			Choosing a backup strategy

			Security guidance for backup

			Tools and solutions for backing up Kubernetes Secrets

			Velero

			etcdctl

			HashiCorp Vault

			AWS Secrets Manager

			Azure Key Vault

			Disaster recovery for Kubernetes Secrets

			DRP in a Kubernetes environment

			Regular testing and updating

			Tools and solutions for disaster recovery in Kubernetes

			Effective Secrets recovery scenario during a crisis

			Summary

			7

			Challenges and Risks in Managing Secrets

			Technical requirements

			Grasping the complexities of Secrets management systems

			General security risks in Secrets management

			Secret zero

			Secret access ballooning

			Secret valet parking

			Secret sprawl

			Secret island

			Challenges and risks in managing Secrets for Kubernetes

			Security risks to manage Kubernetes Secrets

			Mitigation strategies

			Summary

			Part 3: Kubernetes Secrets Providers

			8

			Exploring Cloud Secret Store on AWS

			Technical requirements

			Overview of AWS Secrets Manager

			Encryption

			Versioning

			Rotation

			Cloud-based features

			Secrets Store CSI Driver

			How Secrets Store CSI Driver works

			Integrating AWS Secrets Manager with EKS

			EKS cluster on AWS

			Auditing

			Kubernetes logs on CloudWatch

			AWS Secrets Manager logs on AWS CloudTrail

			KMS for AWS Secrets encryption

			Provisioning KMS

			Using KMS with EKS

			Summary

			9

			Exploring Cloud Secret Store on Azure

			Technical requirements

			Overview of Azure Key Vault

			Azure RBAC and access policy

			High availability

			Logging, auditing, and monitoring

			Integration with other Azure components

			Introduction to Workload Identity

			Integrating an AKS cluster and Azure Key Vault

			Configuring the Terraform project

			Provisioning the network

			Provisioning the AKS cluster

			Creating a Key Vault

			Auditing and logging

			Azure Key Vault for secret encryption

			Summary

			10

			Exploring Cloud Secret Store on GCP

			Technical requirements

			Overview of GCP Secret Manager

			IAM

			High availability

			Logging, auditing, and monitoring

			Integration with other Google Cloud components

			Introduction to Workload Identity

			Integrating GKE and GCP Secret Manager

			Configuring the Terraform project

			Provisioning the network

			Provisioning a secret on Secret Manager

			Provisioning the GKE cluster

			Adding the CSI plugin for Kubernetes Secrets

			Auditing and logging

			GKE security posture dashboard

			Integrating GKE and KMS

			Summary

			11

			Exploring External Secret Stores

			Technical requirements

			Overview of external secret providers

			Secrets Store CSI Driver

			External secret store providers with CSI plugins

			Secrets Injector

			HashiCorp Vault

			Using HashiCorp Vault as a secret storage

			Vault and CSI Driver

			Vault hosted on Kubernetes

			Development mode versus production mode

			CyberArk Conjur

			How Conjur works

			Qualities for securely managing Secrets

			High availability

			Encryption of data

			Secure access

			Versioning

			Integration with Kubernetes

			Auditing

			Summary

			12

			Integrating with Secret Stores

			Technical requirements

			Configuring external secret stores in Kubernetes

			Secret consumption in Kubernetes

			Integrating with external secret stores

			Kubernetes extensions and API mechanisms

			Pod lifecycle and manipulation mechanisms

			Specialized Kubernetes patterns – SealedSecrets

			Secret Store CSI Driver for Kubernetes Secrets

			Service mesh integration for secret distribution

			Broker systems in Secrets management

			Security implications and best practices

			Practical and theoretical balance

			Summary

			13

			Case Studies and Real-World Examples

			Technical requirements

			Real-world examples of how Kubernetes Secrets are used in production environments

			Qualities of Secrets management in production

			Secrets management from a CI/CD perspective

			Integrating Secrets management into your CI/CD process

			Risks to avoid with Secrets in CI/CD pipelines

			Best practices for secure CI/CD Secrets management

			Lessons learned from real-world deployments

			Case study – Developing Secrets management

			The Keywhiz Secrets management system at Square

			Managing the Secrets lifecycle from end to end in a Kubernetes production cluster

			Finalizing your decision on comprehensive Secrets lifecycle management

			High SLAs as the key to business sustainability

			Emergency recovery – backup and restore

			Not just storing but provisioning Secrets

			Secrets rotation

			Authorization sprawl issue

			Tagging, labeling, and masking on the client side

			Auditing and monitoring on the server side

			Ensuring secure Secrets distribution

			Decommissioning and revoking Secrets

			Responsibility, on-call support, penetration testing, and risk evaluation

			Summary

			14

			Conclusion and the Future of Kubernetes Secrets Management

			The current state of Kubernetes

			Native solutions

			External solutions

			The future state of Kubernetes

			Food for thought and enhancements

			How to share your thoughts

			Continuous improvement

			Skill acquisition

			Start early, fail fast, and iterate

			Automation as a strategy and Everything as Code (EaC)

			Threat modeling

			Incident response

			Summary

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			Kubernetes Secrets management is a combination of practices and tools that help users to securely store and manage sensitive information, such as passwords, tokens, and certificates, within a Kubernetes cluster and keep them safe and secure. Securing Secrets such as passwords, API keys, and other sensitive information is critical for protecting applications and data from unauthorized access. Developers who understand Kubernetes Secrets management can help ensure that Secrets are managed securely and effectively, reducing the risk of security breaches. Many industries and regulatory frameworks have specific requirements for managing sensitive data. By learning Kubernetes Secrets management practices, developers can ensure that their applications comply with these requirements and avoid potential legal or financial penalties.

			Who this book is for

			This book is for software and DevOps engineers and system administrators looking to deploy and manage Secrets on Kubernetes. Specifically, it is aimed at the following:

			
					Developers who are already familiar with Kubernetes and are looking to understand how to manage Secrets effectively. This could include individuals who are already using Kubernetes for application deployment, as well as those who are new to the platform and looking to learn more about its capabilities.

					Security professionals who are interested in learning how to securely manage Secrets within a Kubernetes environment. This could include individuals who are responsible for securing applications, infrastructure, or networks, as well as those who are responsible for compliance and regulatory requirements.

					Anyone who is interested in using Kubernetes to deploy and manage applications securely, and who wants to understand how to effectively manage Secrets within that environment.

			

			What this book covers

			Chapter 1, Understanding Kubernetes Secrets Management, introduces you to Kubernetes and the importance of Secrets management in applications deployed on Kubernetes. It gives an overview of the challenges and risks associated with managing Secrets, the objectives, and the scope of the book.

			Chapter 2, Walking through Kubernetes Secrets Management Concepts, covers the basics of Kubernetes Secrets management, including the different types of Secrets; their usage scenarios; how to create, modify, and delete Secrets in Kubernetes; and secure storage and access control. It also covers how to securely access Secrets with RBAC and Pod Security Standards, as well as auditing and monitoring secret usage.

			Chapter 3, Encrypting Secrets the Kubernetes-Native Way, teaches you how to encrypt Secrets in transit and at rest in etcd, as well as key management and rotation in Kubernetes.

			Chapter 4, Debugging and Troubleshooting Kubernetes Secrets, provides guidance on identifying and addressing common issues that arise when managing Secrets in Kubernetes. It covers best practices for debugging and troubleshooting Secrets, including the usage of monitoring and logging tools, ensuring the security and reliability of Kubernetes-based applications.

			Chapter 5, Security, Auditing, and Compliance, focuses on the importance of compliance and security while managing Secrets in Kubernetes. It covers how to comply with security standards and regulations, mitigating security vulnerabilities, and ensuring secure Kubernetes Secrets management.

			Chapter 6, Disaster Recovery and Backups, provides you with an understanding of disaster recovery and backups for Kubernetes Secrets. It also covers backup strategies and disaster recovery plans.

			Chapter 7, Challenges and Risks in Managing Secrets, focuses on the challenges and risks associated with managing Secrets in hybrid and multi-cloud environments. It also covers strategies for mitigating security risks in Kubernetes Secrets management, guidelines for ensuring secure Kubernetes Secrets management, and the tools and technologies available for Kubernetes Secrets management.

			Chapter 8, Exploring Cloud Secret Store on AWS, introduces you to AWS Secrets Manager and KMS and how they can be integrated with Kubernetes. It also covers monitoring and logging operations on Kubernetes Secrets with AWS CloudWatch.

			Chapter 9, Exploring Cloud Secret Store on Azure, teaches you how to integrate Kubernetes with Azure Key Vault for secret storage, as well as the encryption of Secrets stored on etcd. It also covers monitoring and logging operations on Kubernetes Secrets through Azure’s observability tools.

			Chapter 10, Exploring Cloud Secret Store on GCP, introduces you to GCP Secret Manager and GCP KMS and how they can be integrated with Kubernetes. It also covers monitoring and logging operations on Kubernetes Secrets with GCP monitoring and logs.

			Chapter 11, Exploring External Secret Stores, explores different types of third-party external secret stores, such as HashiCorp Vault and CyberArk Secrets Manager. It teaches you how to use external secret stores to store sensitive data and the best practices for doing so. Additionally, the chapter also covers the security implications of using external secret stores and how they impact the overall security of a Kubernetes cluster.

			Chapter 12, Integrating with Secret Stores, teaches you how to integrate third-party Secrets management tools with Kubernetes. It covers external secret stores in Kubernetes and the different types of external secret stores that can be used. You will also gain an understanding of the security implications of using external secret stores and how to use them to store sensitive data using different approaches such as init containers, sidecars, CSI drivers, operators, and sealed Secrets. The chapter also covers the best practices for using external secret stores and how they can impact the overall security of a Kubernetes cluster.

			Chapter 13, Case Studies and Real-World Examples, covers real-world examples of how Kubernetes Secrets are used in production environments. It covers case studies of organizations that have implemented Secrets management in Kubernetes and lessons learned from real-world deployments. Additionally, you will learn about managing Secrets in CI/CD pipelines and integrating Secrets management into the CI/CD process. This chapter also covers Kubernetes tools to manage Secrets in pipelines and the best practices for secure CI/CD Secrets management.

			Chapter 14, Conclusion and the Future of Kubernetes Secrets Management, gives an overview of the current state of Kubernetes Secrets management and future trends and developments in the field. It also covers how to stay up to date with the latest trends and best practices in Kubernetes Secrets management.

			To get the most out of this book

			You should understand Bash scripting, containerization, and how Docker works. You should also understand Kubernetes and basic concepts of security. Knowledge of Terraform and cloud providers will also be beneficial.

			
				
					
					
				
				
					
							
							Software covered in the book

						
							
							Operating system requirements

						
					

				
				
					
							
							Docker

						
							
							Windows, macOS, or Linux

						
					

					
							
							Shell scripting

						
							
					

					
							
							Podman and Podman Desktop

						
							
					

					
							
							minikube

						
							
					

					
							
							Helm

						
							
					

					
							
							Terraform

						
							
					

					
							
							GCP

						
							
					

					
							
							Azure

						
							
					

					
							
							AWS

						
							
					

					
							
							OKD and Red Hat OpenShift

						
							
					

					
							
							StackRox and Red Hat Advanced Cluster Security

						
							
					

					
							
							Trivy from Aqua

						
							
					

					
							
							HashiCorp Vault

						
							
					

				
			

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Kubernetes-Secrets-Handbook. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The kms provider plugin connects kube-apiserver with an external KMS to leverage an envelope encryption principle.”

			A block of code is set as follows:

			
apiVersion: apiserver.config.k8s.io/v1
kind: EncryptionConfiguration
resources:
 - resources:
 - secrets
 providers:
 - aesgcm:
 keys:
 - name: key-20230616
 secret: DlZbD9Vc9ADLjAxKBaWxoevlKdsMMIY68DxQZVabJM8=
 - identity: {}
			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
apiVersion: v1
kind: ServiceAccount
metadata:
 annotations:
 eks.amazonaws.com/role-arn: "arn:aws:iam::11111:role/eks-secret-reader"
 name: service-token-reader
 namespace: default
			Any command-line input or output is written as follows:

			
$ kubectl get events
...
11m Normal Pulled pod/webpage Container image "nginx:stable" already present on machin
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Another notable tool provided by GCP to improve the security posture of a GKE cluster is the GKE security posture dashboard.”

			Tips or important notes

			Appears like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Kubernetes Secrets Handbook, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					
						[image: QR Code for download a free PDF copy of this book]
					

				
			

			https://packt.link/free-ebook/9781805123224

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	

		
			Part 1:Introduction to Kubernetes Secrets Management

		

		
			In this part, you will be provided with a foundational understanding of Kubernetes Secrets and their importance in managing sensitive data in applications deployed on Kubernetes. By the end of this part, you will have learned the basics of the purpose, function, and usage of Kubernetes Secrets with real-world examples.

			This part has the following chapters:

			
					Chapter 1, Understanding Kubernetes Secrets Management

					Chapter 2, Walking through Kubernetes Secrets Management Concepts

					Chapter 3, Encrypting Secrets the Kubernetes-Native Way

					Chapter 4, Debugging and Troubleshooting Kubernetes Secrets

			

		

		
			
			

		

		
			
			

		

	

		
			1

			Understanding Kubernetes Secrets Management

			This chapter will provide you with a refresher about containers, as well as a comprehensive overview of Kubernetes and its Secrets management implementation. By the end of this first walk-through, all personas (developers, platform, and security engineers) will know how to design and implement these topics with a set of hands-on examples. While going through these examples, we will highlight the respective security concerns that this book will address by covering a series of use cases that will lead to a production-grade solution for hybrid multi-cloud scenarios, including the business continuity perspective.

			In this chapter, we will cover the following topics:

			
					Understanding Kubernetes’ origins and design principles

					Setting up our first Kubernetes testing environment

					Exploring Kubernetes Secret and ConfigMap objects

					Analyzing why Kubernetes Secrets are important

					Unveiling the challenges and risks associated with Kubernetes Secrets management

					Mapping the objectives and scope of this book

			

			Technical requirements

			To complete the hands-on parts of this chapter, we will be leveraging a series of tools and platforms that are commonly used to interact with containers, Kubernetes, and Secrets management. For this first chapter, we will be setting up this environment together and ramping up with a friendly desktop graphical solution for the first set of examples. Don’t worry – we have you covered with our Code in Action and GitHub repository, which contains the macOS installation example. Here is the list of required tools:

			
					Docker (https://docker.com) or Podman (https://podman.io) as a container engine. Both are OK, although I do have a personal preference for Podman as it offers benefits such as being daemonless for easy installation, rootless for added security, fully Open Container Initiative (OCI)-compliant, Kubernetes ready, and has the ability to integrate with systemd at the user level to autostart containers/Pods.

					Podman Desktop (https://podman-desktop.io) is an open source software that provides a graphical user interface for building, starting, and debugging containers, running local Kubernetes instances, easing the migration from containers to Pods, and even connecting with remote platforms such as Red Hat OpenShift, Azure Kubernetes Engine, and more.

					Golang (https://go.dev) or Go is a programming language that will be used within our examples. Note that Kubernetes and most of its third-party components are written in Go.

					Git (https://git-scm.com) is a version control system that we will be using to cover this book’s examples but will also leverage in our discovery of Secrets management solutions.

			

			This book’s GitHub repository contains the digital material linked to this book: https://github.com/PacktPublishing/Kubernetes-Secrets-Handbook.

			Understanding Kubernetes’ origins and design principles

			While the evolution from one platform to another might be obvious, the compelling event and inner mechanics might not be. To safely handle sensitive data within Kubernetes, we have to understand both its historical and architectural evolutions. This will help us implement a secure production-grade environment for our critical business applications.

			The next few sections will describe a series of concepts, explore and practice them with a simple container runtime and Kubernetes cluster, and establish their direct relationships with security concerns that this handbook will address.

			Important note

			While we expect you to perform the hands-on examples while reading along, we understand that you might not have the opportunity to do so. As such, we have provided briefings and debriefings for each hands-on example.

			From bare metal to containers

			Four decades ago, deploying applications was done on a physical server, usually referred to as a bare metal installation. This approach allowed workloads to have direct access to physical resources with the best native performance possible. Due to out-of-the-box limitations for resource management from a software perspective, deploying more than one application on a physical server has always been an operational challenge that has resulted in a suboptimal model with the following root causes:

			
					Physical resource utilization: A reduced set of applications is deployed on a physical machine to limit the potential degradation of services due to the lack of proper resource management capabilities that would have helped address applications hogging all the compute resources.

					Scalability, flexibility, and time to market: The lead time in weeks or even months to procure, rack and stack, provision the physical machine, and have the application installed, which impacts business growth.

					The total cost of ownership (TCO) versus innovation: The procurement, integration, operations, and life cycle of physical servers, along with underutilized resources with limited prototyping due to high costs and lead time, slows down the organization’s innovation capabilities.

			

			Then, in the early 2000s, virtualization or hypervisors became available for commoditized open systems. A hypervisor is a piece of software that’s merged into the operating system, installed on bare metal, that allows the IT department to create virtual machines. With this, operations teams were able to create and tailor these virtual machines to the application’s precise requirements with the ability to adapt the compute resources during the application’s life cycle and their usage by the business. Thanks to proper resource management and isolation, multiple virtual machines could run on a single server without having noisy neighbors causing potential service degradations.

			This model provided tremendous optimizations that helped accelerate the digitalization of services and introduce a new market aside from the traditional data center business – cloud computing. However, the virtualization model created a new set of challenges:

			
					The never-ending increase of virtual machines thanks to continuous innovation. This exponential growth of assets amplifies the operational burden to maintain and secure operating systems, libraries, and applications.

					The increasing need for automation to perform daily Create, Read, Update, and Delete (CRUD) operations at a large scale involving complex infrastructure and security components.

					The need for a well-thought governance that’s enforced to address the life cycle, security, and business continuity for thousands of services to support the business continuity of the organization’s critical applications.

			

			Finally, containers made their way as the next layer of optimization. Although the construct of containers was not new, as with virtualization, it required a major player to invest in the commoditized open systems to organically make it the next (r)evolution.

			Let’s think about a container as a lightweight virtual machine but without the need for a full operating system, which reduces the overall footprint and operational burden related to the software development life cycle and security management. Instead, multiple applications, as containers, share the underlying physical host from a software and hardware level without the overhead of the hypervisor benefiting from nearly machine-native performance. The container provides you with the following benefits:

			
					A well-defined standard by the OCI (https://opencontainers.org) to ease with building, (re)distributing, and deploying containers to any platform that’s compliant with the specifications of the OCI

					A highly efficient, predictable, and immutable medium that’s application-centric and only includes the necessary libraries and the application runtime

					Application portability thanks to an infrastructure and platform-agnostic solution

					An organic separation of concerns between the developers and platform engineers as there is no need to access the physical or virtual host operating system to develop, build, test, and deploy applications

					Embracing an automation-first approach and DevOps practices to address the infrastructure, application, and security management

			

			Not mentioning a few challenges would be wrong, so here are some:

			
					Most IT organizations have difficulties embracing a new paradigm from both an architectural and management perspective

					Considering the organic serparation of concerns between the developers and platform engineers as a support to silos

					There’s an overhype around microservices, which leads to potential suboptimal application architecture with no performance optimization but added complexity

			

			The following diagram shows the bottom-up stack, which shows the potential application density per physical server with their respective deployment type:

			
				
					[image: Figure 1.1 – Layer comparison between bare metal, virtual machines, and containers]
				

			

			Figure 1.1 – Layer comparison between bare metal, virtual machines, and containers

			We’ve already cited a series of benefits, and yet, we should emphasize additional ones that help with rapid prototyping, faster deployment, easy live functional testing, and so on:

			
					A smaller code base to maintain and enrich per microservice with easier rollout/rollback

					The capability to run in a degraded mode when one of the microservices fails but not the others

					The ability to troubleshoot misbehaving microservices without impacting the entire application

					It’s faster to recover from failure as only the related microservice must be rescheduled

					Granular compute resource allocation and scalability

			

			Not only do microservices help decouple large monolithic applications but they also introduce new design patterns to accelerate innovation.

			This sounds fantastic, doesn’t it? It does, but we still have a major missing element here: container runtimes such as Docker or Podman do not provide any resiliency in case of failures. To do so, a container runtime requires an additional software layer providing the applications with high availability capabilities. Managing hundreds of microservices at scale demands a robust and highly resilient orchestrator to ensure the business continuity of the applications while guaranteeing a high level of automation and abstraction toward the underlying infrastructure. This will lead to frictionless build, deploy, and run operations, improving the day-to-day responsibilities of the IT staff involved with the workloads that are deployed on the application platforms.

			This is a big ask and a challenge that many IT departments are facing and trying to solve, even more so with legacy patterns. The answer to this complex equation is Kubernetes, a container platform or, as we should call it, an application platform.

			Kubernetes overview

			There are no better words to describe what Kubernetes is all about than the words from the Kubernetes project maintainers: “Containers are a good way to bundle and run your applications. In a production environment, you need to manage the containers that run the applications and ensure that there is no downtime. For example, if a container goes down, another container needs to start. Wouldn’t it be easier if this behavior was handled by a system?

			That’s how Kubernetes comes to the rescue! Kubernetes provides you with a framework to run distributed systems resiliently. It takes care of scaling and failover for your application, provides deployment patterns, and more.” (https://kubernetes.io/docs/concepts/overview/#why-you-need-kubernetes-and-what-can-it-do)

			The same page lists the following benefits of Kubernetes:

			
					Service discovery and load balancing

					Storage orchestration

					Automated rollouts and rollbacks

					Automatic bin packing

					Self-healing

					Secret and configuration management

			

			While reading through this handbook, we will explore and practice all of these benefits while designing a production-grade Secrets management solution for critical workloads.

			Kubernetes design principles

			We have established the context regarding the evolution and adoption of containers with the need for Kubernetes to support our applications with resiliency, scalability, and deployment patterns in mind. But how is Kubernetes capable of such a frictionless experience?

			Here is my attempt to answer this question based on having experience as a former cloud architect within the Red Hat Professional Services organization:

			
					From a workload perspective, every infrastructure requirement that an application will consume is simply defined in a declarative way without the need for there to be a domain specialist in networking, storage, security, and so on. The YAML manifest describing the desired state of Pod, Service, and Deployment objects is then handled by Kubernetes as a service broker for every specific vendor who has a Kubernetes integration. In other words, application teams can safely write a manifest that is agnostic of the environment and Kubernetes distribution on which they will deploy the workloads.

					From an infrastructure perspective, every component of the stack has a corresponding Kubernetes API object. If not, the vendor can introduce their own with the standard Kubernetes API object called CustomResourceDefinition, also known as CRD. This guarantees a common standard, even when interacting with third-party software, hardware, or cloud vendors.

			

			When Kubernetes receives a request with a valid object definition, the orchestrator will apply the related CRUD operation. In other words, Kubernetes introduces native automation and orchestration. The same principles should apply to every Kubernetes component running as a container so that they benefit from self-healing, resiliency, and scalability while being agnostic of the underlying software, hardware, or cloud provider.

			This approach supports the portability not only of containerized applications but of the entire application platform while reducing the need for technology domain specialists to be involved when deploying an application, maintaining the platform, and even enriching the Kubernetes project with new features or components.

			The concept of a YAML manifest to define a Kubernetes API object has been floating around for a while. It is time to look at a simple example that shows the desired state of a Pod object (a logical grouping for one or multiple containers):

			
apiVersion: v1
 kind: Pod
 metadata:
 name: hello-app
 spec:
 containers:
 - name: hello-world
 image: hello-path:0.1
 ports:
 - containerPort: 8080
			This Pod object’s definition provides the necessary information for Kubernetes to do the following:

			
					Define the desired state for a Pod object with the name hello-app.

					Specify that there are containers and that one of them is called hello-world and uses a container image of hello-path. For this, we want version 0.1 to be pulled from a container registry.

					Accept incoming traffic to the hello-world application, using port 8080 at the container level.

			

			That’s it! This is our first Pod definition. It allows us to deploy a simple containerized application with no fuzz and zero knowledge of the underlying infrastructure.

			Kubernetes architecture

			There is not much magic behind this orchestration but the work of multiple components provides a fantastic level of resilience and abstraction, as well as a frictionless experience. The following diagram provides an overview of the components that run within a Kubernetes instance:

			
				
					[image: Figure 1.2 – Kubernetes components]
				

			

			Figure 1.2 – Kubernetes components

			
			
			
			
			
			
			
			
			
			
			
			
			
						
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
						
			
			
			
			
			
						
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/image/B20970_01_02.jpg
Cloud Provider API

Application Application Application
Kube-controller cloud-controlie 1
eted Kube-scheduler i peisaiagd |
it kubelet
kube-apiserver kube-proxy

Operating System + Libraries Operating System + Libraries

Control Plane Worker Node

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/image/Packt_Logo_New.png
<PACKD

OEBPS/toc.xhtml

		

		Contents

			

						Kubernetes Secrets Handbook

						Foreword

						Contributors

						About the authors

						About the reviewers

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Part 1:Introduction to Kubernetes Secrets Management

						Chapter 1: Understanding Kubernetes Secrets Management

					

								Technical requirements

								Understanding Kubernetes’ origins and design principles

							

										From bare metal to containers

										Kubernetes overview

										Kubernetes design principles

										Kubernetes architecture

										Getting hands-on – from a local container to a Kubernetes Pod

										Secrets within Kubernetes

										Secrets concepts

										Storing Secrets on Kubernetes

										Why should we care?

										Security exposures

							

						

								Summary

					

				

						Chapter 2: Walking through Kubernetes Secrets Management Concepts

					

								Technical requirements

								What are Kubernetes Secrets, and how do they differ from other Kubernetes objects?

								Different types of Secrets and their usage scenarios

							

										Opaque

										Kubernetes service account token

										Docker config

										Basic authentication

										TLS client or server

										Token data

										Conclusion

							

						

								Creating, modifying, and deleting Secrets in Kubernetes

							

										data and stringData

										Updating Secrets

										Deleting Secrets

										Conclusion

							

						

								Kubernetes Secrets configuration in different deployment scenarios

							

										Secret usage among environments

										From development to deployment

										Conclusion

							

						

								Requirement for managing Secrets, including secure storage and access control

							

										Secure storage

										Access control

										Git and encryption

										Conclusion

							

						

								Securing access to Secrets with RBAC

							

										RBAC introduction

										RBAC and Secrets

										Conclusion

							

						

								Auditing and monitoring secret usage

							

										minikube note

							

						

								Summary

					

				

						Chapter 3: Encrypting Secrets the Kubernetes-Native Way

					

								Technical requirements

								Kubernetes-native encryption

							

										Standalone native encryption

										Native encryption with an external component

							

						

								Going further with securing etcd

							

										Linux system hardening

										Linux data encryption

										Transport

							

						

								Summary

					

				

						Chapter 4: Debugging and Troubleshooting Kubernetes Secrets

					

								Technical requirements

								Discussion of common issues with Kubernetes Secrets

							

										Helm and Helm Secrets

										Secret application pitfalls

							

						

								Debugging and troubleshooting Secrets

							

										The describe command

										Non-existing Secrets

										Badly configured Secrets

										Troubleshooting and observability solutions

							

						

								Best practices for debugging and troubleshooting Secrets

							

										Avoiding leaking Secrets

							

						

								Summary

					

				

						Part 2: Advanced Topics – Kubernetes Secrets in a Production Environment

						Chapter 5: Security, Auditing, and Compliance

					

								Technical requirements

								Cybersecurity versus cyber risk

							

										Cybersecurity

										Cyber risk

										Conclusion

							

						

								Compliance standards

								Adopting a DevSecOps mindset

								Tools

							

										Trivy

										kube-bench

										Compliance Operator

										StackRox

										Kubernetes logging

							

						

								Summary

					

				

						Chapter 6: Disaster Recovery and Backups

					

								Technical requirements

								Introduction to Secrets disaster recovery and backups

							

										Importance of disaster recovery and backups for Secrets management

										Practical case studies – the importance of backup Secrets

							

						

								Backup strategies for Kubernetes Secrets

							

										Geo-replication/cross-region replication

										Point-in-time snapshots to immutable storage

										Writing to multiple places during transit

							

						

								Secrets versioning and backup considerations

							

										Choosing a backup strategy

							

						

								Security guidance for backup

								Tools and solutions for backing up Kubernetes Secrets

							

										Velero

										etcdctl

										HashiCorp Vault

										AWS Secrets Manager

										Azure Key Vault

							

						

								Disaster recovery for Kubernetes Secrets

							

										DRP in a Kubernetes environment

										Regular testing and updating

										Tools and solutions for disaster recovery in Kubernetes

										Effective Secrets recovery scenario during a crisis

							

						

								Summary

					

				

						Chapter 7: Challenges and Risks in Managing Secrets

					

								Technical requirements

								Grasping the complexities of Secrets management systems

								General security risks in Secrets management

							

										Secret zero

										Secret access ballooning

										Secret valet parking

										Secret sprawl

										Secret island

							

						

								Challenges and risks in managing Secrets for Kubernetes

							

										Security risks to manage Kubernetes Secrets

							

						

								Mitigation strategies

								Summary

					

				

						Part 3: Kubernetes Secrets Providers

						Chapter 8: Exploring Cloud Secret Store on AWS

					

								Technical requirements

								Overview of AWS Secrets Manager

							

										Encryption

										Versioning

										Rotation

										Cloud-based features

							

						

								Secrets Store CSI Driver

							

										How Secrets Store CSI Driver works

							

						

								Integrating AWS Secrets Manager with EKS

							

										EKS cluster on AWS

							

						

								Auditing

							

										Kubernetes logs on CloudWatch

										AWS Secrets Manager logs on AWS CloudTrail

							

						

								KMS for AWS Secrets encryption

							

										Provisioning KMS

										Using KMS with EKS

							

						

								Summary

					

				

						Chapter 9: Exploring Cloud Secret Store on Azure

					

								Technical requirements

								Overview of Azure Key Vault

							

										Azure RBAC and access policy

										High availability

										Logging, auditing, and monitoring

										Integration with other Azure components

							

						

								Introduction to Workload Identity

								Integrating an AKS cluster and Azure Key Vault

							

										Configuring the Terraform project

										Provisioning the network

										Provisioning the AKS cluster

										Creating a Key Vault

							

						

								Auditing and logging

								Azure Key Vault for secret encryption

								Summary

					

				

						Chapter 10: Exploring Cloud Secret Store on GCP

					

								Technical requirements

								Overview of GCP Secret Manager

							

										IAM

										High availability

										Logging, auditing, and monitoring

										Integration with other Google Cloud components

							

						

								Introduction to Workload Identity

								Integrating GKE and GCP Secret Manager

							

										Configuring the Terraform project

										Provisioning the network

										Provisioning a secret on Secret Manager

										Provisioning the GKE cluster

										Adding the CSI plugin for Kubernetes Secrets

							

						

								Auditing and logging

							

										GKE security posture dashboard

							

						

								Integrating GKE and KMS

								Summary

					

				

						Chapter 11: Exploring External Secret Stores

					

								Technical requirements

								Overview of external secret providers

							

										Secrets Store CSI Driver

										External secret store providers with CSI plugins

										Secrets Injector

							

						

								HashiCorp Vault

							

										Using HashiCorp Vault as a secret storage

										Vault and CSI Driver

										Vault hosted on Kubernetes

										Development mode versus production mode

							

						

								CyberArk Conjur

							

										How Conjur works

							

						

								Qualities for securely managing Secrets

							

										High availability

										Encryption of data

										Secure access

										Versioning

										Integration with Kubernetes

										Auditing

							

						

								Summary

					

				

						Chapter 12: Integrating with Secret Stores

					

								Technical requirements

								Configuring external secret stores in Kubernetes

							

										Secret consumption in Kubernetes

							

						

								Integrating with external secret stores

							

										Kubernetes extensions and API mechanisms

										Pod lifecycle and manipulation mechanisms

										Specialized Kubernetes patterns – SealedSecrets

										Secret Store CSI Driver for Kubernetes Secrets

										Service mesh integration for secret distribution

										Broker systems in Secrets management

							

						

								Security implications and best practices

								Practical and theoretical balance

								Summary

					

				

						Chapter 13: Case Studies and Real-World Examples

					

								Technical requirements

								Real-world examples of how Kubernetes Secrets are used in production environments

							

										Qualities of Secrets management in production

							

						

								Secrets management from a CI/CD perspective

							

										Integrating Secrets management into your CI/CD process

										Risks to avoid with Secrets in CI/CD pipelines

										Best practices for secure CI/CD Secrets management

							

						

								Lessons learned from real-world deployments

							

										Case study – Developing Secrets management

										The Keywhiz Secrets management system at Square

							

						

								Managing the Secrets lifecycle from end to end in a Kubernetes production cluster

							

										Finalizing your decision on comprehensive Secrets lifecycle management

										High SLAs as the key to business sustainability

										Emergency recovery – backup and restore

										Not just storing but provisioning Secrets

										Secrets rotation

										Authorization sprawl issue

										Tagging, labeling, and masking on the client side

										Auditing and monitoring on the server side

										Ensuring secure Secrets distribution

										Decommissioning and revoking Secrets

										Responsibility, on-call support, penetration testing, and risk evaluation

							

						

								Summary

					

				

						Chapter 14: Conclusion and the Future of Kubernetes Secrets Management

					

								The current state of Kubernetes

							

										Native solutions

										External solutions

							

						

								The future state of Kubernetes

							

										Food for thought and enhancements

										How to share your thoughts

							

						

								Continuous improvement

							

										Skill acquisition

										Start early, fail fast, and iterate

										Automation as a strategy and Everything as Code (EaC)

										Threat modeling

										Incident response

							

						

								Summary

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

	

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/image/B20970_QR_Free_PDF.jpg

OEBPS/image/B20970_01_01.jpg
Rpialion Appicition Rt ‘ Application Application Application
Container Container Container

‘ Application Application Application

Virtual Machine || Virtual Machine || Virtual Machine Container Container Container

Operating System + Libraries Operating System + Libraries

App in virtual machine

‘ Application ‘ ‘ Application

Operating System + Libraries

Hardware

App on bare metal App in container

OEBPS/Fonts/CourierStd.otf

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/image/Cover.png
Kubernetes Secrets
Handbook

Design, implement, and maintain production-grade
Kubernetes Secrets management solutions

EMMANOUIL GKATZIOURAS

<> ROM ADAMS | CHEN XI
Foreword by Chris Jenkins,

Principal Chief Architect, Global CTO Organization, Red Hat Inc.

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

