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			Foreword

			In today’s digital landscape, the orchestration of containers has revolutionized how we build, deploy, manage, monitor, and scale cloud-native applications. Among the myriad tools available, Kubernetes has emerged as the de facto platform for container orchestration, empowering teams to streamline development and deployment processes like never before.

			However, as we venture deeper into this realm of agility and efficiency, the critical aspect of security often becomes a concern relegated to the background. The management of Secrets – those sensitive pieces of information ranging from credentials, API keys, and other sensitive data – is a paramount challenge to organizations. Mismanagement of these Secrets can lead to substantial cyberattacks that jeopardize not just an organization’s data but also its reputation and trust. Even the accidental mismanagement of Secrets, such as Secrets being mistakenly stored in a code repository such as GitHub, can greatly increase the attack vector on both Kubernetes platforms and the applications that they host.

			This book stands as a beacon in the sea of Kubernetes knowledge, guiding practitioners and enthusiasts alike through the intricate landscape of security and Secrets management within Kubernetes. It is a comprehensive guide that not only illuminates the potential vulnerabilities but also offers robust strategies and best practices to fortify your cloud-native applications and Kubernetes platforms.

			With a meticulous approach, the authors delve into the core concepts of Kubernetes security, dissecting every layer of its architecture to unveil potential vulnerabilities and common pitfalls. Furthermore, they navigate the complex terrain of Secrets management, presenting battle-tested methodologies and tools to safeguard these invaluable assets.

			From encryption in transit and encryption at rest to Secrets integration with CI/CD pipelines and mechanisms for identity and access management, this book thoroughly details the arsenal of security features Kubernetes offers, empowering you to craft and deliver a robust security strategy. It will arm you with practical insights and real-world examples, providing a hands-on approach to managing your Kubernetes Secrets against ever-evolving cyber threats.

			As cloud-native application development continues its rapid evolution, the importance of securing our digital environments and artifacts cannot be overstated. This book is an indispensable companion, a guiding light for anyone navigating the Kubernetes ecosystem, ensuring that security and Secrets management remain at the forefront of their endeavors. It will cover Secrets management across multiple cloud providers and secure integration with other third-party vendors.

			Prepare to embark on a journey that not only enhances your knowledge but also empowers you to fortify the foundation of your digital endeavors. When it comes to Kubernetes Secrets management, security should be built in, not bolt-on, and this book will arm you with the tools, techniques, and processes to ensure that your Secrets remain just that…secret!

			Chris Jenkins, Principal Chief Architect, Global CTO Organization, Red Hat Inc.
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			Preface

			Kubernetes Secrets management is a combination of practices and tools that help users to securely store and manage sensitive information, such as passwords, tokens, and certificates, within a Kubernetes cluster and keep them safe and secure. Securing Secrets such as passwords, API keys, and other sensitive information is critical for protecting applications and data from unauthorized access. Developers who understand Kubernetes Secrets management can help ensure that Secrets are managed securely and effectively, reducing the risk of security breaches. Many industries and regulatory frameworks have specific requirements for managing sensitive data. By learning Kubernetes Secrets management practices, developers can ensure that their applications comply with these requirements and avoid potential legal or financial penalties.

			Who this book is for

			This book is for software and DevOps engineers and system administrators looking to deploy and manage Secrets on Kubernetes. Specifically, it is aimed at the following:

			
					Developers who are already familiar with Kubernetes and are looking to understand how to manage Secrets effectively. This could include individuals who are already using Kubernetes for application deployment, as well as those who are new to the platform and looking to learn more about its capabilities.

					Security professionals who are interested in learning how to securely manage Secrets within a Kubernetes environment. This could include individuals who are responsible for securing applications, infrastructure, or networks, as well as those who are responsible for compliance and regulatory requirements.

					Anyone who is interested in using Kubernetes to deploy and manage applications securely, and who wants to understand how to effectively manage Secrets within that environment.

			

			What this book covers

			Chapter 1, Understanding Kubernetes Secrets Management, introduces you to Kubernetes and the importance of Secrets management in applications deployed on Kubernetes. It gives an overview of the challenges and risks associated with managing Secrets, the objectives, and the scope of the book.

			Chapter 2, Walking through Kubernetes Secrets Management Concepts, covers the basics of Kubernetes Secrets management, including the different types of Secrets; their usage scenarios; how to create, modify, and delete Secrets in Kubernetes; and secure storage and access control. It also covers how to securely access Secrets with RBAC and Pod Security Standards, as well as auditing and monitoring secret usage.

			Chapter 3, Encrypting Secrets the Kubernetes-Native Way, teaches you how to encrypt Secrets in transit and at rest in etcd, as well as key management and rotation in Kubernetes.

			Chapter 4, Debugging and Troubleshooting Kubernetes Secrets, provides guidance on identifying and addressing common issues that arise when managing Secrets in Kubernetes. It covers best practices for debugging and troubleshooting Secrets, including the usage of monitoring and logging tools, ensuring the security and reliability of Kubernetes-based applications.

			Chapter 5, Security, Auditing, and Compliance, focuses on the importance of compliance and security while managing Secrets in Kubernetes. It covers how to comply with security standards and regulations, mitigating security vulnerabilities, and ensuring secure Kubernetes Secrets management.

			Chapter 6, Disaster Recovery and Backups, provides you with an understanding of disaster recovery and backups for Kubernetes Secrets. It also covers backup strategies and disaster recovery plans.

			Chapter 7, Challenges and Risks in Managing Secrets, focuses on the challenges and risks associated with managing Secrets in hybrid and multi-cloud environments. It also covers strategies for mitigating security risks in Kubernetes Secrets management, guidelines for ensuring secure Kubernetes Secrets management, and the tools and technologies available for Kubernetes Secrets management.

			Chapter 8, Exploring Cloud Secret Store on AWS, introduces you to AWS Secrets Manager and KMS and how they can be integrated with Kubernetes. It also covers monitoring and logging operations on Kubernetes Secrets with AWS CloudWatch.

			Chapter 9, Exploring Cloud Secret Store on Azure, teaches you how to integrate Kubernetes with Azure Key Vault for secret storage, as well as the encryption of Secrets stored on etcd. It also covers monitoring and logging operations on Kubernetes Secrets through Azure’s observability tools.

			Chapter 10, Exploring Cloud Secret Store on GCP, introduces you to GCP Secret Manager and GCP KMS and how they can be integrated with Kubernetes. It also covers monitoring and logging operations on Kubernetes Secrets with GCP monitoring and logs.

			Chapter 11, Exploring External Secret Stores, explores different types of third-party external secret stores, such as HashiCorp Vault and CyberArk Secrets Manager. It teaches you how to use external secret stores to store sensitive data and the best practices for doing so. Additionally, the chapter also covers the security implications of using external secret stores and how they impact the overall security of a Kubernetes cluster.

			Chapter 12, Integrating with Secret Stores, teaches you how to integrate third-party Secrets management tools with Kubernetes. It covers external secret stores in Kubernetes and the different types of external secret stores that can be used. You will also gain an understanding of the security implications of using external secret stores and how to use them to store sensitive data using different approaches such as init containers, sidecars, CSI drivers, operators, and sealed Secrets. The chapter also covers the best practices for using external secret stores and how they can impact the overall security of a Kubernetes cluster.

			Chapter 13, Case Studies and Real-World Examples, covers real-world examples of how Kubernetes Secrets are used in production environments. It covers case studies of organizations that have implemented Secrets management in Kubernetes and lessons learned from real-world deployments. Additionally, you will learn about managing Secrets in CI/CD pipelines and integrating Secrets management into the CI/CD process. This chapter also covers Kubernetes tools to manage Secrets in pipelines and the best practices for secure CI/CD Secrets management.

			Chapter 14, Conclusion and the Future of Kubernetes Secrets Management, gives an overview of the current state of Kubernetes Secrets management and future trends and developments in the field. It also covers how to stay up to date with the latest trends and best practices in Kubernetes Secrets management.

			To get the most out of this book

			You should understand Bash scripting, containerization, and how Docker works. You should also understand Kubernetes and basic concepts of security. Knowledge of Terraform and cloud providers will also be beneficial.
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			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Kubernetes-Secrets-Handbook. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “The kms provider plugin connects kube-apiserver with an external KMS to leverage an envelope encryption principle.”

			A block of code is set as follows:

			
apiVersion: apiserver.config.k8s.io/v1
kind: EncryptionConfiguration
resources:
  - resources:
      - secrets
    providers:
      - aesgcm:
          keys:
            - name: key-20230616
              secret: DlZbD9Vc9ADLjAxKBaWxoevlKdsMMIY68DxQZVabJM8=
      - identity: {}
			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
apiVersion: v1
kind: ServiceAccount
metadata:
  annotations:
    eks.amazonaws.com/role-arn: "arn:aws:iam::11111:role/eks-secret-reader"
  name: service-token-reader
  namespace: default
			Any command-line input or output is written as follows:

			
$ kubectl get events
...
11m         Normal    Pulled              pod/webpage                              Container image "nginx:stable" already present on machin
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Another notable tool provided by GCP to improve the security posture of a GKE cluster is the GKE security posture dashboard.”

			Tips or important notes

			Appears like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Kubernetes Secrets Handbook, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					
						[image: QR Code for download a free PDF copy of this book ]
					

				
			

			https://packt.link/free-ebook/9781805123224

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	


		
			Part 1:Introduction to Kubernetes Secrets Management

		

		
			In this part, you will be provided with a foundational understanding of Kubernetes Secrets and their importance in managing sensitive data in applications deployed on Kubernetes. By the end of this part, you will have learned the basics of the purpose, function, and usage of Kubernetes Secrets with real-world examples.

			This part has the following chapters:

			
					Chapter 1, Understanding Kubernetes Secrets Management

					Chapter 2, Walking through Kubernetes Secrets Management Concepts

					Chapter 3, Encrypting Secrets the Kubernetes-Native Way

					Chapter 4, Debugging and Troubleshooting Kubernetes Secrets

			

		

		
			
			

		

		
			
			

		

	


		
			1

			Understanding Kubernetes Secrets Management

			This chapter will provide you with a refresher about containers, as well as a comprehensive overview of Kubernetes and its Secrets management implementation. By the end of this first walk-through, all personas (developers, platform, and security engineers) will know how to design and implement these topics with a set of hands-on examples. While going through these examples, we will highlight the respective security concerns that this book will address by covering a series of use cases that will lead to a production-grade solution for hybrid multi-cloud scenarios, including the business continuity perspective.

			In this chapter, we will cover the following topics:

			
					Understanding Kubernetes’ origins and design principles

					Setting up our first Kubernetes testing environment

					Exploring Kubernetes Secret and ConfigMap objects

					Analyzing why Kubernetes Secrets are important

					Unveiling the challenges and risks associated with Kubernetes Secrets management

					Mapping the objectives and scope of this book

			

			Technical requirements

			To complete the hands-on parts of this chapter, we will be leveraging a series of tools and platforms that are commonly used to interact with containers, Kubernetes, and Secrets management. For this first chapter, we will be setting up this environment together and ramping up with a friendly desktop graphical solution for the first set of examples. Don’t worry – we have you covered with our Code in Action and GitHub repository, which contains the macOS installation example. Here is the list of required tools:

			
					Docker (https://docker.com) or Podman (https://podman.io) as a container engine. Both are OK, although I do have a personal preference for Podman as it offers benefits such as being daemonless for easy installation, rootless for added security, fully Open Container Initiative (OCI)-compliant, Kubernetes ready, and has the ability to integrate with systemd at the user level to autostart containers/Pods.

					Podman Desktop (https://podman-desktop.io) is an open source software that provides a graphical user interface for building, starting, and debugging containers, running local Kubernetes instances, easing the migration from containers to Pods, and even connecting with remote platforms such as Red Hat OpenShift, Azure Kubernetes Engine, and more.

					Golang (https://go.dev) or Go is a programming language that will be used within our examples. Note that Kubernetes and most of its third-party components are written in Go.

					Git (https://git-scm.com) is a version control system that we will be using to cover this book’s examples but will also leverage in our discovery of Secrets management solutions.

			

			This book’s GitHub repository contains the digital material linked to this book: https://github.com/PacktPublishing/Kubernetes-Secrets-Handbook.

			Understanding Kubernetes’ origins and design principles

			While the evolution from one platform to another might be obvious, the compelling event and inner mechanics might not be. To safely handle sensitive data within Kubernetes, we have to understand both its historical and architectural evolutions. This will help us implement a secure production-grade environment for our critical business applications.

			The next few sections will describe a series of concepts, explore and practice them with a simple container runtime and Kubernetes cluster, and establish their direct relationships with security concerns that this handbook will address.

			Important note

			While we expect you to perform the hands-on examples while reading along, we understand that you might not have the opportunity to do so. As such, we have provided briefings and debriefings for each hands-on example.

			From bare metal to containers

			Four decades ago, deploying applications was done on a physical server, usually referred to as a bare metal installation. This approach allowed workloads to have direct access to physical resources with the best native performance possible. Due to out-of-the-box limitations for resource management from a software perspective, deploying more than one application on a physical server has always been an operational challenge that has resulted in a suboptimal model with the following root causes:

			
					Physical resource utilization: A reduced set of applications is deployed on a physical machine to limit the potential degradation of services due to the lack of proper resource management capabilities that would have helped address applications hogging all the compute resources.

					Scalability, flexibility, and time to market: The lead time in weeks or even months to procure, rack and stack, provision the physical machine, and have the application installed, which impacts business growth.

					The total cost of ownership (TCO) versus innovation: The procurement, integration, operations, and life cycle of physical servers, along with underutilized resources with limited prototyping due to high costs and lead time, slows down the organization’s innovation capabilities.

			

			Then, in the early 2000s, virtualization or hypervisors became available for commoditized open systems. A hypervisor is a piece of software that’s merged into the operating system, installed on bare metal, that allows the IT department to create virtual machines. With this, operations teams were able to create and tailor these virtual machines to the application’s precise requirements with the ability to adapt the compute resources during the application’s life cycle and their usage by the business. Thanks to proper resource management and isolation, multiple virtual machines could run on a single server without having noisy neighbors causing potential service degradations.

			This model provided tremendous optimizations that helped accelerate the digitalization of services and introduce a new market aside from the traditional data center business – cloud computing. However, the virtualization model created a new set of challenges:

			
					The never-ending increase of virtual machines thanks to continuous innovation. This exponential growth of assets amplifies the operational burden to maintain and secure operating systems, libraries, and applications.

					The increasing need for automation to perform daily Create, Read, Update, and Delete (CRUD) operations at a large scale involving complex infrastructure and security components.

					The need for a well-thought governance that’s enforced to address the life cycle, security, and business continuity for thousands of services to support the business continuity of the organization’s critical applications.

			

			Finally, containers made their way as the next layer of optimization. Although the construct of containers was not new, as with virtualization, it required a major player to invest in the commoditized open systems to organically make it the next (r)evolution.

			Let’s think about a container as a lightweight virtual machine but without the need for a full operating system, which reduces the overall footprint and operational burden related to the software development life cycle and security management. Instead, multiple applications, as containers, share the underlying physical host from a software and hardware level without the overhead of the hypervisor benefiting from nearly machine-native performance. The container provides you with the following benefits:

			
					A well-defined standard by the OCI (https://opencontainers.org) to ease with building, (re)distributing, and deploying containers to any platform that’s compliant with the specifications of the OCI

					A highly efficient, predictable, and immutable medium that’s application-centric and only includes the necessary libraries and the application runtime

					Application portability thanks to an infrastructure and platform-agnostic solution

					An organic separation of concerns between the developers and platform engineers as there is no need to access the physical or virtual host operating system to develop, build, test, and deploy applications

					Embracing an automation-first approach and DevOps practices to address the infrastructure, application, and security management

			

			Not mentioning a few challenges would be wrong, so here are some:

			
					Most IT organizations have difficulties embracing a new paradigm from both an architectural and management perspective

					Considering the organic serparation of concerns between the developers and platform engineers as a support to silos

					There’s an overhype around microservices, which leads to potential suboptimal application architecture with no performance optimization but added complexity

			

			The following diagram shows the bottom-up stack, which shows the potential application density per physical server with their respective deployment type:

			
				
					[image: Figure 1.1 – Layer comparison between bare metal, virtual machines, and containers]
				

			

			Figure 1.1 – Layer comparison between bare metal, virtual machines, and containers

			We’ve already cited a series of benefits, and yet, we should emphasize additional ones that help with rapid prototyping, faster deployment, easy live functional testing, and so on:

			
					A smaller code base to maintain and enrich per microservice with easier rollout/rollback

					The capability to run in a degraded mode when one of the microservices fails but not the others

					The ability to troubleshoot misbehaving microservices without impacting the entire application

					It’s faster to recover from failure as only the related microservice must be rescheduled

					Granular compute resource allocation and scalability

			

			Not only do microservices help decouple large monolithic applications but they also introduce new design patterns to accelerate innovation.

			This sounds fantastic, doesn’t it? It does, but we still have a major missing element here: container runtimes such as Docker or Podman do not provide any resiliency in case of failures. To do so, a container runtime requires an additional software layer providing the applications with high availability capabilities. Managing hundreds of microservices at scale demands a robust and highly resilient orchestrator to ensure the business continuity of the applications while guaranteeing a high level of automation and abstraction toward the underlying infrastructure. This will lead to frictionless build, deploy, and run operations, improving the day-to-day responsibilities of the IT staff involved with the workloads that are deployed on the application platforms.

			This is a big ask and a challenge that many IT departments are facing and trying to solve, even more so with legacy patterns. The answer to this complex equation is Kubernetes, a container platform or, as we should call it, an application platform.

			Kubernetes overview

			There are no better words to describe what Kubernetes is all about than the words from the Kubernetes project maintainers: “Containers are a good way to bundle and run your applications. In a production environment, you need to manage the containers that run the applications and ensure that there is no downtime. For example, if a container goes down, another container needs to start. Wouldn’t it be easier if this behavior was handled by a system?

			That’s how Kubernetes comes to the rescue! Kubernetes provides you with a framework to run distributed systems resiliently. It takes care of scaling and failover for your application, provides deployment patterns, and more.” (https://kubernetes.io/docs/concepts/overview/#why-you-need-kubernetes-and-what-can-it-do)

			The same page lists the following benefits of Kubernetes:

			
					Service discovery and load balancing

					Storage orchestration

					Automated rollouts and rollbacks

					Automatic bin packing

					Self-healing

					Secret and configuration management

			

			While reading through this handbook, we will explore and practice all of these benefits while designing a production-grade Secrets management solution for critical workloads.

			Kubernetes design principles

			We have established the context regarding the evolution and adoption of containers with the need for Kubernetes to support our applications with resiliency, scalability, and deployment patterns in mind. But how is Kubernetes capable of such a frictionless experience?

			Here is my attempt to answer this question based on having experience as a former cloud architect within the Red Hat Professional Services organization:

			
					From a workload perspective, every infrastructure requirement that an application will consume is simply defined in a declarative way without the need for there to be a domain specialist in networking, storage, security, and so on. The YAML manifest describing the desired state of Pod, Service, and Deployment objects is then handled by Kubernetes as a service broker for every specific vendor who has a Kubernetes integration. In other words, application teams can safely write a manifest that is agnostic of the environment and Kubernetes distribution on which they will deploy the workloads.

					From an infrastructure perspective, every component of the stack has a corresponding Kubernetes API object. If not, the vendor can introduce their own with the standard Kubernetes API object called CustomResourceDefinition, also known as CRD. This guarantees a common standard, even when interacting with third-party software, hardware, or cloud vendors.

			

			When Kubernetes receives a request with a valid object definition, the orchestrator will apply the related CRUD operation. In other words, Kubernetes introduces native automation and orchestration. The same principles should apply to every Kubernetes component running as a container so that they benefit from self-healing, resiliency, and scalability while being agnostic of the underlying software, hardware, or cloud provider.

			This approach supports the portability not only of containerized applications but of the entire application platform while reducing the need for technology domain specialists to be involved when deploying an application, maintaining the platform, and even enriching the Kubernetes project with new features or components.

			The concept of a YAML manifest to define a Kubernetes API object has been floating around for a while. It is time to look at a simple example that shows the desired state of a Pod object (a logical grouping for one or multiple containers):

			
apiVersion: v1
 kind: Pod
 metadata:
   name: hello-app
 spec:
   containers:
   - name: hello-world
     image: hello-path:0.1
     ports:
     - containerPort: 8080
			This Pod object’s definition provides the necessary information for Kubernetes to do the following:

			
					Define the desired state for a Pod object with the name hello-app.

					Specify that there are containers and that one of them is called hello-world and uses a container image of hello-path. For this, we want version 0.1 to be pulled from a container registry.

					Accept incoming traffic to the hello-world application, using port 8080 at the container level.

			

			That’s it! This is our first Pod definition. It allows us to deploy a simple containerized application with no fuzz and zero knowledge of the underlying infrastructure.

			Kubernetes architecture

			There is not much magic behind this orchestration but the work of multiple components provides a fantastic level of resilience and abstraction, as well as a frictionless experience. The following diagram provides an overview of the components that run within a Kubernetes instance:

			
				
					[image: Figure 1.2 – Kubernetes components]
				

			

			Figure 1.2 – Kubernetes components
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