

[image: Cover: Python 3 Data Visualization Using ChatGPT / GPT-4]





PYTHON 3
DATA VISUALIZATION
USING
CHATGPT / GPT-4





LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and companion files (the “Work”), you agree that this license grants permission to use the contents contained herein, including the disc, but does not give you the right of ownership to any of the textual content in the book / disc or ownership to any of the information or products contained in it. This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone involved in the creation, writing, or production of the companion disc, accompanying algorithms, code, or computer programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to ensure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs. The Work is sold “as is” without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book and/or disc, and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” vary from state to state, and might not apply to the purchaser of this product.

Companion files for this title are available by writing to the publisher at info@merclearning.com.





PYTHON 3
DATA VISUALIZATION
USING
CHATGPT / GPT-4


Oswald Campesato

[image: Images]

MERCURY LEARNING AND INFORMATION

Boston, Massachusetts




Copyright ©2024 by MERCURY LEARNING AND INFORMATION. An Imprint of DeGruyter Inc. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION

121 High Street, 3rd Floor

Boston, MA 02110

info@merclearning.com

www.merclearning.com

800-232-0223

O. Campesato. Python 3 Data Visualization Using ChatGPT / GPT -4.

ISBN: 978-1-50152-232-1

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2023947157

232425321    This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors. Companion files (code listings) for this title are available by contacting info@merclearning.com. The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the disc, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.




I’d like to dedicate this book to my parents
– may this bring joy and happiness into their lives.





CONTENTS


Preface

Chapter 1: Introduction to Python

Tools for Python

easy_install and pip

virtualenv

IPython

Python Installation

Setting the PATH Environment Variable (Windows Only)

Launching Python on Your Machine

The Python Interactive Interpreter

Python Identifiers

Lines, Indentation, and Multi-Line Comments

Quotations and Comments in Python

Saving Your Code in a Module

Some Standard Modules in Python

The help() and dir() Functions

Compile Time and Runtime Code Checking

Simple Data Types

Working with Numbers

Working with Other Bases

The chr() Function

The round() Function

Formatting Numbers

Working with Fractions

Unicode and UTF-8

Working with Unicode

Working with Strings

Comparing Strings

Formatting Strings

Slicing and Splicing Strings

Testing for Digits and Alphabetic Characters

Search and Replace a String in Other Strings

Remove Leading and Trailing Characters

Printing Text without NewLine Characters

Text Alignment

Working with Dates

Converting Strings to Dates

Exception Handling in Python

Handling User Input

Command-Line Arguments

Summary

Chapter 2: Introduction to NumPy

What is NumPy?

Useful NumPy Features

What are NumPy Arrays?

Working with Loops

Appending Elements to Arrays (1)

Appending Elements to Arrays (2)

Multiplying Lists and Arrays

Doubling the Elements in a List

Lists and Exponents

Arrays and Exponents

Math Operations and Arrays

Working with “–1” Subranges with Vectors

Working with “–1” Subranges with Arrays

Other Useful NumPy Methods

Arrays and Vector Operations

NumPy and Dot Products (1)

NumPy and Dot Products (2)

NumPy and the Length of Vectors

NumPy and Other Operations

NumPy and the reshape() Method

Calculating the Mean and Standard Deviation

Code Sample with Mean and Standard Deviation

Trimmed Mean and Weighted Mean

Working with Lines in the Plane (Optional)

Plotting Randomized Points with NumPy and Matplotlib

Plotting a Quadratic with NumPy and Matplotlib

What is Linear Regression?

What is Multivariate Analysis?

What about Non-Linear Datasets?

The MSE (Mean Squared Error) Formula

Other Error Types

Non-Linear Least Squares

Calculating the MSE Manually

Find the Best-Fitting Line in NumPy

Calculating the MSE by Successive Approximation (1)

Calculating the MSE by Successive Approximation (2)

Google Colaboratory

Uploading CSV Files in Google Colaboratory

Summary

Chapter 3: Pandas and Data Visualization

What Is Pandas?

Pandas DataFrames

Dataframes and Data Cleaning Tasks

A Pandas DataFrame Example

Describing a Pandas DataFrame

Pandas Boolean DataFrames

Transposing a Pandas DataFrame

Pandas DataFrames and Random Numbers

Converting Categorical Data to Numeric Data

Matching and Splitting Strings in Pandas

Merging and Splitting Columns in Pandas

Combining Pandas DataFrames

Data Manipulation With Pandas DataFrames

Data Manipulation With Pandas DataFrames (2)

Data Manipulation With Pandas DataFrames (3)

Pandas DataFrames and CSV Files

Pandas DataFrames and Excel Spreadsheets

Select, Add, and Delete Columns in DataFrames

Handling Outliers in Pandas

Pandas DataFrames and Scatterplots

Pandas DataFrames and Simple Statistics

Finding Duplicate Rows in Pandas

Finding Missing Values in Pandas

Sorting DataFrames in Pandas

Working With groupby() in Pandas

Aggregate Operations With the titanic.csv Dataset

Working with apply() and mapapply() in Pandas

Useful One-Line Commands in Pandas

What is Texthero?

Data Visualization in Pandas

Summary

Chapter 4: Pandas and SQL

Pandas and Data Visualization

Pandas and Bar Charts

Pandas and Horizontally Stacked Bar Charts

Pandas and Vertically Stacked Bar Charts

Pandas and Nonstacked Area Charts

Pandas and Stacked Area Charts

What Is Fugue?

MySQL, SQLAlchemy, and Pandas

What Is SQLAlchemy?

Read MySQL Data via SQLAlchemy

Export SQL Data From Pandas to Excel

MySQL and Connector/Python

Establishing a Database Connection

Reading Data From a Database Table

Creating a Database Table

Writing Pandas Data to a MySQL Table

Read XML Data in Pandas

Read JSON Data in Pandas

Working WithJSON-Based Data

Python Dictionary and JSON

Python, Pandas, and JSON

Pandas and Regular Expressions (Optional)

What Is SQLite?

SQLite Features

SQLite Installation

Create a Database and a Table

Insert, Select, and Delete Table Data

Launch SQL Files

Drop Tables and Databases

Load CSV Data Into a sqlite Table

Python and SQLite

Connect to a sqlite3 Database

Create a Table in a sqlite3 Database

Insert Data in a sqlite3 Table

Select Data From a sqlite3 Table

Populate a Pandas Dataframe From a sqlite3 Table

Histogram With Data From a sqlite3 Table (1)

Histogram With Data From a sqlite3 Table (2)

Working With sqlite3 Tools

SQLiteStudio Installation

DB Browser for SQLite Installation

SQLiteDict (Optional)

Working With Beautiful Soup

Parsing an HTML Web Page

Beautiful Soup and Pandas

Beautiful Soup and Live HTML Web Pages

Summary

Chapter 5: Matplotlib and Visualization

What is Data Visualization?

Types of Data Visualization

What is Matplotlib?

Matplotlib Styles

Display Attribute Values

Color Values in Matplotlib

Cubed Numbers in Matplotlib

Horizontal Lines in Matplotlib

Slanted Lines in Matplotlib

Parallel Slanted Lines in Matplotlib

A Grid of Points in Matplotlib

A Dotted Grid in Matplotlib

Two Lines and a Legend in Matplotlib

Loading Images in Matplotlib

A Checkerboard in Matplotlib

Randomized Data Points in Matplotlib

A Set of Line Segments in Matplotlib

Plotting Multiple Lines in Matplotlib

Trigonometric Functions in Matplotlib

A Histogram in Matplotlib

Histogram with Data from a sqlite3 Table

Plot Bar Charts in Matplotlib

Plot a Pie Chart in Matplotlib

Heat Maps in Matplotlib

Save Plot as a PNG File

Working with SweetViz

Working with Skimpy

3D Charts in Matplotlib

Plotting Financial Data with MPLFINANCE

Charts and Graphs with Data from Sqlite3

Summary

Chapter 6: Seaborn for Data Visualization

Working With Seaborn

Features of Seaborn

Seaborn Dataset Names

Seaborn Built-In Datasets

The Iris Dataset in Seaborn

The Titanic Dataset in Seaborn

Extracting Data From Titanic Dataset in Seaborn (1)

Extracting Data From Titanic Dataset in Seaborn (2)

Visualizing a Pandas Dataset in Seaborn

Seaborn Heat Maps

Seaborn Pair Plots

What Is Bokeh?

Introduction to Scikit-Learn

The Digits Dataset in Scikit-learn

The Iris Dataset in Scikit-Learn

Scikit-Learn, Pandas, and the Iris Dataset

Advanced Topics in Seaborn

Summary

Chapter 7: ChatGPT and GPT-4

What is Generative AI?

Important Features of Generative AI

Popular Techniques in Generative AI

What Makes Generative AI Unique

Conversational AI Versus Generative AI

Primary Objective

Applications

Technologies Used

Training and Interaction

Evaluation

Data Requirements

Is DALL-E Part of Generative AI?

Are ChatGPT-3 and GPT-4 Part of Generative AI?

DeepMind

DeepMind and Games

Player of Games (PoG)

OpenAI

Cohere

Hugging Face

Hugging Face Libraries

Hugging Face Model Hub

AI21

InflectionAI

Anthropic

What is Prompt Engineering?

Prompts and Completions

Types of Prompts

Instruction Prompts

Reverse Prompts

System Prompts Versus Agent Prompts

Prompt Templates

Prompts for Different LLMs

Poorly Worded Prompts

What is ChatGPT?

ChatGPT: GPT-3 “on Steroids”?

ChatGPT: Google “Code Red”

ChatGPT Versus Google Search

ChatGPT Custom Instructions

ChatGPT on Mobile Devices and Browsers

ChatGPT and Prompts

GPTBot

ChatGPT Playground

Plugins, Code Interpreter, and Code Whisperer

Plugins

Advanced Data Analysis

Advanced Data Analysis Versus Claude-2

Code Whisperer

Detecting Generated Text

Concerns About ChatGPT

Code Generation and Dangerous Topics

ChatGPT Strengths and Weaknesses

Sample Queries and Responses from ChatGPT

Chatgpt and Medical Diagnosis

Alternatives to ChatGPT

Google Bard

YouChat

Pi From Inflection

Machine Learning and Chatgpt

What is InstructGPT?

VizGPT and Data Visualization

What is GPT-4?

GPT-4 and Test Scores

GPT-4 Parameters

GPT-4 Fine-Tuning

ChatGPT and GPT-4 Competitors

Bard

CoPilot (OpenAI/Microsoft)

Codex (OpenAI)

Apple GPT

PaLM-2

Med-PaLM M

Claude-2

Llama-2

How to Download Llama-2

Llama-2 Architecture Features

Fine-Tuning Llama-2

When Will GPT-5 Be Available?

Summary

Chapter 8: ChatGPT and Data Visualization

Working with Charts and Graphs

Bar Charts

Pie Charts

Line Graphs

Heat Maps

Histograms

Box Plots

Pareto Charts

Radar Charts

Treemaps

Waterfall Charts

Line Plots with Matplotlib

A Pie Chart Using Matplotlib

Box and Whisker Plots Using Matplotlib

Time Series Visualization with Matplotlib

Stacked Bar Charts with Matplotlib

Donut Charts Using Matplotlib

3D Surface Plots with Matplotlib

Radial or Spider Charts with Matplotlib

Matplotlib’s Contour Plots

Stream Plots for Vector Fields

Quiver Plots for Vector Fields

Polar Plots

Bar Charts with Seaborn

Scatterplots with a Regression Line Using Seaborn

Heat Maps for Correlation Matrices with Seaborn

Histograms with Seaborn

Violin Plots with Seaborn

Pair Plots Using Seaborn

Facet Grids with Seaborn

Hierarchical Clustering

Swarm Plots

Joint Plot for Bivariate Data

Point Plots for Factorized Views

Seaborn’s KDE Plots for Density Estimations

Seaborn’s Ridge Plots

Summary

Index






PREFACE




WHAT IS THE PRIMARY VALUE PROPOSITION FOR THIS BOOK?


This book is designed to show readers the concepts of Python 3 programming and the art of data visualization. Chapter 1 introduces the essentials of Python, covering a vast array of topics from basic data types, loops, and functions to more advanced constructs like dictionaries, sets, and matrices. In Chapter 2, the focus shifts to NumPy and its powerful array operations, leading into the world of data visualization using prominent libraries such as Matplotlib. Chapter 6 includes Seaborn’s rich visualization tools, offering insights into datasets like Iris and Titanic. Further, the book covers other visualization tools and techniques, including SVG graphics, D3 for dynamic visualizations, and more. Chapter 7 covers information about the main features of ChatGPT and GPT-4, as well as some of their competitors. Chapter 8 contains examples of using ChatGPT in order to perform data visualization, such as charts and graphs that are based on datasets (e.g., the Titanic dataset). From foundational Python concepts to the intricacies of data visualization, this book serves as a comprehensive resource for both beginners and seasoned professionals.




THE TARGET AUDIENCE


This book is intended primarily for people who have worked with Python and are interested in learning about graphics effects with Python libraries. This book is also intended to reach an international audience of readers with highly diverse backgrounds in various age groups. Consequently, this book uses standard English rather than colloquial expressions that might be confusing to those readers. This book provides a comfortable and meaningful learning experience for the intended readers.




WHY ARE THE CODE SAMPLES PRIMARILY IN PYTHON?


Most of the code samples are short (usually less than one page and sometimes less than half a page), and if necessary, you can easily and quickly copy/paste the code into a new Jupyter notebook. For the Python code samples that reference a CSV file, you do not need any additional code in the corresponding Jupyter notebook to access the CSV file. Moreover, the code samples execute quickly, so you won’t need to avail yourself of the free GPU that is provided in Google Colaboratory.

If you do decide to use Google Colaboratory, you can easily copy/paste the Python code into a notebook, and also use the upload feature to upload existing Jupyter notebooks. Keep in mind the following point: if the Python code references a CSV file, make sure that you include the appropriate code snippet (details are available online) to access the CSV file in the corresponding Jupyter notebook in Google Colaboratory.




WHY DOES THIS BOOK INCLUDE SKLEARN MATERIAL?


First, keep in mind that the Sklearn material in this book is minimalistic because this book is not about machine learning. Second, the Sklearn material is located in Chapter 6 where you will learn about some of the Sklearn built-in datasets. If you decide to delve into machine learning, you will have already been introduced to some aspects of Sklearn.




GETTING THE MOST FROM THIS BOOK


Some programmers learn well from prose, others learn well from sample code (and lots of it), which means that there’s no single style that can be used for everyone.

Moreover, some programmers want to run the code first, see what it does, and then return to the code to delve into the details (and others use the opposite approach).

Consequently, there are various types of code samples in this book: some are short, some are long, and other code samples “build” from earlier code samples.




WHAT DO I NEED TO KNOW FOR THIS BOOK?


Current knowledge of Python 3.x is the most helpful skill. Knowledge of other programming languages (such as Java) can also be helpful because of the exposure to programming concepts and constructs. The less technical knowledge that you have, the more diligence will be required in order to understand the various topics that are covered.

As for the non-technical skills, it’s important to have a strong desire to learn about data visualization, along with the motivation and discipline to read and understand the code samples.




DO THE COMPANION FILES OBVIATE THE NEED FOR THIS BOOK?


The companion files contain all the code samples to save you time and effort from the error-prone process of manually typing code into a text file. In addition, there are situations in which you might not have easy access to the companion disc. Furthermore, the code samples in the book provide explanations that are not available on the companion files.




DOES THIS BOOK CONTAIN PRODUCTION-LEVEL CODE SAMPLES?


The primary purpose of the code samples in this book is to show you Python-based libraries for data visualization. Clarity has higher priority than writing more compact code that is more difficult to understand (and possibly more prone to bugs). If you decide to use any of the code in this book in a production website, you ought to subject that code to the same rigorous analysis as the other parts of your code base.




HOW DO I SET UP A COMMAND SHELL?


If you are a Mac user, there are three ways to do so. The first method is to use Finder to navigate to Applications > Utilities and then double click on the Utilities application. Next, if you already have a command shell available, you can launch a new command shell by typing the following command:


open /Applications/Utilities/Terminal.app


A second method for Mac users is to open a new command shell on a MacBook from a command shell that is already visible simply by clicking command+n in that command shell, and your Mac will launch another command shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.com/) that simulates bash commands, or use another toolkit such as MKS (a commercial product). Please read the online documentation that describes the download and installation process. Note that custom aliases are not automatically set if they are defined in a file other than the main start-up file (such as .bash_login).




COMPANION FILES


All the code samples and figures in this book may be obtained by writing to the publisher at info@merclearning.com.




WHAT ARE THE “NEXT STEPS” AFTER FINISHING THIS BOOK?


The answer to this question varies widely, mainly because the answer depends heavily on your objectives. If you are interested primarily in NLP, then you can learn more advanced concepts, such as attention, transformers, and the BERT-related models.

If you are primarily interested in machine learning, there are some subfields of machine learning, such as deep learning and reinforcement learning (and deep reinforcement learning) that might appeal to you. Fortunately, there are many resources available, and you can perform an Internet search for those resources. One other point: the aspects of machine learning for you to learn depend on who you are: the needs of a machine learning engineer, data scientist, manager, student or software developer are all different.

O. Campesato

December 2023







CHAPTER 1

INTRODUCTION TO PYTHON


This chapter contains an introduction to Python, with information about useful tools for installing modules, basic constructs, and how to work with some data types.

The first part of this chapter covers how to install Python, some environment variables, and how to use the interpreter. You will see code samples and also how to save code in text files that you can launch from the command line. The second part of this chapter shows you how to work with simple data types, such as numbers, fractions, and strings. The final part of this chapter discusses exceptions and how to use them in scripts.

NOTE The Python files in this book are for Python 3.x.



TOOLS FOR PYTHON


The Anaconda Python distribution available for Windows, Linux, and Mac is downloadable at http://continuum.io/downloads.

Anaconda is well-suited for modules such as numpy and scipy, and if you are a Windows user, Anaconda appears to be a better alternative.



easy_install and pip


Both easy_install and pip are easy to use when you need to install Python modules. Whenever you need to install a module (and there are many in this book), use either easy_install or pip with the following syntax:

easy_install <module-name>
pip install <module-name>


NOTE Python-based modules are easier to install, whereas modules with code written in C are usually faster but more difficult in terms of installation.




virtualenv


The virtualenv tool enables you to create isolated Python environments, and its home page is at http://www.virtualenv.org/en/latest/virtualenv.html.

virtualenv addresses the problem of preserving the correct dependencies and versions (and indirectly, permissions) for different applications. If you are a Python novice, you might not need virtualenv right now, but keep this tool in mind.




IPython


Another very good tool is IPython (which won a Jolt award), and its home page is at http://ipython.org/install.html. Two very nice features of IPython are tab expansion and “?” (textual assistance). An example of tab expansion is shown here:

python
Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec  7 2020, 12:44:01)
[Clang 12.0.0 (clang-1200.0.32.27)] on darwin
Type "help", "copyright", "credits" or "license" for more information.

IPython 0.13.2 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object', use 'object??' for extra details.

In [1]: di
%dirs   dict    dir     divmod


In the preceding session, if you type the characters di, IPython responds with the following line that contains all the functions that start with the letters di:

%dirs   dict    dir     divmod


If you enter a question mark (“?”), IPython provides textual assistance, the first part of which is here:

IPython -- An enhanced Interactive Python
=========================================

IPython offers a combination of convenient shell features,
special commands and a history mechanism for both input
(command history) and output (results caching, similar
to Mathematica). It is intended to be a fully compatible
replacement for the standard Python interpreter, while
offering vastly improved functionality and flexibility.


The next section shows you how to check whether Python is installed on your machine, and also where you can download Python.





PYTHON INSTALLATION


Before you download anything, check if you have Python already installed on your machine (which is likely if you have a MacBook or a Linux machine) by typing the following command in a command shell:

python -V


The output for the MacBook used in this book is here:

Python 3.9.1


NOTE Install Python 3.9 (or as close as possible to this version) on your machine so that you will have the same version of Python that was used to test the Python files in this book.

If you need to install Python on your machine, navigate to the Python home page and select the downloads link or navigate directly to this website:

http://www.python.org/download/

In addition, PythonWin is available for Windows, and its home page is here:

http://www.cgl.ucsf.edu/Outreach/pc204/pythonwin.html

Use any text editor that can create, edit, and save Python scripts, and save them as plain text files (do not use Microsoft Word). After you have Python installed and configured on your machine, you are ready to work with the Python scripts in this book.




SETTING THE PATH ENVIRONMENT VARIABLE (WINDOWS ONLY)


The PATH environment variable specifies a list of directories that are searched whenever you specify an executable program from the command line. The following URL has a useful guide to setting up your environment so that the Python executable is always available in every command shell:

http://www.blog.pythonlibrary.org/2011/11/24/python-101-setting-up-python-on-windows/




LAUNCHING PYTHON ON YOUR MACHINE


There are three different ways to launch Python:


	Use the Python Interactive Interpreter.

	Launch Python scripts from the command line.

	Use an IDE.



The next section shows you how to launch the Python interpreter from the command line, and later in this chapter you will learn how to launch scripts from the command line and also about IDEs.

NOTE The emphasis in this book is to launch Python scripts from the command line or to enter code in the Python interpreter.



The Python Interactive Interpreter


Launch the interactive interpreter from the command line by opening a command shell and typing the following command:

python


You will see the following prompt (or something similar):

Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec  7 2020, 12:44:01)
[Clang 12.0.0 (clang-1200.0.32.27)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>


Now type the expression 2 + 7 at the prompt:

>>> 2 + 7


Python displays the following result:

9
>>>


Press ctrl-d to exit the Python shell.

You can launch any Python script from the command line by preceding it with the word “python.” For example, if you have a script myscript.py that contains commands, launch the script as follows:

python myscript.py


As a simple illustration, suppose that the script myscript.py contains the following code:

print('Hello World from Python')
print('2 + 7 = ', 2+7)


When you launch the preceding script, you will see the following output:

Hello World from Python
2 + 7 =  9






PYTHON IDENTIFIERS


An identifier is the name of a variable, function, class, module, or other Python object, and a valid identifier conforms to the following rules:


	starts with a letter A to Z or a to z or an underscore (_)

	zero or more letters, underscores, and digits (0 to 9)



NOTE Python identifiers cannot contain characters such as @, $, and %.

Python is a case-sensitive language, so Abc and abc are different identifiers in Python. In addition, Python has the following naming conventions:


	Class names start with an uppercase letter and all other identifiers with a lowercase letter

	An initial underscore is used for private identifiers.

	Two initial underscores are used for strongly private identifiers.



A Python identifier with two initial underscores and two trailing underscore characters indicates a language-defined special name.




LINES, INDENTATION, AND MULTI-LINE COMMENTS


Unlike other programming languages (such as Java or Objective-C), Python uses indentation instead of curly braces for code blocks. Indentation must be consistent in a code block, as shown here:

if True:
    print("ABC")
    print("DEF")
else:
    print("ABC")
    print("DEF")


Multi-line statements in Python can terminate with a new line or the backslash (“\”) character, as shown here:

total = x1 + \
        x2 + \
        x3


Obviously, you can place x1, x2, and x3 on the same line, so there is no reason to use three separate lines; however, this functionality is available in case you need to add a set of variables that do not fit on a single line.

You can specify multiple statements in one line by using a semicolon (“;”) to separate each statement, as shown here:

a=10; b=5; print(a); print(a+b)


The output of the preceding code snippet is here:

10
15


NOTE The use of semi-colons and the continuation character are discouraged in Python.




QUOTATIONS AND COMMENTS IN PYTHON


Python allows single ('), double ("), and triple (''' or """) quotation marks for string literals, provided that they match at the beginning and the end of the string. You can use triple quotation marks for strings that span multiple lines. The following examples are legal Python strings:

word = 'word'
line = "This is a sentence."
para = """This is a paragraph. This paragraph contains
more than one sentence."""


A string literal that begins with the letter “r” (for “raw”) treats everything as a literal character and “escapes” the meaning of meta characters, as shown here:

a1 = r'\n'
a2 = r'\r'
a3 = r'\t'
print('a1:',a1,'a2:',a2,'a3:',a3)


The output of the preceding code block is here:

a1: \n a2: \r a3: \t


You can embed a single quotation mark in a pair of double quotation marks (and vice versa) to display a single quotation mark or double quotation marks. Another way to accomplish the same result is to precede single or double quotation marks with a backslash (“\”) character. The following code block illustrates these techniques:

b1 = "'"
b2 = '"'
b3 = '\''
b4 = "\""
print('b1:',b1,'b2:',b2)
print('b3:',b3,'b4:',b4)


The output of the preceding code block is here:

b1: ' b2: "
b3: ' b4: "


A hash sign (#) that is not inside a string literal is the character that indicates the beginning of a comment. Moreover, all characters after the # and up to the physical line end are part of the comment (and ignored by the Python interpreter). Consider the following code block:

#!/usr/bin/python
# First comment
print("Hello, Python!")  # second comment


This will produce following result:

Hello, Python!


A comment may be on the same line after a statement or expression:

name = "Tom Jones" # This is also comment


You can comment multiple lines as follows:

# This is comment one
# This is comment two
# This is comment three


A blank line in Python is a line containing only whitespace, a comment, or both.




SAVING YOUR CODE IN A MODULE


Earlier you saw how to launch the Python interpreter from the command line and then enter commands. However, everything you type in the Python interpreter is only valid for the current session: if you exit the interpreter and then launch the interpreter again, your previous definitions are no longer valid. Fortunately, Python enables you to store code in a text file, as discussed in the next section.

A module in Python is a text file that contains Python statements. In the previous section, you saw how the interpreter enables you to test code snippets whose definitions are valid for the current session. If you want to retain the code snippets and other definitions, place them in a text file so that you can execute that code outside of the interpreter.

The outermost statements in a Python program are executed from top to bottom when the module is imported for the first time, which will then set up its variables and functions.

A Python module can be run directly from the command line, as shown here:

python first.py


As an illustration, place the following two statements in a text file called first.py:

x = 3
print(x)


Now type the following command:

python first.py


The output from the preceding command is 3, which is the same as executing the preceding code from the interpreter.

When a module is run directly, the special variable __name__ is set to __main__. You will often see the following type of code in a module:

if __name__ == '__main__':
    # do something here
    print('Running directly')


The preceding code snippet enables Python to determine if a module was launched from the command line or imported into another module.




SOME STANDARD MODULES IN PYTHON


The Python Standard Library provides many modules that can simplify your own scripts. A list of the Standard Library modules is at http://www.python.org/doc/.

Some of the most important modules include cgi, math, os, pickle, random, re, socket, sys, time, and urllib.

The code samples in this book use the modules math, os, random, re, socket, sys, time, and urllib. You need to import these modules to use them in your code. For example, the following code block shows you how to import 4 standard Python modules:

import datetime
import re
import sys
import time


The code samples in this book import one or more of the preceding modules, as well as other Python modules.




THE help() AND dir() FUNCTIONS


An Internet search for Python-related topics usually returns a number of links with useful information. Alternatively, you can check the official Python documentation site: docs.python.org.

In addition, Python provides the help() and dir() functions that are accessible from the interpreter. The help() function displays documentation strings, whereas the dir() function displays defined symbols.

For example, if you type help(sys) you will see documentation for the sys module, whereas dir(sys) displays a list of the defined symbols.

Type the following command in the interpreter to display the string-related methods in Python:

>>> dir(str)


The preceding command generates the following output:

['__add__', '__class__', '__contains__', '__delattr__',
'__doc__', '__eq__', '__format__', '__ge__', '__
getattribute__', '__getitem__', '__getnewargs__', '__
getslice__', '__gt__', '__hash__', '__init__', '__le__',
'__len__', '__lt__', '__mod__', '__mul__', '__ne__',
'__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__rmod__', '__rmul__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__', '_formatter_field_name_
split', '_formatter_parser', 'capitalize', 'center',
'count', 'decode', 'encode', 'endswith', 'expandtabs',
'find', 'format', 'index', 'isalnum', 'isalpha', 'isdigit',
'islower', 'isspace', 'istitle', 'isupper', 'join',
'ljust', 'lower', 'lstrip', 'partition', 'replace',
'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit',
'rstrip', 'split', 'splitlines', 'startswith', 'strip',
'swapcase', 'title', 'translate', 'upper', 'zfill']


The preceding list gives you a consolidated “dump” of built-in functions (including some that are discussed later in this chapter). Although the max() function obviously returns the maximum value of its arguments, the purpose of other functions such as filter() or map() is not immediately apparent (unless you have used them in other programming languages). The preceding list provides a starting point for finding out more about various Python built-in functions that are not discussed in this chapter.

Note that while dir() does not list the names of built-in functions and variables, you can obtain this information from the standard module __builtin__ that is automatically imported under the name __builtins__:

>>> dir(__builtins__)


The following command shows you how to get more information about a function:

help(str.lower)


The output from the preceding command is here:

Help on method_descriptor:

lower(...)
    S.lower() -> string

    Return a copy of the string S converted to lowercase.
(END)


Check the online documentation and also experiment with help() and dir() when you need additional information about a particular function or module.




COMPILE TIME AND RUNTIME CODE CHECKING


Python performs some compile-time checking, but most checks (including type, name, and so forth) are deferred until code execution. Consequently, if your Python code references a user-defined function that does not exist, the code will compile successfully. In fact, the code will fail with an exception only when the code execution path references the non-existent function.

As a simple example, consider the following function myFunc that references the non-existent function called DoesNotExist:

def myFunc(x):
    if x == 3:
        print(DoesNotExist(x))
    else:
        print('x: ',x)


The preceding code will only fail when the myFunc function has passed the value 3, after which Python raises an error.

In Chapter 2, you will learn how to define and invoke user-defined functions, along with an explanation of the difference between local versus global variables in Python.

Now that you understand some basic concepts (such as how to use the Python interpreter) and how to launch your custom modules, the next section discusses primitive data types.




SIMPLE DATA TYPES


Python supports primitive data types, such as numbers (integers, floating point numbers, and exponential numbers), strings, and dates. Python also supports more complex data types, such as lists (or arrays), tuples, and dictionaries, all of which are discussed in Chapter 3. The next several sections discuss some of the Python primitive data types, along with code snippets that show you how to perform various operations on those data types.




WORKING WITH NUMBERS


Python provides arithmetic operations for manipulating numbers in a straightforward manner that is similar to other programming languages. The following examples involve arithmetic operations on integers:

>>> 2+2
4
>>> 4/3
1
>>> 3*8
24


The following example assigns numbers to two variables and computes their product:

>>> x = 4
>>> y = 7
>>> x * y
28


The following examples demonstrate arithmetic operations involving integers:

>>> 2+2
4
>>> 4/3
1
>>> 3*8
24


Notice that division (“/”) of two integers is actually truncation in which only the integer result is retained. The following example converts a floating point number into exponential form:

>>> fnum = 0.00012345689000007
>>> "%.14e"%fnum
'1.23456890000070e-04'


You can use the int() function and the float() function to convert strings to numbers:

word1 = "123"
word2 = "456.78"
var1 = int(word1)
var2 = float(word2)
print("var1: ",var1," var2: ",var2)


The output from the preceding code block is here:

var1:  123  var2:  456.78


Alternatively, you can use the eval() function:

word1 = "123"
word2 = "456.78"
var1 = eval(word1)
var2 = eval(word2)
print("var1: ",var1," var2: ",var2)


If you attempt to convert a string that is not a valid integer or a floating point number, Python raises an exception, so it is advisable to place your code in a try/except block.



Working with Other Bases


Numbers in Python are in base 10 (the default), but you can easily convert numbers to other bases. For example, the following code block initializes the variable x with the value 1234, and then displays that number in base 2, 8, and 16:

>>> x = 1234
>>> bin(x) '0b10011010010'
>>> oct(x) '0o2322'
>>> hex(x) '0x4d2' >>>


Use the format() function if you want to suppress the 0b, 0o, or 0x prefixes, as shown here:

>>> format(x, 'b') '10011010010'
>>> format(x, 'o') '2322'
>>> format(x, 'x') '4d2'


Negative integers are displayed with a negative sign:

>>> x = -1234
>>> format(x, 'b') '-10011010010'
>>> format(x, 'x') '-4d2'





The chr() Function


The chr() function takes a positive integer as a parameter and converts it to its corresponding alphabetic value (if one exists). The letters A through Z have decimal representation of 65 through 91 (which corresponds to hexadecimal 41 through 5b), and the lowercase letters a through z have decimal representation 97 through 122 (hexadecimal 61 through 7b).

Here is an example of using the chr() function to print uppercase A:

>>> x=chr(65)
>>> x
'A'


The following code block prints the ASCII values for a range of integers:

result = ""
for x in range(65,91):
  print(x, chr(x))
  result = result+chr(x)+' '
print("result: ",result)


NOTE Python 2 uses ASCII strings whereas Python 3 uses Unicode.

You can represent a range of characters with the following line:

for x in range(65,91):


However, the following equivalent code snippet is more intuitive:

for x in range(ord('A'), ord('Z')):


If you want to display the result for lowercase letters, change the preceding range from (65,91) to either of the following statements:

for x in range(65,91):
for x in range(ord('a'), ord('z')):





The round() Function


The round() function enables you to round decimal values to the nearest precision:

>>> round(1.23, 1)
1.2
>>> round(-3.42,1)
-3.4





Formatting Numbers


Python allows you to specify the number of decimal places of precision to use when printing decimal numbers, as shown here:

>>> x = 1.23456
>>> format(x, '0.2f')
'1.23'
>>> format(x, '0.3f')
'1.235'
>>> 'value is {:0.3f}'.format(x) 'value is 1.235'
>>> from decimal import Decimal
>>> a = Decimal('4.2')
>>> b = Decimal('2.1')
>>> a + b
Decimal('6.3')
>>> print(a + b)
6.3
>>> (a + b) == Decimal('6.3')
True
>>> x = 1234.56789
>>> # Two decimal places of accuracy
>>> format(x, '0.2f')
'1234.57'
>>> # Right justified in 10 chars, one-digit accuracy
>>> format(x, '>10.1f')
' 1234.6'
>>> # Left justified
>>> format(x, '<10.1f') '1234.6 '
>>> # Centered
>>> format(x, '^10.1f') ' 1234.6 '
>>> # Inclusion of thousands separator
>>> format(x, ',')
'1,234.56789'
>>> format(x, '0,.1f')
'1,234.6'






WORKING WITH FRACTIONS


Python supports the Fraction() function (defined in the fractions module), which accepts two integers that represent the numerator and the denominator (which must be non-zero) of a fraction. Several examples of defining and manipulating fractions are shown here:

>>> from fractions import Fraction
>>> a = Fraction(5, 4)
>>> b = Fraction(7, 16)
>>> print(a + b)
27/16
>>> print(a * b) 35/64
>>> # Getting numerator/denominator
>>> c = a * b
>>> c.numerator
35
>>> c.denominator 64
>>> # Converting to a float >>> float(c)
0.546875
>>> # Limiting the denominator of a value
>>> print(c.limit_denominator(8))
4
>>> # Converting a float to a fraction >>> x = 3.75
>>> y = Fraction(*x.as_integer_ratio())
>>> y
Fraction(15, 4)


Before delving into code samples that work with strings, the next section briefly discusses Unicode and UTF-8, both of which are character encodings.




UNICODE AND UTF-8


A Unicode string consists of a sequence of numbers that are between 0 and 0x10ffff, where each number represents a group of bytes. An encoding is the manner in which a Unicode string is translated into a sequence of bytes. Among the various encodings, UTF-8 (“Unicode Transformation Format”) is perhaps the most common, and it is also the default encoding for many systems. The digit 8 in UTF-8 indicates that the encoding uses 8-bit numbers, whereas UTF-16 uses 16-bit numbers (but this encoding is less common).

The ASCII character set is a subset of UTF-8, so a valid ASCII string can be read as a UTF-8 string without any re-encoding required. In addition, a Unicode string can be converted into a UTF-8 string.




WORKING WITH UNICODE


Python supports Unicode, which means that you can render characters in different languages. Unicode data can be stored and manipulated in the same way as strings. Create a Unicode string by prepending the letter u, as shown here:

>>> u'Hello from Python!'
u'Hello from Python!'


Special characters can be included in a string by specifying their Unicode value. For example, the following Unicode string embeds a space (which has the Unicode value 0x0020) in a string:

>>> u'Hello\u0020from Python!'
u'Hello from Python!'


Listing 1.1 displays the content of unicode1.py that illustrates how to display a string of characters in Japanese and another string of characters in Chinese (Mandarin).

LISTING 1.1: unicode1.py

chinese1 = u'\u5c07\u63a2\u8a0e HTML5 \u53ca\u5176\u4ed6'
hiragana = u'D3 \u306F \u304B\u3063\u3053\u3043\u3043 \u3067\u3059!'

print('Chinese:',chinese1)
print('Hiragana:',hiragana)


The output of Listing 1.2 is here:

Chinese: 將探討 HTML5 及其他
Hiragana: D3 は かっこぃぃ です!


The next portion of this chapter shows you how to “slice and dice” text strings with built-in Python functions.




WORKING WITH STRINGS


You can concatenate two strings using the “+” operator. The following example prints a string and then concatenates two single-letter strings:

>>> 'abc'
'abc'
>>> 'a' + 'b'
'ab'


You can use “+” or “*” to concatenate identical strings, as shown here:

>>> 'a' + 'a' + 'a'
'aaa'
>>> 'a' * 3
'aaa'


You can assign strings to variables and print them using the print() command:

>>> print('abc')
abc
>>> x = 'abc'
>>> print(x)
abc
>>> y = 'def'
>>> print(x + y)
abcdef


You can “unpack” the letters of a string and assign them to variables, as shown here:

>>> str = "World"
>>> x1,x2,x3,x4,x5 = str
>>> x1
'W'
>>> x2
'o'
>>> x3
'r'
>>> x4
'l'
>>> x5
'd'


The preceding code snippets show you how easy it is to extract the letters in a text string, and in Chapter 3 you will learn how to “unpack” other data structures.

You can extract substrings of a string as shown in the following examples:

>>> x = "abcdef"
>>> x[0]
'a'
>>> x[-1]
'f'
>>> x[1:3]
'bc'
>>> x[0:2] + x[5:]
'abf'


However, you will cause an error if you attempt to “subtract” two strings:

>>> 'a' - 'b'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'str' and 'str'


The try/except construct enables you to handle the preceding type of exception gracefully.



Comparing Strings


You can use the methods lower() and upper() to convert a string to lowercase and uppercase, respectively, as shown here:

>>> 'Python'.lower()
'python'
>>> 'Python'.upper()
'PYTHON'
>>>


The methods lower() and upper() are useful for performing a case-insensitive comparison of two ASCII strings. Listing 1.2 displays the content of compare.py that uses the lower() function to compare two ASCII strings.

LISTING 1.2: compare.py






































































OEBPS/xhtml/nav.xhtml




Table of Contents





		Cover



		Title Page



		Copyright Page



		Dedication



		Contents



		Preface



		Chapter 1: Introduction to Python



		Tools for Python



		easy_install and pip



		virtualenv



		IPython









		Python Installation



		Setting the PATH Environment Variable (Windows Only)



		Launching Python on Your Machine



		The Python Interactive Interpreter









		Python Identifiers



		Lines, Indentation, and Multi-Line Comments



		Quotations and Comments in Python



		Saving Your Code in a Module



		Some Standard Modules in Python



		The help() and dir() Functions



		Compile Time and Runtime Code Checking



		Simple Data Types



		Working with Numbers



		Working with Other Bases



		The chr() Function



		The round() Function



		Formatting Numbers









		Working with Fractions



		Unicode and UTF-8



		Working with Unicode



		Working with Strings



		Comparing Strings



		Formatting Strings









		Slicing and Splicing Strings



		Testing for Digits and Alphabetic Characters









		Search and Replace a String in Other Strings



		Remove Leading and Trailing Characters



		Printing Text without NewLine Characters



		Text Alignment



		Working with Dates



		Converting Strings to Dates









		Exception Handling in Python



		Handling User Input



		Command-Line Arguments



		Summary









		Chapter 2: Introduction to NumPy



		What is NumPy?



		Useful NumPy Features









		What are NumPy Arrays?



		Working with Loops



		Appending Elements to Arrays (1)



		Appending Elements to Arrays (2)



		Multiplying Lists and Arrays



		Doubling the Elements in a List



		Lists and Exponents



		Arrays and Exponents



		Math Operations and Arrays



		Working with “–1” Subranges with Vectors



		Working with “–1” Subranges with Arrays



		Other Useful NumPy Methods



		Arrays and Vector Operations



		NumPy and Dot Products (1)



		NumPy and Dot Products (2)



		NumPy and the Length of Vectors



		NumPy and Other Operations



		NumPy and the reshape() Method



		Calculating the Mean and Standard Deviation



		Code Sample with Mean and Standard Deviation



		Trimmed Mean and Weighted Mean









		Working with Lines in the Plane (Optional)



		Plotting Randomized Points with NumPy and Matplotlib



		Plotting a Quadratic with NumPy and Matplotlib



		What is Linear Regression?



		What is Multivariate Analysis?



		What about Non-Linear Datasets?









		The MSE (Mean Squared Error) Formula



		Other Error Types



		Non-Linear Least Squares









		Calculating the MSE Manually



		Find the Best-Fitting Line in NumPy



		Calculating the MSE by Successive Approximation (1)



		Calculating the MSE by Successive Approximation (2)



		Google Colaboratory



		Uploading CSV Files in Google Colaboratory









		Summary









		Chapter 3: Pandas and Data Visualization



		What Is Pandas?



		Pandas DataFrames



		Dataframes and Data Cleaning Tasks









		A Pandas DataFrame Example



		Describing a Pandas DataFrame



		Pandas Boolean DataFrames



		Transposing a Pandas DataFrame









		Pandas DataFrames and Random Numbers



		Converting Categorical Data to Numeric Data



		Matching and Splitting Strings in Pandas



		Merging and Splitting Columns in Pandas



		Combining Pandas DataFrames



		Data Manipulation With Pandas DataFrames



		Data Manipulation With Pandas DataFrames (2)



		Data Manipulation With Pandas DataFrames (3)



		Pandas DataFrames and CSV Files



		Pandas DataFrames and Excel Spreadsheets



		Select, Add, and Delete Columns in DataFrames



		Handling Outliers in Pandas



		Pandas DataFrames and Scatterplots



		Pandas DataFrames and Simple Statistics



		Finding Duplicate Rows in Pandas



		Finding Missing Values in Pandas



		Sorting DataFrames in Pandas



		Working With groupby() in Pandas



		Aggregate Operations With the titanic.csv Dataset



		Working with apply() and mapapply() in Pandas



		Useful One-Line Commands in Pandas



		What is Texthero?



		Data Visualization in Pandas



		Summary









		Chapter 4: Pandas and SQL



		Pandas and Data Visualization



		Pandas and Bar Charts



		Pandas and Horizontally Stacked Bar Charts



		Pandas and Vertically Stacked Bar Charts



		Pandas and Nonstacked Area Charts



		Pandas and Stacked Area Charts









		What Is Fugue?



		MySQL, SQLAlchemy, and Pandas



		What Is SQLAlchemy?



		Read MySQL Data via SQLAlchemy









		Export SQL Data From Pandas to Excel



		MySQL and Connector/Python



		Establishing a Database Connection



		Reading Data From a Database Table



		Creating a Database Table









		Writing Pandas Data to a MySQL Table



		Read XML Data in Pandas



		Read JSON Data in Pandas



		Working WithJSON-Based Data



		Python Dictionary and JSON



		Python, Pandas, and JSON









		Pandas and Regular Expressions (Optional)



		What Is SQLite?



		SQLite Features



		SQLite Installation



		Create a Database and a Table



		Insert, Select, and Delete Table Data



		Launch SQL Files



		Drop Tables and Databases



		Load CSV Data Into a sqlite Table









		Python and SQLite



		Connect to a sqlite3 Database



		Create a Table in a sqlite3 Database



		Insert Data in a sqlite3 Table



		Select Data From a sqlite3 Table



		Populate a Pandas Dataframe From a sqlite3 Table



		Histogram With Data From a sqlite3 Table (1)



		Histogram With Data From a sqlite3 Table (2)









		Working With sqlite3 Tools



		SQLiteStudio Installation



		DB Browser for SQLite Installation



		SQLiteDict (Optional)









		Working With Beautiful Soup



		Parsing an HTML Web Page









		Beautiful Soup and Pandas



		Beautiful Soup and Live HTML Web Pages



		Summary









		Chapter 5: Matplotlib and Visualization



		What is Data Visualization?



		Types of Data Visualization









		What is Matplotlib?



		Matplotlib Styles



		Display Attribute Values



		Color Values in Matplotlib



		Cubed Numbers in Matplotlib



		Horizontal Lines in Matplotlib



		Slanted Lines in Matplotlib



		Parallel Slanted Lines in Matplotlib



		A Grid of Points in Matplotlib



		A Dotted Grid in Matplotlib



		Two Lines and a Legend in Matplotlib



		Loading Images in Matplotlib



		A Checkerboard in Matplotlib



		Randomized Data Points in Matplotlib



		A Set of Line Segments in Matplotlib



		Plotting Multiple Lines in Matplotlib



		Trigonometric Functions in Matplotlib



		A Histogram in Matplotlib



		Histogram with Data from a sqlite3 Table



		Plot Bar Charts in Matplotlib



		Plot a Pie Chart in Matplotlib



		Heat Maps in Matplotlib



		Save Plot as a PNG File



		Working with SweetViz



		Working with Skimpy



		3D Charts in Matplotlib



		Plotting Financial Data with MPLFINANCE



		Charts and Graphs with Data from Sqlite3



		Summary









		Chapter 6: Seaborn for Data Visualization



		Working With Seaborn



		Features of Seaborn









		Seaborn Dataset Names



		Seaborn Built-In Datasets



		The Iris Dataset in Seaborn



		The Titanic Dataset in Seaborn



		Extracting Data From Titanic Dataset in Seaborn (1)



		Extracting Data From Titanic Dataset in Seaborn (2)



		Visualizing a Pandas Dataset in Seaborn



		Seaborn Heat Maps



		Seaborn Pair Plots



		What Is Bokeh?



		Introduction to Scikit-Learn



		The Digits Dataset in Scikit-learn



		The Iris Dataset in Scikit-Learn



		Scikit-Learn, Pandas, and the Iris Dataset









		Advanced Topics in Seaborn



		Summary









		Chapter 7: ChatGPT and GPT-4



		What is Generative AI?



		Important Features of Generative AI



		Popular Techniques in Generative AI



		What Makes Generative AI Unique









		Conversational AI Versus Generative AI



		Primary Objective



		Applications



		Technologies Used



		Training and Interaction



		Evaluation



		Data Requirements









		Is DALL-E Part of Generative AI?



		Are ChatGPT-3 and GPT-4 Part of Generative AI?



		DeepMind



		DeepMind and Games



		Player of Games (PoG)









		OpenAI



		Cohere



		Hugging Face



		Hugging Face Libraries



		Hugging Face Model Hub









		AI21



		InflectionAI



		Anthropic



		What is Prompt Engineering?



		Prompts and Completions



		Types of Prompts



		Instruction Prompts



		Reverse Prompts



		System Prompts Versus Agent Prompts



		Prompt Templates



		Prompts for Different LLMs



		Poorly Worded Prompts









		What is ChatGPT?



		ChatGPT: GPT-3 “on Steroids”?



		ChatGPT: Google “Code Red”



		ChatGPT Versus Google Search



		ChatGPT Custom Instructions



		ChatGPT on Mobile Devices and Browsers



		ChatGPT and Prompts



		GPTBot



		ChatGPT Playground









		Plugins, Code Interpreter, and Code Whisperer



		Plugins



		Advanced Data Analysis



		Advanced Data Analysis Versus Claude-2



		Code Whisperer









		Detecting Generated Text



		Concerns About ChatGPT



		Code Generation and Dangerous Topics



		ChatGPT Strengths and Weaknesses









		Sample Queries and Responses from ChatGPT



		Chatgpt and Medical Diagnosis



		Alternatives to ChatGPT



		Google Bard



		YouChat



		Pi From Inflection









		Machine Learning and Chatgpt



		What is InstructGPT?



		VizGPT and Data Visualization



		What is GPT-4?



		GPT-4 and Test Scores



		GPT-4 Parameters



		GPT-4 Fine-Tuning









		ChatGPT and GPT-4 Competitors



		Bard



		CoPilot (OpenAI/Microsoft)



		Codex (OpenAI)



		Apple GPT



		PaLM-2



		Med-PaLM M



		Claude-2









		Llama-2



		How to Download Llama-2



		Llama-2 Architecture Features



		Fine-Tuning Llama-2









		When Will GPT-5 Be Available?



		Summary









		Chapter 8: ChatGPT and Data Visualization



		Working with Charts and Graphs



		Bar Charts



		Pie Charts



		Line Graphs



		Heat Maps



		Histograms



		Box Plots



		Pareto Charts



		Radar Charts



		Treemaps



		Waterfall Charts









		Line Plots with Matplotlib



		A Pie Chart Using Matplotlib



		Box and Whisker Plots Using Matplotlib



		Time Series Visualization with Matplotlib



		Stacked Bar Charts with Matplotlib



		Donut Charts Using Matplotlib



		3D Surface Plots with Matplotlib



		Radial or Spider Charts with Matplotlib



		Matplotlib’s Contour Plots



		Stream Plots for Vector Fields



		Quiver Plots for Vector Fields



		Polar Plots



		Bar Charts with Seaborn



		Scatterplots with a Regression Line Using Seaborn



		Heat Maps for Correlation Matrices with Seaborn



		Histograms with Seaborn



		Violin Plots with Seaborn



		Pair Plots Using Seaborn



		Facet Grids with Seaborn



		Hierarchical Clustering



		Swarm Plots



		Joint Plot for Bivariate Data



		Point Plots for Factorized Views



		Seaborn’s KDE Plots for Density Estimations



		Seaborn’s Ridge Plots



		Summary









		Index











Guide





		Cover



		Title Page



		Copyright Page



		Dedication



		Contents



		Preface



		Chapter 1: Introduction to Python



		Index











Page List





		Cover



		i



		ii



		iii



		iv



		v



		vi



		vii



		viii



		ix



		x



		xi



		xii



		xiii



		xiv



		xv



		xvi



		xvii



		xviii



		1



		2



		3



		4



		5



		6



		7



		8



		9



		10



		11



		12



		13



		14



		15



		16



		17



		18



		19



		20



		21



		22



		23



		24



		25



		26



		27



		28



		29



		30



		31



		32



		33



		34



		35



		36



		37



		38



		39



		40



		41



		42



		43



		44



		45



		46



		47



		48



		49



		50



		51



		52



		53



		54



		55



		56



		57



		58



		59



		60



		61



		62



		63



		64



		65



		66



		67



		68



		69



		70



		71



		72



		73



		74



		75



		76



		77



		78



		79



		80



		81



		82



		83



		84



		85



		86



		87



		88



		89



		90



		91



		92



		93



		94



		95



		96



		97



		98



		99



		100



		101



		102



		103



		104



		105



		106



		107



		108



		109



		110



		111



		112



		113



		114



		115



		116



		117



		118



		119



		120



		121



		122



		123



		124



		125



		126



		127



		128



		129



		130



		131



		132



		133



		134



		135



		136



		137



		138



		139



		140



		141



		142



		143



		144



		145



		146



		147



		148



		149



		150



		151



		152



		153



		154



		155



		156



		157



		158



		159



		160



		161



		162



		163



		164



		165



		166



		167



		168



		169



		170



		171



		172



		173



		174



		175



		176



		177



		178



		179



		180



		181



		182



		183



		184



		185



		186



		187



		188



		189



		190



		191



		192



		193



		194



		195



		196



		197



		198



		199



		200



		201



		202



		203



		204



		205



		206



		207



		208



		209



		210



		211



		212



		213



		214



		215



		216



		217



		218



		219



		220



		221



		222



		223



		224



		225



		226



		227



		228



		229



		230



		231



		232



		233



		234



		235



		236



		237



		238



		239



		240



		241



		242



		243



		244



		245



		246



		247



		248



		249



		250



		251



		252



		253



		254



		255



		256



		257



		258



		259



		260



		261



		262



		263



		264



		265



		266



		267



		268



		269



		270



		271



		272



		273



		274



		275



		276



		277



		278



		279



		280



		281



		282



		283



		284



		285



		286



		287



		288



		289



		290



		291



		292



		293



		294



		295













OEBPS/images/logo.jpg






OEBPS/images/9781501522321.jpg
PyTHON 3
DATA ViSuALIZATION
UsING
CHATGPT / GPT-4

0. CAMPESATO

@ MLI GENERATIVE Al SERIES












