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PREFACE




WHAT IS THE PRIMARY VALUE PROPOSITION FOR THIS BOOK?


This book is designed to show readers the concepts of Python 3 programming and the art of data visualization. Chapter 1 introduces the essentials of Python, covering a vast array of topics from basic data types, loops, and functions to more advanced constructs like dictionaries, sets, and matrices. In Chapter 2, the focus shifts to NumPy and its powerful array operations, leading into the world of data visualization using prominent libraries such as Matplotlib. Chapter 6 includes Seaborn’s rich visualization tools, offering insights into datasets like Iris and Titanic. Further, the book covers other visualization tools and techniques, including SVG graphics, D3 for dynamic visualizations, and more. Chapter 7 covers information about the main features of ChatGPT and GPT-4, as well as some of their competitors. Chapter 8 contains examples of using ChatGPT in order to perform data visualization, such as charts and graphs that are based on datasets (e.g., the Titanic dataset). From foundational Python concepts to the intricacies of data visualization, this book serves as a comprehensive resource for both beginners and seasoned professionals.




THE TARGET AUDIENCE


This book is intended primarily for people who have worked with Python and are interested in learning about graphics effects with Python libraries. This book is also intended to reach an international audience of readers with highly diverse backgrounds in various age groups. Consequently, this book uses standard English rather than colloquial expressions that might be confusing to those readers. This book provides a comfortable and meaningful learning experience for the intended readers.




WHY ARE THE CODE SAMPLES PRIMARILY IN PYTHON?


Most of the code samples are short (usually less than one page and sometimes less than half a page), and if necessary, you can easily and quickly copy/paste the code into a new Jupyter notebook. For the Python code samples that reference a CSV file, you do not need any additional code in the corresponding Jupyter notebook to access the CSV file. Moreover, the code samples execute quickly, so you won’t need to avail yourself of the free GPU that is provided in Google Colaboratory.

If you do decide to use Google Colaboratory, you can easily copy/paste the Python code into a notebook, and also use the upload feature to upload existing Jupyter notebooks. Keep in mind the following point: if the Python code references a CSV file, make sure that you include the appropriate code snippet (details are available online) to access the CSV file in the corresponding Jupyter notebook in Google Colaboratory.




WHY DOES THIS BOOK INCLUDE SKLEARN MATERIAL?


First, keep in mind that the Sklearn material in this book is minimalistic because this book is not about machine learning. Second, the Sklearn material is located in Chapter 6 where you will learn about some of the Sklearn built-in datasets. If you decide to delve into machine learning, you will have already been introduced to some aspects of Sklearn.




GETTING THE MOST FROM THIS BOOK


Some programmers learn well from prose, others learn well from sample code (and lots of it), which means that there’s no single style that can be used for everyone.

Moreover, some programmers want to run the code first, see what it does, and then return to the code to delve into the details (and others use the opposite approach).

Consequently, there are various types of code samples in this book: some are short, some are long, and other code samples “build” from earlier code samples.




WHAT DO I NEED TO KNOW FOR THIS BOOK?


Current knowledge of Python 3.x is the most helpful skill. Knowledge of other programming languages (such as Java) can also be helpful because of the exposure to programming concepts and constructs. The less technical knowledge that you have, the more diligence will be required in order to understand the various topics that are covered.

As for the non-technical skills, it’s important to have a strong desire to learn about data visualization, along with the motivation and discipline to read and understand the code samples.




DO THE COMPANION FILES OBVIATE THE NEED FOR THIS BOOK?


The companion files contain all the code samples to save you time and effort from the error-prone process of manually typing code into a text file. In addition, there are situations in which you might not have easy access to the companion disc. Furthermore, the code samples in the book provide explanations that are not available on the companion files.




DOES THIS BOOK CONTAIN PRODUCTION-LEVEL CODE SAMPLES?


The primary purpose of the code samples in this book is to show you Python-based libraries for data visualization. Clarity has higher priority than writing more compact code that is more difficult to understand (and possibly more prone to bugs). If you decide to use any of the code in this book in a production website, you ought to subject that code to the same rigorous analysis as the other parts of your code base.




HOW DO I SET UP A COMMAND SHELL?


If you are a Mac user, there are three ways to do so. The first method is to use Finder to navigate to Applications > Utilities and then double click on the Utilities application. Next, if you already have a command shell available, you can launch a new command shell by typing the following command:


open /Applications/Utilities/Terminal.app


A second method for Mac users is to open a new command shell on a MacBook from a command shell that is already visible simply by clicking command+n in that command shell, and your Mac will launch another command shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.com/) that simulates bash commands, or use another toolkit such as MKS (a commercial product). Please read the online documentation that describes the download and installation process. Note that custom aliases are not automatically set if they are defined in a file other than the main start-up file (such as .bash_login).




COMPANION FILES


All the code samples and figures in this book may be obtained by writing to the publisher at info@merclearning.com.




WHAT ARE THE “NEXT STEPS” AFTER FINISHING THIS BOOK?


The answer to this question varies widely, mainly because the answer depends heavily on your objectives. If you are interested primarily in NLP, then you can learn more advanced concepts, such as attention, transformers, and the BERT-related models.

If you are primarily interested in machine learning, there are some subfields of machine learning, such as deep learning and reinforcement learning (and deep reinforcement learning) that might appeal to you. Fortunately, there are many resources available, and you can perform an Internet search for those resources. One other point: the aspects of machine learning for you to learn depend on who you are: the needs of a machine learning engineer, data scientist, manager, student or software developer are all different.

O. Campesato

December 2023







CHAPTER 1

INTRODUCTION TO PYTHON


This chapter contains an introduction to Python, with information about useful tools for installing modules, basic constructs, and how to work with some data types.

The first part of this chapter covers how to install Python, some environment variables, and how to use the interpreter. You will see code samples and also how to save code in text files that you can launch from the command line. The second part of this chapter shows you how to work with simple data types, such as numbers, fractions, and strings. The final part of this chapter discusses exceptions and how to use them in scripts.

NOTE The Python files in this book are for Python 3.x.



TOOLS FOR PYTHON


The Anaconda Python distribution available for Windows, Linux, and Mac is downloadable at http://continuum.io/downloads.

Anaconda is well-suited for modules such as numpy and scipy, and if you are a Windows user, Anaconda appears to be a better alternative.



easy_install and pip


Both easy_install and pip are easy to use when you need to install Python modules. Whenever you need to install a module (and there are many in this book), use either easy_install or pip with the following syntax:

easy_install <module-name>
pip install <module-name>


NOTE Python-based modules are easier to install, whereas modules with code written in C are usually faster but more difficult in terms of installation.




virtualenv


The virtualenv tool enables you to create isolated Python environments, and its home page is at http://www.virtualenv.org/en/latest/virtualenv.html.

virtualenv addresses the problem of preserving the correct dependencies and versions (and indirectly, permissions) for different applications. If you are a Python novice, you might not need virtualenv right now, but keep this tool in mind.




IPython


Another very good tool is IPython (which won a Jolt award), and its home page is at http://ipython.org/install.html. Two very nice features of IPython are tab expansion and “?” (textual assistance). An example of tab expansion is shown here:

python
Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec  7 2020, 12:44:01)
[Clang 12.0.0 (clang-1200.0.32.27)] on darwin
Type "help", "copyright", "credits" or "license" for more information.

IPython 0.13.2 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object', use 'object??' for extra details.

In [1]: di
%dirs   dict    dir     divmod


In the preceding session, if you type the characters di, IPython responds with the following line that contains all the functions that start with the letters di:

%dirs   dict    dir     divmod


If you enter a question mark (“?”), IPython provides textual assistance, the first part of which is here:

IPython -- An enhanced Interactive Python
=========================================

IPython offers a combination of convenient shell features,
special commands and a history mechanism for both input
(command history) and output (results caching, similar
to Mathematica). It is intended to be a fully compatible
replacement for the standard Python interpreter, while
offering vastly improved functionality and flexibility.


The next section shows you how to check whether Python is installed on your machine, and also where you can download Python.





PYTHON INSTALLATION


Before you download anything, check if you have Python already installed on your machine (which is likely if you have a MacBook or a Linux machine) by typing the following command in a command shell:

python -V


The output for the MacBook used in this book is here:

Python 3.9.1


NOTE Install Python 3.9 (or as close as possible to this version) on your machine so that you will have the same version of Python that was used to test the Python files in this book.

If you need to install Python on your machine, navigate to the Python home page and select the downloads link or navigate directly to this website:

http://www.python.org/download/

In addition, PythonWin is available for Windows, and its home page is here:

http://www.cgl.ucsf.edu/Outreach/pc204/pythonwin.html

Use any text editor that can create, edit, and save Python scripts, and save them as plain text files (do not use Microsoft Word). After you have Python installed and configured on your machine, you are ready to work with the Python scripts in this book.




SETTING THE PATH ENVIRONMENT VARIABLE (WINDOWS ONLY)


The PATH environment variable specifies a list of directories that are searched whenever you specify an executable program from the command line. The following URL has a useful guide to setting up your environment so that the Python executable is always available in every command shell:

http://www.blog.pythonlibrary.org/2011/11/24/python-101-setting-up-python-on-windows/




LAUNCHING PYTHON ON YOUR MACHINE


There are three different ways to launch Python:


	Use the Python Interactive Interpreter.

	Launch Python scripts from the command line.

	Use an IDE.



The next section shows you how to launch the Python interpreter from the command line, and later in this chapter you will learn how to launch scripts from the command line and also about IDEs.

NOTE The emphasis in this book is to launch Python scripts from the command line or to enter code in the Python interpreter.



The Python Interactive Interpreter


Launch the interactive interpreter from the command line by opening a command shell and typing the following command:

python


You will see the following prompt (or something similar):

Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec  7 2020, 12:44:01)
[Clang 12.0.0 (clang-1200.0.32.27)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>


Now type the expression 2 + 7 at the prompt:

>>> 2 + 7


Python displays the following result:

9
>>>


Press ctrl-d to exit the Python shell.

You can launch any Python script from the command line by preceding it with the word “python.” For example, if you have a script myscript.py that contains commands, launch the script as follows:

python myscript.py


As a simple illustration, suppose that the script myscript.py contains the following code:

print('Hello World from Python')
print('2 + 7 = ', 2+7)


When you launch the preceding script, you will see the following output:

Hello World from Python
2 + 7 =  9






PYTHON IDENTIFIERS


An identifier is the name of a variable, function, class, module, or other Python object, and a valid identifier conforms to the following rules:


	starts with a letter A to Z or a to z or an underscore (_)

	zero or more letters, underscores, and digits (0 to 9)



NOTE Python identifiers cannot contain characters such as @, $, and %.

Python is a case-sensitive language, so Abc and abc are different identifiers in Python. In addition, Python has the following naming conventions:


	Class names start with an uppercase letter and all other identifiers with a lowercase letter

	An initial underscore is used for private identifiers.

	Two initial underscores are used for strongly private identifiers.



A Python identifier with two initial underscores and two trailing underscore characters indicates a language-defined special name.




LINES, INDENTATION, AND MULTI-LINE COMMENTS


Unlike other programming languages (such as Java or Objective-C), Python uses indentation instead of curly braces for code blocks. Indentation must be consistent in a code block, as shown here:

if True:
    print("ABC")
    print("DEF")
else:
    print("ABC")
    print("DEF")


Multi-line statements in Python can terminate with a new line or the backslash (“\”) character, as shown here:

total = x1 + \
        x2 + \
        x3


Obviously, you can place x1, x2, and x3 on the same line, so there is no reason to use three separate lines; however, this functionality is available in case you need to add a set of variables that do not fit on a single line.

You can specify multiple statements in one line by using a semicolon (“;”) to separate each statement, as shown here:

a=10; b=5; print(a); print(a+b)


The output of the preceding code snippet is here:

10
15


NOTE The use of semi-colons and the continuation character are discouraged in Python.




QUOTATIONS AND COMMENTS IN PYTHON


Python allows single ('), double ("), and triple (''' or """) quotation marks for string literals, provided that they match at the beginning and the end of the string. You can use triple quotation marks for strings that span multiple lines. The following examples are legal Python strings:

word = 'word'
line = "This is a sentence."
para = """This is a paragraph. This paragraph contains
more than one sentence."""


A string literal that begins with the letter “r” (for “raw”) treats everything as a literal character and “escapes” the meaning of meta characters, as shown here:

a1 = r'\n'
a2 = r'\r'
a3 = r'\t'
print('a1:',a1,'a2:',a2,'a3:',a3)


The output of the preceding code block is here:

a1: \n a2: \r a3: \t


You can embed a single quotation mark in a pair of double quotation marks (and vice versa) to display a single quotation mark or double quotation marks. Another way to accomplish the same result is to precede single or double quotation marks with a backslash (“\”) character. The following code block illustrates these techniques:

b1 = "'"
b2 = '"'
b3 = '\''
b4 = "\""
print('b1:',b1,'b2:',b2)
print('b3:',b3,'b4:',b4)


The output of the preceding code block is here:

b1: ' b2: "
b3: ' b4: "


A hash sign (#) that is not inside a string literal is the character that indicates the beginning of a comment. Moreover, all characters after the # and up to the physical line end are part of the comment (and ignored by the Python interpreter). Consider the following code block:

#!/usr/bin/python
# First comment
print("Hello, Python!")  # second comment


This will produce following result:

Hello, Python!


A comment may be on the same line after a statement or expression:

name = "Tom Jones" # This is also comment


You can comment multiple lines as follows:

# This is comment one
# This is comment two
# This is comment three


A blank line in Python is a line containing only whitespace, a comment, or both.




SAVING YOUR CODE IN A MODULE


Earlier you saw how to launch the Python interpreter from the command line and then enter commands. However, everything you type in the Python interpreter is only valid for the current session: if you exit the interpreter and then launch the interpreter again, your previous definitions are no longer valid. Fortunately, Python enables you to store code in a text file, as discussed in the next section.

A module in Python is a text file that contains Python statements. In the previous section, you saw how the interpreter enables you to test code snippets whose definitions are valid for the current session. If you want to retain the code snippets and other definitions, place them in a text file so that you can execute that code outside of the interpreter.

The outermost statements in a Python program are executed from top to bottom when the module is imported for the first time, which will then set up its variables and functions.

A Python module can be run directly from the command line, as shown here:

python first.py


As an illustration, place the following two statements in a text file called first.py:

x = 3
print(x)


Now type the following command:

python first.py


The output from the preceding command is 3, which is the same as executing the preceding code from the interpreter.

When a module is run directly, the special variable __name__ is set to __main__. You will often see the following type of code in a module:

if __name__ == '__main__':
    # do something here
    print('Running directly')


The preceding code snippet enables Python to determine if a module was launched from the command line or imported into another module.




SOME STANDARD MODULES IN PYTHON


The Python Standard Library provides many modules that can simplify your own scripts. A list of the Standard Library modules is at http://www.python.org/doc/.

Some of the most important modules include cgi, math, os, pickle, random, re, socket, sys, time, and urllib.

The code samples in this book use the modules math, os, random, re, socket, sys, time, and urllib. You need to import these modules to use them in your code. For example, the following code block shows you how to import 4 standard Python modules:

import datetime
import re
import sys
import time


The code samples in this book import one or more of the preceding modules, as well as other Python modules.




THE help() AND dir() FUNCTIONS


An Internet search for Python-related topics usually returns a number of links with useful information. Alternatively, you can check the official Python documentation site: docs.python.org.

In addition, Python provides the help() and dir() functions that are accessible from the interpreter. The help() function displays documentation strings, whereas the dir() function displays defined symbols.

For example, if you type help(sys) you will see documentation for the sys module, whereas dir(sys) displays a list of the defined symbols.

Type the following command in the interpreter to display the string-related methods in Python:

>>> dir(str)


The preceding command generates the following output:

['__add__', '__class__', '__contains__', '__delattr__',
'__doc__', '__eq__', '__format__', '__ge__', '__
getattribute__', '__getitem__', '__getnewargs__', '__
getslice__', '__gt__', '__hash__', '__init__', '__le__',
'__len__', '__lt__', '__mod__', '__mul__', '__ne__',
'__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__rmod__', '__rmul__', '__setattr__', '__sizeof__',
'__str__', '__subclasshook__', '_formatter_field_name_
split', '_formatter_parser', 'capitalize', 'center',
'count', 'decode', 'encode', 'endswith', 'expandtabs',
'find', 'format', 'index', 'isalnum', 'isalpha', 'isdigit',
'islower', 'isspace', 'istitle', 'isupper', 'join',
'ljust', 'lower', 'lstrip', 'partition', 'replace',
'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit',
'rstrip', 'split', 'splitlines', 'startswith', 'strip',
'swapcase', 'title', 'translate', 'upper', 'zfill']


The preceding list gives you a consolidated “dump” of built-in functions (including some that are discussed later in this chapter). Although the max() function obviously returns the maximum value of its arguments, the purpose of other functions such as filter() or map() is not immediately apparent (unless you have used them in other programming languages). The preceding list provides a starting point for finding out more about various Python built-in functions that are not discussed in this chapter.

Note that while dir() does not list the names of built-in functions and variables, you can obtain this information from the standard module __builtin__ that is automatically imported under the name __builtins__:

>>> dir(__builtins__)


The following command shows you how to get more information about a function:

help(str.lower)


The output from the preceding command is here:

Help on method_descriptor:

lower(...)
    S.lower() -> string

    Return a copy of the string S converted to lowercase.
(END)


Check the online documentation and also experiment with help() and dir() when you need additional information about a particular function or module.




COMPILE TIME AND RUNTIME CODE CHECKING


Python performs some compile-time checking, but most checks (including type, name, and so forth) are deferred until code execution. Consequently, if your Python code references a user-defined function that does not exist, the code will compile successfully. In fact, the code will fail with an exception only when the code execution path references the non-existent function.

As a simple example, consider the following function myFunc that references the non-existent function called DoesNotExist:

def myFunc(x):
    if x == 3:
        print(DoesNotExist(x))
    else:
        print('x: ',x)


The preceding code will only fail when the myFunc function has passed the value 3, after which Python raises an error.

In Chapter 2, you will learn how to define and invoke user-defined functions, along with an explanation of the difference between local versus global variables in Python.

Now that you understand some basic concepts (such as how to use the Python interpreter) and how to launch your custom modules, the next section discusses primitive data types.




SIMPLE DATA TYPES


Python supports primitive data types, such as numbers (integers, floating point numbers, and exponential numbers), strings, and dates. Python also supports more complex data types, such as lists (or arrays), tuples, and dictionaries, all of which are discussed in Chapter 3. The next several sections discuss some of the Python primitive data types, along with code snippets that show you how to perform various operations on those data types.




WORKING WITH NUMBERS


Python provides arithmetic operations for manipulating numbers in a straightforward manner that is similar to other programming languages. The following examples involve arithmetic operations on integers:

>>> 2+2
4
>>> 4/3
1
>>> 3*8
24


The following example assigns numbers to two variables and computes their product:

>>> x = 4
>>> y = 7
>>> x * y
28


The following examples demonstrate arithmetic operations involving integers:

>>> 2+2
4
>>> 4/3
1
>>> 3*8
24


Notice that division (“/”) of two integers is actually truncation in which only the integer result is retained. The following example converts a floating point number into exponential form:

>>> fnum = 0.00012345689000007
>>> "%.14e"%fnum
'1.23456890000070e-04'


You can use the int() function and the float() function to convert strings to numbers:

word1 = "123"
word2 = "456.78"
var1 = int(word1)
var2 = float(word2)
print("var1: ",var1," var2: ",var2)


The output from the preceding code block is here:

var1:  123  var2:  456.78


Alternatively, you can use the eval() function:

word1 = "123"
word2 = "456.78"
var1 = eval(word1)
var2 = eval(word2)
print("var1: ",var1," var2: ",var2)


If you attempt to convert a string that is not a valid integer or a floating point number, Python raises an exception, so it is advisable to place your code in a try/except block.



Working with Other Bases


Numbers in Python are in base 10 (the default), but you can easily convert numbers to other bases. For example, the following code block initializes the variable x with the value 1234, and then displays that number in base 2, 8, and 16:

>>> x = 1234
>>> bin(x) '0b10011010010'
>>> oct(x) '0o2322'
>>> hex(x) '0x4d2' >>>


Use the format() function if you want to suppress the 0b, 0o, or 0x prefixes, as shown here:

>>> format(x, 'b') '10011010010'
>>> format(x, 'o') '2322'
>>> format(x, 'x') '4d2'


Negative integers are displayed with a negative sign:

>>> x = -1234
>>> format(x, 'b') '-10011010010'
>>> format(x, 'x') '-4d2'





The chr() Function


The chr() function takes a positive integer as a parameter and converts it to its corresponding alphabetic value (if one exists). The letters A through Z have decimal representation of 65 through 91 (which corresponds to hexadecimal 41 through 5b), and the lowercase letters a through z have decimal representation 97 through 122 (hexadecimal 61 through 7b).

Here is an example of using the chr() function to print uppercase A:

>>> x=chr(65)
>>> x
'A'


The following code block prints the ASCII values for a range of integers:

result = ""
for x in range(65,91):
  print(x, chr(x))
  result = result+chr(x)+' '
print("result: ",result)


NOTE Python 2 uses ASCII strings whereas Python 3 uses Unicode.

You can represent a range of characters with the following line:

for x in range(65,91):


However, the following equivalent code snippet is more intuitive:

for x in range(ord('A'), ord('Z')):


If you want to display the result for lowercase letters, change the preceding range from (65,91) to either of the following statements:

for x in range(65,91):
for x in range(ord('a'), ord('z')):





The round() Function


The round() function enables you to round decimal values to the nearest precision:

>>> round(1.23, 1)
1.2
>>> round(-3.42,1)
-3.4





Formatting Numbers


Python allows you to specify the number of decimal places of precision to use when printing decimal numbers, as shown here:

>>> x = 1.23456
>>> format(x, '0.2f')
'1.23'
>>> format(x, '0.3f')
'1.235'
>>> 'value is {:0.3f}'.format(x) 'value is 1.235'
>>> from decimal import Decimal
>>> a = Decimal('4.2')
>>> b = Decimal('2.1')
>>> a + b
Decimal('6.3')
>>> print(a + b)
6.3
>>> (a + b) == Decimal('6.3')
True
>>> x = 1234.56789
>>> # Two decimal places of accuracy
>>> format(x, '0.2f')
'1234.57'
>>> # Right justified in 10 chars, one-digit accuracy
>>> format(x, '>10.1f')
' 1234.6'
>>> # Left justified
>>> format(x, '<10.1f') '1234.6 '
>>> # Centered
>>> format(x, '^10.1f') ' 1234.6 '
>>> # Inclusion of thousands separator
>>> format(x, ',')
'1,234.56789'
>>> format(x, '0,.1f')
'1,234.6'






WORKING WITH FRACTIONS


Python supports the Fraction() function (defined in the fractions module), which accepts two integers that represent the numerator and the denominator (which must be non-zero) of a fraction. Several examples of defining and manipulating fractions are shown here:

>>> from fractions import Fraction
>>> a = Fraction(5, 4)
>>> b = Fraction(7, 16)
>>> print(a + b)
27/16
>>> print(a * b) 35/64
>>> # Getting numerator/denominator
>>> c = a * b
>>> c.numerator
35
>>> c.denominator 64
>>> # Converting to a float >>> float(c)
0.546875
>>> # Limiting the denominator of a value
>>> print(c.limit_denominator(8))
4
>>> # Converting a float to a fraction >>> x = 3.75
>>> y = Fraction(*x.as_integer_ratio())
>>> y
Fraction(15, 4)


Before delving into code samples that work with strings, the next section briefly discusses Unicode and UTF-8, both of which are character encodings.




UNICODE AND UTF-8


A Unicode string consists of a sequence of numbers that are between 0 and 0x10ffff, where each number represents a group of bytes. An encoding is the manner in which a Unicode string is translated into a sequence of bytes. Among the various encodings, UTF-8 (“Unicode Transformation Format”) is perhaps the most common, and it is also the default encoding for many systems. The digit 8 in UTF-8 indicates that the encoding uses 8-bit numbers, whereas UTF-16 uses 16-bit numbers (but this encoding is less common).

The ASCII character set is a subset of UTF-8, so a valid ASCII string can be read as a UTF-8 string without any re-encoding required. In addition, a Unicode string can be converted into a UTF-8 string.




WORKING WITH UNICODE


Python supports Unicode, which means that you can render characters in different languages. Unicode data can be stored and manipulated in the same way as strings. Create a Unicode string by prepending the letter u, as shown here:

>>> u'Hello from Python!'
u'Hello from Python!'


Special characters can be included in a string by specifying their Unicode value. For example, the following Unicode string embeds a space (which has the Unicode value 0x0020) in a string:

>>> u'Hello\u0020from Python!'
u'Hello from Python!'


Listing 1.1 displays the content of unicode1.py that illustrates how to display a string of characters in Japanese and another string of characters in Chinese (Mandarin).

LISTING 1.1: unicode1.py

chinese1 = u'\u5c07\u63a2\u8a0e HTML5 \u53ca\u5176\u4ed6'
hiragana = u'D3 \u306F \u304B\u3063\u3053\u3043\u3043 \u3067\u3059!'

print('Chinese:',chinese1)
print('Hiragana:',hiragana)


The output of Listing 1.2 is here:

Chinese: 將探討 HTML5 及其他
Hiragana: D3 は かっこぃぃ です!


The next portion of this chapter shows you how to “slice and dice” text strings with built-in Python functions.




WORKING WITH STRINGS


You can concatenate two strings using the “+” operator. The following example prints a string and then concatenates two single-letter strings:

>>> 'abc'
'abc'
>>> 'a' + 'b'
'ab'


You can use “+” or “*” to concatenate identical strings, as shown here:

>>> 'a' + 'a' + 'a'
'aaa'
>>> 'a' * 3
'aaa'


You can assign strings to variables and print them using the print() command:

>>> print('abc')
abc
>>> x = 'abc'
>>> print(x)
abc
>>> y = 'def'
>>> print(x + y)
abcdef


You can “unpack” the letters of a string and assign them to variables, as shown here:

>>> str = "World"
>>> x1,x2,x3,x4,x5 = str
>>> x1
'W'
>>> x2
'o'
>>> x3
'r'
>>> x4
'l'
>>> x5
'd'


The preceding code snippets show you how easy it is to extract the letters in a text string, and in Chapter 3 you will learn how to “unpack” other data structures.

You can extract substrings of a string as shown in the following examples:

>>> x = "abcdef"
>>> x[0]
'a'
>>> x[-1]
'f'
>>> x[1:3]
'bc'
>>> x[0:2] + x[5:]
'abf'


However, you will cause an error if you attempt to “subtract” two strings:

>>> 'a' - 'b'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'str' and 'str'


The try/except construct enables you to handle the preceding type of exception gracefully.



Comparing Strings


You can use the methods lower() and upper() to convert a string to lowercase and uppercase, respectively, as shown here:

>>> 'Python'.lower()
'python'
>>> 'Python'.upper()
'PYTHON'
>>>


The methods lower() and upper() are useful for performing a case-insensitive comparison of two ASCII strings. Listing 1.2 displays the content of compare.py that uses the lower() function to compare two ASCII strings.

LISTING 1.2: compare.py
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