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PREFACE




WHAT IS THE PRIMARY VALUE PROPOSITION FOR THIS BOOK?


This book contains a fast-paced introduction to relevant information about Python-based data visualization. You will learn how to generate graphics using Pandas, Matplotlib, and Seaborn. In addition, an appendix contains SVG-based and D3-based graphics effects, along with links for many additional code samples.




THE TARGET AUDIENCE


This book is intended primarily for those who have worked with Python and are interested in learning about graphics effects with Python libraries. It is also intended to reach an international audience of readers with highly diverse backgrounds in various age groups. Consequently, the book uses standard English rather than colloquial expressions that might be confusing to those readers. It provides a comfortable and meaningful learning experience for the intended readers.




WHAT WILL I LEARN?


The first chapter contains a quick tour of basic Python 3, followed by a chapter that introduces you to NumPy. The third and fourth chapters introduce you to Pandas as well as Pandas with JSON data. MySQL and SQL.

The fifth chapter delves into data visualization with Matplotlib and also working with SweetViz and Skimpy. The final chapter of this book shows you how to create graphics effects with Seaborn, and an example of a rendering graphics effects in Bokeh. In addition, an appendix is included with graphics effects based on SVG and D3.




WHY ARE THE CODE SAMPLES PRIMARILY IN PYTHON?


Most of the code samples are short (usually less than one page and sometimes less than half a page), and if need be, you can easily and quickly copy/paste the code into a new Jupyter notebook. For the Python code samples that reference a CSV file, you do not need any additional code in the corresponding Jupyter notebook to access the CSV file. Moreover, the code samples execute quickly, so you won’t need to avail yourself of the free GPU that is provided in Google Colaboratory.

If you do decide to use Google Colaboratory, you can easily copy/paste the Python code into a notebook, and also use the upload feature to upload existing Jupyter notebooks. Keep in mind the following point: if the Python code references a CSV file, make sure that you include the appropriate code snippet (details are available online) to access the CSV file in the corresponding Jupyter notebook in Google Colaboratory.




WHY DOES THIS BOOK INCLUDE SKLEARN MATERIAL?


First, keep in mind that the Sklearn material in this book is minimalistic, because it is not about machine learning. Second, the Sklearn material is located in chapter 6 where you will learn about some of the Sklearn built-in datasets. If you decide to study machine learning, you will have already been introduced to some aspects of Sklearn.




GETTING THE MOST FROM THIS BOOK


Some programmers learn well from prose, others learn well from sample code (and lots of it), which means that there’s no single style that can be used for everyone.

Moreover, some programmers want to run the code first, see what it does, and then return to the code to delve into the details (and others use the opposite approach).

Consequently, there are various types of code samples in this book: some are short, some are long, and other code samples “build” from earlier code samples.




WHAT DO I NEED TO KNOW?


Current knowledge of Python 3.x is the most helpful skill. Knowledge of other programming languages (such as Java) can also be helpful because of the exposure to programming concepts and constructs. The less technical knowledge that you have, the more diligence will be required in order to understand the various topics that are covered.

As for the non-technical skills, it’s very important to have a strong desire to learn about data visualization, along with the motivation and discipline to read and understand the code samples.




DON’T THE COMPANION FILES OBVIATE THE NEED FOR THIS BOOK?


The companion files contain all the code samples to save you time and effort from the error-prone process of manually typing code into a text file. In addition, there are situations in which you might not have easy access to these files. Furthermore, the code samples in the book provide explanations that are not available in the companion files.




DOES THIS BOOK CONTAIN PRODUCTION-LEVEL CODE SAMPLES?


The primary purpose of the code samples in this book is to show you Python-based libraries for data visualization. Clarity has higher priority than writing more compact code that is more difficult to understand (and possibly more prone to bugs). If you decide to use any of the code in this book in a production website, you ought to subject that code to the same rigorous analysis as the other parts of your code base.




HOW DO I SET UP A COMMAND SHELL?


If you are a Mac user, there are three ways to do so. The first method is to use Finder to navigate to Applications > Utilities and then double click on the Utilities application. Next, if you already have a command shell available, you can launch a new command shell by typing the following command:


open /Applications/Utilities/Terminal.app


A second method for Mac users is to open a new command shell on a Macbook from a command shell that is already visible simply by clicking command+n in that command shell, and your Mac will launch another command shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.com/) that simulates bash commands, or use another toolkit such as MKS (a commercial product). Please read the online documentation that describes the download and installation process. Note that custom aliases are not automatically set if they are defined in a file other than the main start-up file (such as .bash_login).




COMPANION FILES


All the code samples and figures in this book may be obtained by writing to the publisher at info@merclearning.com.




WHAT ARE THE “NEXT STEPS” AFTER FINISHING THIS BOOK?


The answer to this question varies widely, mainly because the answer depends heavily on your objectives. If you are interested primarily in NLP, then you can learn more advanced concepts, such as attention, transformers, and the BERT-related models.

If you are primarily interested in machine learning, there are some subfields of machine learning, such as deep learning and reinforcement learning (and deep reinforcement learning) that might appeal to you. Fortunately, there are many resources available, and you can perform an Internet search for those resources. One other point: the aspects of machine learning for you to learn depend on who you are: the needs of a machine learning engineer, data scientist, manager, student or software developer are all different.

Oswald Campesato

September 2023






CHAPTER 1

INTRODUCTION TO PYTHON 3


This chapter provides an introduction to basic features of Python, including examples of working with Python strings, arrays, and dictionaries. Please keep in mind that this chapter does not contain details about the Python interpreter: you can find that information online in various tutorials.

You will also learn about useful tools for installing Python modules, basic Python constructs, and how to work with some data types in Python.

The first part of this chapter shows you how to work with simple data types, such as numbers, Fractions, and strings. The third part of this chapter discusses exceptions and how to use them in Python scripts.

The second part of this chapter introduces you to various ways to perform conditional logic in Python, as well as control structures and user-defined functions in Python. Virtually every Python program that performs useful calculations requires some type of conditional logic or control structure (or both). Although the syntax for these Python features is slightly different from other languages, the functionality will be familiar to you.

The third part of this chapter contains examples that involve nested loops and user-defined Python functions. The remaining portion of the chapter discusses tuples, sets, and dictionaries.

NOTE The Python scripts in this book are for Python 3.x.



SOME STANDARD MODULES IN PYTHON


The Python Standard Library provides many modules that can simplify your own Python scripts. A list of the Standard Library modules is here:

http://www.python.org/doc/

Some of the most important Python modules include cgi, math, os, pickle, random, re, socket, sys, time, and urllib.

The code samples in this book use the modules math, os, random, and re. You need to import these modules in order to use them in your code. For example, the following code block shows you how to import standard Python modules:

import re
import sys
import time


The code samples in this book import one or more of the preceding modules, as well as other Python modules. The next section discusses primitive data types in Python.




SIMPLE DATA TYPES IN PYTHON


Python supports primitive data types, such as numbers (integers, floating point numbers, and exponential numbers), strings, and dates. Python also supports more complex data types, such as lists (or arrays), tuples, and dictionaries, all of which are discussed later in this chapter. The next several sections discuss some of the Python primitive data types, along with code snippets that show you how to perform various operations on those data types.




WORKING WITH NUMBERS


Python provides arithmetic operations for manipulating numbers a straightforward manner that is similar to other programming languages. The following examples involve arithmetic operations on integers:

>>> 2+2
4
>>> 4/3
1
>>> 3*8
24


The following example assigns numbers to two variables and computes their product:

>>> x = 4
>>> y = 7
>>> x * y
28


The following examples demonstrate arithmetic operations involving integers:

>>> 2+2
4
>>> 4/3
1
>>> 3*8
24


Notice that division (“/”) of two integers is actually truncation in which only the integer result is retained. The following example converts a floating point number into exponential form:

>>> fnum = 0.00012345689000007
>>> "%.14e"%fnum
'1.23456890000070e-04'


You can use the int() function and the float() function to convert strings to numbers:

word1 = "123"
word2 = "456.78"
var1 = int(word1)
var2 = float(word2)
print("var1: ",var1," var2: ",var2)


The output from the preceding code block is here:

var1:  123  var2:  456.78


Alternatively, you can use the eval() function:

word1 = "123"
word2 = "456.78"
var1 = eval(word1)
var2 = eval(word2)
print("var1: ",var1," var2: ",var2)


If you attempt to convert a string that is not a valid integer or a floating point number, Python raises an exception, so it’s advisable to place your code in a try/except block (discussed later in this chapter).



Working With Other Bases


Numbers in Python are in base 10 (the default), but you can easily convert numbers to other bases. For example, the following code block initializes the variable x with the value 1234, and then displays that number in base 2, 8,  and 16, respectively:

>>> x = 1234 
>>> bin(x) '0b10011010010'
>>> oct(x) '0o2322'
>>> hex(x) '0x4d2' >>>


Use the format() function if you want to suppress the 0b, 0o, or 0x prefixes, as shown here:

>>> format(x, 'b') '10011010010'
>>> format(x, 'o') '2322'
>>> format(x, 'x') '4d2'


Negative integers are displayed with a negative sign:

>>> x = -1234
>>> format(x, 'b') '-10011010010'
>>> format(x, 'x') '-4d2'





The chr() Function


The Python chr() function takes a positive integer as a parameter and converts it to its corresponding alphabetic value (if one exists). The letters A through Z have decimal representation of 65 through 91 (which corresponds to hexadecimal 41 through 5b), and the lowercase letters a through z have decimal representation 97 through 122 (hexadecimal 61 through 7b).

Here is an example of using the chr() function to print uppercase A:

>>> x=chr(65)
>>> x
'A'


The following code block prints the ASCII values for a range of integers:

result = ""
for x in range(65,91):
  print(x, chr(x))
  result = result+chr(x)+' '
print("result: ",result)


NOTE Python 2 uses ASCII strings whereas Python 3 uses UTF-8.

You can represent a range of characters with the following line:

for x in range(65,91):


However, the following equivalent code snippet is more intuitive:

for x in range(ord('A'), ord('Z')):


If you want to display the result for lowercase letters, change the preceding range from (65,91) to either of the following statements:

for x in range(65,91):
for x in range(ord('a'), ord('z')):





The round() Function in Python


The Python round() function enables you to round decimal values to the nearest precision:

>>> round(1.23, 1) 
1.2
>>> round(-3.42,1)
-3.4


Before delving into Python code samples that work with strings, the next section briefly discusses Unicode and UTF-8, both of which are character encodings.





UNICODE AND UTF-8


A Unicode string consists of a sequence of numbers that are between 0 and 0x10ffff, where each number represents a group of bytes. An encoding is the manner in which a Unicode string is translated into a sequence of bytes. Among the various encodings, UTF-8 (“Unicode Transformation Format”) is perhaps the most common, and it’s also the default encoding for many systems. The digit 8 in UTF-8 indicates that the encoding uses 8-bit numbers, whereas UTF-16 uses 16-bit numbers (but this encoding is less common).

The ASCII character set is a subset of UTF-8, so a valid ASCII string can be read as a UTF-8 string without any re-encoding required. In addition, a Unicode string can be converted into a UTF-8 string.




WORKING WITH UNICODE


Python supports Unicode, which means that you can render characters in different languages. Unicode data can be stored and manipulated in the same way as strings. Create a Unicode string by prepending the letter ‘u’, as shown here:

>>> u'Hello from Python!'
u'Hello from Python!'


Special characters can be included in a string by specifying their Unicode value. For example, the following Unicode string embeds a space (which has the Unicode value 0x0020) in a string:

>>> u'Hello\u0020from Python!'
u'Hello from Python!'


Listing 1.1 displays the contents of Unicode1.py that illustrates how to display a string of characters in Japanese and another string of characters in Chinese (Mandarin).

LISTING 1.1 Unicode1.py

chinese1 = u'\u5c07\u63a2\u8a0e HTML5 \u53ca\u5176\u4ed6'
hiragana = u'D3 \u306F \u304B\u3063\u3053\u3043\u3043 \u3067\u3059!'

print('Chinese:',chinese1)
print('Hiragana:',hiragana)


The output of Listing 1.1 is here:

Chinese: 將探討 HTML5 及其他
Hiragana: D3 は かっこぃぃ です!


The next portion of this chapter shows you how to “slice and dice” text strings with built-in Python functions.




WORKING WITH STRINGS


Literal strings in Python 3 are Unicode by default. You can concatenate two strings using the ‘+’ operator. The following example prints a string and then concatenates two single-letter strings:

>>> 'abc'
'abc'
>>> 'a' + 'b'
'ab'


You can use ‘+’ or ‘*’ to concatenate identical strings, as shown here:

>>> 'a' + 'a' + 'a'
'aaa'
>>> 'a' * 3
'aaa'


You can assign strings to variables and print them using the print() statement:

>>> print('abc')
abc
>>> x = 'abc'
>>> print(x)
abc
>>> y = 'def'
>>> print(x + y)
abcdef


You can “unpack” the letters of a string and assign them to variables, as shown here:

>>> str = "World"
>>> x1,x2,x3,x4,x5 = str
>>> x1
'W'
>>> x2
'o'
>>> x3
'r'
>>> x4
'l'
>>> x5
'd'


The preceding code snippets shows you how easy it is to extract the letters in a text string. You can also extract substrings of a string as shown in the following examples:

>>> x = "abcdef"
>>> x[0]
'a'
>>> x[-1]
'f'
>>> x[1:3]
'bc'
>>> x[0:2] + x[5:]
'abf'


However, you will cause an error if you attempt to subtract two strings, as you probably expect:

>>> 'a' - 'b'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'str' and 'str'


The try/except construct in Python (discussed later in this chapter) enables you to handle the preceding type of exception more gracefully.



Comparing Strings


You can use the methods lower() and upper() to convert a string to lowercase and uppercase, respectively, as shown here:

>>> 'Python'.lower()
'python'
>>> 'Python'.upper()
'PYTHON'
>>> 


The methods lower() and upper() are useful for performing a case insensitive comparison of two ASCII strings. Listing 1.2 displays the contents of Compare.py that uses the lower() function in order to compare two ASCII strings.

LISTING 1.2 Compare.py

x = 'Abc'
y = 'abc'

if(x == y):
  print('x and y: identical')
elif (x.lower() == y.lower()):
  print('x and y: case insensitive match')
else:
  print('x and y: different')


Since x contains mixed case letters and y contains lowercase letters, Listing 1.2 displays the following output:

x and y: different 





Uninitialized Variables and the Value None in Python


Python distinguishes between an uninitialized variable and the value None. The former is a variable that has not been assigned a value, whereas the value None is a value that indicates “no value.” Collections and methods often return the value None, and you can test for the value None in conditional logic (shown later in this chapter).

The next portion of this chapter shows you how to “slice and dice” text strings with built-in Python functions.





SLICING AND SPLICING STRINGS


Python enables you to extract substrings of a string (called “slicing”) using array notation. Slice notation is start:stop:step, where the start, stop, and step values are integers that specify the start value, end value, and the increment value. The interesting part about slicing in Python is that you can use the value -1, which operates from the right-side instead of the left-side of a string. Some examples of slicing a string are here:

text1 = "this is a string"
print('First 7 characters:',text1[0:7])
print('Characters 2-4:',text1[2:4])
print('Right-most character:',text1[-1])
print('Right-most 2 characters:',text1[-3:-1])


The output from the preceding code block is here:

First 7 characters: this is
Characters 2-4: is
Right-most character: g
Right-most 2 characters: in


Later in this chapter you will see how to insert a string in the middle of another string.



Testing for Digits and Alphabetic Characters


Python enables you to examine each character in a string and then test whether that character is a bona fide digit or an alphabetic character. This section provides a precursor to regular expressions that are discussed in Chapter 8.

Listing 1.3 displays the contents of CharTypes.py that illustrates how to determine if a string contains digits or characters. In case you are unfamiliar with the conditional “if” statement in Listing 1.3, more detailed information is available later in this chapter.

LISTING 1.3 CharTypes.py

str1 = "4"
str2 = "4234"
str3 = "b"
str4 = "abc"
str5 = "a1b2c3"

if(str1.isdigit()):
  print("this is a digit:",str1)

if(str2.isdigit()):
  print("this is a digit:",str2)

if(str3.isalpha()):
  print("this is alphabetic:",str3)

if(str4.isalpha()):
  print("this is alphabetic:",str4)

if(not str5.isalpha()):
  print("this is not pure alphabetic:",str5)
print("capitalized first letter:",str5.title())


Listing 1.3 initializes some variables, followed by two conditional tests that check whether or not str1 and str2 are digits using the isdigit() function. The next portion of Listing 1.3 checks if str3, str4, and str5 are alphabetic strings using the isalpha() function. The output of Listing 1.3 is here:

this is a digit: 4
this is a digit: 4234
this is alphabetic: b
this is alphabetic: abc
this is not pure alphabetic: a1b2c3
capitalized first letter: A1B2C3






SEARCH AND REPLACE A STRING IN OTHER STRINGS


Python provides methods for searching and also for replacing a string in a second text string. Listing 1.4 displays the contents of FindPos1.py that shows you how to use the find() function to search for the occurrence of one string in another string.

LISTING 1.4 FindPos1.py

item1 = 'abc'
item2 = 'Abc'
text = 'This is a text string with abc'

pos1 = text.find(item1)
pos2 = text.find(item2)

print('pos1=',pos1)
print('pos2=',pos2)


Listing 1.4 initializes the variables item1, item2, and text, and then searches for the index of the contents of item1 and item2 in the string text. The Python find() function returns the column number where the first successful match occurs; otherwise, the find() function returns a -1 if a match is unsuccessful. The output from launching Listing 1.4 is here:

pos1= 27
pos2= -1


In addition to the find() method, you can use the in operator when you want to test for the presence of an element, as shown here:

>>> lst = [1,2,3]
>>> 1 in lst
True


Listing 1.5 displays the contents of Replace1.py that shows you how to replace one string with another string.

LISTING 1.5: Replace1.py

text = 'This is a text string with abc'
print('text:',text)
text = text.replace('is a', 'was a')
print('text:',text)


Listing 1.5 starts by initializing the variable text and then printing its contents. The next portion of Listing 1.5 replaces the occurrence of “is a” with “was a” in the string text, and then prints the modified string. The output from launching Listing 1.5 is here:

text: This is a text string with abc
text: This was a text string with abc





PRECEDENCE OF OPERATORS IN PYTHON


When you have an expression involving numbers, you might remember that multiplication (“*”) and division (“/”) have higher precedence than addition (“+”) or subtraction (“-”). Exponentiation has even higher precedence than these four arithmetic operators.

However, instead of relying on precedence rules, it’s simpler (as well as safer) to use parentheses. For example, (x/y)+10 is clearer than x/y+10, even though they are equivalent expressions.

As another example, the following two arithmetic expressions are the equivalent, but the second is less error prone than the first:

x/y+3*z/8+x*y/z-3*x
(x/y)+(3*z)/8+(x*y)/z-(3*x)


In any case, the following website contains precedence rules for operators in Python:

http://www.mathcs.emory.edu/~valerie/courses/fall10/155/resources/op_precedence.html




PYTHON RESERVED WORDS


Every programming language has a set of reserved words, which is a set of words that cannot be used as identifiers, and Python is no exception. The Python reserved words are: and, exec, not, assert, finally, or, break, for, pass, class, from, print, continue, global, raise, def, if, return, del, import, try, elif, in, while, else, is, with, except, lambda, and yield.

If you inadvertently use a reserved word as a variable, you will see an “invalid syntax” error message instead of a “reserved word” error message. For example, suppose you create a Python script test1.py with the following code:

break = 2
print('break =', break)


If you run the preceding Python code you will see the following output:

  File "test1.py", line 2
    break = 2
          ^
SyntaxError: invalid syntax


However, a quick inspection of the Python code reveals the fact that you are attempting to use the reserved word break as a variable.




WORKING WITH LOOPS IN PYTHON


Python supports for loops, while loops, and range() statements. The following subsections illustrate how you can use each of these constructs.



Python for  Loops


Python supports the for loop whose syntax is slightly different from other languages (such as JavaScript and Java). The following code block shows you how to use a for loop in Python in order to iterate through the elements in a list:

>>> x = ['a', 'b', 'c']
>>> for w in x:
...   print(w)
... 
a
b
c


The preceding code snippet prints three letters on three separate lines. You can force the output to be displayed on the same line (which will “wrap” if you specify a large enough number of characters) by appending a comma “,” in the print() statement, as shown here:

>>> x = ['a', 'b', 'c']
>>> for w in x:
...   print(w, end=' ')
... 
a b c


You can use this type of code when you want to display the contents of a text file in a single line instead of multiple lines.

Python also provides the built-in reversed() function that reverses the direction of the loop, as shown here:

>>> a = [1, 2, 3, 4, 5]
>>> for x in reversed(a): 
... print(x)
5
4 
3 
2 
1


Note that reversed iteration only works if the size of the current object can be determined or if the object implements a __reversed__() special method.




Numeric Exponents in Python


Listing 1.6 displays the contents of Nth_exponent.py that illustrates how to calculate intermediate powers of a set of integers.

LISTING 1.6: Nth_exponent.py

maxPower = 4
maxCount = 4

def pwr(num):
  prod = 1
  for n in range(1,maxPower+1):
    prod = prod*num
    print(num,'to the power',n, 'equals',prod)
  print('-----------')

for num in range(1,maxCount+1):
    pwr(num)


Listing 1.6 contains a function called pwr() that accepts a numeric value. This function contains a loop that prints the value of that number raised to the power n, where n ranges between 1 and maxPower+1.

The second part of Listing 1.6 contains a for loop that invokes the function pwr() with the numbers between 1 and maxPower+1. The output from Listing 1.16 is here:

1 to the power 1 equals 1
1 to the power 2 equals 1
1 to the power 3 equals 1
1 to the power 4 equals 1
-----------
2 to the power 1 equals 2
2 to the power 2 equals 4
2 to the power 3 equals 8
2 to the power 4 equals 16
-----------
3 to the power 1 equals 3
3 to the power 2 equals 9
3 to the power 3 equals 27
3 to the power 4 equals 81
-----------
4 to the power 1 equals 4
4 to the power 2 equals 16
4 to the power 3 equals 64
4 to the power 4 equals 256
-----------






NESTED LOOPS


Listing 1.7 displays the contents of Triangular1.py that illustrates how to print a row of consecutive integers (starting from 1), where the length of each row is one greater than the previous row.

LISTING 1.7: Triangular1.py

max = 8
for x in range(1,max+1):
  for y in range(1,x+1):
    print(y, '', end='')
  print()


Listing 1.7 initializes the variable max with the value 8, followed by an outer for loop whose loop variable x ranges from 1 to max+1. The inner loop has a loop variable y that ranges from 1 to x+1, and the inner loop prints the value of y. The output of Listing 1.7 is here:

1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4 5 6
1 2 3 4 5 6 7
1 2 3 4 5 6 7 8





THE split() FUNCTION WITH FOR  LOOPS


Python supports various useful string-related functions, including the split() function and the join() function. The split() function is useful when you want to tokenize (“split”) a line of text into words and then use a for loop to iterate through those words and process them accordingly.

The join() function does the opposite of split(): it “joins” two or more words into a single line. You can easily remove extra spaces in a sentence by using the split() function and then invoking the join() function, thereby creating a line of text with one white space between any two words.




USING THE split() FUNCTION TO COMPARE WORDS


Listing 1.8 displays the contents of Compare2.py that illustrates how to use the split function to compare each word in a text string with another word.

LISTING 1.8: Compare2.py

x = 'This is a string that contains abc and Abc'
y = 'abc'
identical = 0
casematch = 0

for w in x.split():
  if(w == y):
    identical = identical + 1
  elif (w.lower() == y.lower()):
    casematch = casematch + 1

if(identical > 0):
 print('found identical matches:', identical)

if(casematch > 0):
 print('found case matches:', casematch)

if(casematch == 0 and identical == 0):
 print('no matches found')


Listing 1.8 uses the split() function in order to compare each word in the string x with the word abc. If there is an exact match, the variable identical is incremented. If a match does not occur, a case-insensitive match of the current word is performed with the string abc, and the variable casematch is incremented if the match is successful. The output from Listing 1.8 is here:

found identical matches: 1
found case matches: 1





PYTHON while LOOPS
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