

[image: Cover: Python 3 and Data Visualization]

PYTHON 3
AND
DATA VISUALIZATION

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and companion files (the “Work”), you agree that this license grants permission to use the contents contained herein, including the disc, but does not give you the right of ownership to any of the textual content in the book / disc or ownership to any of the information or products contained in it. This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone involved in the creation, writing, or production of the companion disc, accompanying algorithms, code, or computer programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to ensure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs. The Work is sold “as is” without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book and/or disc, and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” vary from state to state, and might not apply to the purchaser of this product.

Companion files for this title are available by writing to the publisher at info@merclearning.com.

PYTHON 3
AND
DATA VISUALIZATION

Oswald Campesato

[image: Images]

MERCURY LEARNING AND INFORMATION

Dulles, Virginia

Boston, Massachusetts

New Delhi

Copyright ©2024 by MERCURY LEARNING AND INFORMATION. An Imprint of DeGruyter Inc. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION

121 High Street, 3rd Floor

Boston, MA 02110

info@merclearning.com

www.merclearning.com

800-232-0223

O. Campesato. Python 3 and Data Visualization.

ISBN: 978-1-68392-946-8

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2023944271

232425321 This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors. Companion files (figures and code listings) for this title are available by contacting info@merclearning.com. The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the disc, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.

I’d like to dedicate this book to my parents
– may this bring joy and happiness into their lives.

CONTENTS

Preface

Chapter 1: Introduction to Python 3

Some Standard Modules in Python

Simple Data Types in Python

Working With Numbers

Working With Other Bases

The chr() Function

The round() Function in Python

Unicode and UTF-8

Working With Unicode

Working With Strings

Comparing Strings

Uninitialized Variables and the Value None in Python

Slicing and Splicing Strings

Testing for Digits and Alphabetic Characters

Search and Replace a String in Other Strings

Precedence of Operators in Python

Python Reserved Words

Working With Loops in Python

Python for Loops

Numeric Exponents in Python

Nested Loops

The split() Function With for Loops

Using the split() Function to Compare Words

Python while Loops

Conditional Logic in Python

The break/continue/pass Statements

Comparison and Boolean Operators

The in/not in/is/is not Comparison Operators

The and, or, and not Boolean Operators

Local and Global Variables

Scope of Variables

Pass by Reference versus Value

Arguments and Parameters

User-Defined Functions in Python

Specifying Default Values in a Function

Returning Multiple Values From a Function

Lambda Expressions

Working With Lists

Lists and Basic Operations

Lists and Arithmetic Operations

Lists and Filter-Related Operations

The join(), range(), and split() Functions

Arrays and the append() Function

Other List-Related Functions

Working With List Comprehensions

Working With Vectors

Working With Matrices

Queues

Tuples (Immutable Lists)

Sets

Dictionaries

Creating a Dictionary

Displaying the Contents of a Dictionary

Checking for Keys in a Dictionary

Deleting Keys From a Dictionary

Iterating Through a Dictionary

Interpolating Data From a Dictionary

Dictionary Functions and Methods

Other Sequence Types in Python

Mutable and Immutable Types in Python

Summary

Chapter 2: NumPy and Data Visualization

What Is NumPy?

Useful NumPy Features

What Are NumPy Arrays?

Working With Loops

Appending Elements to Arrays (1)

Appending Elements to Arrays (2)

Multiplying Lists and Arrays

Doubling the Elements in a List

Lists and Exponents

Arrays and Exponents

Math Operations and Arrays

Working With “–1” Subranges With Vectors

Working With “–1” Subranges With Arrays

Other Useful NumPy Methods

Arrays and Vector Operations

NumPy and Dot Products (1)

NumPy and Dot Products (2)

NumPy and the Length of Vectors

NumPy and Other Operations

NumPy and the reshape() Method

Calculating the Mean and Standard Deviation

Code Sample With Mean and Standard Deviation

Trimmed Mean and Weighted Mean

Working With Lines in the Plane (Optional)

Plotting Randomized Points With NumPy and Matplotlib

Plotting a Quadratic With NumPy and Matplotlib

What Is Linear Regression?

What Is Multivariate Analysis?

What About Nonlinear Datasets?

The MSE (Mean Squared Error) Formula

Other Error Types

Nonlinear Least Squares

Calculating the MSE Manually

Find the Best-Fitting Line in NumPy

Calculating MSE by Successive Approximation (1)

Calculating MSE by Successive Approximation (2)

Google Colaboratory

Uploading CSV Files in Google Colaboratory

Summary

Chapter 3: Pandas and Data Visualization

What Is Pandas?

Pandas DataFrames

Dataframes and Data Cleaning Tasks

A Pandas DataFrame Example

Describing a Pandas DataFrame

Pandas Boolean DataFrames

Transposing a Pandas DataFrame

Pandas DataFrames and Random Numbers

Converting Categorical Data to Numeric Data

Matching and Splitting Strings in Pandas

Merging and Splitting Columns in Pandas

Combining Pandas DataFrames

Data Manipulation With Pandas DataFrames

Data Manipulation With Pandas DataFrames (2)

Data Manipulation With Pandas DataFrames (3)

Pandas DataFrames and CSV Files

Pandas DataFrames and Excel Spreadsheets

Select, Add, and Delete Columns in DataFrames

Handling Outliers in Pandas

Pandas DataFrames and Scatterplots

Pandas DataFrames and Simple Statistics

Finding Duplicate Rows in Pandas

Finding Missing Values in Pandas

Sorting DataFrames in Pandas

Working With groupby() in Pandas

Aggregate Operations With the titanic.csv Dataset

Working with apply() and applymap() in Pandas

Useful One-Line Commands in Pandas

What is Texthero?

Data Visualization in Pandas

Summary

Chapter 4: Pandas and SQL

Pandas and Data Visualization

Pandas and Bar Charts

Pandas and Horizontally Stacked Bar Charts

Pandas and Vertically Stacked Bar Charts

Pandas and Nonstacked Area Charts

Pandas and Stacked Area Charts

What Is Fugue?

MySQL, SQLAlchemy, and Pandas

What Is SQLAlchemy?

Read MySQL Data via SQLAlchemy

Export SQL Data From Pandas to Excel

MySQL and Connector/Python

Establishing a Database Connection

Reading Data From a Database Table

Creating a Database Table

Writing Pandas Data to a MySQL Table

Read XML Data in Pandas

Read JSON Data in Pandas

Working With JSON-Based Data

Python Dictionary and JSON

Python, Pandas, and JSON

Pandas and Regular Expressions (Optional)

What Is SQLite?

SQLite Features

SQLite Installation

Create a Database and a Table

Insert, Select, and Delete Table Data

Launch SQL Files

Drop Tables and Databases

Load CSV Data Into a sqlite Table

Python and SQLite

Connect to a sqlite3 Database

Create a Table in a sqlite3 Database

Insert Data in a sqlite3 Table

Select Data From a sqlite3 Table

Populate a Pandas Dataframe From a sqlite3 Table

Histogram With Data From a sqlite3 Table (1)

Histogram With Data From a sqlite3 Table (2)

Working With sqlite3 Tools

SQLiteStudio Installation

DB Browser for SQLite Installation

SQLiteDict (Optional)

Working With BeautifulSoup

Parsing an HTML Web Page

BeautifulSoup and Pandas

BeautifulSoup and Live HTML Web Pages

Summary

Chapter 5: Matplotlib for Data Visualization

What Is Data Visualization?

Types of Data Visualization

What Is Matplotlib?

Matplotlib Styles

Display Attribute Values

Color Values in Matplotlib

Cubed Numbers in Matplotlib

Horizontal Lines in Matplotlib

Slanted Lines in Matplotlib

Parallel Slanted Lines in Matplotlib

A Grid of Points in Matplotlib

A Dotted Grid in Matplotlib

Two Lines and a Legend in Matplotlib

Loading Images in Matplotlib

A Checkerboard in Matplotlib

Randomized Data Points in Matplotlib

A Set of Line Segments in Matplotlib

Plotting Multiple Lines in Matplotlib

Trigonometric Functions in Matplotlib

A Histogram in Matplotlib

Histogram With Data From a sqlite3 Table

Plot Bar Charts Matplotlib

Plot a Pie Chart Matplotlib

Heat Maps in Matplotlib

Save Plot as a PNG File

Working With SweetViz

Working With Skimpy

3D Charts in Matplotlib

Plotting Financial Data With mplfinance

Charts and Graphs With Data From Sqlite3

Summary

Chapter 6: Seaborn for Data Visualization

Working With Seaborn

Features of Seaborn

Seaborn Dataset Names

Seaborn Built-In Datasets

The Iris Dataset in Seaborn

The Titanic Dataset in Seaborn

Extracting Data From Titanic Dataset in Seaborn (1)

Extracting Data From Titanic Dataset in Seaborn (2)

Visualizing a Pandas Dataset in Seaborn

Seaborn Heat Maps

Seaborn Pair Plots

What Is Bokeh?

Introduction to Scikit-Learn

The Digits Dataset in Scikit-learn

The Iris Dataset in Scikit-Learn

Scikit-Learn, Pandas, and the Iris Dataset

Advanced Topics in Seaborn

Summary

Appendix: SVG and D3

Basic Two-Dimensional Shapes in SVG

SVG Gradients and the <path> Element

SVG <polygon> Element

Bézier Curves and Transforms

SVG Filters and Shadow Effects

Rendering Text Along an SVG <path> Element

SVG Transforms

SVG and HTML

CSS3 and SVG

Similarities and Differences Between SVG and CSS3

Introduction to D3

What Is D3?

D3 Boilerplate

Method Chaining in D3

The D3 Methods select() and selectAll()

Specifying UTF-8 in HTML5 Web Pages With D3

Creating New HTML Elements

The Most Common Idiom in D3

Binding Data to Document-Object-Model Elements

Generating Text Strings

Creating Simple Two-Dimensional Shapes

Bézier Curves and Text

A Digression: Scaling Arrays of Numbers to Different Ranges

Tweening in D3

Formatting Numbers

Working With Gradients

Linear Gradients

Radial Gradients

Adding HTML <div> Elements With Gradient Effects

Other D3 Graphics Samples

D3 Application Programming Interface Reference

Other Features of D3

Summary

Index

PREFACE

WHAT IS THE PRIMARY VALUE PROPOSITION FOR THIS BOOK?

This book contains a fast-paced introduction to relevant information about Python-based data visualization. You will learn how to generate graphics using Pandas, Matplotlib, and Seaborn. In addition, an appendix contains SVG-based and D3-based graphics effects, along with links for many additional code samples.

THE TARGET AUDIENCE

This book is intended primarily for those who have worked with Python and are interested in learning about graphics effects with Python libraries. It is also intended to reach an international audience of readers with highly diverse backgrounds in various age groups. Consequently, the book uses standard English rather than colloquial expressions that might be confusing to those readers. It provides a comfortable and meaningful learning experience for the intended readers.

WHAT WILL I LEARN?

The first chapter contains a quick tour of basic Python 3, followed by a chapter that introduces you to NumPy. The third and fourth chapters introduce you to Pandas as well as Pandas with JSON data. MySQL and SQL.

The fifth chapter delves into data visualization with Matplotlib and also working with SweetViz and Skimpy. The final chapter of this book shows you how to create graphics effects with Seaborn, and an example of a rendering graphics effects in Bokeh. In addition, an appendix is included with graphics effects based on SVG and D3.

WHY ARE THE CODE SAMPLES PRIMARILY IN PYTHON?

Most of the code samples are short (usually less than one page and sometimes less than half a page), and if need be, you can easily and quickly copy/paste the code into a new Jupyter notebook. For the Python code samples that reference a CSV file, you do not need any additional code in the corresponding Jupyter notebook to access the CSV file. Moreover, the code samples execute quickly, so you won’t need to avail yourself of the free GPU that is provided in Google Colaboratory.

If you do decide to use Google Colaboratory, you can easily copy/paste the Python code into a notebook, and also use the upload feature to upload existing Jupyter notebooks. Keep in mind the following point: if the Python code references a CSV file, make sure that you include the appropriate code snippet (details are available online) to access the CSV file in the corresponding Jupyter notebook in Google Colaboratory.

WHY DOES THIS BOOK INCLUDE SKLEARN MATERIAL?

First, keep in mind that the Sklearn material in this book is minimalistic, because it is not about machine learning. Second, the Sklearn material is located in chapter 6 where you will learn about some of the Sklearn built-in datasets. If you decide to study machine learning, you will have already been introduced to some aspects of Sklearn.

GETTING THE MOST FROM THIS BOOK

Some programmers learn well from prose, others learn well from sample code (and lots of it), which means that there’s no single style that can be used for everyone.

Moreover, some programmers want to run the code first, see what it does, and then return to the code to delve into the details (and others use the opposite approach).

Consequently, there are various types of code samples in this book: some are short, some are long, and other code samples “build” from earlier code samples.

WHAT DO I NEED TO KNOW?

Current knowledge of Python 3.x is the most helpful skill. Knowledge of other programming languages (such as Java) can also be helpful because of the exposure to programming concepts and constructs. The less technical knowledge that you have, the more diligence will be required in order to understand the various topics that are covered.

As for the non-technical skills, it’s very important to have a strong desire to learn about data visualization, along with the motivation and discipline to read and understand the code samples.

DON’T THE COMPANION FILES OBVIATE THE NEED FOR THIS BOOK?

The companion files contain all the code samples to save you time and effort from the error-prone process of manually typing code into a text file. In addition, there are situations in which you might not have easy access to these files. Furthermore, the code samples in the book provide explanations that are not available in the companion files.

DOES THIS BOOK CONTAIN PRODUCTION-LEVEL CODE SAMPLES?

The primary purpose of the code samples in this book is to show you Python-based libraries for data visualization. Clarity has higher priority than writing more compact code that is more difficult to understand (and possibly more prone to bugs). If you decide to use any of the code in this book in a production website, you ought to subject that code to the same rigorous analysis as the other parts of your code base.

HOW DO I SET UP A COMMAND SHELL?

If you are a Mac user, there are three ways to do so. The first method is to use Finder to navigate to Applications > Utilities and then double click on the Utilities application. Next, if you already have a command shell available, you can launch a new command shell by typing the following command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on a Macbook from a command shell that is already visible simply by clicking command+n in that command shell, and your Mac will launch another command shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.com/) that simulates bash commands, or use another toolkit such as MKS (a commercial product). Please read the online documentation that describes the download and installation process. Note that custom aliases are not automatically set if they are defined in a file other than the main start-up file (such as .bash_login).

COMPANION FILES

All the code samples and figures in this book may be obtained by writing to the publisher at info@merclearning.com.

WHAT ARE THE “NEXT STEPS” AFTER FINISHING THIS BOOK?

The answer to this question varies widely, mainly because the answer depends heavily on your objectives. If you are interested primarily in NLP, then you can learn more advanced concepts, such as attention, transformers, and the BERT-related models.

If you are primarily interested in machine learning, there are some subfields of machine learning, such as deep learning and reinforcement learning (and deep reinforcement learning) that might appeal to you. Fortunately, there are many resources available, and you can perform an Internet search for those resources. One other point: the aspects of machine learning for you to learn depend on who you are: the needs of a machine learning engineer, data scientist, manager, student or software developer are all different.

Oswald Campesato

September 2023

CHAPTER 1

INTRODUCTION TO PYTHON 3

This chapter provides an introduction to basic features of Python, including examples of working with Python strings, arrays, and dictionaries. Please keep in mind that this chapter does not contain details about the Python interpreter: you can find that information online in various tutorials.

You will also learn about useful tools for installing Python modules, basic Python constructs, and how to work with some data types in Python.

The first part of this chapter shows you how to work with simple data types, such as numbers, Fractions, and strings. The third part of this chapter discusses exceptions and how to use them in Python scripts.

The second part of this chapter introduces you to various ways to perform conditional logic in Python, as well as control structures and user-defined functions in Python. Virtually every Python program that performs useful calculations requires some type of conditional logic or control structure (or both). Although the syntax for these Python features is slightly different from other languages, the functionality will be familiar to you.

The third part of this chapter contains examples that involve nested loops and user-defined Python functions. The remaining portion of the chapter discusses tuples, sets, and dictionaries.

NOTE The Python scripts in this book are for Python 3.x.

SOME STANDARD MODULES IN PYTHON

The Python Standard Library provides many modules that can simplify your own Python scripts. A list of the Standard Library modules is here:

http://www.python.org/doc/

Some of the most important Python modules include cgi, math, os, pickle, random, re, socket, sys, time, and urllib.

The code samples in this book use the modules math, os, random, and re. You need to import these modules in order to use them in your code. For example, the following code block shows you how to import standard Python modules:

import re
import sys
import time

The code samples in this book import one or more of the preceding modules, as well as other Python modules. The next section discusses primitive data types in Python.

SIMPLE DATA TYPES IN PYTHON

Python supports primitive data types, such as numbers (integers, floating point numbers, and exponential numbers), strings, and dates. Python also supports more complex data types, such as lists (or arrays), tuples, and dictionaries, all of which are discussed later in this chapter. The next several sections discuss some of the Python primitive data types, along with code snippets that show you how to perform various operations on those data types.

WORKING WITH NUMBERS

Python provides arithmetic operations for manipulating numbers a straightforward manner that is similar to other programming languages. The following examples involve arithmetic operations on integers:

>>> 2+2
4
>>> 4/3
1
>>> 3*8
24

The following example assigns numbers to two variables and computes their product:

>>> x = 4
>>> y = 7
>>> x * y
28

The following examples demonstrate arithmetic operations involving integers:

>>> 2+2
4
>>> 4/3
1
>>> 3*8
24

Notice that division (“/”) of two integers is actually truncation in which only the integer result is retained. The following example converts a floating point number into exponential form:

>>> fnum = 0.00012345689000007
>>> "%.14e"%fnum
'1.23456890000070e-04'

You can use the int() function and the float() function to convert strings to numbers:

word1 = "123"
word2 = "456.78"
var1 = int(word1)
var2 = float(word2)
print("var1: ",var1," var2: ",var2)

The output from the preceding code block is here:

var1: 123 var2: 456.78

Alternatively, you can use the eval() function:

word1 = "123"
word2 = "456.78"
var1 = eval(word1)
var2 = eval(word2)
print("var1: ",var1," var2: ",var2)

If you attempt to convert a string that is not a valid integer or a floating point number, Python raises an exception, so it’s advisable to place your code in a try/except block (discussed later in this chapter).

Working With Other Bases

Numbers in Python are in base 10 (the default), but you can easily convert numbers to other bases. For example, the following code block initializes the variable x with the value 1234, and then displays that number in base 2, 8, and 16, respectively:

>>> x = 1234
>>> bin(x) '0b10011010010'
>>> oct(x) '0o2322'
>>> hex(x) '0x4d2' >>>

Use the format() function if you want to suppress the 0b, 0o, or 0x prefixes, as shown here:

>>> format(x, 'b') '10011010010'
>>> format(x, 'o') '2322'
>>> format(x, 'x') '4d2'

Negative integers are displayed with a negative sign:

>>> x = -1234
>>> format(x, 'b') '-10011010010'
>>> format(x, 'x') '-4d2'

The chr() Function

The Python chr() function takes a positive integer as a parameter and converts it to its corresponding alphabetic value (if one exists). The letters A through Z have decimal representation of 65 through 91 (which corresponds to hexadecimal 41 through 5b), and the lowercase letters a through z have decimal representation 97 through 122 (hexadecimal 61 through 7b).

Here is an example of using the chr() function to print uppercase A:

>>> x=chr(65)
>>> x
'A'

The following code block prints the ASCII values for a range of integers:

result = ""
for x in range(65,91):
 print(x, chr(x))
 result = result+chr(x)+' '
print("result: ",result)

NOTE Python 2 uses ASCII strings whereas Python 3 uses UTF-8.

You can represent a range of characters with the following line:

for x in range(65,91):

However, the following equivalent code snippet is more intuitive:

for x in range(ord('A'), ord('Z')):

If you want to display the result for lowercase letters, change the preceding range from (65,91) to either of the following statements:

for x in range(65,91):
for x in range(ord('a'), ord('z')):

The round() Function in Python

The Python round() function enables you to round decimal values to the nearest precision:

>>> round(1.23, 1)
1.2
>>> round(-3.42,1)
-3.4

Before delving into Python code samples that work with strings, the next section briefly discusses Unicode and UTF-8, both of which are character encodings.

UNICODE AND UTF-8

A Unicode string consists of a sequence of numbers that are between 0 and 0x10ffff, where each number represents a group of bytes. An encoding is the manner in which a Unicode string is translated into a sequence of bytes. Among the various encodings, UTF-8 (“Unicode Transformation Format”) is perhaps the most common, and it’s also the default encoding for many systems. The digit 8 in UTF-8 indicates that the encoding uses 8-bit numbers, whereas UTF-16 uses 16-bit numbers (but this encoding is less common).

The ASCII character set is a subset of UTF-8, so a valid ASCII string can be read as a UTF-8 string without any re-encoding required. In addition, a Unicode string can be converted into a UTF-8 string.

WORKING WITH UNICODE

Python supports Unicode, which means that you can render characters in different languages. Unicode data can be stored and manipulated in the same way as strings. Create a Unicode string by prepending the letter ‘u’, as shown here:

>>> u'Hello from Python!'
u'Hello from Python!'

Special characters can be included in a string by specifying their Unicode value. For example, the following Unicode string embeds a space (which has the Unicode value 0x0020) in a string:

>>> u'Hello\u0020from Python!'
u'Hello from Python!'

Listing 1.1 displays the contents of Unicode1.py that illustrates how to display a string of characters in Japanese and another string of characters in Chinese (Mandarin).

LISTING 1.1 Unicode1.py

chinese1 = u'\u5c07\u63a2\u8a0e HTML5 \u53ca\u5176\u4ed6'
hiragana = u'D3 \u306F \u304B\u3063\u3053\u3043\u3043 \u3067\u3059!'

print('Chinese:',chinese1)
print('Hiragana:',hiragana)

The output of Listing 1.1 is here:

Chinese: 將探討 HTML5 及其他
Hiragana: D3 は かっこぃぃ です!

The next portion of this chapter shows you how to “slice and dice” text strings with built-in Python functions.

WORKING WITH STRINGS

Literal strings in Python 3 are Unicode by default. You can concatenate two strings using the ‘+’ operator. The following example prints a string and then concatenates two single-letter strings:

>>> 'abc'
'abc'
>>> 'a' + 'b'
'ab'

You can use ‘+’ or ‘*’ to concatenate identical strings, as shown here:

>>> 'a' + 'a' + 'a'
'aaa'
>>> 'a' * 3
'aaa'

You can assign strings to variables and print them using the print() statement:

>>> print('abc')
abc
>>> x = 'abc'
>>> print(x)
abc
>>> y = 'def'
>>> print(x + y)
abcdef

You can “unpack” the letters of a string and assign them to variables, as shown here:

>>> str = "World"
>>> x1,x2,x3,x4,x5 = str
>>> x1
'W'
>>> x2
'o'
>>> x3
'r'
>>> x4
'l'
>>> x5
'd'

The preceding code snippets shows you how easy it is to extract the letters in a text string. You can also extract substrings of a string as shown in the following examples:

>>> x = "abcdef"
>>> x[0]
'a'
>>> x[-1]
'f'
>>> x[1:3]
'bc'
>>> x[0:2] + x[5:]
'abf'

However, you will cause an error if you attempt to subtract two strings, as you probably expect:

>>> 'a' - 'b'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'str' and 'str'

The try/except construct in Python (discussed later in this chapter) enables you to handle the preceding type of exception more gracefully.

Comparing Strings

You can use the methods lower() and upper() to convert a string to lowercase and uppercase, respectively, as shown here:

>>> 'Python'.lower()
'python'
>>> 'Python'.upper()
'PYTHON'
>>>

The methods lower() and upper() are useful for performing a case insensitive comparison of two ASCII strings. Listing 1.2 displays the contents of Compare.py that uses the lower() function in order to compare two ASCII strings.

LISTING 1.2 Compare.py

x = 'Abc'
y = 'abc'

if(x == y):
 print('x and y: identical')
elif (x.lower() == y.lower()):
 print('x and y: case insensitive match')
else:
 print('x and y: different')

Since x contains mixed case letters and y contains lowercase letters, Listing 1.2 displays the following output:

x and y: different

Uninitialized Variables and the Value None in Python

Python distinguishes between an uninitialized variable and the value None. The former is a variable that has not been assigned a value, whereas the value None is a value that indicates “no value.” Collections and methods often return the value None, and you can test for the value None in conditional logic (shown later in this chapter).

The next portion of this chapter shows you how to “slice and dice” text strings with built-in Python functions.

SLICING AND SPLICING STRINGS

Python enables you to extract substrings of a string (called “slicing”) using array notation. Slice notation is start:stop:step, where the start, stop, and step values are integers that specify the start value, end value, and the increment value. The interesting part about slicing in Python is that you can use the value -1, which operates from the right-side instead of the left-side of a string. Some examples of slicing a string are here:

text1 = "this is a string"
print('First 7 characters:',text1[0:7])
print('Characters 2-4:',text1[2:4])
print('Right-most character:',text1[-1])
print('Right-most 2 characters:',text1[-3:-1])

The output from the preceding code block is here:

First 7 characters: this is
Characters 2-4: is
Right-most character: g
Right-most 2 characters: in

Later in this chapter you will see how to insert a string in the middle of another string.

Testing for Digits and Alphabetic Characters

Python enables you to examine each character in a string and then test whether that character is a bona fide digit or an alphabetic character. This section provides a precursor to regular expressions that are discussed in Chapter 8.

Listing 1.3 displays the contents of CharTypes.py that illustrates how to determine if a string contains digits or characters. In case you are unfamiliar with the conditional “if” statement in Listing 1.3, more detailed information is available later in this chapter.

LISTING 1.3 CharTypes.py

str1 = "4"
str2 = "4234"
str3 = "b"
str4 = "abc"
str5 = "a1b2c3"

if(str1.isdigit()):
 print("this is a digit:",str1)

if(str2.isdigit()):
 print("this is a digit:",str2)

if(str3.isalpha()):
 print("this is alphabetic:",str3)

if(str4.isalpha()):
 print("this is alphabetic:",str4)

if(not str5.isalpha()):
 print("this is not pure alphabetic:",str5)
print("capitalized first letter:",str5.title())

Listing 1.3 initializes some variables, followed by two conditional tests that check whether or not str1 and str2 are digits using the isdigit() function. The next portion of Listing 1.3 checks if str3, str4, and str5 are alphabetic strings using the isalpha() function. The output of Listing 1.3 is here:

this is a digit: 4
this is a digit: 4234
this is alphabetic: b
this is alphabetic: abc
this is not pure alphabetic: a1b2c3
capitalized first letter: A1B2C3

SEARCH AND REPLACE A STRING IN OTHER STRINGS

Python provides methods for searching and also for replacing a string in a second text string. Listing 1.4 displays the contents of FindPos1.py that shows you how to use the find() function to search for the occurrence of one string in another string.

LISTING 1.4 FindPos1.py

item1 = 'abc'
item2 = 'Abc'
text = 'This is a text string with abc'

pos1 = text.find(item1)
pos2 = text.find(item2)

print('pos1=',pos1)
print('pos2=',pos2)

Listing 1.4 initializes the variables item1, item2, and text, and then searches for the index of the contents of item1 and item2 in the string text. The Python find() function returns the column number where the first successful match occurs; otherwise, the find() function returns a -1 if a match is unsuccessful. The output from launching Listing 1.4 is here:

pos1= 27
pos2= -1

In addition to the find() method, you can use the in operator when you want to test for the presence of an element, as shown here:

>>> lst = [1,2,3]
>>> 1 in lst
True

Listing 1.5 displays the contents of Replace1.py that shows you how to replace one string with another string.

LISTING 1.5: Replace1.py

text = 'This is a text string with abc'
print('text:',text)
text = text.replace('is a', 'was a')
print('text:',text)

Listing 1.5 starts by initializing the variable text and then printing its contents. The next portion of Listing 1.5 replaces the occurrence of “is a” with “was a” in the string text, and then prints the modified string. The output from launching Listing 1.5 is here:

text: This is a text string with abc
text: This was a text string with abc

PRECEDENCE OF OPERATORS IN PYTHON

When you have an expression involving numbers, you might remember that multiplication (“*”) and division (“/”) have higher precedence than addition (“+”) or subtraction (“-”). Exponentiation has even higher precedence than these four arithmetic operators.

However, instead of relying on precedence rules, it’s simpler (as well as safer) to use parentheses. For example, (x/y)+10 is clearer than x/y+10, even though they are equivalent expressions.

As another example, the following two arithmetic expressions are the equivalent, but the second is less error prone than the first:

x/y+3*z/8+x*y/z-3*x
(x/y)+(3*z)/8+(x*y)/z-(3*x)

In any case, the following website contains precedence rules for operators in Python:

http://www.mathcs.emory.edu/~valerie/courses/fall10/155/resources/op_precedence.html

PYTHON RESERVED WORDS

Every programming language has a set of reserved words, which is a set of words that cannot be used as identifiers, and Python is no exception. The Python reserved words are: and, exec, not, assert, finally, or, break, for, pass, class, from, print, continue, global, raise, def, if, return, del, import, try, elif, in, while, else, is, with, except, lambda, and yield.

If you inadvertently use a reserved word as a variable, you will see an “invalid syntax” error message instead of a “reserved word” error message. For example, suppose you create a Python script test1.py with the following code:

break = 2
print('break =', break)

If you run the preceding Python code you will see the following output:

 File "test1.py", line 2
 break = 2
 ^
SyntaxError: invalid syntax

However, a quick inspection of the Python code reveals the fact that you are attempting to use the reserved word break as a variable.

WORKING WITH LOOPS IN PYTHON

Python supports for loops, while loops, and range() statements. The following subsections illustrate how you can use each of these constructs.

Python for Loops

Python supports the for loop whose syntax is slightly different from other languages (such as JavaScript and Java). The following code block shows you how to use a for loop in Python in order to iterate through the elements in a list:

>>> x = ['a', 'b', 'c']
>>> for w in x:
... print(w)
...
a
b
c

The preceding code snippet prints three letters on three separate lines. You can force the output to be displayed on the same line (which will “wrap” if you specify a large enough number of characters) by appending a comma “,” in the print() statement, as shown here:

>>> x = ['a', 'b', 'c']
>>> for w in x:
... print(w, end=' ')
...
a b c

You can use this type of code when you want to display the contents of a text file in a single line instead of multiple lines.

Python also provides the built-in reversed() function that reverses the direction of the loop, as shown here:

>>> a = [1, 2, 3, 4, 5]
>>> for x in reversed(a):
... print(x)
5
4
3
2
1

Note that reversed iteration only works if the size of the current object can be determined or if the object implements a __reversed__() special method.

Numeric Exponents in Python

Listing 1.6 displays the contents of Nth_exponent.py that illustrates how to calculate intermediate powers of a set of integers.

LISTING 1.6: Nth_exponent.py

maxPower = 4
maxCount = 4

def pwr(num):
 prod = 1
 for n in range(1,maxPower+1):
 prod = prod*num
 print(num,'to the power',n, 'equals',prod)
 print('-----------')

for num in range(1,maxCount+1):
 pwr(num)

Listing 1.6 contains a function called pwr() that accepts a numeric value. This function contains a loop that prints the value of that number raised to the power n, where n ranges between 1 and maxPower+1.

The second part of Listing 1.6 contains a for loop that invokes the function pwr() with the numbers between 1 and maxPower+1. The output from Listing 1.16 is here:

1 to the power 1 equals 1
1 to the power 2 equals 1
1 to the power 3 equals 1
1 to the power 4 equals 1

2 to the power 1 equals 2
2 to the power 2 equals 4
2 to the power 3 equals 8
2 to the power 4 equals 16

3 to the power 1 equals 3
3 to the power 2 equals 9
3 to the power 3 equals 27
3 to the power 4 equals 81

4 to the power 1 equals 4
4 to the power 2 equals 16
4 to the power 3 equals 64
4 to the power 4 equals 256

NESTED LOOPS

Listing 1.7 displays the contents of Triangular1.py that illustrates how to print a row of consecutive integers (starting from 1), where the length of each row is one greater than the previous row.

LISTING 1.7: Triangular1.py

max = 8
for x in range(1,max+1):
 for y in range(1,x+1):
 print(y, '', end='')
 print()

Listing 1.7 initializes the variable max with the value 8, followed by an outer for loop whose loop variable x ranges from 1 to max+1. The inner loop has a loop variable y that ranges from 1 to x+1, and the inner loop prints the value of y. The output of Listing 1.7 is here:

1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4 5 6
1 2 3 4 5 6 7
1 2 3 4 5 6 7 8

THE split() FUNCTION WITH FOR LOOPS

Python supports various useful string-related functions, including the split() function and the join() function. The split() function is useful when you want to tokenize (“split”) a line of text into words and then use a for loop to iterate through those words and process them accordingly.

The join() function does the opposite of split(): it “joins” two or more words into a single line. You can easily remove extra spaces in a sentence by using the split() function and then invoking the join() function, thereby creating a line of text with one white space between any two words.

USING THE split() FUNCTION TO COMPARE WORDS

Listing 1.8 displays the contents of Compare2.py that illustrates how to use the split function to compare each word in a text string with another word.

LISTING 1.8: Compare2.py

x = 'This is a string that contains abc and Abc'
y = 'abc'
identical = 0
casematch = 0

for w in x.split():
 if(w == y):
 identical = identical + 1
 elif (w.lower() == y.lower()):
 casematch = casematch + 1

if(identical > 0):
 print('found identical matches:', identical)

if(casematch > 0):
 print('found case matches:', casematch)

if(casematch == 0 and identical == 0):
 print('no matches found')

Listing 1.8 uses the split() function in order to compare each word in the string x with the word abc. If there is an exact match, the variable identical is incremented. If a match does not occur, a case-insensitive match of the current word is performed with the string abc, and the variable casematch is incremented if the match is successful. The output from Listing 1.8 is here:

found identical matches: 1
found case matches: 1

PYTHON while LOOPS

OEBPS/xhtml/nav.xhtml

Table of Contents

		Cover

		Title Page

		Copyright Page

		Dedication

		Contents

		Preface

		Chapter 1: Introduction to Python 3

		Some Standard Modules in Python

		Simple Data Types in Python

		Working With Numbers

		Working With Other Bases

		The chr() Function

		The round() Function in Python

		Unicode and UTF-8

		Working With Unicode

		Working With Strings

		Comparing Strings

		Uninitialized Variables and the Value None in Python

		Slicing and Splicing Strings

		Testing for Digits and Alphabetic Characters

		Search and Replace a String in Other Strings

		Precedence of Operators in Python

		Python Reserved Words

		Working With Loops in Python

		Python for Loops

		Numeric Exponents in Python

		Nested Loops

		The split() Function With for Loops

		Using the split() Function to Compare Words

		Python while Loops

		Conditional Logic in Python

		The break/continue/pass Statements

		Comparison and Boolean Operators

		The in/not in/is/is not Comparison Operators

		The and, or, and not Boolean Operators

		Local and Global Variables

		Scope of Variables

		Pass by Reference versus Value

		Arguments and Parameters

		User-Defined Functions in Python

		Specifying Default Values in a Function

		Returning Multiple Values From a Function

		Lambda Expressions

		Working With Lists

		Lists and Basic Operations

		Lists and Arithmetic Operations

		Lists and Filter-Related Operations

		The join(), range(), and split() Functions

		Arrays and the append() Function

		Other List-Related Functions

		Working With List Comprehensions

		Working With Vectors

		Working With Matrices

		Queues

		Tuples (Immutable Lists)

		Sets

		Dictionaries

		Creating a Dictionary

		Displaying the Contents of a Dictionary

		Checking for Keys in a Dictionary

		Deleting Keys From a Dictionary

		Iterating Through a Dictionary

		Interpolating Data From a Dictionary

		Dictionary Functions and Methods

		Other Sequence Types in Python

		Mutable and Immutable Types in Python

		Summary

		Chapter 2: NumPy and Data Visualization

		What Is NumPy?

		Useful NumPy Features

		What Are NumPy Arrays?

		Working With Loops

		Appending Elements to Arrays (1)

		Appending Elements to Arrays (2)

		Multiplying Lists and Arrays

		Doubling the Elements in a List

		Lists and Exponents

		Arrays and Exponents

		Math Operations and Arrays

		Working With “–1” Subranges With Vectors

		Working With “–1” Subranges With Arrays

		Other Useful NumPy Methods

		Arrays and Vector Operations

		NumPy and Dot Products (1)

		NumPy and Dot Products (2)

		NumPy and the Length of Vectors

		NumPy and Other Operations

		NumPy and the reshape() Method

		Calculating the Mean and Standard Deviation

		Code Sample With Mean and Standard Deviation

		Trimmed Mean and Weighted Mean

		Working With Lines in the Plane (Optional)

		Plotting Randomized Points With NumPy and Matplotlib

		Plotting a Quadratic With NumPy and Matplotlib

		What Is Linear Regression?

		What Is Multivariate Analysis?

		What About Nonlinear Datasets?

		The MSE (Mean Squared Error) Formula

		Other Error Types

		Nonlinear Least Squares

		Calculating the MSE Manually

		Find the Best-Fitting Line in NumPy

		Calculating MSE by Successive Approximation (1)

		Calculating MSE by Successive Approximation (2)

		Google Colaboratory

		Uploading CSV Files in Google Colaboratory

		Summary

		Chapter 3: Pandas and Data Visualization

		What Is Pandas?

		Pandas DataFrames

		Dataframes and Data Cleaning Tasks

		A Pandas DataFrame Example

		Describing a Pandas DataFrame

		Pandas Boolean DataFrames

		Transposing a Pandas DataFrame

		Pandas DataFrames and Random Numbers

		Converting Categorical Data to Numeric Data

		Matching and Splitting Strings in Pandas

		Merging and Splitting Columns in Pandas

		Combining Pandas DataFrames

		Data Manipulation With Pandas DataFrames

		Data Manipulation With Pandas DataFrames (2)

		Data Manipulation With Pandas DataFrames (3)

		Pandas DataFrames and CSV Files

		Pandas DataFrames and Excel Spreadsheets

		Select, Add, and Delete Columns in DataFrames

		Handling Outliers in Pandas

		Pandas DataFrames and Scatterplots

		Pandas DataFrames and Simple Statistics

		Finding Duplicate Rows in Pandas

		Finding Missing Values in Pandas

		Sorting DataFrames in Pandas

		Working With groupby() in Pandas

		Aggregate Operations With the titanic.csv Dataset

		Working with apply() and applymap() in Pandas

		Useful One-Line Commands in Pandas

		What is Texthero?

		Data Visualization in Pandas

		Summary

		Chapter 4: Pandas and SQL

		Pandas and Data Visualization

		Pandas and Bar Charts

		Pandas and Horizontally Stacked Bar Charts

		Pandas and Vertically Stacked Bar Charts

		Pandas and Nonstacked Area Charts

		Pandas and Stacked Area Charts

		What Is Fugue?

		MySQL, SQLAlchemy, and Pandas

		What Is SQLAlchemy?

		Read MySQL Data via SQLAlchemy

		Export SQL Data From Pandas to Excel

		MySQL and Connector/Python

		Establishing a Database Connection

		Reading Data From a Database Table

		Creating a Database Table

		Writing Pandas Data to a MySQL Table

		Read XML Data in Pandas

		Read JSON Data in Pandas

		Working With JSON-Based Data

		Python Dictionary and JSON

		Python, Pandas, and JSON

		Pandas and Regular Expressions (Optional)

		What Is SQLite?

		SQLite Features

		SQLite Installation

		Create a Database and a Table

		Insert, Select, and Delete Table Data

		Launch SQL Files

		Drop Tables and Databases

		Load CSV Data Into a sqlite Table

		Python and SQLite

		Connect to a sqlite3 Database

		Create a Table in a sqlite3 Database

		Insert Data in a sqlite3 Table

		Select Data From a sqlite3 Table

		Populate a Pandas Dataframe From a sqlite3 Table

		Histogram With Data From a sqlite3 Table (1)

		Histogram With Data From a sqlite3 Table (2)

		Working With sqlite3 Tools

		SQLiteStudio Installation

		DB Browser for SQLite Installation

		SQLiteDict (Optional)

		Working With BeautifulSoup

		Parsing an HTML Web Page

		BeautifulSoup and Pandas

		BeautifulSoup and Live HTML Web Pages

		Summary

		Chapter 5: Matplotlib for Data Visualization

		What Is Data Visualization?

		Types of Data Visualization

		What Is Matplotlib?

		Matplotlib Styles

		Display Attribute Values

		Color Values in Matplotlib

		Cubed Numbers in Matplotlib

		Horizontal Lines in Matplotlib

		Slanted Lines in Matplotlib

		Parallel Slanted Lines in Matplotlib

		A Grid of Points in Matplotlib

		A Dotted Grid in Matplotlib

		Two Lines and a Legend in Matplotlib

		Loading Images in Matplotlib

		A Checkerboard in Matplotlib

		Randomized Data Points in Matplotlib

		A Set of Line Segments in Matplotlib

		Plotting Multiple Lines in Matplotlib

		Trigonometric Functions in Matplotlib

		A Histogram in Matplotlib

		Histogram With Data From a sqlite3 Table

		Plot Bar Charts Matplotlib

		Plot a Pie Chart Matplotlib

		Heat Maps in Matplotlib

		Save Plot as a PNG File

		Working With SweetViz

		Working With Skimpy

		3D Charts in Matplotlib

		Plotting Financial Data With mplfinance

		Charts and Graphs With Data From Sqlite3

		Summary

		Chapter 6: Seaborn for Data Visualization

		Working With Seaborn

		Features of Seaborn

		Seaborn Dataset Names

		Seaborn Built-In Datasets

		The Iris Dataset in Seaborn

		The Titanic Dataset in Seaborn

		Extracting Data From Titanic Dataset in Seaborn (1)

		Extracting Data From Titanic Dataset in Seaborn (2)

		Visualizing a Pandas Dataset in Seaborn

		Seaborn Heat Maps

		Seaborn Pair Plots

		What Is Bokeh?

		Introduction to Scikit-Learn

		The Digits Dataset in Scikit-learn

		The Iris Dataset in Scikit-Learn

		Scikit-Learn, Pandas, and the Iris Dataset

		Advanced Topics in Seaborn

		Summary

		Appendix: SVG and D3

		Basic Two-Dimensional Shapes in SVG

		SVG Gradients and the <path> Element

		SVG <polygon> Element

		Bézier Curves and Transforms

		SVG Filters and Shadow Effects

		Rendering Text Along an SVG <path> Element

		SVG Transforms

		SVG and HTML

		CSS3 and SVG

		Similarities and Differences Between SVG and CSS3

		Introduction to D3

		What Is D3?

		D3 Boilerplate

		Method Chaining in D3

		The D3 Methods select() and selectAll()

		Specifying UTF-8 in HTML5 Web Pages With D3

		Creating New HTML Elements

		The Most Common Idiom in D3

		Binding Data to Document-Object-Model Elements

		Generating Text Strings

		Creating Simple Two-Dimensional Shapes

		Bézier Curves and Text

		A Digression: Scaling Arrays of Numbers to Different Ranges

		Tweening in D3

		Formatting Numbers

		Working With Gradients

		Linear Gradients

		Radial Gradients

		Adding HTML <div> Elements With Gradient Effects

		Other D3 Graphics Samples

		D3 Application Programming Interface Reference

		Other Features of D3

		Summary

		Index

Guide

		Cover

		Title Page

		Copyright Page

		Dedication

		Contents

		Preface

		Chapter 1: Introduction to Python

		Index

Page List

		Cover

		i

		ii

		iii

		iv

		v

		vi

		vii

		viii

		ix

		x

		xi

		xii

		xiii

		xiv

		xv

		xvi

		xvii

		xviii

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

		79

		80

		81

		82

		83

		84

		85

		86

		87

		88

		89

		90

		91

		92

		93

		94

		95

		96

		97

		98

		99

		100

		101

		102

		103

		104

		105

		106

		107

		108

		109

		110

		111

		112

		113

		114

		115

		116

		117

		118

		119

		120

		121

		122

		123

		124

		125

		126

		127

		128

		129

		130

		131

		132

		133

		134

		135

		136

		137

		138

		139

		140

		141

		142

		143

		144

		145

		146

		147

		148

		149

		150

		151

		152

		153

		154

		155

		156

		157

		158

		159

		160

		161

		162

		163

		164

		165

		166

		167

		168

		169

		170

		171

		172

		173

		174

		175

		176

		177

		178

		179

		180

		181

		182

		183

		184

		185

		186

		187

		188

		189

		190

		191

		192

		193

		194

		195

		196

		197

		198

		199

		200

		201

		202

		203

		204

		205

		206

		207

		208

		209

		210

		211

		212

		213

		214

		215

		216

		217

		218

		219

		220

		221

		222

		223

		224

		225

		226

		227

		228

		229

		230

		231

		232

		233

		234

		235

		236

		237

		238

		239

		240

		241

		242

		243

		244

		245

		246

		247

		248

		249

		250

		251

		252

		253

		254

		255

		256

		257

		258

		259

		260

		261

		262

OEBPS/images/logo.jpg

OEBPS/images/9781683929468.jpg
PyrHON 3
AND
DATA VISUALIZATION

O OswALD CAMPESATO

