
		
			[image: Cover.jpg]
		

	
		
			Coding with ChatGPT and Other LLMs

			Navigate LLMs for effective coding, debugging, and AI-driven development

			Dr. Vincent Austin Hall

			[image:]

			Coding with ChatGPT and Other LLMs

			Copyright © 2024 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			The author acknowledges the use of cutting-edge AI, such as ChatGPT, with the sole aim of enhancing the language and clarity within the book, thereby ensuring a smooth reading experience for readers. It’s important to note that the content itself has been crafted by the author and edited by a professional publishing team.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Niranjan Naikwadi

			Publishing Product Manager: Nitin Nainani

			Book Project Manager: Aparna Nair

			Senior Editor: Joseph Sunil

			Technical Editor: Rahul Limbachiya

			Copy Editor: Safis Editing

			Proofreader: Joseph Sunil

			Indexer: Manju Arasan

			Production Designer: Joshua Misquitta

			Senior DevRel Marketing Executive: Vinishka Kalra

			First published: November 2024

			Production reference: 1061124

			Published by Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB, UK.

			ISBN 978-1-80512-505-1

			www.packtpub.com

			

Contributors

			About the author

			Dr. Vincent Austin Hall is a computer science lecturer at Birmingham Newman University and CEO of Build Intellect Ltd, an AI consultancy. Build Intellect works closely with ABT News LTD, based in Reading, England. He holds a physics degree from the University of Leeds, an MSc in biology, chemistry, maths, and coding from Warwick, and a PhD in machine learning and chemistry, also from Warwick, where he developed licensed software for pharma applications. With experience in tech firms and academia, he’s worked on ML projects in the automotive and medtech sectors. He supervises dissertations at the University of Exeter, consults on AI strategies, coaches students and professionals, and shares insights through blogs and YouTube content.

			I would like to thank my supportive and patient family: my excellent and wise partner Anna, our brilliant, different, and loving son Peter and our brilliant, inventive, and hilarious daughter Lara, for allowing me time to work on this book over many weekends and evenings and understanding that good things take long, hard work, and many iterations.

			Thank you to Packt Publishing: Editor Joseph Sunil for making only good suggestions and improving my work; Book Project Manager, Aparna Nair for keeping the project progressing well and making sure everything got done; Publishing Product Manager, Nitin Nainani for managing and further direction; Priyanshi J for bringing me on board and suggesting this book in the first place; as well as the technical reviewers for helping Joseph and me to keep the book quality high.

			Thanks to my business partner, Chief Chigbo Uzokwelu, CEO of ABT News Ltd, for lots of support in friendship and business: legal, sales, business communications, proof reading, and marketing.

			Thanks to the reader for reading and learning, sharing what you've learned and helping others to upskill and create the best code, careers and solutions for Earth (and future populated worlds).

			

About the reviewers

			Parth Santpurkar is a senior software engineer with over a decade of industry experience based out of the San Francisco Bay area. He’s a senior IEEE member and his expertise and interests range from software engineering and distributed systems to machine learning and artificial intelligence.

			Sougata Pal is a passionate technology specialist performing the role of an enterprise architect in software architecture design and application scalability management, team building, and management. With over 15 years of experience, they have worked with different start-ups and large-scale enterprises to develop their business application infrastructure, enhancing their reach to customers. They have contributed to different open source projects on GitHub to empower the open source community. For the last couple of years, they have playing around with federated learning and cybersecurity algorithms to enhance the performance of cybersecurity processes by introducing concepts of federated learning.

		

	
		
			Table of Contents

			Preface

			Part 1: Introduction to LLMs and Their Applications

			1

			What is ChatGPT and What are LLMs?

			Introduction to LLMs

			Origins of LLMs

			Early LLMs

			GPT lineage

			BERT

			LaMDA

			LLaMA‘s family tree

			Exploring modern LLMs

			GPT-4

			LLaMA-2

			Gemini (formerly Bard)

			Amazon Olympus

			How Transformers work

			How an LLM processes a piece of text

			ChatGPT uses reinforcement learning from human feedback

			LLMs are expensive

			A note on the mathematics of LLMs

			Applications of LLMs

			Summary

			Bibliography

			2

			Unleashing the Power of LLMs for Coding: A Paradigm Shift

			Technical requirements

			Unveiling the advantages of coding with LLMs

			The short version

			The longer version

			Planning your LLM-powered coding

			1. Understanding your purpose – unveiling the why

			2. Identifying your audience – tailoring the experience

			3. Defining the environment – where your code calls home

			4. Mapping user interaction – charting the navigation flow

			5. Identifying data sources – feeding the machine learning beast

			6. What data format?

			7. How will you plumb in the data?

			8. Visualizing the interface

			Getting into LLM-powered coding

			Back to the HTML code for Prompt 5

			Back to the Flask code for Prompt 5

			Making it work for you

			Summary

			3

			Code Refactoring, Debugging, and Optimization: A Practical Guide

			Technical requirements

			Dealing with error codes – debugging

			Prompt 4 debugging

			Prompt 5 debugging – HTML

			Prompt 5 debugging – Python/Flask

			Where’s the code?

			Refactoring code

			Refactoring code with Claude 3

			Documenting code

			Let’s get ChatGPT and to explain some code

			Testing code

			How do you test code?

			Virtual software companies

			Agents

			Relevance to virtual software companies?

			ChatDev

			Summary

			Part 2: Be Wary of the Dark Side of LLM-Powered Coding

			4

			Demystifying Generated Code for Readability

			Technical requirements

			Generating more readable code

			Introduction to data compression methods

			Code to compress data, written in Python 3.10

			Let’s look at some well-written code

			What makes code hard or easy to read?

			Why is reading code hard?

			Dos and don’ts of readable code – how to make readable code

			Summarizing code for understanding

			Generating documentation

			Documentation for crypto_price_and_indicators.py

			Summary

			Bibliography

			5

			Addressing Bias and Ethical Concerns in LLM-Generated Code

			Technical requirements

			Understanding bias in LLM-generated code

			Where does bias in LLMs come from?

			Examining ethical dilemmas – challenges in LLM-enhanced working

			Meta AI, or Meta Llama 3

			ChatGPT on international security measures

			Racist Gemini 1.5

			Detecting bias – tools and strategies

			Biases you might find in code and how to improve them

			Analyzing the training data

			Examining the code

			Preventing biased code – coding with ethical considerations

			Get good data

			Ethical guidelines

			Create transparent and explainable code

			Code reviews

			Your inevitable success

			Examples of getting the balance right

			Summary

			Bibliography

			6

			Navigating the Legal Landscape of LLM-Generated Code

			Technical requirements

			Unraveling copyright and intellectual property considerations

			The EU – needs the human touch

			The UK – human creativity and arrangements necessary for the creation

			The USA – no ownership of AI-generated works

			The People’s Republic of China – whoever made the greater contribution

			Taiwan – human creative expression

			India and Canada – human author’s skill and judgment

			Australia – to the person making the necessary arrangements

			Japan – copyright requires human authorship

			South Korea

			Brazil – human authorship required

			Indonesia – human authorship needed

			Evolving legal landscape

			Precedent

			Addressing liability and responsibility for LLM-generated code

			Licensing

			Attribution and credit

			Quality and reliability

			Ethical considerations

			Product liability

			Use case restrictions

			Security concerns

			Transparency and explainability

			Third-party dependencies

			Use good communication to avoid legal action

			Code of ethics when using AI

			Accountability and redress mechanisms

			Examining legal frameworks governing the use of LLMs in coding

			UN resolution on AI

			EU – the European Parliament adopts the “AI Act”

			California AI kill switch bill proposed

			AI Acts of other countries

			Other regulations

			Possible future of the regulation of AI-generated code

			Key points moving forward

			Questions that should still be answered

			Keep up to date

			Summary

			Bibliography

			7

			Security Considerations and Measures

			Technical requirements

			Understanding the security risks of LLMs

			Data privacy and confidentiality

			Security risks in LLM-generated code

			Implementing security measures for LLM-powered coding

			Input sanitization and validation

			Secure integration patterns

			Monitoring and logging

			Version control and traceability

			Encryption and data protection

			Regular security assessments

			Incident response planning

			Bonus – training

			Who can help here?

			Best practices for secure LLM-powered coding

			Making the future more secure

			Emerging threats

			Shifting focus

			Summary

			Bibliography

			Part 3: Explainability, Shareability, and the Future of LLM-Powered Coding

			8

			Limitations of Coding with LLMs

			Technical requirements

			Inherent limitations of LLMs

			Core limitations

			Other limitations to LLMs

			Evaluating LLM performance

			Overcoming inherent limitations

			Challenges in integrating LLMs into coding workflows

			Relevant workflow example

			Security risks

			IP concerns

			Dependency management

			Explainability

			Future research directions to address limitations

			Continuous learning

			Novel architectures

			Computational efficiency

			Specialized training

			Summary

			Bibliography

			9

			Cultivating Collaboration in LLM-Enhanced Coding

			Technical requirements

			Why share LLM-generated code?

			Benefits of sharing code

			Real-world examples

			Best practices for code sharing

			Documentation

			Consistent coding standards

			Version control

			Code security best practices

			Proper attribution

			Test the code thoroughly

			Continuous improvement

			Knowledge management – capturing and sharing expertise

			Creating knowledge repositories

			Conducting regular knowledge-sharing sessions

			Peer mentorship – sharing the wisdom

			Making the best use of collaborative platforms

			Code review tools

			Project management software

			Communication channels – keeping the conversation flowing

			Summary

			Bibliography

			10

			Expanding the LLM Toolkit for Coders: Beyond LLMs

			Technical requirements

			Code completion and generation tools

			Eclipse’s Content Assist

			PyCharm’s code completion

			NetBeans’ code completion

			VS Code’s IntelliSense

			SCA and code review tools

			SonarQube

			ESLint

			PMD

			Checkstyle for Java

			Fortify Static Code Analyzer

			CodeSonar

			Coverity

			FindBugs/SpotBugs

			Bandit

			HoundCI

			Testing and debugging tools

			Jest

			Postman

			Cypress

			Selenium

			Mocha

			Charles Proxy

			Summary

			Bibliography

			Part 4: Maximizing Your Potential with LLMs: Beyond the Basics

			11

			Helping Others and Maximizing Your Career with LLMs

			Why Mentor Others in LLM-powered coding?

			Mentoring in the time of LLMs

			The Ripple Effect of Mentorship

			Elevating Standards in the Field

			Personal Growth Through Mentorship

			Supporting a Culture of Continuous Learning

			Section Summary

			Other Ways to Share Your Expertise and Work

			Blogging and Writing Articles

			Online Courses

			Open-Source Projects

			Running Workshops

			Social Media and Online Communities

			Section Summary

			Attend, Build, Network

			Speaking Engagements and Workshops

			Joining Professional Organizations

			Network with Peers and Experts

			Building Genuine Relationships

			Seeking Mentorship and Offering Support

			Section Summary

			New Approaches from LLMs

			Embracing Collaborative Coding

			Latest Developments in LLMs

			Section Summary

			Summary

			Bibliography

			12

			The Future of LLMs in Software Development

			Technical requirements

			Emerging trends in LLM technologies

			Multimodal LLMs

			Human-AI collaboration

			Multi-agent systems

			Generative business intelligence (Gen BI)

			Your wish is my command

			Future impacts

			Democratization of coding and more

			Feedback loop

			Harmful AI?

			Coming challenges and opportunities

			Legal

			Politics and government

			No jobs for humans?

			Scale to the stars, literally

			Human directed

			Summary

			Like my ideas or what to change them?

			Bibliography

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			In this age of the AI Revolution, you cannot achieve goals entirely with human power.

			Automation is thousands of times faster and accelerating extremely quickly! Software ate the world and created AI. Now AI is eating the world and recreating it better. The best way to create is a fusion of human and machine powers.

			In Coding with ChatGPT and Other LLMs, you will learn how coding is best achieved today. You can learn how to find and effectively use the most advanced tools for code generation, architecting, description and testing while staying out of legal hassles, advancing your career faster and helping others around you to improve too. After reading this book, its prompts and its code, you should understand likely futures for this kind of technology. You’ll also be able to generate your own ideas about how to improve the world, and have the power to do that.

			Who this book is for

			This book is for new coders and experienced coders, software engineers, software developers, scientists doing scientific computing. If you want a career in coding or software, this book is for you. The book helps with ethics, bias, security, or the future impacts of AI, this book is for you.

			If you are a lawyer concerned with the legal issues of AI and code, you’d do well to read this book.

			What this book covers

			Chapter 1, What is ChatGPT and What are LLMs?, introduces Large Language Models (LLMs) like ChatGPT and Claude. It explains how these models function and explores their applications through real-world examples.

			Chapter 2, Unleashing the Power of LLMs for Coding: A Paradigm Shift, explores how LLMs can revolutionize software development by generating code. It introduces effective prompt strategies, highlights common pitfalls to avoid, and emphasizes the importance of iterative refinement for optimal results

			Chapter 3, Code Refactoring, Debugging, and Optimization: A Practical Guide, delves into the essential tasks of refining code. It covers debugging to ensure functionality, refactoring to improve structure or adapt functionality, and optimizing for speed, memory usage, and code quality. The chapter demonstrates how LLMs can assist in these processes, providing practical strategies for effective AI-powered coding.

			Chapter 4, Demystifying Generated Code for Readability, emphasizes the importance of writing clear, understandable code. It highlights how code that makes sense to its author may not be easily grasped by others—or even by the author at a later time. This chapter demonstrates how LLMs can help improve code readability by enhancing documentation, clarifying functions and libraries, and fostering practices that make the codebase more accessible for collaborators and your future self.

			Chapter 5, Addressing Bias and Ethical Concerns in LLM-Generated Code, explores how biases can arise from the data used to train LLMs, implicit assumptions in prompts, or developer expectations. It provides strategies to identify hidden biases and correct them to ensure fair and responsible code generation.

			Chapter 6, Navigating the Legal Landscape of LLM-Generated Code, discusses potential legal challenges related to biases, code reuse, copyright issues, and varying regulations across jurisdictions. This chapter equips you with the knowledge needed to address legal risks and ensure compliance when using LLM-generated code.

			Chapter 7, Security Considerations and Measures, focuses on safeguarding your software from vulnerabilities. It highlights security risks that may emerge in LLM-generated code and provides best practices for identifying, mitigating, and preventing potential threats.

			Chapter 8, Limitations of Coding with LLMs, addresses the boundaries of what LLMs can achieve. It explores their challenges in grasping the subtleties of human language and their limitations in handling complex coding tasks. The chapter also examines the inconsistencies and unpredictabilities inherent in LLM-generated outputs, helping readers set realistic expectations.

			Chapter 9, Cultivating Collaboration in LLM-Enhanced Coding, promotes a culture of openness and collaboration in software development. It offers best practices for sharing code generated by LLMs and the knowledge that accompanies it, fostering transparency and teamwork. Readers will discover strategies to ensure the expertise encoded within LLM-generated solutions is effectively shared and utilized across development teams.

			Chapter 10, Expanding the LLM Toolkit for Coders: Beyond LLMs, explores how non-LLM AI tools can complement LLM-powered coding. It highlights tools for code writing, analysis, and testing, detailing their capabilities and limitations. This chapter provides strategies for integrating these tools into a well-rounded coding toolkit to enhance productivity and maximize efficiency.

			Chapter 11, Helping Others and Maximizing Your Career with LLMs, focuses on contributing to the LLM coding community through teaching, mentoring, and knowledge-sharing. It offers guidance on how to advance the field by sharing expertise and explores ways to leverage LLM-generated coding skills for career growth and new opportunities.

			Chapter 12, The Future of LLMs in Software Development, looks ahead to emerging trends and developments in LLM technology. It reflects on how these advancements will shape the future of software development and examines the broader impact of automated coding on society, including potential implications for future communities.

			To get the most out of this book

			Assumed knowledge: some basic coding skills, an interest in software and or AI.

			Try to apply what you’ve learned here, and share your code and your recent learnings and experience with others and learn from them.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							Python

						
							
							Windows, macOS, or Linux

						
					

					
							
							Java

						
							
					

					
							
							HTML

						
							
					

					
							
							JavaScript

						
							
					

				
			

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Coding-with-ChatGPT-and-Other-LLMs. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and X handles. Here is an example: “Next, we have Prompt 5 as a Flask app (app.py) with Python code.”

			A block of code is set as follows:

			
<!DOCTYPE html>
<html>
<head>
<title>Button Click</title>
<script>
function sayHello() {
 alert("Hello!");
}
</script>
</head>
<body>
<button onclick="sayHello()">Click me</button>
</body>
</html>
			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
import pandas as pd
import matplotlib.pyplot as plt
Sample data (replace with your data)
data = pd.Series([1, 2, 3, 4, 5])
Assuming the data is in a column named "values"
fig, ax = plt.subplots()
ax.plot(data)
ax.set_xlabel("Index")
ax.set_ylabel("Value")
ax.set_title("Line Plot of Data")
plt.show()
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “You'd have to click the first button, Click me, to get the pop-up window again.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share your thoughts

			Once you’ve read Coding with ChatGPT and Other LLMs, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/978-1-80512-505-1

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	

		
			Part 1: Introduction to LLMs and Their Applications

			This section lays the groundwork for understanding Large Language Models (LLMs) and their transformative potential across various fields. It introduces LLMs like ChatGPT, explaining how they work. We will also explore different ways that LLMs are applied across industries, from customer service to content generation. We will also check out the unique capabilities of LLMs in software development.

			This section covers the following chapters:

			
					Chapter 1, What is ChatGPT and what are LLMs?

					Chapter 2, Unleashing the Power of LLMs for Coding: A Paradigm Shift

					Chapter 3, Code Refactoring, Debugging, and Optimization: A Practical Guide

			

		

		
			
			

		

	

		
			1

			What is ChatGPT and What are LLMs?

			The world has been strongly influenced by the recent advancements in AI, especially large language models (LLMs) such as ChatGPT and Gemini (formerly Bard). We’ve witnessed stories such as OpenAI reaching one million users in five days, huge tech company lay-offs, history-revising image scandals, more tech companies getting multi-trillion dollar valuations (Microsoft and NVIDIA), a call for funding of $5–7 trillion for the next stage of technology, and talks of revolutions in how everything is done!

			Yes, these are all because of new AI technologies, especially LLM tech.

			LLMs are large in multiple ways: not just large training sets and large training costs but also large impacts on the world!

			This book is about harnessing that power effectively, for your benefit, if you are a coder.

			Coding has changed, and we must all keep up or else our skills will become redundant or outdated. In this book are tools needed by coders to quickly generate code and do it well, to comment, debug, document, and stay ethical and on the right side of the law.

			If you’re a programmer or coder, this is for you. Software, especially AI/machine learning, is changing everything at ever-accelerating rates, so you’ll have to learn this stuff quickly, and then use it to create and understand future technologies.

			I don’t want to delay you any longer, so let’s get into the first chapter.

			In this chapter, we’ll cover some basics of ChatGPT, Gemini, and other LLMs, where they come from, who develops them, and what the architectures entail. We’ll introduce some organizations that use LLMs and their services. We’ll also briefly touch on some mathematics that go into LLMs. Lastly, we’ll check out some of the competition and applications of LLMs in the field.

			This chapter covers the following topics:

			
					Introduction to LLMs

					Origins of LLMs

					Early LLMs

					Exploring modern LLMs

					How transformers work

					Applications of LLMs

			

			Introduction to LLMs

			ChatGPT is an LLM. LLMs can be used to answer questions and generate emails, marketing materials, blogs, video scripts, code, and even books that look a lot like they’ve been written by humans. However, you probably want to know about the technology.

			Let’s start with what an LLM is.

			LLMs are deep learning models, specifically, transformer networks or just “transformers.” Transformers certainly have transformed our culture!

			An LLM is trained on huge amounts of text data, petabytes (thousands of terabytes) of data, and predicts the next word or words. Due to the way LLMs operate, they are not perfect at outputting text; they can give alternative facts, facts that are “hallucinated.”

			ChatGPT is, as of the time of writing, the most popular and famous LLM, created and managed by OpenAI. OpenAI is a charity and a capped-profit organization based in San Francisco [OpenAI_LP, OpenAIStructure].

			ChatGPT is now widely used for multiple purposes by a huge number of people around the world. Of course, there’s GPT-4 and now GPT-4 Turbo, which are paid, more powerful, and do more things, as well as taking more text in prompts.

			It’s called ChatGPT: Chat because that’s what you do with it, it’s a chatbot, and GPT is the technology and stands for generative pre-trained transformer. We will get more into that in the GPT lineage subsection.

			A transformer is a type of neural network architecture, and a transformer is the basis of the most successful LLMs today (2024). GPT is a Generative Pre-trained Transformer. Gemini is a transformer [ChatGPT, Gemini, Menon, HuggingFace]. OpenAI’s GPT-4 is a remarkable advancement in the field of AI. This model, which is the fourth iteration of the GPT series, has introduced a new feature: the ability to generate images alongside text. This is a significant leap from its predecessors, which were primarily text-based models.

			OpenAI also has an image generation AI, DALL-E, and an AI that can connect images and text and does image recognition, called CLIP (OpenAI_CLIP). The image generation capability of DALL-E is achieved by training the transformer model on image data. This means that the model has been exposed to a vast array of images during its training phase, enabling it to understand and generate visual content [OpenAI_DALL.E].

			Furthermore, since images can be sequenced to form videos, DALL.E can also be considered a video generator. This opens up a plethora of possibilities for content creation, ranging from static images to dynamic videos. It’s a testament to the versatility and power of transformer models, and a glimpse into the future of AI capabilities.

			In essence, tools from OpenAI are not just text generators but a comprehensive suite of content generators, capable of producing a diverse range of outputs. It’s called being multi-modal. This makes these tools invaluable in numerous applications, from content creation and graphic design to research and development. The evolution from GPT-3 to GPT-4 signifies a major milestone in AI development, pushing the boundaries of what AI models can achieve.

			Origins of LLMs

			Earlier neural networks with their ability to read sentences and predict the next word could only read one word at a time and were called recurrent neural networks, (RNNs). RNNs attempted to mimic human-like sequential processing of words and sentences but faced challenges in handling long-term dependencies between words and sentences due to very limited memory capacity.

			In 1925, the groundwork was laid by Wilhelm Lenz and Ernst Ising with their non-learning Ising model, considered an early RNN architecture [Brush, Gemini].

			In 1972, Shun’ichi Amari made this architecture adaptive, paving the way for learning RNNs. This work was later popularized by John Hopfield in 1982 [Amari, Gemini].

			Due to this, there has been a fair amount of research to find ways to stretch this memory to include more text to get more context. RNNs are transformers. There are other transformers, including LSTMs, which are long short-term memory neural networks that are based on a more advanced version of RNNs, but we won’t go into that here [Brownlee_LLMs, Gemini]. LSTMs were invented by Hochreiter and Schmidhuber in 1997 [Wiki_LSTM, Hochreiter1997].

			There is another network called the convolutional neural network (CNN). Without going into much detail, CNNs are very good at images and lead the world in image recognition and similar jobs. CNNs (or ConvNets) were invented in 1980 by Kunihiko Fukushima and developed by Yann LeCun, but they only really became popular in the 2000s, when GPUs became available. Chellapilla et al. tested the speeds of training CNNs on CPUs and GPUs and found the network trained on GPUs 4.1 times faster [Fukushima1980, LeCun1989, Chellapilla2006]. Sometimes, your inventions take time to bear fruit, but keep inventing! CNNs use many layers or stages to do many different mathematical things to their inputs and try to look at them in different ways: different angles, with detail taken out (dropout layers), pooling nearby regions of each image, zeroing negative numbers, and other tricks.

			What was needed was a model with some form of memory to remember and also generate sentences and longer pieces of writing.

			In 2017, Ashish Vaswani and others published a paper called Attention Is All You Need, [Vaswani, 2017]. In this important paper, the transformer architecture was proposed based on attention mechanisms. In other words, this model didn’t use recurrence and convolutions, such as RNNs and CNNs. These methods have been very successful and popular AI architectures in their own right.

			Compared to RNNs and CNNs, Vaswani’s Transformer performed faster training and allowed for higher parallelizability.

			The Transformer was the benchmark for English-to-German translation and established a new state-of-the-art single model in the WMT 2014 English-to-French translation task. It also performed this feat after being trained for a small fraction of the training times of the next best existing models. Indeed, Transformers were a groundbreaking advancement in natural language processing [Vaswani, 2017].

			Now that we have covered the origins of LLMs, we will check out some of the earliest LLMs that were created.

			Early LLMs

			There are many LLMs today and they can be put into a family tree; see Figure 1.1. The figure shows the evolution from word2vec to the most advanced LLMs in 2023: GPT-4 and Gemini [Bard].

			
				
					[image: Figure 1.1: Family tree of LLMs from word2vec to GPT-4 and Bard, from Yang2023 with permission]
				

			

			Figure 1.1: Family tree of LLMs from word2vec to GPT-4 and Bard, from Yang2023 with permission

			So, that’s all of them but, for now, we’ll look at the earlier LLMs that lead to the most advanced technologies today. We’ll start with GPT.

			GPT lineage

			The development of GPT is a constantly changing and iterative process, with each new model building upon the strengths and weaknesses of its ancestors. The GPT series, initiated by OpenAI, has undergone a great deal of evolution, leading to advancements in natural language processing (NLP) and understanding.

			GPT-3, the third iteration, brought a significant leap in terms of size and complexity, with an impressive 175 billion parameters. This allowed it to generate pretty human-like text across a wide range of topics and subjects [Wiki_GPT3, ProjectPro].

			As the GPT series progressed, OpenAI continued to refine and enhance the architecture. In subsequent iterations, GPT-4 and GPT-4 Turbo have further pushed back the boundaries of what these LLMs can achieve. The iterative development process focuses on increasing model size and improving fine-tuning capabilities, enabling more nuanced and contextually relevant outputs.

			Further to this, there are more modalities, such as GPT-4 with vision and text-to-speech.

			GPT model iteration is not solely about scaling up the number of parameters; it also involves addressing the limitations observed in earlier versions. Feedback from user interactions, research findings, and technological advancements contribute to the iterative nature of the GPT series. OpenAI is constantly working to reduce the amount of inaccurate information and incoherent outputs (hallucinations) that its chatbots produce. Also, each iteration of the chatbot takes on board the lessons learned from real-world applications and user feedback.

			GPT models are trained and fine-tuned on very large, diverse datasets to make sure the chatbots can adapt to many different contexts, industries, and user requirements. The iterative development approach ensures that later GPT models are better equipped to understand and generate human-like text, making them extremely valuable tools for a huge number of applications, including content creation such as blogs, scripts for videos, and copywriting (writing the text in adverts) as well as conversational agents (chatbots and AI assistants).

			The way GPT models are developed iteratively shows OpenAI’s commitment to continuous improvement and innovation in the field of LLMs, allowing even more sophisticated and capable models to be built from these models in the future.

			Here are the dates for when the different versions of GPT were launched:

			
					GPT was first launched in June 2018

					GPT-2 was released in February 2019

					GPT-3 in 2020

					GPT-3.5 in 2022/ChatGPT in November 2022

			

			There will be more on the GPT family later, in the GPT-4 /GPT-4 Turbo section.

			Here, we will detail the architecture of LLMs and how they operate.

			BERT

			To comprehend the roots and development of Bidirectional Encoder Representations from Transformers (BERT), we must know more about the intricate and fast-moving landscape of neural networks. Without hyperbole, BERT was a seriously important innovation in NLP, part of the ongoing evolution of AI. BERT was the state of the art for a wide range of NLP tasks in October 2018, when it was released [Gemini]. This included question answering, sentiment analysis, and text summarization.

			BERT also paved the way for later R&D of LLMs; it played a pivotal role in LLM development. BERT, being open source, helped to speed up LLM advancement.

			BERT takes some of its DNA from RNNs (mentioned in the Origins of LLMs section), the neural nets that loop back on themselves to create a kind of memory, although rather limited memory.

			The invention of the first transformer architecture was key to the origin of BERT. The creation of BERT as a bidirectional encoder (these go backward and forward along a sentence) drew inspiration from the transformer’s attention-based mechanism, allowing it to capture contextual relationships between words in both directions within a sentence.

			So, BERT’s attention is bidirectional (left-to-right and right-to-left context). At its creation, this was unique, and it enabled BERT to gain a more comprehensive understanding of nuanced language semantics.

			While BERT’s foundations are in transformer architecture, its characteristics have evolved with further research and development, though it is not currently in development. Each iteration of BERT refined and expanded its capabilities.

			The BERT LLM was a stage of the ongoing innovation in AI. BERT’s ability to understand language bidirectionally, drawing insights from both preceding and succeeding words, is part of the endeavors taken to achieve the creation of an AI with a sufficiently deep awareness of the intricacies of natural language.

			
				
					[image: Figure 1.2: Architecture of BERT, a bidirectional encoder (reprodu﻿ced from GeekCultureBERT)]
				

			

			Figure 1.2: Architecture of BERT, a bidirectional encoder (reproduced from GeekCultureBERT)

			LaMDA

			Understanding the ancestry of Language Model for Dialogue Applications (LaMDA) involves tracing the roots of its architectural design and the evolutionary path it followed in the landscape of NLP. LaMDA, like its counterparts, emerges from a family of models that have collectively revolutionized how machines comprehend and generate human-like text.

			RNNs, mentioned in this chapter’s first section, play a pivotal role in LaMDA’s family tree.

			The breakthrough came with the invention of transformer architectures, and LaMDA owes a significant debt to the transformative Attention Is All You Need paper [Vaswani 2017, 2023]. This paper laid the groundwork for a novel approach, moving away from sequential processing to a more parallelized and attention-based mechanism.

			The LaMDA LLM inherits its core architecture from the transformer family and was developed by Google. These models learn very well how words in a sentence relate to each other. This allows a transformer to have a richer understanding of language. This change from using traditional processing in sequence was a paradigm shift in NLP, enabling LaMDA to more effectively grasp nuanced interactions and dependencies within texts.

			While the origins lie in the transformer architecture, LaMDA’s unique characteristics may have been fine-tuned and evolved through subsequent research and development efforts. LaMDA’s lineage is not just a linear progression but a family tree, a branching exploration of many possibilities, with each iteration refining and expanding its capabilities. In Figure 1.1, LaMDA is near ERNIE 3.0, Gopher, and PaLM on the right of the main, vertical blue branch.

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
						
						
						
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

		
		Contents

			
					Coding with ChatGPT and Other LLMs

					Contributors

					About the author

					About the reviewers

					Preface
					
							Who this book is for

							What this book covers

							To get the most out of this book

							Download the example code files

							Conventions used

							Get in touch

							Share your thoughts

							Download a free PDF copy of this book

					

				

					Part 1: Introduction to LLMs and Their Applications

					Chapter 1: What is ChatGPT and What are LLMs?
					
							Introduction to LLMs

							Origins of LLMs

							Early LLMs
							
									GPT lineage

									BERT

									LaMDA

									LLaMA‘s family tree

							

						

							Exploring modern LLMs
							
									GPT-4

									LLaMA-2

									Gemini (formerly Bard)

									Amazon Olympus

							

						

							How Transformers work
							
									How an LLM processes a piece of text

									ChatGPT uses reinforcement learning from human feedback

									LLMs are expensive

							

						

							A note on the mathematics of LLMs

							Applications of LLMs

							Summary

							Bibliography

					

				

					Chapter 2: Unleashing the Power of LLMs for Coding: A Paradigm Shift
					
							Technical requirements

							Unveiling the advantages of coding with LLMs
							
									The short version

									The longer version

							

						

							Planning your LLM-powered coding
							
									1. Understanding your purpose – unveiling the why

									2. Identifying your audience – tailoring the experience

									3. Defining the environment – where your code calls home

									4. Mapping user interaction – charting the navigation flow

									5. Identifying data sources – feeding the machine learning beast

									6. What data format?

									7. How will you plumb in the data?

									8. Visualizing the interface

							

						

							Getting into LLM-powered coding
							
									Back to the HTML code for Prompt 5

									Back to the Flask code for Prompt 5

							

						

							Making it work for you

							Summary

					

				

					Chapter 3: Code Refactoring, Debugging, and Optimization: A Practical Guide
					
							Technical requirements

							Dealing with error codes – debugging
							
									Prompt 4 debugging

									Prompt 5 debugging – HTML

									Prompt 5 debugging – Python/Flask

									Where’s the code?

							

						

							Refactoring code
							
									Refactoring code with Claude 3

							

						

							Documenting code
							
									Let’s get ChatGPT and to explain some code

							

						

							Testing code
							
									How do you test code?

							

						

							Virtual software companies
							
									Agents

									Relevance to virtual software companies?

									ChatDev

							

						

							Summary

					

				

					Part 2: Be Wary of the Dark Side of LLM-Powered Coding

					Chapter 4: Demystifying Generated Code for Readability
					
							Technical requirements

							Generating more readable code
							
									Introduction to data compression methods

									Code to compress data, written in Python 3.10

									Let’s look at some well-written code

							

						

							What makes code hard or easy to read?
							
									Why is reading code hard?

									Dos and don’ts of readable code – how to make readable code

							

						

							Summarizing code for understanding

							Generating documentation
							
									Documentation for crypto_price_and_indicators.py

							

						

							Summary

							Bibliography

					

				

					Chapter 5: Addressing Bias and Ethical Concerns in LLM-Generated Code
					
							Technical requirements

							Understanding bias in LLM-generated code
							
									Where does bias in LLMs come from?

							

						

							Examining ethical dilemmas – challenges in LLM-enhanced working
							
									Meta AI, or Meta Llama 3

									ChatGPT on international security measures

									Racist Gemini 1.5

							

						

							Detecting bias – tools and strategies
							
									Biases you might find in code and how to improve them

									Analyzing the training data

									Examining the code

							

						

							Preventing biased code – coding with ethical considerations
							
									Get good data

									Ethical guidelines

									Create transparent and explainable code

									Code reviews

									Your inevitable success

									Examples of getting the balance right

							

						

							Summary

							Bibliography

					

				

					Chapter 6: Navigating the Legal Landscape of LLM-Generated Code
					
							Technical requirements

							Unraveling copyright and intellectual property considerations
							
									The EU – needs the human touch

									The UK – human creativity and arrangements necessary for the creation

									The USA – no ownership of AI-generated works

									The People’s Republic of China – whoever made the greater contribution

									Taiwan – human creative expression

									India and Canada – human author’s skill and judgment

									Australia – to the person making the necessary arrangements

									Japan – copyright requires human authorship

									South Korea

									Brazil – human authorship required

									Indonesia – human authorship needed

									Evolving legal landscape

									Precedent

							

						

							Addressing liability and responsibility for LLM-generated code
							
									Licensing

									Attribution and credit

									Quality and reliability

									Ethical considerations

									Product liability

									Use case restrictions

									Security concerns

									Transparency and explainability

									Third-party dependencies

									Use good communication to avoid legal action

									Code of ethics when using AI

									Accountability and redress mechanisms

							

						

							Examining legal frameworks governing the use of LLMs in coding
							
									UN resolution on AI

									EU – the European Parliament adopts the “AI Act”

									California AI kill switch bill proposed

									AI Acts of other countries

									Other regulations

							

						

							Possible future of the regulation of AI-generated code
							
									Key points moving forward

									Questions that should still be answered

									Keep up to date

							

						

							Summary

							Bibliography

					

				

					Chapter 7: Security Considerations and Measures
					
							Technical requirements

							Understanding the security risks of LLMs
							
									Data privacy and confidentiality

									Security risks in LLM-generated code

							

						

							Implementing security measures for LLM-powered coding
							
									Input sanitization and validation

									Secure integration patterns

									Monitoring and logging

									Version control and traceability

									Encryption and data protection

									Regular security assessments

									Incident response planning

									Bonus – training

									Who can help here?

									Best practices for secure LLM-powered coding

							

						

							Making the future more secure
							
									Emerging threats

									Shifting focus

							

						

							Summary

							Bibliography

					

				

					Part 3: Explainability, Shareability, and the Future of LLM-Powered Coding

					Chapter 8: Limitations of Coding with LLMs
					
							Technical requirements

							Inherent limitations of LLMs
							
									Core limitations

									Other limitations to LLMs

									Evaluating LLM performance

									Overcoming inherent limitations

							

						

							Challenges in integrating LLMs into coding workflows
							
									Relevant workflow example

									Security risks

									IP concerns

									Dependency management

									Explainability

							

						

							Future research directions to address limitations
							
									Continuous learning

									Novel architectures

									Computational efficiency

									Specialized training

							

						

							Summary

							Bibliography

					

				

					Chapter 9: Cultivating Collaboration in LLM-Enhanced Coding
					
							Technical requirements

							Why share LLM-generated code?
							
									Benefits of sharing code

									Real-world examples

							

						

							Best practices for code sharing
							
									Documentation

									Consistent coding standards

									Version control

									Code security best practices

									Proper attribution

									Test the code thoroughly

									Continuous improvement

							

						

							Knowledge management – capturing and sharing expertise
							
									Creating knowledge repositories

									Conducting regular knowledge-sharing sessions

									Peer mentorship – sharing the wisdom

							

						

							Making the best use of collaborative platforms
							
									Code review tools

									Project management software

									Communication channels – keeping the conversation flowing

							

						

							Summary

							Bibliography

					

				

					Chapter 10: Expanding the LLM Toolkit for Coders: Beyond LLMs
					
							Technical requirements

							Code completion and generation tools
							
									Eclipse’s Content Assist

									PyCharm’s code completion

									NetBeans’ code completion

									VS Code’s IntelliSense

							

						

							SCA and code review tools
							
									SonarQube

									ESLint

									PMD

									Checkstyle for Java

									Fortify Static Code Analyzer

									CodeSonar

									Coverity

									FindBugs/SpotBugs

									Bandit

									HoundCI

							

						

							Testing and debugging tools
							
									Jest

									Postman

									Cypress

									Selenium

									Mocha

									Charles Proxy

							

						

							Summary

							Bibliography

					

				

					Part 4: Maximizing Your Potential with LLMs: Beyond the Basics

					Chapter 11: Helping Others and Maximizing Your Career with LLMs
					
							Why Mentor Others in LLM-powered coding?
							
									Mentoring in the time of LLMs

									The Ripple Effect of Mentorship

									Elevating Standards in the Field

									Personal Growth Through Mentorship

									Supporting a Culture of Continuous Learning

									Section Summary

							

						

							Other Ways to Share Your Expertise and Work
							
									Blogging and Writing Articles

									Online Courses

									Open-Source Projects

									Running Workshops

									Social Media and Online Communities

									Section Summary

							

						

							Attend, Build, Network
							
									Speaking Engagements and Workshops

									Joining Professional Organizations

									Network with Peers and Experts

									Building Genuine Relationships

									Seeking Mentorship and Offering Support

									Section Summary

							

						

							New Approaches from LLMs
							
									Embracing Collaborative Coding

									Latest Developments in LLMs

									Section Summary

							

						

							Summary

							Bibliography

					

				

					Chapter 12: The Future of LLMs in Software Development
					
							Technical requirements

							Emerging trends in LLM technologies
							
									Multimodal LLMs

									Human-AI collaboration

									Multi-agent systems

									Generative business intelligence (Gen BI)

									Your wish is my command

							

						

							Future impacts
							
									Democratization of coding and more

									Feedback loop

									Harmful AI?

							

						

							Coming challenges and opportunities
							
									Legal

									Politics and government

									No jobs for humans?

									Scale to the stars, literally

									Human directed

							

						

							Summary
							
									Like my ideas or what to change them?

							

						

							Bibliography

					

				

					Index
					
							Why subscribe?

					

				

					Other Books You May Enjoy
					
							Packt is searching for authors like you

							Share your thoughts

							Download a free PDF copy of this book

					

				

			

		
		
		Landmarks

			
					Cover

					Table of Contents

					Index

			

		

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/image/B21009_QR_Free_PDF.jpg

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/image/B21009_01_2.jpg
Positional
Encoding

Q ¢

o
e

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

OEBPS/Fonts/MyriadPro-LightIt.otf

OEBPS/image/Packt_Logo-01.png
<PACKD

OEBPS/image/Cover.jpg
Coding with ChatGPT
and Other LLMs

Navigate LLMs for effective coding, debugging,
and Al-driven development

<> DR. VINCENT AUSTIN HALL

OEBPS/Fonts/CourierStd.otf

OEBPS/image/B21009_01_1.jpg
Evolutionary R .
Tree LLaMAo\Y

2023 ‘
C :) OPT-IML [N A
¢

BLOOMZ Galactica N[GLML=

T Frrads,
CLlosed-Source) G I
j [Chinchilld®
InstructGl GPT-NeoX[e]
5 SETTS ‘7—% @G
(2 \ CiRG GG\ GopherO N ERNIES. 0 T | fer

TGS .
(orassic- 18

GPT-J[e]
GPT-Neo[®)
7
%
DeBERTALH G FTIG
ELECTRA]]

istil s A
ALBERTIon BERT/ - YBARTL! ¥ G, =

RoBERTa[#,\} XLNet[c€] 1 open source
ERNIE P} GPT-2y []closed source]
2019 Do (<]
BERT[C) Lo, s

@ @ E"c°de'">0|1y Decoder-Only] @ .

(&)
Q
FastText Glove G

Word2Vec

