

 [image: Cover of The Ultimate Linux Shell Scripting Guide by Donald A. Tevault]

 The Ultimate Linux Shell Scripting Guide

 Automate, Optimize, and Empower tasks with Linux Shell Scripting

 Donald A. Tevault

 [image:]

 The Ultimate Linux Shell Scripting Guide

 Copyright © 2024 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Senior Publishing Product Manager: Reshma Raman

 Acquisition Editor – Peer Reviews: Gaurav Gavas

 Project Editor: Meenakshi Vijay

 Content Development Editor: Soham Amburle

 Copy Editor: Safis Editing

 Technical Editors: Aneri Patel and Kushal Sharma

 Proofreader: Safis Editing

 Indexer: Pratik Shirodkar

 Presentation Designer: Rajesh Shirsath

 Developer Relations Marketing Executive: Priyadarshini Sharma

 First published: October 2024

 Production reference: 2111024

 Published by Packt Publishing Ltd.

 Grosvenor House

 11 St Paul’s Square

 Birmingham

 B3 1RB, UK.

 ISBN 978-1-83546-357-4

 www.packt.com

 To my loving friends and family

 – Donald A. Tevault

 Contributors

 About the author

 Donald A. Tevault, but you can call him Donnie. He started with Linux in 2006, and has been working with it ever since. In that time, Donnie has created training documentation for Linux administration, bash scripting, and Nagios administration. He has served as the Linux consultant for an Internet of Things security firm, and operates the BeginLinux Guru channel on YouTube. Donnie’s other books include Mastering Linux Security and Hardening and Linux Service Management Made Easy with systemd.

 I’d like to thank the team at Packt Publishing for guiding this book through to completion, and my tech reviewer Jason for his invaluable suggestions.

 About the reviewer

 Jason Willson has been working in the Tech industry for over 20 years since his first job at the help desk at his alma mater, Grove City College. He was first introduced to Linux in 2007 at a startup in Boston and has worked with it professionally and personally ever since. He’s used command line and shell scripting techniques for a variety of tasks relating to Data Analysis, Systems Administration, and DevOps. He currently works as a DevOps Engineer at Carnegie Mellon University. In addition to reviewing this book, he has also reviewed another book published by Packt titled Linux Command Line and Shell Scripting Techniques by Vedran Dakic.

 I’d like to thank the incredible Linkedin community for making this connection possible with Packt Publishing. I’d also like to thank all the coworkers, classmates, and mentors (personal,professional, and academic) who helped to shape me into who I am today. And last but not least,I’d like to thank my amazing wife Eva, who has been a constant support to me in reviewing this book despite such a hectic work schedule.

 Join our community on Discord!

 Read this book alongside other users, Linux experts, and the author himself.

 Ask questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and much more. Scan the QR code or visit the link to join the community.

 https://packt.link/SecNet

 [image:]

 Contents

 	Preface

 	Who this book is for

 	What this book covers

 	To get the most out of this book

 	Get in touch

 	Getting Started with the Shell

 	Understanding Shells

 	Finding Help with Shell Commands

 	Understanding Manual Pages

 	Understanding Info Pages

 	Getting to Know the Linux Documentation Project

 	Using Your Favorite Search Engine

 	Using a Text Editor to Create Shell Scripts

 	Text-mode Editors

 	GUI Text Editors

 	Understanding Compiled versus Interpreted Programming

 	Understanding root and sudo Privileges

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Interpreting Commands

 	Understanding the Structure of a Command

 	Using Command Options

 	Hands-on Lab – Practice With Command Options

 	Using Command Arguments

 	Executing Multiple Commands at Once

 	Running Commands Interactively

 	Using Command Sequences

 	Chaining Commands with a Semi-Colon

 	Conditional Command Execution with Double Ampersands

 	Conditional Command Execution with Double Pipes

 	Using the find Utility

 	Performing Multiple Actions with find

 	Hands-on Lab – Using find to Perform Other Commands

 	Running Commands Recursively

 	Hands-on Lab – Using Commands with Recursion

 	Understanding the Command History

 	Escaping and Quoting

 	Escaping Metacharacters

 	Quoting

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Understanding Variables and Pipelines

 	Understanding Environmental Variables

 	Understanding Programming Variables

 	Understanding Pipelines

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Understanding Input/Output Redirection

 	Introduction to Input/Output Redirection

 	Understanding stdout

 	Preventing File Overwrites

 	Using the File Descriptor

 	Understanding stdin

 	Understanding stderr

 	Understanding tee

 	Hands-on Lab – Pipes, Redirectors, and find

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Customizing the Environment

 	Technical Requirements

 	Reviewing the Environmental Variables

 	Understanding Shell Sessions

 	Understanding the Configuration Files

 	bash Global Configuration Files on Fedora

 	Users’ Configuration Files on Fedora

 	bash Global Configuration Files on Debian

 	Users’ Configuration Files on Debian

 	Setting the Default Editor on Debian

 	Setting Shell Options from the Command-line

 	Understanding Aliases

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Text-Stream Filters – Part 1

 	Technical Requirements

 	Introduction to Text-Stream Filters

 	Using cat

 	Using tac

 	Using cut

 	Using paste

 	Using join

 	Using sort

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Text Stream Filters – Part 2

 	Technical Requirements

 	Using expand

 	Using unexpand

 	Using nl

 	Using head

 	Using tail

 	Using Head And Tail Together

 	Using od

 	Using uniq

 	Using wc

 	Using fmt

 	Using split

 	Using tr

 	Using xargs

 	Using pr

 	Printing from the Command-line

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Basic Shell Script Construction

 	Technical Requirements

 	Understanding Basic Shell Script Construction

 	Hands-on Lab – Counting Logged-in Users

 	Performing Tests

 	Using the test Keyword

 	Enclosing a test Condition Within Square Brackets

 	Using an if. . .then Construct

 	Using Other Types of Tests

 	Understanding Subshells

 	Hands-on Lab – Testing Conditions

 	Understanding Scripting Variables

 	Creating and Deleting Variables

 	Understanding Variables and Shell Levels

 	Understanding Case Sensitivity

 	Understanding Read-Only Variables

 	Understanding Array Variables

 	Hands-on Lab – Using Arrays

 	Understanding Variable Expansion

 	Substituting a Value for an Unset Variable

 	Substituting a Value for a Set Variable

 	Assigning a Value to a Variable

 	Displaying an Error Message

 	Using Variable Offsets

 	Matching Patterns

 	Understanding Command Substitution

 	Understanding Decisions and Loops

 	The if. .then Construct

 	The do. . while construct

 	The for..in Construct

 	The for Construct

 	Using break

 	Using continue

 	The until Construct

 	The case Construct

 	Using Positional Parameters

 	Understanding Exit Codes

 	Standard Shell Exit Codes

 	User-defined Exit Codes

 	More Information About echo

 	Looking at Some Real-World Examples

 	Hands-on Lab: Using if..then

 	Hands-on Lab – Parsing an Apache Access Log

 	Hands-on Lab – Beta Testing a Hard Drive

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Filtering Text with grep, sed, and Regular Expressions

 	Technical Requirements

 	Understanding Regular Expressions

 	Literals and Metacharacters

 	Understanding sed

 	Understanding sed Portability Issues

 	Installing gsed on FreeBSD

 	Installing gsed on macOS

 	Installing gsed on OpenIndiana

 	Substitution with sed

 	Example 1: Modifying an Office Memo

 	Example 2: Modifying a List of Hollywood Actors

 	Example 3: Modifying Lists of Cars

 	Example 4: Performing a Whole-Word Substitution

 	Deletion with sed

 	Example 1: Deleting Items from a List

 	Example 2: Deleting Blank Lines

 	Appending and Inserting with sed

 	Example 1: Appending Lines of Text

 	Example 2: Performing Multiple Operations at Once

 	Example 3: Inserting Lines of Text

 	Changing with sed

 	Example 1: Changing Edsel to Studebaker

 	Example 2: Changing Entire Lines of Text

 	Other Miscellaneous sed tricks

 	Example 1: Using the q Command

 	Example 2: Using the w Command

 	Example 3: Using the r Command

 	Using sed program files

 	Example 1: Appending Lines in a Text File

 	Example 2: Changing Lines in a Text File

 	Example 3: Substituting Text

 	Example 4: Copying Lines from One File to Another

 	Compound Scripts in sed Program Files

 	Using sed in Shell Scripts

 	Understanding grep

 	Basic Searches with grep

 	More Advanced Searches with grep

 	Example 1: Searching for Whole Words

 	Even More Advanced Searches with grep

 	Example 1: Auditing Source Code Files

 	Example 2: Searching for Social Security Numbers

 	Example 3: Using the ^ Metacharacter

 	Using Extended Regular Expressions with grep

 	Example 1: Basic Search with Extended Syntax

 	Example 2: Searching for Consecutive Duplicate Words

 	Example 3: Searching for Words that Begin with a Certain Letter

 	Example 4: Searching for Words with Digits

 	Using Fixed-strings Regular Expressions with grep

 	Using RegEx Helper Programs

 	RegexBuddy and RegexMagic

 	Regex101

 	Looking at Some Real-World Examples

 	Modifying Multiple Files at Once

 	Searching Through Apache Webserver Logs for Cross-site Scripting Attacks

 	Automating Third-party Repository Installations

 	Filling Empty Fields in a .csv File

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Understanding Functions

 	Technical Requirements

 	Introduction to Functions

 	Defining a Function

 	Using Functions in Shell Scripts

 	Creating and Calling Functions

 	Passing Positional Parameters to Functions

 	Passing Values from a Function

 	Creating Function Libraries

 	Looking at Some Real-World Examples

 	Checking Network Connectivity

 	Using the CoinGecko API

 	Hands-on Lab – Creating the coingecko.sh Script

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Performing Mathematical Operations

 	Technical Requirements

 	Performing Integer Math with Expressions

 	Using the expr Command

 	Using echo with Math Expressions

 	Performing Integer Math with Integer Variables

 	Performing Floating Point Math with bc

 	Using bc in Interactive Mode

 	Using bc Program Files

 	Using bc in Shell Scripts

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Automating Scripts with here Documents and expect

 	Technical Requirements

 	Using here Documents

 	Creating here Documents with Static Data

 	Creating here documents with Dynamic Data

 	Using Functions in here Documents

 	Automating Responses with expect

 	Security Implications with expect

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Scripting with ImageMagick

 	Technical Requirements

 	Converting Non-standard Filename Extensions

 	Installing ImageMagick

 	Displaying Images

 	Viewing Image Properties

 	Resizing and Customizing Images

 	Batch-processing Image Files

 	Using Fred’s ImageMagick Scripts

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Using awk – Part 1

 	Introducing awk

 	Understanding Patterns and Actions

 	Obtaining Input from Text Files

 	Looking for Human Users

 	Parsing Webserver Access Logs

 	Using Regular Expressions

 	Obtaining Input from Commands

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Using awk – Part 2

 	Technical Requirements

 	Basic awk Script Construction

 	Using Conditional Statements

 	Using a while Construct and Setting Variables

 	Summing Numbers in a Line

 	Finding the CPU Generation

 	Using for loops and Arrays

 	Using Floating Point Math and printf

 	Working with Multi-Line Records

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Creating User Interfaces with yad, dialog, and xdialog

 	Technical Requirements

 	Creating a Graphical User Interface with yad

 	The yad Basics

 	Creating Data Entry Forms

 	Creating a Drop-down List

 	Using the yad File Manager

 	Creating a File Checksum Utility

 	Creating a GUI Front-end for ImageMagick

 	Programming Form Buttons

 	Some Final Thoughts about yad

 	Creating User Interfaces with dialog and xdialog

 	The dialog Basics

 	The xdialog Basics

 	Automatically Choosing Either dialog or xdialog

 	Adding Widgets

 	Creating an SSH Login Interface

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Using Shell Script Options with getops

 	Technical Requirements

 	Understanding the Need for getopts

 	Understanding getopt versus getopts

 	Using getopts

 	Looking at Real-world Examples

 	The Modified Coingecko Script

 	The Tecmint Monitor Script

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Shell Scripting for Security Professionals

 	Technical Requirements

 	Simple Scripts for Auditing

 	Identifying an Operating System

 	A Simple Port-scanning Script

 	Auditing the root User Account

 	Creating the root Account Auditing Script for Linux and OpenIndiana

 	Modifying the root Account Auditing Script for Use on FreeBSD

 	Creating a User Activity Monitoring Script

 	Creating Simple Firewall Scripts

 	Creating an IP Address Blocking Script for Red Hat Distros

 	Hands-on Lab: Create the Script with an Array and a for loop

 	Hands-on Lab: Creating the Script with xargs

 	Searching for Existing Security-related Scripts

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Shell Script Portability

 	Technical Requirements

 	Running bash on Non-Linux Systems

 	Using env to Set the bash Environment

 	Creating a Symbolic Link to bash

 	Understanding POSIX compliance

 	Understanding the Differences Between Shells

 	Understanding Bashisms

 	Using Portable Tests

 	Making Portable Arrays

 	Understanding Portability Problems with echo

 	Testing Scripts for POSIX Compliance

 	Creating Scripts on a POSIX-compliant Shell

 	Using checkbashisms

 	Using shellcheck

 	Specifying a Shell with the -s Option

 	Hands-on Lab – Using -s to Scan Function Libraries

 	Using shall

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Shell Script Security

 	Technical Requirements

 	Controlling Access to Your Scripts

 	Assigning sudo Privileges

 	Hands-on Lab ­– Configuring sudo

 	Using an Access Control List

 	Hands-on Lab – Setting an ACL for Horatio on Linux

 	Hands-on Lab – Setting an ACL for Horatio on FreeBSD 14

 	Hands-on Lab – Setting an ACL for Horatio on OpenIndiana

 	Obfuscating Plain-Text Scripts

 	Installing shc

 	Hands-on Lab – Using shc

 	Hands-on Lab – Creating Untraceable Executables

 	Decrypting shc Binaries

 	Understanding SUID and SGID Considerations

 	Avoiding Sensitive Data Leakage

 	Securing Temporary Files

 	Understanding the /tmp/ Directory

 	The Wrong Way to Create Temporary Files

 	The Right Way to Create Temporary Files

 	Using Passwords in Shell Scripts

 	Hands-on Lab – Encrypting Passwords

 	Understanding Command Injection with eval

 	Using eval on the Command-line

 	Using eval Safely

 	Using eval Dangerously

 	Using Alternatives to eval

 	Using Command Substitution

 	Evaluating if eval is Necessary

 	Understanding Path Security

 	Attack Scenario 1: Compromising the User’s Account

 	Attack Scenario 2: Social Engineering

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Debugging Shell Scripts

 	Technical Requirements

 	Understanding Common Scripting Errors

 	Not Enough Quoting

 	Filenames with Blank Spaces

 	Problems with Unset Variables

 	Creating a Wild Loop

 	Using Shell Script Debugging Tools and Techniques

 	Using echo Statements

 	Using xtrace for Debugging

 	Checking for Undefined Variables

 	Checking for Errors with the -e Option

 	Understanding the Problems with set -e and -e

 	Using bash Debugger

 	Installing bashdb on Linux

 	Installing bashdb on FreeBSD

 	Installing on macOS

 	Debugging a Script with bashdb

 	Getting Help with bashdb

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Introduction to Z Shell Scripting

 	Technical Requirements

 	Introducing zsh

 	Installing zsh

 	Understanding the Unique Features of zsh Scripting

 	Differences in Variable Expansion

 	Substituting Values

 	Substituting Substrings

 	Translating Between Upper and Lower Case

 	Extended File Globbing

 	Understanding zsh Arrays

 	Enhanced Math Capabilities

 	Using zsh Modules

 	Using the mathfunc Module

 	The datetime Module

 	Summary

 	Questions

 	Further Reading

 	Answers

 	Join our community on Discord!

 	Using PowerShell on Linux

 	Technical Requirements

 	Installing PowerShell on Linux and macOS

 	Installing PowerShell on Linux via a snap Package

 	Installing PowerShell on Fedora

 	Installing PowerShell on macOS

 	Invoking PowerShell

 	Reasons for Linux and Mac Admins to Learn PowerShell

 	Working with Mixed Operating System Environments

 	PowerShell Commands Can Be Simpler

 	Enhanced Builtin Math Capabilities

 	Differences Between PowerShell Scripting and Traditional Linux/Unix Scripting

 	Using Filename Extensions and the Executable Permission

 	PowerShell is Object-oriented

 	PowerShell Uses Cmdlets

 	Using Aliases on PowerShell

 	Viewing the Available PowerShell Commands

 	Getting Help with PowerShell Commands

 	Real-World Cross-Platform PowerShell Scripts

 	The write-marquee.ps1 Script

 	The check-cpu.ps1 Script

 	Summary

 	Further Reading

 	Other Books You May Enjoy

 	Index

 Landmarks

 	
 Cover

 	
 Index

 Preface

 Welcome to The Ultimate Linux Shell Scripting Guide! This book, which is ideal for both Linux beginners and more advanced Linux administrators, will guide you through the shell script creation process. We’ll begin with basic command-line usage and will progress through more advanced concepts in every succeeding chapter. You’ll see how to build scripts that can help you automate repetitive administrative tasks, as well as many other cool things. We’ll primarily concentrate on bash scripting throughout most of the book. Later, we’ll show you how to make your scripts portable so that they can run on legacy Unix systems that can’t run bash. After chapters on shell script debugging and shell script security, we’ll wrap up with introductions to the Z Shell and PowerShell.

 Who this book is for

 This book is appropriate for anyone who needs to master the concepts of shell scripting. Linux beginners can benefit, because it can help them master the concepts that will be covered on the CompTIA Linux+/Linux Professional Institute exam. More advanced Linux administrators can benefit because it will show them the more advanced concepts that they need to build really useful, practical shell scripts.

 What this book covers

 Chapter 1, Getting Started with the Shell, this chapter covers the basics of operating system shells that can be found on Linux and Unix-like systems. The reader will need to know these principles in order to understand principles that will be presented in later chapters.

 Chapter 2, Interpreting Commands, there are five things that an operating system shell will do for us. These include interpreting commands, setting variables, enabling pipelines, allowing input/output redirection, and allowing customization of the user’s working environment. In this chapter, we’ll look at how shells interpret a user’s commands.

 Chapter 3, Understanding Variables and Pipelines, in this chapter, we’ll look at the next two things that an operating system shell does for us, which is to allow us to set variables and use command pipelines. There’s not that much to say about either of these topics, which is why we’re combining them both into one chapter.

 Chapter 4, Understanding Input/Output Redirection, in this chapter, we’ll look at how to send the text output of a command to somewhere other than the terminal, which is the default output device. We’ll then look at how to make a command bring in text from somewhere other than the keyboard, which is the default input device.

 Finally, we’ll look at how to send error messages to somewhere other than the terminal.

 Chapter 5, Customizing the Environment, in this chapter, we’ll look at the various configuration files for the various shell environments. We’ll look at how to customize these configuration files, and how to set certain environmental options from the command-line.

 Chapter 6, Text Stream Filters – Part 1, many times, an administrator will need to write a shell script that will retrieve text information from an external source, format it, and create a report. In this chapter, we’ll introduce the concept of text stream filters, which can help with this process. Also, knowing about these text stream filters can help you pass certain Linux certification exams, such as the LPI/Linux+ exam. We will then show you how to use several of these filters.

 Chapter 7, Text Stream Filters – Part 2, in this chapter, we’ll continue our exploration of text stream filters.

 Chapter 8, Basic Shell Script Construction, in this chapter, we’ll explain about the basic structure of a shell script, and will use some of the text stream filters from the previous chapters to create simple scripts. We’ll also look at some basic programming constructs that are common to all programming languages, and show you how to use them.

 Chapter 9, Filtering Text with grep, sed, and Regular Expressions, in this chapter, you’ll learn about the concept of regular expressions, and how to use them with grep and sed to filter or manipulate text. These techniques can not only help you find certain text, but can also help automate the creation of reports and the editing of multiple text files at once.

 Chapter 10, Understanding Functions, functions are an important part of every programming language, because they make it easy for a programmer to reuse a block of code in numerous programs, or in numerous places within one single program. The programmer can pass parameters to a function, have the function operate on those parameters, and pass back the results to the main program.

 Chapter 11, Performing Mathematical Operations, the various operating system shells all have means of performing mathematical operations either from the command-line, or from within a shell script. In this chapter, we’ll look at how to perform operations with both integer and floating point math.

 Chapter 12, Automating Scripts with here Documents and expect, although it’s easy to have a shell script pull data out of a separate text file, it’s sometimes handier to store the data within the shell script itself. We’ll do that using a “here” document. In this chapter, you’ll learn how to create and use “here” documents. You’ll also see how to automate certain scripts with the expect utility.

 Chapter 13, Scripting with ImageMagick, imageMagick is a text-mode program that is used to edit, manipulate, and view graphical image files. In this chapter, you’ll learn how to automate the processing of images by using ImageMagick commands within shell scripts.

 Chapter 14, Using awk–Part 1, this chapter covers awk, which is a tool that can extract specific text from text files, and automate the creation of reports and databases. Since awk is a full-blown programming language in its own right, we won’t be covering it in depth here. Instead, we’ll give you enough information so that you can create awk “one-liners” that can be used within shell scripts.

 Chapter 15, Using awk–Part 2, this is a continuation of the previous chapter, in which we’ll cover the more advanced concepts of scripting with awk.

 Chapter 16, Creating User Interfaces with yad, dialog, and xdialog, so far, we’ve only looked at shell scripts that run strictly from the command-line. And indeed, that’s how most people use them, and is what most people think about when they think about shell scripts. But, it’s also possible to create shell scripts that offer a user interface. In this chapter, we’ll use yad to create graphical user interfaces, and dialog to create ncurses-style interfaces.

 Chapter 17, Using Shell Script Options with getopts, often, an administrator will need to pass both arguments and options to a shell script. Passing arguments, the objects upon which a script will operate, is easy. To also pass options, which modify how the script will operate, requires another type of operator. In this chapter, you’ll learn how to use getopts to pass options to a script.

 Chapter 18, Shell Scripting for Security Professionals, in this chapter, you’ll learn how to either create shell scripts or search for existing shell scripts that can help security administrators perform their jobs. We’ll also look at how to modify or improve existing shell scripts to meet specific needs of security administrators.

 Chapter 19, Shell Script Portability, large organizations, such as large government agencies or large corporations, might have a diverse mix of Linux, Unix, and Unix-like machines. Sometimes, it’s handy to write shell scripts that can automatically detect the type of system on which they’re running, and run the appropriate code for each type of system. In this chapter, we’ll look at several methods for enhancing script portability.

 Chapter 20, Shell Script Security, scripting errors can cause a script to inadvertently cause the exposure of sensitive data, or to allow someone to perform unauthorized activities on a system. In this chapter, we’ll look at ways to help the reader write shell scripts that are as secure as they possibly can be.

 Chapter 21, Debugging Shell Scripts, shell scripts can have bugs, the same as with any other programming language. Sometimes, the bugs are easy to find, and sometimes they’re not. In this chapter, we’ll look at various methods that can help a busy administrator debug shell scripts that aren’t working properly.

 Chapter 22, Introduction to Z Shell Scripting, the Z Shell, or zsh, is an alternate shell that can be used in place of bash. It’s mainly used in the same manner as bash, but it also has enhancements that bash doesn’t have. In this chapter, we’ll look at these enhancements, and also at some scripting tricks that you can’t do with bash.

 Chapter 23, Using PowerShell on Linux, powerShell was created by Microsoft for use on Windows operating systems back in 2006. In 2016, Microsoft announced that they had open-sourced PowerShell, and were making it available for Linux and macOS, as well as for Windows. In this chapter, we’ll look at how PowerShell can be beneficial for Linux administrators, how to install it, and how to use it.

 To get the most out of this book

 Since the book begins with the very basics of Linux and Unix command-line usage, the reader really just needs to be comfortable with the idea of setting up VirtualBox and installing Linux, FreeBSD, and OpenIndiana virtual machines.

 VirtualBox is a free download that you can get from here: https://www.virtualbox.org/

 To run VirtualBox, you’ll need a machine with a CPU that is capable of virtualization. Most modern CPUs have that capability, with the exception of certain Intel Core i3 and Core i5 models. (That’s because they lack the hardware acceleration that’s required for virtualization.) Also, you’ll have to ensure that virtualization is enabled in your computer’s BIOS.

 For the demos, we’ll be using Fedora, Debian, Ubuntu, FreeBSD, and OpenIndiana virtual machines. Here’s where you can download the installation images:

 	Fedora: https://fedoraproject.org/

 	Debian: https://www.debian.org/

 	Ubuntu: https://ubuntu.com/

 	FreeBSD: https://www.freebsd.org/

 	OpenIndiana: https://openindiana.org/

 In all cases, you’ll need to create a normal user account that has full sudo privileges. That happens automatically with Ubuntu and OpenIndiana during installation. With Debian and Fedora, that will happen automatically if you omit creating a root user password during installation.

 For FreeBSD, things are a bit different. That’s because the FreeBSD installer will have you create a password for the root user, and sudo won’t be installed. So, here’s the procedure for installing FreeBSD.

 	When you get to the installer section that has you create your own user account, you’ll see:
 	Login group is your_username. Invite your_username into other groups.

 	Respond by typing wheel, in order to add yourself to the wheel group.

 	After the installation has completed, log into the root user account, using the password that you created during installation.

 	Install the sudo package by doing:
 pkg install sudo

 	Configure sudo so that members of the wheel group have full sudo privileges. Begin by entering the command:
 visudo

 	Scroll down to where you see this line:
 # %wheel ALL=(ALL:ALL) ALL

	
		
Remove the # and the leading blank space from in front of this line.

		Save the file and exit.

 	Log out from the root user's account, and log back in with your own account.

 When you need to perform an administrative command, you can now use sudo, as you would on any Linux distro.

 Next, you’ll need to install bash on FreeBSD.

 Since bash doesn’t come installed on FreeBSD by default, you’ll need to install it yourself. Here’s the procedure:

 	Install bash with this command:
 sudo pkg install bash

 	Create a symbolic line to the bash executable, like this:
 sudo ln -s /usr/local/bin/bash /bin/bash

 Download the example code files

 The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/The-Ultimate-Linux-Shell-Scripting-Guide.git. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Download the color images

 We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/gbp/9781835463574.

 Conventions used

 There are a number of text conventions used throughout this book.

 CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Add the new functions to the /etc/bashrc file.”

 donnie@opensuse:~> git clone https://github.com/PacktPublishing/The-Ultimate-Linux-Shell-Scripting-Guide.git

 Bold: Indicates a new term, an important word, or words that you see on the screen. For instance, words in menus or dialog boxes appear in the text like this. For example: “ First, let’s see how many processes are in either the Running state or the Zombie state.”

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

 Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

 Leave a Review!

 Thank you for purchasing this book from Packt Publishing—we hope you enjoy it! Your feedback is invaluable and helps us improve and grow. Once you've completed reading it, please take a moment to leave an Amazon review; it will only take a minute, but it makes a big difference for readers like you.

Scan the QR code below to receive a free ebook of your choice.

 [image:]
https://packt.link/NzOWQ

 Download a free PDF copy of this book

 Thanks for purchasing this book!

 Do you like to read on the go but are unable to carry your print books everywhere?

 Is your eBook purchase not compatible with the device of your choice?

 Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

 Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

 The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily.

 Follow these simple steps to get the benefits:

 	Scan the QR code or visit the link below:

 [image:]
 https://packt.link/free-ebook/9781835463574

 	Submit your proof of purchase.

 	That’s it! We’ll send your free PDF and other benefits to your email directly.

 1

 Getting Started with the Shell

 Before we can talk about shell scripting, we need to know what a shell is and what kinds of shells are available for Linux, Unix, and Unix-like operating systems. We’ll also talk about other important topics that will help get you started in the wide, wonderful world of shell scripting.

 Topics in this chapter include:

 	Understanding shells

 	Finding help with shell commands

 	Using a text editor

 	Understanding compiled versus interpreted programming

 	Understanding root and sudo privileges

 If you’re ready, let’s get started on this important journey. And, always remember to have some fun along the way.

 Understanding Shells

 So, you’re scratching your head and saying, “What is a shell, and why should I care?” Well, a shell is a program that acts as an intermediary between the user and the operating system kernel. A user types commands into the shell, which passes them into the kernel for processing. The output is then presented to the user via the computer terminal, which can also referred to as the screen. The most common shell on Linux systems is bash, but the Z shell (zsh) has been gaining popularity in recent years. (I’ll explain why in Chapter 22, Using the Z Shell.) You’ll find bash as the default shell on most Linux distros and certain Unix-like distros such as OpenIndiana, and zsh as the default on Kali Linux.

 If you are brand new to the wild, wonderful world of Linux and its Unix or Unix-like cousins, you might be wondering what a distro is. Well, unlike Windows and macOS, which are proprietary and controlled by a single company, Linux and its cousins are primarily open source software, which means that anyone can take the source code and create their own implementations, or distributions. Red Hat Enterprise Linux, Fedora, and Ubuntu are examples of Linux distributions, and OpenIndiana and FreeBSD are examples of Unix-like distributions. But, we hard-core geeks rarely utter the word distribution, and instead just say distro, for short.

 Also, the reason that I differentiate between Unix and Unix-like distros has to do with legal reasons that date back to the 1980s. This involves a rather complicated mess that I would rather not go into here. Suffice it to say that the creators of distros such as FreeBSD are not allowed to refer to their creations as Unix, even though they are mostly functionally equivalent. But, they can say that their creations are Unix-like.

 The newest versions of macOS also have zsh set as the default shell. Fortunately, much of what you’ll learn about bash also works on zsh. The main difference is that zsh has a few cool features that bash doesn’t have. (Again, I’ll explain all about that in Chapter 22.) PowerShell, which originally was only available for Microsoft Windows operating systems, has also been available for Linux and macOS since 2016. PowerShell is a whole different animal, but you might find it quite useful, as you should see when we get to Chapter 23, Using PowerShell on Linux.

 It’s common to hear people refer to bash as the bash shell. But, bash is short for Bourne Again Shell. So, when you say bash shell, you’re really saying Bourne Again Shell Shell, which is a bit awkward. This is the same as when people talk about going to the ATM machine to withdraw some money. What they’re really saying is that they’re going to the Automatic Teller Machine Machine, which is also awkward.

 And, don’t even get me started on the people who talk about hot water heaters. I mean, if the water is already hot, why heat it?

 On the other hand, if you find that you still need to say bash shell so that people will know what you’re talking about, I’ll understand and won’t condemn you for it. In fact, you might even see me do that on occasion.

 The coolest thing about modern operating system shells is that they’re much more than just an interface tool. They’re also full-blown programming environments with many of the same programming constructs as more complex programming languages, such as Pascal, C, or Java. Systems administrators can make their jobs much easier by using shell scripts to automate complex, repetitive tasks.

 When you log into a text-mode Linux or Unix server, you’ll be presented with a black screen and some text, which looks like this:

 [image:]
 Figure 1.1: Plain bash on a text-mode Debian Linux machine

 This is the unadorned, plain-jane shell. Machines with desktop environments installed will interface with the shell via a terminal emulator, which will look something like this:

 [image:]
 Figure 1.2: A terminal emulator that interfaces with bash on an OpenIndiana machine

 The name of the terminal emulator will differ from one desktop environment to the next, but all do the same job. The advantage of using a terminal emulator is that you’ll have the luxury of using scroll bars, customizing the display, and using copy-and-paste for the command-line.

 In any case, you can see which shell you’re using by typing:

 donnie@fedora:~$ echo $SHELL
/bin/bash
donnie@fedora:~$

 In this case, you see that you’re using bash.

 Finding Help with Shell Commands

 It doesn’t matter how much of an expert you think you are, there will still be times when you’ll need to look up some bit of information. With Linux, Unix, and Unix-like operating systems, there are several options for that.

 Understanding Manual Pages

 Manual pages, or man pages for short, have been built into Unix-like operating systems since almost forever. To use a man page, just enter man, followed by the name of the command, configuration file, or system component for which you seek information. For example, you could find out how to use the ls command like this:

 man ls

 Most of the time, the man command will open a man page in the less pager. (Some Unix implementations might use the more pager instead, but I haven’t found any recent ones that do.) Either way, you’ll be able to scroll through the man page or perform key word searches within the page to find the information that you seek.

 The man pages are divided into sections that each correspond to a different category. On most Unix-like and Linux systems, there are eight main categories, more commonly referred to as sections, which are as follows:

 	
 Section number

 	
 Purpose

 	
 1

 	
 This section contains information about commands that can be used by any unprivileged user.

 	
 2

 	
 This section contains information about system calls, which are mainly of interest to software developers.

 	
 3

 	
 In this section, you’ll find information about library functions, which will also mainly be of interest to software developers.

 	
 4

 	
 If you’ve ever wanted to find information about the device files in the /dev/ directory, this is the place to look. This section also contains information about device drivers.

 	
 5

 	
 Here you’ll find information about the various configuration and system files on your system.

 	
 6

 	
 This is for information about games and screensavers. There’s normally not much here.

 	
 7

 	
 This is for information about miscellaneous things that don’t fit neatly into any of the other categories.

 	
 8

 	
 This is for information about administrative commands and system daemons.

 Table 1.1: Describing the man page sections

 You’ll see the subdirectories that contain these man page files in the /usr/share/man/ directory. You also might see some subdirectories with names like man0p, man5p, or man8x. These subdirectories contain certain special-purpose man pages, which will differ on different Linux distros.

 A lot of times, you won’t need to think about these sections, because the man command will pull up the proper man page for you. Other times, you will need to pay attention to these sections, because many key words for which you’ll search can be found in multiple sections. For example, here on the Fedora workstation that I’m using to write this, there are two man pages for printf. There are two ways to find them. First, you can use the man -aw command, like this:

 [donnie@fedora ~]$ man -aw printf
/usr/share/man/man1/printf.1.gz
/usr/share/man/man3/printf.3.gz
[donnie@fedora ~]$

 You can also use the whatis command, like this:

 [donnie@fedora ~]$ whatis printf
printf (1) - format and print data
printf (3) - formatted output conversion
[donnie@fedora ~]$

 Note that whatis is a synonym for man -f. You’ll get the same results with either command, but my own preference is to use whatis.

 So, we have a printf man page in Section 1, which means that we have a normal user command that’s called printf. We also see a printf man page in Section 3, which means that there’s a library function that’s called printf. If you enter man printf, you’ll see the man page from Section 1. You’ll see that in the first line of the man page, which will look like this:

 PRINTF(1) User Commands PRINTF(1)

 If you instead want to see the man page from Section 3, you’ll need to specify that in your command, like this:

 man 3 printf

 To broaden your search for all man pages that contain printf in either the title or the description of the man page, even if it’s embedded into another text string, use either apropos or man -k, like this:

 [donnie@fedora ~]$ apropos printf
asprintf (3) - print to allocated string
BIO_printf (3ossl) - formatted output to a BIO
BIO_snprintf (3ossl) - formatted output to a BIO
BIO_vprintf (3ossl) - formatted output to a BIO
BIO_vsnprintf (3ossl) - formatted output to a BIO
curl_mprintf (3) - formatted output conversion
dprintf (3) - formatted output conversion
tpm2_print (1) - Prints TPM data structures
fprintf (3) - formatted output conversion
fwprintf (3) - formatted wide-character output conversion
printf (1) - format and print data
printf (3) - formatted output conversion
. . .
[donnie@fedora ~]$

 Again, either command will give you the same output, but my own preference has always been to use apropos.

 Most of the time, your Linux system does a good job of keeping the man page index updated. Once in a while though, you’ll need to do it manually, like this:

 [donnie@fedora ~]$ sudo mandb
[sudo] password for donnie:
Purging old database entries in /usr/share/man...
Processing manual pages under /usr/share/man...
Purging old database entries in /usr/share/man/ca...
Processing manual pages under /usr/share/man/ca...
. . .
. . .
Processing manual pages under /usr/local/share/man...
0 man subdirectories contained newer manual pages.
0 manual pages were added.
0 stray cats were added.
0 old database entries were purged.
[donnie@fedora ~]$

 Okay, that about does it for the man page system. Let’s talk about the info system.

 Understanding Info Pages

 The info page system is newer, and was invented by Richard M. Stallman as part of the GNU Project. The unique part about it is that each info page contains hyperlinks that can lead you to additional pages of information. For example, to obtain information about the info system, enter info info. This info page contains a menu, which looks something like this:

 * Menu:
* Stand-alone Info:: What is Info?
* Invoking Info:: Options you can pass on the command line.
* Cursor Commands:: Commands which move the cursor within a node.
. . .
., . .
* Variables:: How to change the default behavior of Info.
* Colors and Styles:: Customize the colors used by Info.
* Custom Key Bindings:: How to define your own key-to-command bindings.
* Index:: Global index.

 Each underlined item you see is a hyperlink to another page. With your cursor keys, move the cursor to the hyperlink that you want to see, and hit the Enter key. To see an info page for a specific command, such as ls, just do this:

 info ls

 If you need help with navigating through the info pages, just hit the H key to bring up a navigation menu.

 And, that’s about it for the info pages. Let’s talk about on-line documentation.

 Getting to Know the Linux Documentation Project

 The Linux Documentation Project has been around since almost forever, and is an invaluable resource. The best part about it is the Guides section, where you’ll find free-of-charge, full-length books about Linux and bash that you can download in a variety of formats. They’re all quite old, with the newest one having been last updated in 2014. For the Bash Guide for Beginners book and the Advanced Bash-Scripting book that you’ll find there, that doesn’t matter. The concepts in those two books are eternal, and haven’t really changed over the years. To see these books, go to https://tldp.org/guides.html.

 Using Your Favorite Search Engine

 If all else fails, just use your favorite search engine to find what you need to know about either scripting in general, or scripting on a particular operating system. You’ll find plenty of help, such as blog posts, YouTube videos, and official documentation. There are plenty of Linux-specific websites that offer help on various things, and it’s quite simple to find them.

 Next, let’s talk about text editors.

 Using a Text Editor to Create Shell Scripts

 To create your shell scripts, you’ll need a text editor that’s designed for Linux and Unix systems. You have plenty of choices, and which one you choose will depend upon several criteria:

 	Are you editing on a text-mode machine or on a desktop machine?

 	What features do you need?

 	What is your own personal preference?

 Text-mode Editors

 Text-mode text editors can be used on machines that don’t have a graphical user interface installed. The two most common text-mode text editors are nano and vim. The nano editor is installed by default on pretty much every Linux distro, and is quite easy to use. To use it, just type nano, followed by the name of the file that you want to either edit or create. At the bottom of the screen, you’ll see the list of available commands. To invoke a command, press the CTRL key, followed by the letter key that corresponds to the desired command.

 The downside of using nano is that it doesn’t have the full range of features that you might want in a programmers’ text editor. You can see here that the implementation of nano on my Fedora workstation has color-coding for the syntax, but it doesn’t automatically format the code.

 [image:]
 Figure 1.3: The nano text editor on my Fedora workstation

 Note that on other Linux distros, nano might not even have color-coding.

 My favorite text-mode editor is vim, which has features that would make almost any programmer happy. Not only does it have color-coded syntax highlighting, but it also automatically formats your code with proper indentations, as you see here:

 [image:]
 Figure 1.4: The vim text editor on my Fedora workstation

 In reality, indentation isn’t needed for bash scripting, because bash scripts work fine without it. However, the indentation does make code easier for humans to read, and having an editor that will apply proper indentation automatically is quite handy. Additionally, vim comes with a powerful search-and-replace feature, allows you to split the screen so that you can work on two files at once, and can be customized with a fairly wide selection of plug-ins. Even though it’s a text-mode editor, you can use the right-click menu from your mouse to copy and paste text if you’re remotely logged in to your server from a desktop machine or if you’re editing a local file on your desktop machine.

 The older vi text editor is normally installed on most Linux distros by default, but vim often isn’t. On some distros, the vim command will work, even if vim isn’t actually installed. That’s because the vim command on them might be pointing to either vim-minimal or even to the old vi. At any rate, to install full-fledged vim on any Red Hat-type of distro, such as RHEL, Fedora, AlmaLinux, or Rocky Linux, just do:

 sudo dnf install vim-enhanced

 To install vim on Debian or Ubuntu, do:

 sudo apt install vim

 As much as I like vim, I do have to tell you that some users are a bit put off from using it, because they believe that it’s too hard to learn. That’s because the original version of vi was created back in the Stone Age of Computing, before computer keyboards had cursor keys, backspace keys, or delete keys. The old vi commands that you used to have to use instead of these keys have been carried over to the modern implementations of vim.

 So, most vim tutorials that you’ll find will still try to teach you all of those old keyboard commands.

 [image:]
 Figure 1.5: This photo of me was taken during the Stone Age of Computing, before computer keyboards had cursor keys, backspace keys, or delete keys.

 However, on the current versions of vim that you’ll install on Linux and modern Unix-like distros such as FreeBSD and OpenIndiana, the cursor keys, backspace key, and delete key all work as they do on any other text editor. So, it’s no longer necessary to learn all of those keyboard commands that you would have had to learn years ago. I mean, you’ll still need to learn a few basic keyboard commands, but not as many as you had to before.

 GUI Text Editors

 If you’re using a desktop machine, you can still use either nano or vim if you desire. But, there’s also a wide range of GUI-type editors available if you’d rather use one of them. Some sort of no-frills text editor, such as gedit or leafpad, is probably already installed on your desktop system. Some slightly fancier programmer’s editors, such as geany, kwrite, and bluefish, are available in the normal repositories of most Linux distros and some Unix-like distros. Your best bet is to play around with different editors to see what you like. Here’s an example of kwrite with color-coded syntax highlighting enabled:

 [image:]
 Figure 1.6: The Kwrite text editor.

 If you’re a Windows user, you’ll never want to create or edit a shell script on your Windows machine with a Windows text editor such as Notepad or Wordpad, and then transfer the script to your Linux machine. That’s because Windows text editors insert an invisible carriage return character at the end of each line. You can’t see them, but your Linux shell can, and will refuse to run the script. Having said that, you might at times encounter scripts that someone else created with a Windows text editor, and you’ll need to know how to fix them so that they’ll run on your Linux or Unix machine. That’s easy to do, and we’ll look at that in Chapter 7, Text Stream Filters-Part 2.

 That’s about it for our overview of text editors for Linux. Let’s move on and talk about compiled versus interpreted programming languages.

 Understanding Compiled versus Interpreted Programming

 Compiled programming consists of writing program code in a text editor, and then using a compiler to convert the text file into an executable binary file. Once that’s done, users of the program won’t be able to easily view the source code of the program. With interpreted programming, the program runs directly from a text file, without having to compile it first.

 Compiled programming languages, such as C, C++, or Fortran, are good for when you need maximum performance from your programs. However, they can be fairly hard to learn, especially when it comes to the lower-level functions such as working with files. Interpreted languages might not offer quite as high a level of performance, but they are generally quite flexible, and generally easier to learn. Interpreted languages in general also offer a higher degree of portability between different operating systems. Shell scripting falls into the category of interpreted languages.

 Here are some reasons why you might consider using an interpreted language:

 	When you are looking for a simple solution.

 	When you need a solution that is portable. If you pay attention to portability concerns, you can write one script that will work on different Linux distros, as well as on Unix/Unix-like systems. That can come in handy if you’re working in a large corporation with a large network of mixed operating systems. (You might even find some larger corporations that are still running legacy Unix systems, such as AIX, HPUX, or SUNOS, alongside more modern implementations of Linux, BSD, or macOS.)

 And, here are some reasons why you might consider using a compiled language:

 	When the tasks require intensive use of system resources. This is especially true when speed is extremely important.

 	When you are using math operations that require heavy number crunching.

 	When you need complex applications.

 	When your application has many sub-components with dependencies.

 	When you want to create proprietary applications, and prevent users from viewing the application source code.

 When you think about it, pretty much every example of productivity, server, gaming, or scientific software falls into one or more of these categories, which means that they really should be built with compiled languages for best performance.

 Okay, let’s now talk about sudo.

 Understanding root and sudo Privileges

 Some of the things you’ll do in this course will require you to have administrative privileges. While it’s possible and convenient to just log into the root command prompt, that’s something that I like to discourage as much as possible. For best security, and to get used to what you’d be doing in an enterprise setting, your best bet is to use sudo.

 Modern Linux distros allow you to add yourself to an administrators’ group as you install the operating system. (That’s the wheel group on Red Hat-type systems, and the sudo group on Debian/Ubuntu-type systems.) To run a command that requires administrative privileges, just do something like this:

 sudo nftables list ruleset

 You’ll then be asked to enter the password for your own user account, rather than the one for the root user account.

 That’s about all we need to say about this topic, so let’s summarize and move on to the next chapter.

 Summary

 In this chapter, I’ve laid a bit of the groundwork for what’s to come in the following chapters. We looked at what an operating system shell is, and why we would use one. Then, we looked at the various ways to find help, did a high-level overview of Linux text editors, and wrapped up with a discussion of compiled versus interpreted programming and a brief mention of why we want to use sudo to run administrative commands.

 In the next chapter, we’ll begin looking at the various things that an operating system shell does for us. I’ll see you there.

 Questions

 	What is the most widely-used shell for Linux systems?
 	zsh

 	bash

 	korn

 	 csh

 	What will happen if you create a Linux shell script on a Windows computer with a Windows text editor, such as Notepad or Wordpad?
 	The script will run fine on a Linux machine.

 	Your Windows machine will just shut down in protest of the fact that you’re using it to create Linux scripts.

 	The script won’t run on a Linux machine, because Windows text editors insert an invisible carriage return character at the end of each line.

 	Former Microsoft CEO Steve Ballmer will visit you and explain why Linux is a cancer.

 	3. In which section would you find the man pages for administrative commands?
 	1

 	3

 	5

 	6

 	8

 	Which of the following statements is true?
 	Interpreted programming languages are good for programs that perform heavy-duty math problems.

 	Compiled programming languages are generally better than interpreted languages for any large, complex programs.

 	Examples of interpreted programming languages include C, C++, and Fortran.

 	There’s no difference in performance between interpreted and compiled programming languages.

 	True or False: To run administrative commands, it’s best to just log into the root user account.

 Further Reading

 	22 Best Linux Text Editors for Coding: https://phoenixnap.com/kb/best-linux-text-editors-for-coding

 	Ballmer: “Linux is a Cancer”: https://www.theregister.com/2001/06/02/ballmer_linux_is_a_cancer/

 	Microsoft once called Linux a cancer, and that was a big mistake: https://www.zdnet.com/article/microsoft-once-called-linux-a-cancer-and-that-was-a-big-mistake/

 	VIM tutorial for Beginners: https://linuxconfig.org/vim-tutorial

 	Distrowatch.com: https://distrowatch.com/

 	The Linux Documentation Project: https://tldp.org/

 	LinuxQuestions.org: https://www.linuxquestions.org/

 	Linux man pages: https://linux.die.net/man/

 Answers

 	b

 	c

 	e

 	b

 	False. It’s better to use sudo from your own user account.

 Join our community on Discord!

 Read this book alongside other users, Linux experts, and the author himself.

 Ask questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and much more. Scan the QR code or visit the link to join the community.

 https://packt.link/SecNet

 [image:]

 2

 Interpreting Commands

 To fulfill its job as the interface between the user and the operating system kernel, a shell has to perform five different functions. These functions include interpreting commands, setting variables, enabling input/output redirection, enabling pipelines, and allowing customization of a user’s working environment. In this chapter, we’ll look at how bash and zsh interpret commands. As an added bonus, much of what we’ll cover in the next few chapters will also help you prepare for certain Linux certification exams, such as the Linux Professional Institute or CompTIA Linux+ exams.

 Topics in this chapter include:

 	Understanding the structure of a command

 	Executing multiple commands at once

 	Running commands recursively

 	Understanding the command history

 	Escaping and quoting

 To follow along, you can use pretty much any Linux distro that you desire, as long as it’s running with either bash or zsh. Your best bet is to use a virtual machine instead of your production workstation, in case you accidentally delete or change something that you shouldn’t.

 Understanding the Structure of a Command

 A handy thing to know for both real-life and any certification exams that you may take, is the structure of a command. Commands can consist of up to three parts, and there’s a certain order for the parts. Here are the parts and the order in which you’ll normally place them:

 	The command itself

 	Command options

 	Command arguments

 If you plan to take a Linux certification exam, you’ll definitely want to remember this ordering rule. Later on though, we’ll see that some commands don’t always follow this rule.

 Using Command Options

 There are two general types of option switches:

 	Single-letter options: For most commands, a single-letter option is preceded by a single dash. Most of the time, two or more single-letter options can be combined with a single dash.

 	Whole-word options: For most commands, a whole word option is preceded by two dashes. Two or more whole-word options must be listed separately, because they can’t be combined with a single pair of dashes.

 To show you what we mean, check out this hands-on lab.

 Hands-on Lab – Practice With Command Options

 In this lab, we’ll be working with the humble ls utility. Options and arguments are optional for this utility, so we’ll get to see the different configurations for the command in this hands-on practice.

 	Let’s issue the naked ls command in order to see the files and directories that are in our current directory.
 [donnie@fedora ~]$ ls
 4-2_Building_an_Alpine_Container.bak Public
 4-2_Building_an_Alpine_Container.pptx pwsafe.key
 addresses.txt python_container
 alma9_default.txt rad-bfgminer
 alma9_future.txt ramfetch
 alma_link.txt read.me.first
. . .
. . .
pCloudDrive yad-form.sh
 Pictures
[donnie@fedora ~]$

 	Now, let’s add a single-letter option. We’ll use the -l option to show the files and directories with some of their characteristics.
 [donnie@fedora ~]$ ls -l
total 40257473
-rw-r--r--. 1 donnie donnie 754207 Apr 5 16:13 4-2_Building_an_Alpine_Container.bak
-rw-r--r--. 1 donnie donnie 761796 Apr 8 14:49 4-2_Building_an_Alpine_Container.pptx
-rw-r--r--. 1 donnie donnie 137 Apr 2 15:05 addresses.txt
-rw-r--r--. 1 donnie donnie 1438 Nov 2 2022 alma9_default.txt
. . .
. . .
-rwxr--r--. 1 donnie donnie 263 May 16 15:42 yad-form.sh
[donnie@fedora ~]$

 	Use the ls command with the -a option to see any hidden files or directories. (Hidden files or directories have names that begin with a period.)
 [donnie@fedora ~]$ ls -a
 . .pcloud
 .. pCloudDrive
 4-2_Building_an_Alpine_Container.bak Pictures
 4-2_Building_an_Alpine_Container.pptx .pki
 addresses.txt .podman-desktop
 alma9_default.txt .profile
. . .
. . .
.mozilla .Xauthority
 Music .xscreensaver
 NetRexx .xsession-errors
 nikto yad-form.sh
[donnie@fedora ~]$

 	Next, let’s combine the two options, so that we can see the characteristics of both the hidden and unhidden files and directories:
 [donnie@fedora ~]$ ls -la
total 40257561
drwx------. 1 donnie donnie 2820 Jul 25 13:53 .
drwxr-xr-x. 1 root root 12 Aug 9 2022 ..
-rw-r--r--. 1 donnie donnie 137 Apr 2 15:05 addresses.txt
-rw-------. 1 donnie donnie 15804 Jul 24 17:53 .bash_history
-rw-r--r--. 1 donnie donnie 18 Jan 19 2022 .bash_logout
-rw-r--r--. 1 donnie donnie 194 Apr 3 12:11 .bash_profile
-rw-r--r--. 1 donnie donnie 513 Apr 3 12:11 .bashrc
. . .
. . .
-rw-r--r--. 1 donnie donnie 9041 Feb 4 12:57 .xscreensaver
-rw-------. 1 donnie donnie 0 Jul 25 13:53 .xsession-errors
-rwxr--r--. 1 donnie donnie 263 May 16 15:42 yad-form.sh
[donnie@fedora ~]$

 In the preceding examples, the donnie donnie part indicates that the files and directories belong to user donnie and are associated with the donnie group. In this example, we’re using a whole-word option, --author, preceded by two dashes, to view some extra information. Let’s use this --author switch and the -l switch together to see who authored these files:

 [donnie@fedora ~]$ ls -l --author
total 40257473
-rw-r--r--. 1 donnie donnie donnie 137 Apr 2 15:05 addresses.txt
-rw-r--r--. 1 donnie donnie donnie 1438 Nov 2 2022 alma9_default.txt
-rw-r--r--. 1 donnie donnie donnie 1297 Nov 2 2022 alma9_future.txt
. . .
. . .
rwxr--r--. 1 donnie donnie donnie 263 May 16 15:42 yad-form.sh
[donnie@fedora ~]$

 So, it appears that that Donnie character also created the files in the first place. (Oh, that’s me, isn’t it?)

 Using Command Arguments

 An argument is an object upon which a command will operate. For the ls command, an argument would be the name of a file or directory. For example, let’s say that we want to see the details of just a certain file. We can do something like this:

 [donnie@fedora ~]$ ls -l yad-form.sh
-rwxr--r--. 1 donnie donnie 263 May 16 15:42 yad-form.sh
[donnie@fedora ~]$

 We can use the * wildcard to see details of all files of a certain type, like so:

 [donnie@fedora ~]$ ls -l *.sh
-rwxr--r--. 1 donnie donnie 116 May 16 15:04 root.sh
-rwxr--r--. 1 donnie donnie 263 May 16 15:42 yad-form.sh
[donnie@fedora ~]$

 If you’re not familiar with the concept of wildcards, think of them as a way to perform pattern-matching. In the above example, the * wildcard is used to match one or more characters. For this reason, the ls -l *.sh command allows us to see all files with the .sh filename extension. You can also use this wildcard in other ways. For example, to see all filenames and directory names that begin with the letter w, just do this

 donnie@opensuse:~> ls -ld w*
drwxrwxr-x 1 donnie users 22 Mar 5 2022 windows
-rw-r--r-- 1 donnie users 82180 Dec 7 2019 wingding.ttf
drwxr-xr-x 1 donnie users 138 Mar 11 2023 wownero-x86_64-linux-gnu-v0.11
donnie@opensuse:~>

 For more information about wildcards, check out the reference in the Further Reading section.

 In this case, we’re looking at all files whose names end in .sh.

 You’re not always limited to specifying just one argument. In this example, we’re looking at three different files:

 [donnie@fedora ~]$ ls -l missing_stuff.txt yad-form.sh Dylan-My_Back_Pages-tab.odt
-rw-r--r--. 1 donnie donnie 29502 Mar 7 18:30 Dylan-My_Back_Pages-tab.odt
-rw-r--r--. 1 donnie donnie 394 Dec 7 2022 missing_stuff.txt
-rwxr--r--. 1 donnie donnie 263 May 16 15:42 yad-form.sh
[donnie@fedora ~]$

 Use the -ld option to view the characteristics of a directory without viewing the contents of the directory, like so:

 [donnie@fedora ~]$ ls -ld Downloads/
drwxr-xr-x. 1 donnie donnie 8100 Aug 4 12:37 Downloads/
[donnie@fedora ~]$

 Although you can actually change the order in which options and arguments appear in many commands, it’s bad practice to do so. To avoid confusion and to prepare yourself for any Linux certifications exams that you might take, just follow the ordering rule that I’ve presented here. That is, the command itself, command options, and lastly, the command arguments.

 That about does it for the command structure part. Let’s move on to see how to execute multiple commands at once.

 Executing Multiple Commands at Once

 From either the command-line or from within shell scripts, it’s handy to know how to combine multiple commands into one single command. In this section, I’ll demonstrate three ways to do that which are:

 	Running commands interactively

 	Using command sequences

 	Using the find utility

 Running Commands Interactively

 This is a form of shell-script programming, except that you’re just executing all commands from the command-line, instead of actually writing, saving, and executing a script. Here, you are creating a for loop – with each command of the loop on its own separate line – to perform a directory listing three times.

 [donnie@fedora ~]$ for var in arg1 arg2 arg3
> do
> echo $var
> ls
> done
. . .
. . .
[donnie@fedora ~]$

 At the end of each line, you’ll hit the Enter key. But, nothing will happen until you type the done command on the final line. The for loop will then run three times, once for each of the three listed arguments. Each time that it runs, the value of an argument gets assigned to the var variable, and the echo command prints the currently-assigned value. The output will look something like this:

 arg1
 4-2_Building_an_Alpine_Container.bak Public
 4-2_Building_an_Alpine_Container.pptx pwsafe.key
arg2
 4-2_Building_an_Alpine_Container.bak Public
 4-2_Building_an_Alpine_Container.pptx pwsafe.key
arg3
 4-2_Building_an_Alpine_Container.bak Public
 4-2_Building_an_Alpine_Container.pptx pwsafe.key

 Next, hit the up arrow key on your keyboard, and you’ll see the for loop that you just executed If you try this with bash, you’ll see that the individual commands are separated by semi-colons, like so:

 [donnie@fedora ~]$ for var in arg1 arg2 arg3; do echo $var; ls; done

 On zsh, pressing the up arrow key will cause the command components to appear on their own separate lines, as you see here:

 donnie@opensuse:~> for var in arg1 arg2 arg3
do
echo $var
ls
done

 Either way, the for loop will run again when you hit the Enter key.

 If you’re still a bit unclear about how for loops work, have no fear. We’ll look at them in greater detail once we start actually creating shell scripts.

 Using Command Sequences

 Command sequences are another type of programming structure that you’ll find very useful. Here, I’m demonstrating how to use them from the command-line so that you can grasp the basic concepts. In the upcoming chapters, I’ll show you examples of how to use them in shell scripts.

 Chaining Commands with a Semi-Colon

 You can also use the semi-colon to separate stand-alone commands that you want to execute from the same command entry. If you wanted to cd to a certain directory and then look at its contents, you could enter each command on its own line. Or, you could enter them both on the same line. This process is called command chaining, which looks like this:

 [donnie@fedora ~]$ cd /var ; ls
account cache db ftp kerberos local log nis preserve spool yp
adm crash empty games lib lock mail opt run tmp
[donnie@fedora var]$
[donnie@fedora ~]$ cd /far ; ls
bash: cd: /far: No such file or directory
 4-2_Building_an_Alpine_Container.bak Public
 4-2_Building_an_Alpine_Container.pptx pwsafe.key
 addresses.txt python_container
 alma9_default.txt rad-bfgminer
. . .
. . .
[donnie@fedora ~]$

 The first command failed because I tried to cd into a non-existent directory. But, the second command still executed, which listed the files in my home directory.

 Conditional Command Execution with Double Ampersands

 You can also instruct bash or zsh to only execute the second command if the first command successfully completes. Just separate the commands with && instead of with a semi-colon, like this:

 [donnie@fedora ~]$ cd /var && ls
account cache db ftp kerberos local log nis preserve spool yp
adm crash empty games lib lock mail opt run tmp
[donnie@fedora var]$

 What if the first command doesn’t run successfully? Note here that the second command doesn’t execute:

 [donnie@fedora ~]$ cd /far && ls
bash: cd: /far: No such file or directory
[donnie@fedora ~]$

 Conditional Command Execution with Double Pipes

 If you want bash or zsh to execute the second command only if the first command doesn’t run successfully, just separate the commands with ||. (This is a pair of pipe characters, which you’ll find on the same key as the backslash.) To illustrate, let’s again make a slight typo while trying to change directories.

 [donnie@fedora ~]$ ce /var || echo "This command didn't work."
bash: ce: command not found
This command didn't work.
[donnie@fedora ~]$
[donnie@fedora ~]$ cd /var || echo "This command didn't work."
[donnie@fedora var]$

 For a more practical example, try changing to a directory, creating it if it doesn’t exist, and then changing to it after it’s been successfully created.

 [donnie@fedora ~]$ cd mydirectory || mkdir mydirectory && cd mydirectory
bash: cd: mydirectory: No such file or directory
[donnie@fedora mydirectory]$

 You’ll still get an error message saying that the directory you tried to access doesn’t exist. But, look at the command prompt, and you’ll see that the directory has been created, and that you’re now in it.

 Using the find Utility

 We’ll now take a short intermission from our discussion of running multiple commands in order to introduce the find utility, which is truly the Cool-Mac Daddy of all search utilities. After this introduction, I’ll use find to show you more ways to run multiple commands at once.

 Also, it would behoove us to mention that find isn’t just good for command-line searches. It’s also excellent for use within shell scripts, as you’ll see much later.

 If you’re as old as I am, you might remember the Windows XP search pooch, which pranced around on your screen every time you did a file search from the Windows XP graphical search utility. It was cute, but it didn’t add to your search power. With the Linux find utility, you can perform powerful searches on just about any criterion you can think of, and then--from the same command-line entry--invoke another utility to do whatever you need to do with the search results. I won’t try to discuss every option there is for find, since there are so many. Rather, I’ll give you an overview of what you can do with find, and let you read its man page for the rest. (Just enter man find at the command-line to read about all of its options.)

 In order to perform the most basic of searches, you’ll need to specify two things:

 	The search path: You can perform a search in either a specific path, or the entire filesystem. Since find is inherently recursive, the search will automatically extend to all of the subdirectories that are beneath of the directory that you specify. (Of course, you can also add command switches that limit the depth of the search.)

 	What you’re searching for: There are a lot of ways that you can specify this. You can search for files of a specific name, and decide whether to make the search case-sensitive. You can also use wildcards, or search for files with certain characteristics or that are of a certain age. Or, you can combine multiple criteria for even more specific searches. The main thing that limits you is your own imagination.

 So now, let’s say that you want to search the entire filesystem for all files whose names end in .conf. You’ll want to use either the -name or the -iname switch in front of the file description that you want to search for. Otherwise, you’ll get a jumbled up mess of every directory listing that you’ve searched, with the information you’re looking for mixed in. For case-sensitive searches, use -name, and for case-insensitive searches, use -iname. In this case, we’ll use -iname, since we want to make the search case-insensitive.

 I know, I’ve told you previously that most whole-word option switches are preceded by a pair of dashes. The find utility is an exception to the rule, because its whole-word option switches are preceded by only a single dash.

 Also, be aware that searching through an entire filesystem on a production server with very large drives can take a long time. It’s sometimes necessary to do that, but it’s best to confine your searches to specific directories whenever possible.

 If you include a wildcard character with a search criterion, you’ll need to enclose that search criterion in quotes. That will keep the shell from interpreting the wildcard character as an ambiguous file reference. For example, to perform a case-insensitive search through the current working directory and all of its subdirectories for all files with names ending with a .conf filename extension, I would do this:

 [donnie@fedora ~]$ find -iname '*.conf'
./.cache/containers/short-name-aliases.conf
./.config/lxsession/LXDE/desktop.conf
./.config/pcmanfm/LXDE/desktop-items-0.conf
./.config/pcmanfm/LXDE/pcmanfm.conf
./.config/lxterminal/lxterminal.conf
./.config/Trolltech.conf
. . .
. . .
./tor-browser/Browser/TorBrowser/Data/fontconfig/fonts.conf
./rad-bfgminer/example.conf
./rad-bfgminer/knc-asic/RPi_system/raspi-blacklist.conf
./something.CONF
[donnie@fedora ~]$[donnie@fedora ~]$

 By using the -iname option, I was able to find files with names that ended in either .conf or .CONF. If I had used the -name option instead, I would only have found files with names that end in .conf.

 Normally, you would specify the search path as the first component of the find command. In the GNU implementation of find that’s included on Linux-based operating systems, omitting the search path will cause find to search through the current working directory, as we’ve just seen. Unfortunately, that trick doesn’t work for Unix/Unix-like operating systems, such as FreeBSD, macOS, or OpenIndiana. For those operating systems, you’ll always need to specify a search path. To make find search through the current working directory, just use a dot to specify the search path. So, on my FreeBSD virtual machine, the command looks like this:

 donnie@freebsd-1:~ $ find . -iname '*.conf'
./anotherdir/yetanother.conf
./anotherthing.CONF
./something.conf
donnie@freebsd-1:~ $

 Okay, I know. You’re wondering why I’m mentioning FreeBSD, macOS, and OpenIndiana in what’s supposed to be a Linux book. Well, it’s because sometimes, we’ll want to create shell scripts that work on multiple operating systems, rather than just on Linux. If you include the dot in this command, it will still work on your Linux machines, and will also work on your Unix/Unix-like machines.

 You can also specify search paths that aren’t your current working directory. For example, you can remain within your own home directory and search through the entire filesystem like this:

 [donnie@fedora ~]$ find / -iname '*.conf'

 Of course, this will take much longer than it does to just search through one directory. Also, you’ll encounter errors because your normal user account won’t have permission to go into every directory. To search through all directories on the filesystem, just preface the command with sudo, like this:

 [donnie@fedora ~]$ sudo find / -iname '*.conf'

 You can perform searches with more than one search criterion. If you separate the criteria with a space, it will be the same as placing an and operator between them. Here, we’ll use the -mtime -7 switch to find all of the .conf files that were modified within the last seven days, and the -ls switch at the end to show detailed information about the files:

 [donnie@fedora ~]$ sudo find / -iname '*.conf' -mtime -7 -ls
 18 4 -rw-r--r-- 1 root root 328 Jul 24 17:50 /boot/loader/entries/81085aed13d34626859063e7ebf29da5-6.4.4-100.fc37.x86_64.conf
 3321176 4 -rw-r--r-- 1 donnie donnie 467 Jul 24 16:14 /home/donnie/.config/pcmanfm/LXDE/pcmanfm.conf
 370 4 -rw-r--r-- 1 donnie donnie 3272 Jul 19 16:21 /home/donnie/.config/Trolltech.conf
. . .
. . .
4120762 8 -rw-r--r-- 2 root root 7017 Jul 21 14:43 /var/lib/flatpak/app/com.notepadqq.Notepadqq/x86_64/stable/a049a1963430515aa15d950212fc1f0db7efb703a94ddd1f1d316b38ad12ec72/files/lib/node_modules/npm/node_modules/request/node_modules/http-signature/node_modules/jsprim/node_modules/verror/jsl.node.conf
[donnie@fedora ~]$

 To search for .conf files that were modified more than seven days ago, replace the -7 with +7, like this:

 [donnie@fedora ~]$ sudo find / -iname '*.conf' -mtime +7 -ls

 It’s also possible to create more advanced searches by creating compound expressions. It works like Algebra, in that expressions are evaluated from left to right unless you group some of the terms with parentheses. But, with that, there are a couple of minor catches.

 Since the parenthesis symbols have a special meaning in bash and zsh, you’ll want to precede them with a backslash so that bash and zsh won’t interpret them the wrong way. You’ll also need to leave a space between the parenthesis symbols and the terms that they’re enclosing.

 Let’s say that we now want to look for all of the .conf files in the /etc/ directory that were either modified within the last seven days, or that were accessed more than 30 days ago. We’ll use the -atime switch to set the access time criterion. The or operator is represented by -o.

 [donnie@fedora ~]$ sudo find /etc -iname '*.conf' \(-mtime -7 -o -atime +30 \)
[sudo] password for donnie:
/etc/UPower/UPower.conf
/etc/X11/xinit/xinput.d/ibus.conf
/etc/X11/xinit/xinput.d/xcompose.conf
/etc/X11/xinit/xinput.d/xim.conf
. . .
. . .
/etc/appstream.conf
/etc/whois.conf
/etc/nfsmount.conf
[donnie@fedora ~]$

 There are several subdirectories in /etc/ that require root privileges to enter, so I used sudo again, as I did before. Adding the -ls option at the end of the command would show the timestamps on the files, which would tell me which of the two search criteria applies to each specific file.

 If you want to find files that belong to only a certain user, you can do that with the -user switch. Add a second criterion to find only files of a certain type that belong to a certain user. Here, I’m searching through the whole filesystem for all .png graphics files that belong to me:

 [donnie@fedora ~]$ sudo find / -user donnie -iname '*.png'
/home/donnie/.cache/mozilla/firefox/xgwvyw2p.default-release/thumbnails/9aa3453b0b6246665eb573e58a40fe7c.png
/home/donnie/.cache/mozilla/firefox/xgwvyw2p.default-release/thumbnails/96c0e5aa4c2e735c2ead0701d2348dd6.png
. . .
. . .
/home/donnie/rad-bfgminer/vastairent.png
find: '/run/user/1000/doc': Permission denied
find: '/run/user/1000/gvfs': Permission denied
/tmp/.org.chromium.Chromium.IpK3VA/pcloud1_16.png
find: '/tmp/.mount_pcloudWz4ji1': Permission denied
[donnie@fedora ~]$

 Even with full sudo privileges, there are still a couple of directories where I’m not allowed to access. But, that’s okay.

 You can use the -group switch to find files that belong to a certain group. Here, I’m looking through my own home directory for either files or directories that are associated with the nobody group.

 [donnie@fedora ~]$ sudo find -group nobody -ls
 3344421 0 drwxr-xr-x 1 nobody nobody 0 Jul 25 18:36 ./share
 3344505 0 -rw-r--r-- 1 donnie nobody 0 Jul 25 18:38 ./somefile.txt
[donnie@fedora ~]$

 Note that I’m still using sudo here, because even in my own home directory there are some directories that find won’t access without it. (These are the directories that contain information about Docker containers.)

 Conversely, you can use the -nogroup switch to find files that don’t belong to any group that’s listed in the /etc/group file.

 [donnie@fedora ~]$ sudo find -nogroup
./.local/share/containers/storage/overlay/994393dc58e7931862558d06e46aa2bb17487044f670f310dffe1d24e4d1eec7/diff/etc/shadow
./.local/share/containers/storage/overlay/ded7a220bb058e28ee3254fbba04ca90b679070424424761a53a043b93b612bf/diff/etc/shadow
./.local/share/containers/storage/overlay/8e012198eea15b2554b07014081c85fec4967a1b9cc4b65bd9a4bce3ae1c0c88/diff/etc/shadow
./.local/share/containers/storage/overlay/7cd52847ad775a5ddc4b58326cf884beee34544296402c6292ed76474c686d39/diff/etc/shadow
[donnie@fedora ~]$

 In the Linux/Unix world, everything on the system is represented by a file. Normal users of a system will usually just encounter regular files and directories, but there are many other types of files that will be of interest to a system administrator. The various file types include:

 	Regular files: These are the types of files that a normal user would routinely access. Graphics files, video files, database files, spreadsheet files, text files, and executable files are all examples of regular files.

 	Directories: It seems strange that a directory is a type of file, but that’s just how it is in the Linux and Unix worlds.

 	Character devices: A character device either accepts or supplies a serial stream of data. A sound card or a terminal would be represented by a character device file. You’ll find these files in the /dev/ directory.

 	Block devices: A block device file represents devices that can be accessed in a random manner. Examples include hard drives, solid-state drives, and drive partitions. You’ll also find these files in the /dev/ directory.

 	Named pipes: These devices take the output from one system process and supply it as the input to another system process, thus enabling inter-process communication.

 	Sockets: These are the same as named pipes, except that they can send and receive file descriptors as part of the communications stream. Also, unlike named pipes, sockets can allow two-way data exchange between two processes.

 	Symbolic links: This type of file simply points to either a regular file or directory. This allows users to either access files and directories from multiple places in the filesystem, or to access them by different names.

 You can tell what type a file is by doing an ls -l command. The first character in the output for each file is known as the file mode string. This file mode string designates the file type. For example, let’s look at what’s in my home directory:

 [donnie@fedora ~]$ ls -l
total 137972
-rw-r--r--. 1 donnie donnie 12111206 Feb 18 13:41 dnf_list.txt
drwxr-xr-x. 15 donnie donnie 4096 Jul 27 16:39 orphaned_files
drwxr-xr-x. 2 donnie donnie 6 Jul 29 16:53 perm_demo
-rw-r--r--. 1 donnie donnie 643 Mar 26 15:53 sample.json
[donnie@fedora ~]$

 Lines that begin with a - represent a regular file, and lines that begin with a d represent a directory. The various file types are represented as follows:

 	
 File mode string

 	
 File type

 	
 -

 	
 Regular file

 	
 d

 	
 Directory

 	
 c

 	
 Character device

 	
 b

 	
 Block device

 	
 p

 	
 Named pipe

 	
 s

 	
 Socket

 	
 l

 	
 Symbolic link

 Table 2.1: File type designators

 There may be times when you’ll need to locate all files of a certain type. You can do that with the -type option, like so:

 [donnie@fedora ~]$ sudo find / -type p -ls
 545 0 prw------- 1 root root 0 Jul 31 15:20 /run/initctl
 542 0 prw------- 1 root root 0 Jul 31 15:20 /run/dmeventd-client
 541 0 prw------- 1 root root 0 Jul 31 15:20 /run/dmeventd-server
 6 0 p--------- 1 donnie donnie 0 Jul 31 15:29 /run/user/1000/systemd/inaccessible/fifo
 1228 0 prw------- 1 root root 0 Jul 31 15:21 /run/systemd/inhibit/2.ref
 1193 0 prw------- 1 root root 0 Jul 31 15:21 /run/systemd/inhibit/1.ref
 1324 0 prw------- 1 root root 0 Jul 31 15:29 /run/systemd/sessions/3.ref
 1311 0 prw------- 1 root root 0 Jul 31 15:29 /run/systemd/sessions/1.ref
 8 0 p--------- 1 root root 0 Jul 31 15:20 /run/systemd/inaccessible/fifo
 112 0 prw------- 1 root root 0 Jul 31 15:20 /var/lib/nfs/rpc_pipefs/gssd/clntXX/gssd
 [donnie@fedora ~]$

 As you see, I’m using the -type p option to search for all named pipe files.

 Now, let’s consider the previous example in which we searched for all files that end with a .conf filename extension:

 [donnie@fedora ~]$ sudo find / -iname '*.conf'

 This command only found regular files because they’re the only types of files on the system that have the .conf filename extension. But, let’s now say that we want to search through the /etc/ directory to find all subdirectories with the conf text string in their names. If we don’t specify a file type, we’ll see regular files, symbolic links, and directories:

 [donnie@fedora ~]$ sudo find /etc -name '*conf*' -ls
 329486 4 -rw-r--r-- 1 root root 351 Jul 27 07:02 /etc/dnf/plugins/copr.conf
 329487 4 -rw-r--r-- 1 root root 30 Jul 27 07:02 /etc/dnf/plugins/debuginfo-install.conf
 8480155 4 -rw-r--r-- 1 root root 93 May 18 04:27 /etc/dnf/protected.d/dnf.conf
. . .
25325169 0 lrwxrwxrwx 1 root root 43 Jul 29 18:19 /etc/crypto-policies/back-ends/bind.config -> /usr/share/crypto-policies/DEFAULT/bind.txt
 25325172 0 lrwxrwxrwx 1 root root 45 Jul 29 18:19 /etc/crypto-policies/back-ends/gnutls.config -> /usr/share/crypto-policies/DEFAULT/gnutls.txt
. . .
5430579 0 drwxr-xr-x 2 root root 25 Sep 19 2022 /etc/reader.conf.d
 8878157 0 drwxr-xr-x 3 root root 27 Dec 8 2022 /etc/pkgconfig
 8927250 0 drwxr-xr-x 2 root root 83 Nov 16 2022 /etc/krb5.conf.d
. . .
[donnie@fedora ~]$

 We’ll use the -type d option to narrow things down:

 [donnie@fedora ~]$ sudo find /etc -name '*conf*' -type d -ls
 17060336 0 drwxr-xr-x 2 root root 41 Dec 8 2022 /etc/fonts/conf.d
 25430579 0 drwxr-xr-x 2 root root 25 Sep 19 2022 /etc/reader.conf.d
 8878157 0 drwxr-xr-x 3 root root 27 Dec 8 2022 /etc/pkgconfig
 8927250 0 drwxr-xr-x 2 root root 83 Nov 16 2022 /etc/krb5.conf.d
 25313333 0 drwxr-xr-x 2 root root 6 Feb 1 17:58 /etc/security/pwquality.conf.d
 25395980 0 drwxr-xr-x 2 root root 30 Dec 8 2022 /etc/X11/xorg.conf.d
 17060487 0 drwxr-xr-x 2 root root 6 Aug 9 2022 /etc/pm/config.d
. . .
. . .
 16917753 0 drwxr-xr-x 2 root root 33 Jul 29 18:11 /etc/containers/registries.conf.d
[donnie@fedora ~]$

 Cool. We now only see the directories, which is exactly what we want.

 As I said before, there are a lot of options that you can use with the find utility. (Enter man find to see them all.)

 Now, with the introduction to find out of the way, let’s look at how to use find to perform multiple actions with one command.

 Performing Multiple Actions with find

 Our next trick contains a bit of a twist. We’ll use find's -exec and -ok option switches to make find perform some sort of action on each file that it finds. First, find finds the files. Then, it causes another command to run that will take some sort of action on the files. Here’s how it works.

 The -exec and -ok switches tell the shell to perform a second command only if the first command produces valid output. It then uses the output of the first command (find) as arguments for the second. The difference between the two switches is that -exec causes the desired action to automatically execute on each file without prompting the user. The -ok switch will cause the action to stop after each file that find finds, asking the user whether or not to proceed with the action for that file. Here, we’re searching the entire filesystem for all .zip files that are more than 30 days old, and copying them to the /home/donnie/ directory. (Note that I’m still using sudo so that I can access all directories.)

 [donnie@fedora ~]$ sudo find / \(-mtime +30 -iname '*.zip' \) -exec cp {} /home/donnie \;

 The {} after the cp command tells bash or zsh, “Take the results from the find command, and put them here as the arguments”. Note that this command sequence has to end with a semi-colon. But, since the semi-colon has special meaning for bash and zsh, you must precede it with a backslash so that bash and zsh will interpret it correctly.

 Also, note that you must have a blank space after the first parenthesis, and another blank space before the backslash that precedes the last parenthesis.

 Now, suppose that you only want to copy over some of the files that you find. Just replace the -exec switch with the -ok switch. It works the same as -exec, but it will ask permission before performing an operation on a file. You’ll have to enter either y or n before continuing to the next file.

 The same principle also works for removing files.

 [donnie@fedora ~]$ sudo find / \(-mtime +30 -iname '*.zip' \) -ok rm {} \;

 Let’s now suppose that Vicky, Cleopatra, Frank, and Goldie are all creating graphics for some sort of project. They’re supposed to place the graphics files into the graphics subdirectory that each of them have in their own home directory. Sometimes they forget though, and place the files into their top-level home directories, as we see in the following diagram:

 [image:]
 Figure 2.1: Some of these graphics files are in the wrong place.

 Now, let’s get a bit of hands-on practice with this.

 Hands-on Lab – Using find to Perform Other Commands

 For this lab, use a Fedora, Debian, or Ubuntu virtual machine. (I’ll provide instructions for all of them.)

 Let’s say that we want to copy everyone’s graphics files into a common backup directory.

 	First, create the /backup directory, like this:
 [donnie@fedora ~]$ sudo mkdir /backup

 For our present purposes, just leave ownership and permissions settings as they are.

 	Next, create user accounts for Vicky, Cleopatra, Frank, and Goldie, and assign a password to each account. On Fedora, the commands would look like this:
 donnie@fedora:~$ sudo useradd frank
donnie@fedora:~$ sudo passwd frank

 On either Debian or Ubuntu, use the interactive adduser command, which both creates the user account and sets the password. It looks like this:

 donnie@debian12:~$ sudo adduser goldie

 	Log into each user’s account, create a graphics directory in each user’s home directory, and then create some fake graphics files. Here are the commands to do that:
 goldie@fedora:~$ touch goldie02.png
goldie@fedora:~$ mkdir graphics
goldie@fedora:~$ cd graphics/
goldie@fedora:~/graphics$ touch {goldie01.png,goldie03.png,goldie04.png}
goldie@fedora:~/graphics$

 The touch command is actually meant to be used by programmers for purposes that I won’t go into here. But, it’s also handy for situations like this, when you just need to create some fake files for testing purposes. By enclosing a comma-separated list of filenames within a pair of curly braces, you can create multiple files with just one single command. To verify that, let’s peek into the graphics directory:

 goldie@fedora:~/graphics$ ls -l
total 0
-rw-r--r--. 1 goldie goldie 0 Mar 23 13:27 goldie01.png
-rw-r--r--. 1 goldie goldie 0 Mar 23 13:27 goldie03.png
-rw-r--r--. 1 goldie goldie 0 Mar 23 13:27 goldie04.png
goldie@fedora:~/graphics$

 	For this step, you’ll need to log back into your own user account. You want to be sure to get all of the graphics files, even if they’re in the users’ top-level home directories, and copy them into the /backup/ directory. Your command and results would look like this:
 [donnie@fedora ~]$ sudo find /home -name '*.png' -exec cp {} /backup \;
[donnie@fedora ~]$ ls -l /backup/
total 0
-rw-r--r--. 1 root root 0 Jul 28 15:40 cleopatra01.png
-rw-r--r--. 1 root root 0 Jul 28 15:40 cleopatra02.png
-rw-r--r--. 1 root root 0 Jul 28 15:40 cleopatra03.png
-rw-r--r--. 1 root root 0 Jul 28 15:40 cleopatra04.png
-rw-r--r--. 1 root root 0 Jul 28 15:40 frank01.png
-rw-r--r--. 1 root root 0 Jul 28 15:40 frank02.png
-rw-r--r--. 1 root root 0 Jul 28 15:40 frank03.png
-rw-r--r--. 1 root root 0 Jul 28 15:40 frank04.png
-rw-r--r--. 1 root root 0 Jul 28 15:40 goldie01.png
-rw-r--r--. 1 root root 0 Jul 28 15:40 goldie02.png
-rw-r--r--. 1 root root 0 Jul 28 15:40 goldie03.png
-rw-r--r--. 1 root root 0 Jul 28 15:40 goldie04.png
-rw-r--r--. 1 root root 0 Jul 28 15:40 vicky01.png
-rw-r--r--. 1 root root 0 Jul 28 15:40 vicky02.png
-rw-r--r--. 1 root root 0 Jul 28 15:40 vicky03.png
-rw-r--r--. 1 root root 0 Jul 28 15:40 vicky04.png
[donnie@fedora ~]$

 What I’ve shown you here just barely scratches the surface of what you can do with find. To see the complete list of search criteria that you can specify, open the find man page and scroll down to the TESTS section.

 We’ll look at some more find examples a bit later. For now though, let’s look at how to create recursive commands.

 Running Commands Recursively

 We’ve already shown you that the find utility is inherently recursive. That is, it will automatically search through the subdirectories of your specified search path without you having to tell it to. Most Linux commands aren’t that way, however. If you want them to work recursively, you’ll have to tell them to. For the most part, this is done with either the -R switch or the -r switch. (Some commands use –R, and some use –r. Something that you’ll eventually see for yourself is that there’s not a lot of consistency in how the different commands work with option switches.) Let’s see how it all works with a hands-on lab.

 The examples in this section involve using the numeric method to set file and directory permissions. For anyone who’s not familiar with how to do that, I’ve provided a reference in the Further Reading section.

 Hands-on Lab – Using Commands with Recursion

 In this lab, you’ll be using the recursive option for the ls and chmod utilities. Let’s dig in.

 First, let’s create a new directory with a set of nested subdirectories, like this:

 [donnie@fedora ~]$ sudo mkdir -p /perm_demo/level1/level2/level3/level4
[donnie@fedora ~]$

 Next, we want to look at the permissions settings for the entire nest of directories. So, let’s do this:

 [donnie@fedora ~]$ ls -l /perm_demo/
total 0
drwxr-xr-x. 3 root root 20 Jul 29 17:09 level1
[donnie@fedora ~]$

 Well now, that doesn’t help, does it? All we can see is just the first level subdirectory.

 Let’s try adding the -R option to see if that helps:

 [donnie@fedora ~]$ ls -lR /perm_demo/
/perm_demo/:
total 0
drwxr-xr-x. 3 root root 20 Jul 29 17:09 level1
/perm_demo/level1:
total 0
drwxr-xr-x. 3 root root 20 Jul 29 17:09 level2
/perm_demo/level1/level2:
total 0
drwxr-xr-x. 3 root root 20 Jul 29 17:09 level3
/perm_demo/level1/level2/level3:
total 0
drwxr-xr-x. 2 root root 6 Jul 29 17:09 level4
/perm_demo/level1/level2/level3/level4:
total 0
[donnie@fedora ~]$

 This is much better, because we now see the permissions settings for all four of the nested subdirectories. But, we see that the permissions settings aren’t what we want. With the 755 permission setting that we currently have, we’re allowing the user to have read/write/execute access, while the group and others have read/execute access. What we really want is for the user and the group to both have read/write/execute access, and for others to have no access at all. We’ll do that by using chmod to change the permissions settings to 770. The -R switch will allow us to change the settings for the top-level directory, as well as all four of the nested subdirectories.

 Recursively set the correnct permissions setting with this command:

 [donnie@fedora ~]$ sudo chmod -R 770 /perm_demo/
[donnie@fedora ~]$

 Now that you’ve removed access for others, you’ll need to use sudo to view the permissions settings:

 [donnie@fedora ~]$ sudo ls -lR /perm_demo/
/perm_demo/:
total 0
drwxrwx---. 3 root root 20 Jul 29 17:09 level1
/perm_demo/level1:
total 0
drwxrwx---. 3 root root 20 Jul 29 17:09 level2
/perm_demo/level1/level2:
total 0
drwxrwx---. 3 root root 20 Jul 29 17:09 level3
/perm_demo/level1/level2/level3:
total 0
drwxrwx---. 2 root root 6 Jul 29 17:09 level4
/perm_demo/level1/level2/level3/level4:
total 0
[donnie@fedora ~]$

 You see that the permissions setting is now 770 for the entire nest, which means that we have achieved extreme coolness.

 Tip

 You might, at some point, be called upon to create a shell script that will automatically compile and install a program. The ability to create nested directories and recursively change permissions settings on them will come in quite handy when writing those kinds of scripts.

 There are several other utilities that also have the recursive feature. (You’ll encounter some of them as you go through this book.) The slight catch is that for some of them the recursive option switch is -r, and for other it’s -R. But, that’s okay. When in doubt, just consult the man page for the utility that you need to use.

 Now that we’ve covered recursion, let’s have a history lesson.

 Understanding the Command History

 Whenever you work with the command-line, there will be times when you’ll have to enter some commands more than once. If you’ve just entered a command that’s long and complex, you may not exactly be thrilled at the prospect of having to type it in all over again. Not to worry, though. For this, bash and zsh give you the ability to recall and/or edit commands that you’ve previously entered. There are a few ways to do this.

 Whenever you enter a command, it gets stored in memory until you exit the shell session. The command will then get added to a file that’s specified by the HISTFILE variable. Usually, this is the .bash_history file on bash, and the .histfile file on zsh. You’ll find these stored in each user’s home directory. To verify that, you can use the echo command, like this:

 [donnie@fedora ~]$ echo $HISTFILE
/home/donnie/.bash_history
[donnie@fedora ~]$

 On zsh, you’ll see this:

 donnie@opensuse:~> echo $HISTFILE
/home/donnie/.histfile
donnie@opensuse:~>

 The number of commands that get saved to either the .bash_history file or the .histfile is set by the HISTSIZE variable in the /etc/profile file. (Both bash and zsh reference the same file.) You can use grep to search for that line without having to open the file, like so:

 [donnie@fedora ~]$ grep HISTSIZE /etc/profile
HISTSIZE=1000
export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL
[donnie@fedora ~]$

 You can also use echo to see the setting:

 [donnie@fedora ~]$ echo $HISTSIZE
1000
[donnie@fedora ~]$

 Either way, we see that the system is set up to store the last 1,000 user commands in the .bash_history file.

 More often than not, you’ll probably use the up and down arrow keys on your keyboard to call up previously entered commands. If you keep pressing the up arrow key, you’ll scroll through the list of previous commands, starting with the last one entered. If you go past the command that you want, you can use the down arrow key to get back to it. When you finally do get to the command that you want to repeat, you can either press the Enter key to enter it as is, or edit it and then press Enter.

 You can also use the ! in various ways to recall past commands. For example, entering !! will execute the last command that you entered, as you see here:

 [donnie@fedora ~]$ ls -l *.txt
-rw-r--r--. 1 donnie donnie 12111206 Feb 18 13:41 dnf_list.txt
-rw-r--r--. 1 donnie donnie 2356 Jul 29 18:46 md5sumfile.txt
-rw-r--r--. 1 donnie donnie 2356 Jul 29 18:49 newmd5sums.txt
[donnie@fedora ~]$!!
ls -l *.txt
-rw-r--r--. 1 donnie donnie 12111206 Feb 18 13:41 dnf_list.txt
-rw-r--r--. 1 donnie donnie 2356 Jul 29 18:46 md5sumfile.txt
-rw-r--r--. 1 donnie donnie 2356 Jul 29 18:49 newmd5sums.txt
[donnie@fedora ~]$

 Use the ! followed by a text string to execute the last executed command that begins with that string. Let’s say that I want to repeat the last grep command that I did, like this:

 [donnie@fedora ~]$!grep
grep HISTSIZE /etc/profile
HISTSIZE=1000
export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL
[donnie@fedora ~]$

 Use !? followed by a string to execute the last executed command that contains that string, like this:

 [donnie@fedora ~]$ echo "The fat cat jumped over the skinny dog."
The fat cat jumped over the skinny dog.
[donnie@fedora ~]$!?skinny
echo "The fat cat jumped over the skinny dog."
The fat cat jumped over the skinny dog.
[donnie@fedora ~]$

 Now, for the coolest part of all. First, let’s view the history list, like so:

 [donnie@fedora ~]$ history
 1 sudo dnf -y upgrade
 2 sudo shutdown -r nowj
 3 sudo shutdown -r now
 4 cd /usr/share
. . .
. . .
 478 echo "The fat cat jumped over the skinny dog."
 479 clear
 [donnie@fedora ~]$

 To execute a command from this list, enter ! followed by the command number. For example, to perform the echo command again, enter !478, like so:

 [donnie@fedora ~]$!478
echo "The fat cat jumped over the skinny dog."
The fat cat jumped over the skinny dog.
[donnie@fedora ~]$

 Of all of the history tricks that I’ve shown you, this last one is the most useful one for me. But wait, here’s yet one more trick that you might find useful. That is, you can display the command history along with timestamps that show when each command has been executed. On bash, just do this:

 donnie@opensuse:~> HISTTIMEFORMAT="%d/%m/%y %T " history

 The output will look something like this:

 49 22/03/24 14:02:29 ./start_mining.sh
50 22/03/24 14:02:29 vim start_mining.sh
51 22/03/24 14:02:29 ./start_mining.sh
52 22/03/24 14:02:29 cd
53 22/03/24 14:02:29 cd Downloads/
54 22/03/24 14:02:29 ls
. . .
. . .
1046 23/03/24 12:03:53 clear
1047 23/03/24 12:05:37 HISTTIMEFORMAT="%d/%m/%y %T " history
donnie@opensuse:~>

 What’s happening here is that we’re configuring the HISTTIMEFORMAT environmental variable to display the timestamp in our desired format, and then running the history command.

 This is somewhat easier on zsh, because zsh allows us to use history with the -f option switch, like so:

 donnie@opensuse:~> zsh
donnie@opensuse:~> history -f
 17 3/23/2024 11:58 echo $HISTFILE
 18 3/23/2024 11:58 cd /etc
 19 3/23/2024 11:58 ls
 20 3/23/2024 11:58 less zprofile
. . .
. . .
31 3/23/2024 11:58 echo $HISTFILE
32 3/23/2024 11:58 exit
donnie@opensuse:~>

 Note that running history -f on bash will give you an error message, like this one:

 donnie@opensuse:~> history -f
bash: history: -f: invalid option
history: usage: history [-c] [-d offset] [n] or history -anrw [filename] or history -ps arg [arg...]
donnie@opensuse:~>

 All right, let’s move on to the next topic.

 Escaping and Quoting

 Whenever you type anything on the command-line or into a shell script, you’ll be using a mix of normal alphanumeric text and non-alphanumeric characters. Some of these characters have special meanings within the shell, and will cause the shell to perform in some special way. Sometimes, you’ll want the shell to interpret these special characters as normal text, instead of as something with a magical power. To do that, you can either escape or quote the special characters.

 There are two general classes of characters that can be interpreted by the shell from within a shell command. These are:

 	Normal characters: bash and zsh interpret these characters literally. In other words, they have no special meaning to the shell.

 	Metacharacters: These characters have special meanings for bash and zsh. You could say that a metacharacter provides some sort of special instruction to these shells.

 Here’s a space-separated list of metacharacters that can be used in either shell scripts or shell commands:

 & ; | * ? ' " ` [] () $ < > { } # / \ ! ~

 I’d rather not try to explain what each one does right now, because many of them can perform multiple functions, depending upon the context of the command. But, we’ve already seen some of them in action, and we’ll see the rest of them in action as we progress through this book.

 Escaping Metacharacters

 We’ve already seen some of these metacharacters in action in the previous examples. To further demonstrate, let’s look at the humble * metacharacter, which can be used as a wildcard. Let’s first do a directory listing of all of the .conf files in the /etc/ directory, like so:

 [donnie@fedora ~]$ ls /etc/*.conf
/etc/anthy-unicode.conf /etc/libaudit.conf /etc/rsyncd.conf
/etc/appstream.conf /etc/libuser.conf /etc/rsyslog.conf
/etc/asound.conf /etc/locale.conf /etc/sestatus.conf
. . .
. . .
/etc/ld.so.conf /etc/resolv.conf
[donnie@fedora ~]$

 You see that I’ve just listed all files with filenames that end with a .conf filename extension. Now, let’s place a \ in front of the *, like this:

 [donnie@fedora ~]$ ls /etc/*.conf
ls: cannot access '/etc/*.conf': No such file or directory
[donnie@fedora ~]$

 Placing the \ in front of the * caused the shell to interpret the * literally, instead of as a metacharacter. Instead of looking for all files with .conf at the end of their filenames, we’re now looking for just one specific file with the filename, *.conf. No such file exists, so ls returned an error message.

 In our find example where we performed a compound search, we had to place a \ in front of each parenthesis character so that the shell would interpret them correctly. Here’s what that looked like:

 [donnie@fedora ~]$ sudo find / \(-mtime +30 -iname '*.zip' \)
/home/donnie/Downloads/Roboto_Condensed.zip
/home/donnie/Downloads/Bungee_Spice.zip
. . .
. . .
/home/donnie/dosbox/turboc/SAMPLES/simpwn18/SWTCPPRJ.ZIP
/home/donnie/dosbox/turboc/SAMPLES/simpwn18/SWH.ZIP
/home/donnie/dosbox/turboc/SAMPLES/simpwn18/SIMPWIN.ZIP
/home/donnie/dosbox/turboc/SAMPLES/simpwn18/SWTC.ZIP
/home/donnie/dosbox/turbocplusplus/TC/TC.zip
[donnie@fedora ~]$

 Now, let’s try it without the \ characters:

 [donnie@fedora ~]$ sudo find / (-mtime +30 -iname '*.zip')
bash: syntax error near unexpected token `('
[donnie@fedora ~]$

 This time, I get an error message, because bash doesn’t understand what I’m trying to do.

 Now, just for fun, try this pair of commands on your own machine and note the difference in output:

 echo I won $300.
echo I won \$300.

 I guess that I should mention that when you place a \ in front of a metacharacter so that the shell will interpret the metacharacter literally, it’s called escaping the metacharacter. This is something that you’ll use extensively for either normal shell commands or shell scripting.

 Okay, let’s look at another way to make the shell interpret metacharacters literally.

 Quoting

 You sometimes might have to quote a text string when performing a shell command or writing a shell script. This simply involves surrounding the text string with either a pair of double quotes (") or a pair of single quotes ('). If you surround a text string with a pair of single quotes, the shell will interpret any metacharacters that are within the quotes as normal, literal characters. If you surround a text string with a pair of double quotes, the shell will interpret most, but not all, metacharacters as normal, literal characters. To show how that works, let’s create a programming variable that we’ll call name, and assign to it the value charlie, like so:

 [donnie@fedora ~]$ name=charlie
[donnie@fedora ~]$

 Next, we’ll try to echo back the value of name, using a pair of single quotes:

 [donnie@fedora ~]$ echo '$name'
$name
[donnie@fedora ~]$

 You see that the single quotes cause the shell to interpret the $ as a literal character. Now, let’s see what happen if we use a pair of double quotes:

 [donnie@fedora ~]$ echo "$name"
charlie
[donnie@fedora ~]$

 This time, we see the variable’s actual value, because the $ is one of the metacharacters that the double quotes won’t treat as a literal character.

 We’ll cover the topic of programming variables more in depth later. So for now, don’t stress out if you don’t fully understand the concept.

 For reference, here’s the complete list of metacharacters that won’t get interpreted as literal characters by surrounding them with double quotes:

 	"

 	\

 	`

 	$

 To clarify, the list consists of the double quote character, the backslash, the back-tick, and the dollar sign. (For now, don’t worry about what all of these metacharacters do. We’ll cover them all in due time.)

 For all other metacharacters, it doesn’t matter whether you use double quotes or single quotes. Let’s look at this example that uses a wildcard character:

 [donnie@fedora ~]$ echo '*.txt'
*.txt
[donnie@fedora ~]$ echo "*.txt"
*.txt
[donnie@fedora ~]$

 Either way, the result is the same. Both times, the * gets treated as a literal character. To use the * as an actual metacharacter, just omit the quotes, like so:

 [donnie@fedora ~]$ echo *.txt
addresses.txt alma9_default.txt alma9_future.txt alma_link.txt centos7scan_modified.txt centos7scan.txt dnf_list.txt finances.txt missing_stuff.txt password_for_RHEL_VM.txt rpmfusion.txt somefile.txt temp.txt test.txt text.txt ubuntuscan_modified.txt ubuntuscan.txt withL3.txt withoutL3.txt
[donnie@fedora ~]

 Okay, that pretty much does it for escaping and quoting, as well as for the whole chapter. Let’s summarize and move on.

 Summary

 We’ve covered some important basics in this chapter. We started by describing the structure and the components of a shell command, and how to perform multiple actions with just one single command. Then, we looked at the find utility, and the cool things that you can do with it. We then looked at how to run commands recursively, and wrapped up with a discussion about escaping and quoting.

 In the next chapter, we’ll talk about variables and pipelines. I’ll see you there.

 Questions

 	Which of the following sets of metacharacters would cause the second command to run only if the first command runs successfully?
 	||

 	&&

 	|

 	&

 	You want to run a command that contains the $ metacharacter, but you want the shell to interpret the metacharacter literally. How would you do that? (Choose two.)
 	Precede the metacharacter with a /.

 	Surround the text string that contains the metacharacter with a pair of single quotes.

 	Precede the metacharacter with a \.

 	Surround the text string that contains the metacharacter with a pair of double quotes.

 	It’s not possible.

 	You’re using find to search for files on a FreeBSD system. To search through the current working directory, what must you do on FreeBSD that you don’t have to do on Linux?
 	Use a dot to designate the search path.

 	Nothing. The commands are performed the same way on both systems.

 	This isn’t possible on a FreeBSD system.

 	Use sudo.

 	You want to create a nested directory structure with one single mkdir command. How would you do that?
 	Use the -r option to make mkdir run recursively.

 	Use the -R option to make mkdir run recursively.

 	Use the -P option.

 	Use the -p option.

 	You want to automatically perform an action on every file that find finds, without being prompted. Which find option would you use to do that?
 	-ok

 	-exec

 	--exec

 	--ok

 Further Reading

 	Linux File Permissions Explained: https://www.redhat.com/sysadmin/linux-file-permissions-explained

 	How to Use Bash Wildcards for Globbing?: https://www.shell-tips.com/bash/wildcards-globbing/#gsc.tab=0

 	How to Recursively Search Directory Names in Linux: https://www.howtogeek.com/devops/how-to-recursively-search-directory-names-in-linux/

 	Find Command in Linux: https://linuxize.com/post/how-to-find-files-in-linux-using-the-command-line/

 	10 Ways to Use the Linux find Command: https://www.redhat.com/sysadmin/linux-find-command

 	What are Linux Metacharacters? Everything You Need to Know: https://www.makeuseof.com/what-are-linux-metacharacters/

 	6 Linux metacharacters I love to use on the command line: https://opensource.com/article/22/2/metacharacters-linux

 	How to Use Your Bash Historyin the Linux or MacOS Terminal: https://www.howtogeek.com/44997/how-to-use-bash-history-to-improve-your-command-line-productivity/

 	Navigating Bash History Ctrl+r: https://lornajane.net/posts/2011/navigating-bash-history-with-ctrlr

 	How to Find When a Command is Executed in Linux: https://ostechnix.com/find-when-a-command-is-executed-in-linux/

 	Escape Quotes in Bash: https://linuxsimply.com/bash-scripting-tutorial/quotes/escape-quotes/

 Answers

 	b

 	b and c

 	a

 	d

 	b

 Join our community on Discord!

 Read this book alongside other users, Linux experts, and the author himself.

 Ask questions, provide solutions to other readers, chat with the author via Ask Me Anything sessions, and much more. Scan the QR code or visit the link to join the community.

 https://packt.link/SecNet

 [image:]

 3

 Understanding Variables and Pipelines

 In the previous chapter, you saw how the shell interprets users’ commands, and you saw various examples of how to craft your commands. In this chapter, I’ll tell you about variables and pipelines.

 The ability to create variables and assign values to them is an important part of any programming environment. As you would expect, both bash and zsh have this capability. In the first part of this chapter, we’ll cover the basics about environmental variables and programming variables.

 In the second part of the chapter, we’ll cover how to use pipelines. Pipelines are very simple, and you might have already used them at some point. So, I promise to make this write-up both short and sweet. (Actually, there’s not a lot to say just yet about either of these topics, which is why I’m combining both of them into one chapter.)

 Topics in the chapter include:

 	Understanding environmental variables

 	Understanding programming variables

 	Understanding pipelines

 If you’re ready, let’s get started.

 Understanding Environmental Variables

 Environmental variables control the configuration and functioning of the operating system shell. When you install either a Linux or Unix/Unix-like operating system such as FreeBSD or OpenIndiana, you’ll find that a default set of environmental variables has already been defined at both the global and user levels.

 To see the list of environmental variables and their settings, use the env command, like so:

 [donnie@fedora ~]$ env
SHELL=/bin/bash
IMSETTINGS_INTEGRATE_DESKTOP=yes
COLORTERM=truecolor
XDG_CONFIG_DIRS=/etc/xdg/lxsession:/etc/xdg
HISTCONTROL=ignoredups
. . .
. . .
MAIL=/var/spool/mail/donnie
OLDPWD=/etc/profile.d
_=/bin/env
[donnie@fedora ~]$

 The complete list of environmental variables is very extensive. Fortunately, you don’t need to memorize what each and every item does for you. Most of the ones that you do need to know are self-explanatory.

 Instead of viewing the entire list, you can also view the value of a specific item. Just use the echo command, and precede the variable name with a $, like so:

 [donnie@fedora ~]$ echo $USER
donnie
[donnie@fedora ~]$ echo $PATH
/home/donnie/.local/bin:/home/donnie/bin:/home/donnie/.cargo/bin:/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/sbin
[donnie@fedora ~]$ echo $EDITOR
/usr/bin/nano
[donnie@fedora ~]$

 Here we see that I (donnie) am the current logged-in user, what my path setting is, and what my default editor is. You would view the value of any other environmental variable the same way.

 An important thing to note is that the names of all environmental variables always consist of all upper-case letters. Nothing in either the operating system or the shell prevents the use of lower-case letters, but there is a very good reason for not using them. It’s just that variable names are case-sensitive. Best practice dictates using nothing but upper-case letters for environmental variable names and either all lower-case letters or a mix of upper and lower-case letters for programming variable names. This will prevent you from accidentally overwriting the value of an environmental variable. (I’ll show you more about that in the next section.)

 As I mentioned before, environmental variables are configured at both the global and user levels. Variable settings at the global level affect all users of bash and zsh. For bash, you’ll find most of these global settings in the /etc/profile file, the /etc/bashrc file, and various files in the /etc/profile.d/ directory. For zsh, you’ll find these settings in the /etc/zprofile, /etc/zshrc, and /etc/zshenv files. (Note that zsh also references the same /etc/profile file that bash references.) If you were to open one of these files at this point, you likely won’t understand much of what’s going on in them. That’s okay, because for now that doesn’t matter. But, you’ll easily be able to find where the environmental variables are set, because the variable names are all in upper-case letters.

 Now, let’s say you don’t like a particular setting. For example, let’s say that you want to customize your command-line prompt to your own liking. Here on my Fedora workstation, my bash prompt looks like this:

 [donnie@fedora ~]$

 The format of the prompt is determined by the PS1 environmental variable. We can see the PS1 settings like this:

 [donnie@fedora ~]$ echo $PS1
[\u@\h \W]\$
[donnie@fedora ~]$

 Here’s the breakdown of what you’ve just seen:

 	[: This is a literal character, which is the first thing we see in the prompt.

 	\u: This causes the current user’s username to appear.

 	@: This is another literal character.

 	\h: This causes the first component of the machine’s hostname to appear.

 	\W: This causes the name of the current working directory to appear. Note that the upper-case W doesn’t cause the entire pathname to appear.

]: This is another literal character.

 	\$: This causes the $ to show for all normal users, and the # to appear for the root user.

 A while ago, I said that we can use the \ to force the shell to interpret a metacharacter as a literal character. Here though, we see another use for the \. When configuring the PS1 parameters, the \ indicates that we’re about to use a macro command. (Think of a macro as a command that runs when you perform some simple action, such as hitting a specific key or clicking on a specific button.)

 Now, let’s say that we want the entire path of the current working directory to appear, along with the current date and time. To do that, we’ll replace the \W with \w, and add the \d and \t macros, like this:

 [donnie@fedora ~]$ export PS1="[\d \t \u@\h \w]\$"
[Wed Aug 09 18:14:26 donnie@fedora ~]$

 Note that I had to surround the new parameter within a pair of quotes so that the shell would interpret the metacharacters properly. Also, note what happens when I cd into a down-level directory:

 [Wed Aug 09 18:14:26 donnie@fedora ~]$cd /etc/profile.d/
[Wed Aug 09 18:29:15 donnie@fedora /etc/profile.d]$

 Substituting the /w for the /W causes the entire path of the current working directory to show up.

 When you configure the PS1 parameter from the command-line, the new settings will disappear as soon as you either log out from the machine or close the terminal window. To make the setting permanent, just edit the .bashrc file that’s in your home directory. Add the export PS1="[\d \t \u@\h \w]$ " line to the end of the file, and you’ll see the new prompt the next time you either log into the machine or open a new terminal window.

 There are still a lot more ways to customize the command prompt that I haven’t shown you. For a more complete list, see the reference that I provided in the Further Reading section. Also, note that I’ve only covered how to do this with bash, because zsh uses different command prompt parameters. (I’ll show you all about that in Chapter 22, Using the Z Shell.)

 I can read your mind, and can see that you’re wondering what environmental variables have to do with shell scripting. Well, it’s just that sometimes you’ll need to have your script perform a specific action that depends upon the value of a specific environmental variable. For example, let’s say that you only want the script to run for the root user, and not for any unprivileged user. Since we know that the user identification number for the root user is 0, we can write code that allows the script to run if the UID variable is set to 0, and to prevent the script from running if the UID is set to anything other than 0.

 And by the way, I apologize if it seems a bit creepy that I can read your mind.

 That does it for our introduction to environmental variables. Let’s now take a quick look at programming variables.

 Understanding Programming Variables

 Sometimes, it’s necessary to define variables to use in your scripts. You can define, view, and unset these variables as needed for your programming needs. Note that although the system will allow you to create programming variable names with all upper-case letters, it’s considered bad form to do so. Best practice is to always name your programming variables with lower-case letters, so that you won’t risk accidentally overwriting the value of an environmental variable with the same name. (Of course, you won’t cause any long-term damage by overwriting an environmental variable. But, why risk overwriting an environmental variable that you might need to use later in your script?)

 To show how this all works, let’s create some programming variables from the command-line, and view the assigned values. First, we’ll create the car variable and assign to it the value Ford, like this:

 [donnie@fedora ~]$ car=Ford
[donnie@fedora ~]$ echo $car
Ford
[donnie@fedora ~]$

 To view the value of a variable, use echo, and precede the name of the variable with a $, just as we did with the environmental variables. Now, let’s open a child shell with the bash command, to see if we can still view the value of this car variable, and then exit back to the parent shell, like this:

 [donnie@fedora ~]$ bash
[donnie@fedora ~]$ echo $car
[donnie@fedora ~]$ exit
exit
[donnie@fedora ~]$

 We can’t see the value of car this time, because we didn’t export the variable. Exporting the variable will permit a child shell to access the variable. As you might have guessed, we’ll use the export command to do this, like so:

 [donnie@fedora ~]$ export car=Ford
[donnie@fedora ~]$ echo $car
Ford
[donnie@fedora ~]$ bash
[donnie@fedora ~]$ echo $car
Ford
[donnie@fedora ~]$ exit
exit
[donnie@fedora ~]$

 This time, we see that the value of car now shows up in the child shell.

 We’ll be working with variables throughout the rest of this book, so you’ll be learning a lot more about how to use them. For now though, this quick introduction is enough.

 Next, let’s do some plumbing.

 Understanding Pipelines

 A pipe will take the output of one command and use it as the input for another command. It’s represented by the | symbol, which is on the same key as the backslash. You’ll often invoke a simple pipeline from the command-line for various purposes. But, you can also create very complex, multi-stage pipelines for your shell scripts.

 [image:]
 Figure 3.1: Creating a pipeline. Note that stdout is short for Standard Output, and stdin is short for Standard Input.

 To see how this can be useful, let’s say that you want to look at a listing of all files in a certain directory. But, there are so many files that the output would scroll off of the screen where you’d never be able to see it. You can solve the problem by taking the output of the ls command and using it as the input for the less command. It would look something like this:

 [donnie@fedora ~]$ ls -l | less

 The ls -l listing will open in the less pager, so that you can scroll through the output or perform searches for particular text strings.

 Now, let’s say that I only want to see files with the text string alma in their filenames. That’s easy enough. I’ll just pipe the ls -l output into grep, like so:

 [donnie@fedora ~]$ ls -l | grep alma
-rw-r--r--. 1 donnie donnie 1438 Nov 2 2022 alma9_default.txt
-rw-r--r--. 1 donnie donnie 1297 Nov 2 2022 alma9_future.txt
-rw-r--r--. 1 donnie donnie 81 Jan 11 2023 alma_link.txt
[donnie@fedora ~]$

 Now, let’s say that I don’t want to see the filenames, but I do want to know how many files there are. I’ll just add another pipe stage, like so:

 [donnie@fedora ~]$ ls -l | grep alma | wc -l
3
[donnie@fedora ~]$

 The wc -l command counts the number of lines in the output, which in this case tells us how many files I have that contain the text string alma in their filenames.

 If you’re not familiar with grep, just understand for now that it’s a utility that can search for either specific text strings or for text patterns. It can search through text files without you having to open them, or it can search for text strings or patterns in the output that you would pipe into it from another command.

 Okay, I’ve shown you some simple examples of how to create pipelines from the command-line. Now, I want to show you something that I hope you’ll never do. This involves using the cat utility.

 One thing that you can do with cat is to dump the contents of a text file to your screen. It’s mainly useful for viewing small files, as you see here:

 [donnie@fedora ~]$ cat somefile.txt
This is just some file that I created to demonstrate cat.
[donnie@fedora ~]$

 If you use cat to view a large file, the output will scroll off of the screen where you might not be able to view it. I have seen cases where somebody would still use cat to dump the file, and then pipe the output into less, like so:

OEBPS/Images/B21693_01_04.png
donnie@fedora:~ -8 x

#1/bin/bash

#
for var in argl arg2 arg3
do

echo svar

1s -1

donel]

-~ INSERT -- 7

OEBPS/Images/blockquote-top.png

OEBPS/Images/B21693_MockupCover.png
EXPERT INSIGHT

The Ultimate Linux
Shell Scripting Guide

Automate, Optimize, and Empower tasks with
Linux Shell Scripting

Donald A. Tevault <packt

OEBPS/Images/B21693_01_01.png
Debian GNU/Linux 12 debiani2 ttyl

debian12 login: donnie
Password:
Linux debian12 6.1.0-18-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.76-1 (2024-02-01) x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO HARRANTY, to the extent
permitted by applicable law

Last login: Mon Mar 11 17:01:16 EDT 2024 from 192.168.0.16 on pts/@
donnie@debian12:™$ echo $SHELL

/bin/bash

donnie@debiani2: s

OEBPS/Images/B21693_02_01.png
/home

Voo I

Jvicky /cleopatra [frank /goldie
vickyOl.png lcleopatraOB.png lfrankﬂdpng goldie02.png
/graphics /graphics /graphics /graphics
vicky02.png cleopatra01.png frank01.png goldie01.png
vicky03.png cleopatra02.png frank02.png goldie03.png
vicky04.png cleopatra04.png franko3.png goldie04.png

To copy all of these .png files to the /backup/ directory, enter:

sudo find /home -name'*.png' -exec cp {} /backup \;

OEBPS/Images/B21693_03_01.png
command_1 | command_2

S BN

The stdout from here gets piped into stdin here.

OEBPS/Images/tip.png

OEBPS/Images/B21693_01_05.png

OEBPS/Images/info.png

OEBPS/Images/B21693_01_02.png
O Applications Places _System @ () I8 VRSB, Suntar Ll L7

(al

Computer

donnie’s Home File Edit View Search Terminal Help
ey donniegopenindiana:~$ ||

openindiana,

OEBPS/Images/blockquote-bottom.png

OEBPS/Images/QR_Code10596186092701843.png

OEBPS/Images/B21693_01_06.png
Untitled * — KWrite

File Edit Selection View Go Tools Settings Help
D new [Open save [BsaveAs Oundo C
#1/bin/bash
| La—]

2 for var in argl arg2 arg3

i echo $var
5 1s -1

6:5 INSERT en US Soft Tabs:4 UTF-8 Normal

OEBPS/Images/New_Packt_Logo.png
<PACKD

OEBPS/Misc/review.jfif

OEBPS/Images/review.png

OEBPS/Images/B21693_01_03.png
donnie@fedora:~

#/bin/bash

for var in argl arg2 arg3
do

echo Svar

1s -1

donefl

Help
Exit

write out [§¥ where 1s [® cut Execute Location
Read File [§\ Replace @Y Paste ¥ Justify Go To Line

OEBPS/Images/B21693_Free_PDF_QR.png

