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			Preface

			Since its very beginnings, artificial intelligence (AI) has transformed the landscape of game development, offering players enriched and immersive experiences that were once thought to be the realm of science fiction. Unlike other methods of game development, where scripted events dictate more rigid player interactions, AI introduces a level of unpredictability and responsiveness that brings virtual worlds to life.

			In recent years, advancements in AI technology have made it more accessible and easier to implement, resulting in a surge of intelligent gameplay across various genres. This evolution has made AI a cornerstone of modern game development, with millions of players benefiting from smarter, more engaging interactions in their favorite games every day.

			Unreal Engine stands out as an advanced platform for developers looking to harness the power of AI in their projects. With a robust suite of tools and features tailored specifically for AI development – such as behavior trees and the Navigation System – Unreal Engine enables creators to build sophisticated AI systems that enhance gameplay and player engagement.

			If you’re ready to explore the world of AI development and its potential to improve your games, then there’s no better time to dive in!

			Who this book is for

			If you are a game programmer, or specifically an Unreal Engine developer, with little or no knowledge of video game AI systems, and want to delve deep into this topic, then this book is for you.

			Developers who are proficient in other game engines and are interested in understanding the principles of the Unreal AI framework will also benefit from this book; however, a basic knowledge of Unreal Engine and C++ is strongly recommended.

			A passion for gameplay logic will help you get the most out of this book.

			What this book covers

			Chapter 1, Getting Started with AI Game Development, gently introduces you to the realm of AI game development, starting with an understanding of the basics of AI behavior.

			Chapter 2, Introducing the Unreal Engine AI System, introduces you to the main AI elements included in the Unreal Engine Gameplay Framework, such as behavior trees, the Navigation System, and the Perception System.

			Chapter 3, Presenting the Unreal Engine Navigation System, introduces you to the powerful navigation capabilities within Unreal Engine, including key concepts such as navigation mesh generation and pathfinding algorithms.

			Chapter 4, Setting Up a Navigation Mesh, covers essential practical techniques for implementing a navigation mesh using Unreal Engine, by starting with a concrete project.

			Chapter 5, Improving Agent Navigation, introduces you to integration algorithms that will optimize the movement and interaction of AI agents within complex environments.

			Chapter 6, Optimizing the Navigation System, presents some strategies and techniques to maximize the performance and efficiency of the Navigation System within Unreal Engine.

			Chapter 7, Introducing Behavior Trees, introduces you to the powerful and versatile behavior tree system within the Unreal Engine framework.

			Chapter 8, Setting Up a Behavior Tree, guides you through the essential steps of creating and configuring a behavior tree to drive an AI agent within Unreal Engine.

			Chapter 9, Extending Behavior Trees, provides an in-depth exploration of advanced techniques for extending the capabilities of behavior trees to create more sophisticated AI behaviors and interactions.

			Chapter 10, Improving Agents with the Perception System, shows how to leverage the power of the Unreal Engine Perception System to enhance the responsiveness of AI agents within virtual environments.

			Chapter 11, Understanding the Environment Query System, provides a comprehensive and detailed explanation of the Environment Query System within the Unreal Engine framework.

			Chapter 12, Using Hierarchical State Machines with State Trees, introduces you to the StateTree system for implementing hierarchical state machines within Unreal Engine.

			Chapter 13, Implementing Data-Oriented Calculations with Mass, introduces the MassEntity framework, through which you will be able to implement efficient and scalable data-oriented calculations.

			Chapter 14, Implementing Interactable Elements with Smart Objects, introduces smart objects and shows how to integrate them in an Unreal Engine environment.

			Appendix - Understanding C++ in Unreal Engine, delves into the fundamental concepts and principles of using the C++ programming language within the Unreal Engine framework.

			To get the most out of this book

			To get the most out of this book, it is strongly recommended to have a good understanding of Unreal Engine and its main features. Some experience with C++ programming will also be an advantage. A strong passion for gaming – in particular, gameplay logic – will help you a lot in understanding the most advanced topics.
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			As this book is focused on AI programming and not on graphics, you won’t need a high-spec computer to follow all the chapters. However, to properly run Unreal Engine, a good PC with a good graphics card is highly recommended.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Artificial-Intelligence-in-Unreal-Engine-5. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Once the project is open, please check what’s inside the Content folder.”

			A block of code is set as follows:

			
#pragma once UENUM(BlueprintType)enum class EBatteryStatus : uint8 {    EBS_Empty = 0 UMETA(DisplayName = "Empty"),    EBS_Low = 1 UMETA(DisplayName = "Low"),    EBS_Medium = 2 UMETA(DisplayName = "Medium"),    EBS_Full = 3 UMETA(DisplayName = "Full")};
			Any command-line input or output is written as follows:

			
$ mkdir css
$ cd css
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “ In the Details panel, look for the Tags property in the Actor | Advanced category and hit the + button to create a new tag.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Artificial Intelligence in Unreal Engine 5, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image: ]
				

			

			https://packt.link/free-ebook/9781836205852

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

		
			
			

		

		
			
			

		

	


		
			Part 1: Introducing Artificial Intelligence in Games

			In the first part of this book, you will receive a beginner-friendly introduction to the realm of artificial intelligence (AI) development in games. Once you have a solid understanding of its key concepts, you will be ready to start implementing a project leveraging these topics.

			This part includes the following chapters:

			
					Chapter 1, Getting Started with AI Game Development

					Chapter 2, Introducing the Unreal Engine AI System

			

		

		
			
			

		

		
			
			

		

	
		
			1

			Getting Started with AI Game Development

			Welcome to the fascinating world of artificial intelligence (AI) development in Unreal Engine! I am thrilled that you have chosen me and my book as your guide on this sometimes intimidating journey into the realm of AI programming. Rest assured that I am committed to making this experience as easy and enjoyable as possible.

			Throughout this book, you will acquire the skills required to create Unreal Engine games that involve the use of AI techniques and learn how to handle them at runtime. We will start from the basics, such as moving agents within a game level, and gradually progress to more advanced topics such as creating complex behaviors and managing multiple AI entities (even dozens or hundreds). By the end of this journey, you will be proficient in crafting formidable opponents that will challenge your players; what’s more, you will possess a deep understanding of the potential pitfalls in AI development and how to avoid them.

			In this chapter, I will introduce you to some basic keywords about AI development; these concepts will serve as a gentle introduction to the whole book, providing you with a foundation to delve deeper into the fascinating world of AI programming in Unreal Engine.

			In this chapter, we will be covering the following topics:

			
					Introducing AI

					Understanding AI in game development

					Explaining AI techniques in video games

			

			Technical requirements

			I guess you are already aware that the Unreal Engine Editor can be quite demanding in terms of hardware prerequisites. However, there is no need to be intimidated as this book primarily focuses on game programming rather than real-time visual effects.

			In this section, we will explore the hardware and software requirements necessary to follow along with this book. Additionally, we will discuss some prerequisite knowledge that will be beneficial for your journey.

			Prerequisite knowledge

			Before we dive into the exciting world of AI in game development, I want to kindly remind you that this book is designed for individuals who already possess some knowledge about working with Unreal Engine. Therefore, you must be already familiar with the following topics:

			
					Unreal Engine: It’s essential to have a basic understanding of this software interface, tools, and workflow.

					Game development basics: Having a good grasp of general game development principles and terminology will greatly aid your understanding of the concepts discussed in this book.

					Programming knowledge: As this book focuses on game development, it is assumed that you have some programming experience. Ideally, you should be familiar at least with the Unreal Engine visual scripting system (Blueprints) and, to some extent, with C++.

			

			Note

			If you are new to Unreal Engine, I highly recommend exploring some introductory books or resources to familiarize yourself with its fundamentals. One amazing starting point is Blueprints Visual Scripting for Unreal Engine 5 by Marcos Romero, Packt Publishing, which will guide you through the main features of programming in Unreal Engine with Blueprints.

			In this book, and whenever possible, I will be showing you techniques by using both Blueprints and C++. If you need a gentle introduction to C++, at the end of this book, you will find a valuable appendix that delves into the intricacies of C++ programming in the context of Unreal Engine. This quick guide is also designed to provide you with some understanding of how C++ works within the Unreal Engine framework.

			Hardware requirements

			At the time of writing this book, Epic Games is officially recommending the following basic requirements. If your hardware meets at least these specifications, you can expect to have a pleasant experience while reading through the chapters:

			
					Windows OS:	Operating system: Windows 10 or 11 64-bit version
	Processor: Quad-core Intel or AMD, 2.5 GHz or faster
	Memory: 8 GB RAM
	Graphics card: DirectX 11- or 12-compatible graphics card



					Linux:	Operating system: Ubuntu 22.04
	Processor: Quad-core Intel or AMD, 2.5 GHz or faster
	Memory: 32 GB RAM
	Video card: NVIDIA GeForce 960 GTX or higher with the latest NVIDIA binary drivers
	Video RAM: 8 GB or more



					macOS:	Operating system: Latest macOS Ventura
	Processor: Quad-core Intel, 2.5 GHz
	Memory: 8 GB RAM
	Video card: Metal 1.2-compatible graphics card



			

			I've written this book using the following hardware:

			
					Desktop:	Operating system: Windows 10 64-bit version
	Processor: Intel Core i9 9900K
	Memory: 64 GB RAM
	Graphics card: NVIDIA GeForce RTX 3090ti



					Laptop:	Operating system: Windows 11 64-bit version
	Processor: Intel Core i7 13650HX
	Memory: 8 GB RAM
	Graphics card: NVIDIA GeForce RTX 4060



			

			Software requirements

			This book assumes you have the Epic Games Launcher and Unreal Engine 5 installed and fully working on your computer.

			Note

			At the time of writing this book, the latest version of Unreal Engine is 5.4 but you will be able to follow along with any version more recent than 5.4.

			Additionally, as we will also be working with C++, you’ll need an IDE supporting this language and Unreal Engine. If you already have some experience, chances are you have already installed Visual Studio 2019/2022 or JetBrains Rider; if you don’t, you will need to install one of them to follow along with the C++ coding parts.

			Setting up Visual Studio for Unreal Engine development in C++

			Once you have Visual Studio installed, you’ll need the following extra components to make it work properly with Unreal Engine:

			
					C++ profiling tools

					C++ AddressSanitizer

					Windows 10 SDK

					Unreal Engine installer

			

			To include these tools, follow these steps:

			
					Open Visual Studio Installer.

					Select Modify from your Visual Studio installation, selecting the version you will be using:

			

			
				
					[image: Figure 1.1 – Selecting the Visual Studio Installer version]
				

			

			Figure 1.1 – Selecting the Visual Studio Installer version

			
					Once the Modifying modal window opens, in the top bar, make sure you are in the Workloads section.

					Then, activate the Game development with C++ option by clicking the checkmark.

					Next, if it is closed, open Installation details | Game development with C++ | Optional from the right sidebar.

					Select the following fields, as shown in Figure 1.2:	C++ profiling tools
	The latest Windows 11 SDK version available
	C++ AddressSanitizer
	IDE support for Unreal Engine (optional)
	Unreal Engine installer



			

			
				
					[image: Figure 1.2 – The Workload section]
				

			

			Figure 1.2 – The Workload section

			
					Click the Install while downloading button (or the Download all, then install one) to start the installation process.

			

			Note

			The IDE support for Unreal Engine integration is an extension introduced in Visual Studio 2022 and adds some nifty features such as Blueprint references, Blueprint assets, and CodeLens hints on top of the Unreal Engine classes, functions, and properties. Although not mandatory, I highly recommend using it as it will make your life as a developer much easier!

			After completing the download and installation process, you will be fully prepared to embark on the development of your own C++ games using Unreal Engine.

			Now that you have successfully set up your system, it is time to get acquainted with some of the key terminologies in the AI environment. This will provide you with a solid foundation to understand and navigate the world of AI more effectively.

			Introducing AI

			AI has emerged as a transformative force in various industries; in its broadest sense, AI involves the simulation of human intelligence in machines that are programmed to think and (sometimes) learn like humans.

			As such, developing AI means studying methods and software that enable machines to perceive their environment, learn from data, reason, and make decisions to achieve defined goals.

			AI encompasses various subfields and applications, including the following:

			
					Robotics: The development of intelligent machines that can interact with the physical world

					Natural language processing: The ability of computers to understand, interpret, and generate human language

					Machine learning: The use of algorithms and statistical models to enable computers to learn from data and make predictions or decisions without being explicitly programmed

					Deep learning: A branch of machine learning that leverages neural networks to emulate decision-making abilities observed in the human brain

					Computer vision: The ability of computers to understand and interpret visual information from images or videos

			

			What’s more, AI has been making significant strides in the entertainment industry, transforming the way content is created, consumed, and personalized. Here are some key points about AI’s impact on the entertainment industry:

			
					Generative AI: This kind of technology can create outputs such as stories, scripts, and images and has the potential to revolutionize content creation in the entertainment industry.

					Personalized recommendations: AI-enabled tools are being used to help users discover content tailored to their preferences by providing personalized suggestions. These recommendations are based on user behavior, viewing history, and other data, enhancing the user experience.

					Data-driven insights: By analyzing user behavior, AI allows the entertainment industry to gain valuable insights from data such as preferences and trends and can help companies understand their audiences better and make data-driven decisions regarding content production, distribution, and marketing.

			

			However, as the age-old adage suggests, “With great power comes great responsibility.” The adoption of AI brings forth many challenges and considerations. Discussions surrounding intellectual property and copyright matters pertaining to AI-generated content have taken place and still do. Furthermore, there is growing concern about the impact of AI on employment within various industries, as certain roles may face disruption or transformation due to the advancements in AI technologies.

			Ethics in utilizing AI is an essential subject that delves into the moral considerations and implications linked to the utilization of these systems. As AI technology continues to progress at a faster and faster pace, it evokes profound ethical concerns regarding its effects on society, individuals, and the environment.

			While it cannot be denied that AI has the potential to enhance efficiency and productivity, it may also result in job losses within specific sectors; as such, some people consider it mandatory to implement measures that alleviate adverse effects on workers and society.

			You have just been introduced to some of the most common terminology about AI in general. Now, let’s shift our focus to understanding how AI works specifically in the realm of game development. In this next section, we will delve into its fundamentals, providing you with a basic understanding of its principles and workings.

			Understanding AI in game development

			When applied to game development, AI is employed to create intelligent systems capable of performing tasks without explicit programming. These systems adapt and improve their performance based on experience, enhancing the overall gaming experience. For instance, game characters have been imbued with AI for many years, enabling them to exhibit seemingly intelligent behavior. Even the four iconic Pac-Man ghosts have been programmed with unique and distinct behaviors!

			AI in game development extends far beyond the control of non-playable characters (NPCs) or enemies. It encompasses a diverse range of applications that revolutionize game design, development, and player experience. By leveraging AI, game developers can introduce innovative and immersive gameplay elements that will captivate players during gameplay.

			If you have picked up this book, chances are you are eager to grasp the fundamental principles of AI programming in games and apply this knowledge to create your next big hit. As an AI programmer, you will have the power to craft stunning opponents, create NPCs that will help players achieve their goals, or simply invent new and engaging behaviors that will make your games enjoyable to the next level; this is going to be an immensely rewarding endeavor!

			However, it is important to note that AI video game programming can present significant challenges, demanding long hours and potentially inducing stress. Being aware of these potential pitfalls is crucial before embarking on this career path. To avoid such setbacks, it is essential to develop a solid understanding of how AI functions, enabling players to have a seamless and enjoyable gaming experience. What’s more, comprehending this subject also entails troubleshooting computer issues that may arise and effectively resolving them. Rest assured, these issues will inevitably surface sooner or later!

			In the following section, you will receive a gentle introduction to the major AI techniques used in games, along with the distinctive features that set them apart.

			Explaining AI techniques in video games

			AI plays a pivotal role in enhancing gaming experiences, making them more immersive and exciting. Therefore, it is crucial to have a comprehensive understanding of the underlying principles behind AI development and how they function. This knowledge will empower game developers to effectively harness AI’s potential, creating rich and captivating gameplay that keeps players engaged and enthralled.

			Just think about the Assassin’s Creed series, which is known for its open-world gameplay, where complex AI behaviors are used to control NPCs. On a more advanced level, games such as Counter-Strike introduced AI-controlled player characters – called bots – that can be created and managed to stand in place of real players.

			Finally, the future of AI in game development holds exciting possibilities and innovations as AI is being used to create dynamic and adaptive narratives in games. By observing player behavior and preferences, AI algorithms can construct narrative branches, challenges, and rewards tailored uniquely to each player.

			In this section, I will give a brief and non-exhaustive overview of AI techniques that are commonly used in games. In this book, you’ll get the chance to explore some of these techniques and see how they are used in Unreal Engine. For those techniques that won’t be covered in this book, there will be plenty of opportunities for you to explore and delve into them on your own. The world of AI in gaming is vast and ever-evolving, offering endless possibilities for experimentation and innovation. So, don’t be discouraged if a particular technique is not covered here – the journey of discovery continues, and there are countless resources available to help you unlock new horizons in AI game development.

			Pathfinding

			Pathfinding is essential for efficient navigation in game environments and refers to the process of determining the optimal path while simulating the movement from one point to another. It can be used by autonomous agents, such as NPCs or opponents, but it is also useful in point-and-click games, where your character needs to reach a specific location. Pathfinding involves finding the optimal path from one location to another while avoiding obstacles; algorithms such as A* are commonly used in these situations. NPCs can use this technique to plan their movement, whether to avoid enemy units, find shortcuts, or follow waypoints.

			One of the most common pathfinding techniques in game development is achieved by using a navigation mesh – or nav mesh, which is a data structure that represents the walkable surfaces of a level. Figure 1.3 shows an example of AI movement through a nav mesh:

			
				
					[image: Figure 1.3 – AI movement through a navigation mesh]
				

			

			Figure 1.3 – AI movement through a navigation mesh

			Rule-based

			Rule-based systems refer to a type of AI that operates based on a set of predefined rules. These rules are coded by humans and dictate the behavior and decision-making of the system itself; this means following the rules to produce predetermined outcomes based on some kind of input. Put simply, these rules are commonly referred to as if statements because they typically adhere to the structure of if something is true, then do something else. Although limited, these systems are relatively easy to implement and manage because the knowledge encoded in the rules is modular, and the rules can be coded in any order. This provides much flexibility in both coding and modifying the system.

			Finite state machines

			Finite state machines (FSMs) are a common technique used in AI development and they involve breaking down an opponent’s or NPC’s behavior into different states, where each state represents a specific behavior or action. Transitions between states are triggered when certain conditions or events are satisfied. For instance, a sentinel character may have states such as patrol, alert, or chase, with transitions occurring when the character has made some noise or has been spotted because they are in the line of sight. FSMs provide a clear and organized way to control NPC behavior, especially in games with predefined sequences of actions.

			Figure 1.4 shows an example of a simple FSM with states and conditions:

			
				
					[image: Figure 1.4 – A finite state machine]
				

			

			Figure 1.4 – A finite state machine

			Behavior trees

			Behavior trees are hierarchical structures used to control AI behavior. They consist of nodes representing specific actions or conditions. The tree structure allows for the sequencing of actions and decision-making based on the conditions themselves. The system will traverse the tree from the root to the leaf nodes, executing actions or evaluating conditions along the way. Behavior trees provide a flexible and modular approach to NPC behavior, allowing for complex and dynamic decision-making. A behavior tree can include nodes such as selectors, sequences, conditions, or action nodes. Figure 1.5 shows a behavior tree where a selector decides which part of the tree will execute, and sequence nodes will perform a list of tasks in a predefined order.

			
				
					[image: Figure 1.5 – A behavior tree]
				

			

			Figure 1.5 – A behavior tree

			If you are unfamiliar with these terms, have no fear! I’ll be explaining them in Chapter 7, Introducing Behavior Trees.

			Machine learning AI

			Machine learning involves training AI models using data and algorithms to enable NPCs to learn and improve their behavior over time. This technique allows NPCs to adapt, make decisions, and respond to unpredictable situations based on patterns and experiences from previous gameplay. Machine learning can provide more dynamic, realistic, and engaging interactions with NPCs, as their behavior evolves through iterations and learning from player actions.

			One example of a game that uses machine learning is AlphaGo (https://deepmind.google/technologies/alphago/), developed by DeepMind. AlphaGo is an AI system that mastered the ancient Chinese game of Go by using machine learning techniques to calculate probabilities and make strategic decisions in the game.

			Reinforcement learning

			Reinforcement learning is a type of machine learning system where NPCs learn through trial and error, receiving feedback or rewards based on their actions. NPCs explore the game environment, take action, and learn from the consequences. Reinforcement learning enables NPCs to optimize their behavior by maximizing rewards and minimizing penalties. This technique can result in NPCs that exhibit adaptive and strategic decision-making, enhancing the challenge and immersion of the game. Reinforcement learning is typically employed during the development process to create a functional system by the time a game is released. Due to the nature of reinforcement learning, sometimes results may not be as expected, and NPCs may exhibit weird or erratic behavior.

			Generative AI

			The aforementioned generative AI is being increasingly used in video game development, offering new possibilities and transforming various aspects of game development. Some of these aspects involve creating more realistic NPCs whose behaviors go beyond fixed patterns and making decision-making systems more adaptative and engaging for players.

			Although generative AI is still at its initial stages in game development and its full potential is still to be explored, it is already demonstrating promising capabilities to transform various aspects of the game industry.

			Summary

			In this chapter, we explored the fundamental principles of AI development and saw how it is applied in the game industry. In the upcoming chapter, I’ll introduce you to the incredible potential that Unreal Engine offers and how its framework can be leveraged to create intelligent and immersive AI in games. Brace yourself for a thrilling exploration of its possibilities and let’s dive into the fascinating realm of AI game programming with your favorite game engine!

			Credits

			The examples in this chapter were created with the help of Basic Miscellany Lineal icons from Flaticon (https://www.flaticon.com/).
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			Introducing the Unreal Engine AI System

			Welcome to the exciting world of AI programming with Unreal Engine! In this chapter, I’ll be introducing you to Unreal Engine’s powerful tools that will bring life and intelligence to your virtual worlds. By exploring various aspects of the Unreal Engine AI system, such as moving agents using the Navigation System, implementing semi-intelligent behaviors through behavior trees and Blackboards, and incorporating features such as smart objects and mass entities, you will gain a comprehensive understanding of the remarkable capabilities offered by this robust framework.

			Mastering these skills will elevate you to the ranks of elite game programmers – and who wouldn’t want to be one of those?

			By the end of this chapter, you will have a sharp vision of what can be accomplished using the Unreal Engine AI system, empowering you to create advanced AI pawns in your projects.

			In this chapter, we will be covering the following topics:

			
					Getting to know the Unreal Engine Gameplay Framework

					Presenting the Unreal Engine AI system

					Understanding advanced AI features

			

			Technical requirements

			There are no technical requirements to follow for this chapter.
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