
		
			[image: Cover.jpg]
		

	
		
			Artificial Intelligence in Unreal Engine 5

			Unleash the power of AI for next-gen game development with UE5 by using Blueprints and C++

			Marco Secchi

			[image:]

			Artificial Intelligence in Unreal Engine 5

			Copyright © 2024 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			The author acknowledges the use of cutting-edge AI, in this case you.com and Aria, Opera Browser’s AI, with the sole aim of enhancing the language and clarity within the book, thereby ensuring a smooth reading experience for readers. It’s important to note that the content itself has been crafted by the author and edited by a professional publishing team.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Rohit Rajkumar

			Publishing Product Manager: Bhavya Rao

			Book Project Manager: Arul Viveaun S

			Senior Editor: Mark D’Souza

			Technical Editor: K Bimala Singha

			Copy Editor: Safis Editing

			Proofreader: Mark D’Souza

			Indexer: Tejal Soni

			Production Designer: Ponraj Dhandapani

			DevRel Marketing Coordinator: Nivedita Pandey

			First published: October 2024

			Production reference: 1151024

			Published by Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB, UK.

			ISBN 978-1-83620-585-2

			www.packtpub.com

			

To my nephews, Camila Mae Lynn Marcellina and Livio Siu Long, for, well... just being here.

			To my students; you are the reason I keep on teaching.

			And finally, to my adorable wife, Ambra – or should I say, “Professor Viktoria” – for helping me out with all the crazy ideas I come up with every day.

			– Marco Secchi

			

Contributors

			About the author

			Marco Secchi is a freelance game developer who graduated in computer engineering at the Polytechnic University of Milan. He is a lecturer and lead game advisor at Nuova Accademia di Belle Arti (NABA) where he also mentors BA students in their final thesis projects. In his spare time, he reads a lot, plays video games (less than he would like), and tries to practice CrossFit.

			

About the reviewers

			Syed Zaib Farooq is an accomplished entrepreneur and game developer with extensive experience specializing in gaming, VR, and immersive simulations. His expertise spans a range of industries, including real estate visualization, multiplayer gaming, metaverses, and EdTech simulations. Renowned for his proficiency in Unreal Engine, Zaib Farooq excels in developing custom plugins and utilizing both C++ and Blueprints. Driven by a passion for innovation, he consistently strives to create scalable gaming and simulation experiences that redefine immersion.

			Nicholaus Price is a freelance game developer who has programmed in C++ since 2015 and in the Unreal Engine since UE3. His favorite genres to program are action, RPGs, platformers, and third-person shooters. Nick is currently an AI programmer for Project Sentinel. Artificial Intelligence in Unreal Engine 5 is the first book that Nick has reviewed.

		

	
		
			Table of Contents

			Preface

			Part 1: Introducing Artificial Intelligence in Games

			1

			Getting Started with AI Game Development

			Technical requirements

			Prerequisite knowledge

			Hardware requirements

			Software requirements

			Introducing AI

			Understanding AI in game development

			Explaining AI techniques in video games

			Pathfinding

			Rule-based

			Finite state machines

			Behavior trees

			Machine learning AI

			Reinforcement learning

			Generative AI

			Summary

			Credits

			2

			Introducing the Unreal Engine AI System

			Technical requirements

			Getting to know the Unreal Engine Gameplay Framework

			Actors and components

			Main GF elements

			GameplayStatics

			Presenting the Unreal Engine AI system

			Navigation System

			Behavior trees

			Mass Entity

			State tree

			Smart objects

			Environment Query System

			AI Perception System

			AI debugging

			Understanding advanced AI features

			Learning Agents

			Neural network engine

			ML Deformer

			ML cloth simulation

			Summary

			Part 2: Understanding the Navigation System

			3

			Presenting the Unreal Engine Navigation System

			Technical requirements

			Introducing AI movement

			Understanding the Navigation Mesh

			Modifying the nav mesh

			AI agents

			Avoidance

			Understanding pathfinding

			Testing the Navigation System with a project template

			Setting up the project

			Analyzing the nav mesh

			Analyzing the character controller

			Testing the project

			Summary

			4

			Setting Up a Navigation Mesh

			Technical requirements

			Introducing Unreal Agility Arena

			Explaining the project brief

			Starting the project

			Creating an AI agent

			Creating the agent

			Adding the navigation logic

			Setting up a basic level

			Creating the level

			Adding the nav mesh

			Adding the agent

			Testing the gym

			Adding navigation modifiers

			Creating the level

			Incorporating a modifier

			Improving the level

			Creating custom modifiers

			Applying the custom modifiers

			Testing the level

			Working with navigation link proxies

			Creating the level

			Adding a Nav Link Proxy

			Testing the gym

			Summary

			5

			Improving Agent Navigation

			Technical requirements

			Generating navigation meshes at runtime

			Creating the level

			Adding a moving platform

			Making the nav mesh dynamic

			Influencing navigation with query filters

			Creating the level

			Creating the query filter class

			Modifying the agent

			Implementing agent avoidance

			Creating the level

			Adding the agents

			Activating avoidance

			Testing a worst-case scenario

			Summary

			6

			Optimizing the Navigation System

			Technical requirements

			Understanding the nav mesh debugging tool

			Enabling the AI debugging tools

			Inspecting the AI debugging tool

			Analyzing nav mesh resolution

			Refining nav mesh generation

			Influencing nav mesh resolution

			Changing nav mesh resolution

			Changing the tile size

			Making further improvements

			Tweaking resolution

			Disabling mesh influence

			Summary

			Part 3: Working with Decision Making

			7

			Introducing Behavior Trees

			Technical requirements

			Explaining behavior trees

			Behavior tree structure

			What is a behavior tree in Unreal Engine?

			Behavior tree node instancing

			Order of execution

			Understanding behavior trees in Unreal Engine

			The root node

			Task nodes

			Composite nodes

			Decorators

			Services

			Understanding the Blackboard

			Summary

			8

			Setting Up a Behavior Tree

			Technical requirements

			Extending the Unreal Agility Arena

			Updating the project brief

			Creating the project

			Creating the character

			Handling the battery status

			Implementing the character

			Creating a behavior tree

			Creating the AI controller

			Creating the Blackboard

			Creating the behavior tree

			Implementing behavior tree tasks and services

			Implementing the FindRandomLocation task

			Implementing the SpeedControl service

			Implementing the BatteryCheck service

			Setting up a behavior tree on an agent

			Editing the behavior tree

			Creating the AI agent Blueprints

			Testing an agent in a gym

			Summary

			9

			Extending Behavior Trees

			Technical requirements

			Presenting best practices for authoring behavior trees

			Listing best practices

			Implementing a gunner character logic

			Implementing a Target class

			Creating the Blueprints

			Understanding decorators

			Explaining the BTAuxiliaryNode class

			Creating C++ decorators

			Creating Blueprint decorators

			Implementing the CheckTagOnActor decorator

			Understanding services

			Creating C++ services

			Creating Blueprint services

			Implementing the SetAmmo service

			Understanding tasks

			Creating C++ tasks

			Creating Blueprint tasks

			Implementing the PlayMontage task

			Implementing the FindAvailableTarget task

			Debugging behavior trees

			Creating the Blackboard

			Creating the behavior tree

			Creating the AI controller

			Debugging the behavior tree on a gym

			Summary

			10

			Improving Agents with the Perception System

			Technical requirements

			Presenting the Perception System

			AI Perception System components

			AIPerceptionSenseConfig types

			Stimuli source

			Adding perception to an agent

			Creating the BaseSecurityCam class

			Creating the BaseSecurityCamAIController class

			Debugging perception

			Enhancing the roamer behavior tree

			Enhancing BaseDummyAIController

			Creating security camera Blueprints

			Creating the gym

			Enabling perception debugging

			Creating perception stimuli

			Creating the target actor

			Testing the gym

			Summary

			11

			Understanding the Environment Query System

			Technical requirements

			Introducing the Environment Query System

			Explaining generators

			Explaining contexts

			Explaining tests

			Setting up an environment query

			Creating the gym

			Creating the AI controller

			Creating an environment query

			Handling environment queries within a behavior tree

			Displaying EQS information

			Summary

			Part 4: Exploring Advanced Topics

			12

			Using Hierarchical State Machines with State Trees

			Technical requirements

			Introducing state trees

			Extending state trees

			Understanding the state tree flow

			Data binding

			Creating and managing state trees

			Enabling state trees plugins

			Implementing a noise emitter actor

			Using advanced state tree features

			Creating the C++ AI controller

			Implementing the AI controller Blueprint

			Implementing the state tree

			Assigning the state tree to the AI controller

			Creating the guard Blueprint

			Testing in a gym

			Summary

			13

			Implementing Data-Oriented Calculations with Mass

			Technical requirements

			Introducing the Mass framework

			Mass framework plugins

			Understanding Mass elements

			MassGameplay

			Setting up Mass

			Enabling plugins

			Creating a MassEntityConfigAsset

			Creating a spawn EQS

			Creating the gym

			Testing the gym

			Spawning Blueprints

			Creating the audience Blueprints

			Creating a MassEntityConfigAsset

			Enabling the automatic processor registration

			Creating the gym

			Summary

			14

			Implementing Interactable Elements with Smart Objects

			Technical requirements

			Introducing Smart Objects

			Presenting the main elements of the Smart Objects framework

			Creating a Smart Object Definition data asset

			Enabling the plugins

			Creating the workbench definition asset

			Implementing smart object logic

			Interacting with smart objects

			Creating the toss coin task

			Creating environment queries

			Creating the Blackboard

			Creating the behavior tree

			Creating the character Blueprints

			Testing smart objects in a gym

			Summary

			Epilogue

			Appendix – Understanding C++ in Unreal Engine

			Technical requirements

			Introducing basic concepts

			Understanding C++ classes

			Properties

			Functions

			The C++ Header Preview

			Explaining advanced features

			Casting

			Interfaces

			Delegates

			Exploring core mechanics

			Garbage collection

			The reflection system

			Summary

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			Since its very beginnings, artificial intelligence (AI) has transformed the landscape of game development, offering players enriched and immersive experiences that were once thought to be the realm of science fiction. Unlike other methods of game development, where scripted events dictate more rigid player interactions, AI introduces a level of unpredictability and responsiveness that brings virtual worlds to life.

			In recent years, advancements in AI technology have made it more accessible and easier to implement, resulting in a surge of intelligent gameplay across various genres. This evolution has made AI a cornerstone of modern game development, with millions of players benefiting from smarter, more engaging interactions in their favorite games every day.

			Unreal Engine stands out as an advanced platform for developers looking to harness the power of AI in their projects. With a robust suite of tools and features tailored specifically for AI development – such as behavior trees and the Navigation System – Unreal Engine enables creators to build sophisticated AI systems that enhance gameplay and player engagement.

			If you’re ready to explore the world of AI development and its potential to improve your games, then there’s no better time to dive in!

			Who this book is for

			If you are a game programmer, or specifically an Unreal Engine developer, with little or no knowledge of video game AI systems, and want to delve deep into this topic, then this book is for you.

			Developers who are proficient in other game engines and are interested in understanding the principles of the Unreal AI framework will also benefit from this book; however, a basic knowledge of Unreal Engine and C++ is strongly recommended.

			A passion for gameplay logic will help you get the most out of this book.

			What this book covers

			Chapter 1, Getting Started with AI Game Development, gently introduces you to the realm of AI game development, starting with an understanding of the basics of AI behavior.

			Chapter 2, Introducing the Unreal Engine AI System, introduces you to the main AI elements included in the Unreal Engine Gameplay Framework, such as behavior trees, the Navigation System, and the Perception System.

			Chapter 3, Presenting the Unreal Engine Navigation System, introduces you to the powerful navigation capabilities within Unreal Engine, including key concepts such as navigation mesh generation and pathfinding algorithms.

			Chapter 4, Setting Up a Navigation Mesh, covers essential practical techniques for implementing a navigation mesh using Unreal Engine, by starting with a concrete project.

			Chapter 5, Improving Agent Navigation, introduces you to integration algorithms that will optimize the movement and interaction of AI agents within complex environments.

			Chapter 6, Optimizing the Navigation System, presents some strategies and techniques to maximize the performance and efficiency of the Navigation System within Unreal Engine.

			Chapter 7, Introducing Behavior Trees, introduces you to the powerful and versatile behavior tree system within the Unreal Engine framework.

			Chapter 8, Setting Up a Behavior Tree, guides you through the essential steps of creating and configuring a behavior tree to drive an AI agent within Unreal Engine.

			Chapter 9, Extending Behavior Trees, provides an in-depth exploration of advanced techniques for extending the capabilities of behavior trees to create more sophisticated AI behaviors and interactions.

			Chapter 10, Improving Agents with the Perception System, shows how to leverage the power of the Unreal Engine Perception System to enhance the responsiveness of AI agents within virtual environments.

			Chapter 11, Understanding the Environment Query System, provides a comprehensive and detailed explanation of the Environment Query System within the Unreal Engine framework.

			Chapter 12, Using Hierarchical State Machines with State Trees, introduces you to the StateTree system for implementing hierarchical state machines within Unreal Engine.

			Chapter 13, Implementing Data-Oriented Calculations with Mass, introduces the MassEntity framework, through which you will be able to implement efficient and scalable data-oriented calculations.

			Chapter 14, Implementing Interactable Elements with Smart Objects, introduces smart objects and shows how to integrate them in an Unreal Engine environment.

			Appendix - Understanding C++ in Unreal Engine, delves into the fundamental concepts and principles of using the C++ programming language within the Unreal Engine framework.

			To get the most out of this book

			To get the most out of this book, it is strongly recommended to have a good understanding of Unreal Engine and its main features. Some experience with C++ programming will also be an advantage. A strong passion for gaming – in particular, gameplay logic – will help you a lot in understanding the most advanced topics.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							Unreal Engine 5.4

						
							
							Windows, macOS, or Linux

						
					

					
							
							Visual Studio 2019 or 2022 and JetBrains Rider 2023+

						
							
					

				
			

			As this book is focused on AI programming and not on graphics, you won’t need a high-spec computer to follow all the chapters. However, to properly run Unreal Engine, a good PC with a good graphics card is highly recommended.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Artificial-Intelligence-in-Unreal-Engine-5. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Once the project is open, please check what’s inside the Content folder.”

			A block of code is set as follows:

			
#pragma once UENUM(BlueprintType)enum class EBatteryStatus : uint8 { EBS_Empty = 0 UMETA(DisplayName = "Empty"), EBS_Low = 1 UMETA(DisplayName = "Low"), EBS_Medium = 2 UMETA(DisplayName = "Medium"), EBS_Full = 3 UMETA(DisplayName = "Full")};
			Any command-line input or output is written as follows:

			
$ mkdir css
$ cd css
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “ In the Details panel, look for the Tags property in the Actor | Advanced category and hit the + button to create a new tag.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Artificial Intelligence in Unreal Engine 5, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781836205852

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

		
			
			

		

		
			
			

		

	

		
			Part 1: Introducing Artificial Intelligence in Games

			In the first part of this book, you will receive a beginner-friendly introduction to the realm of artificial intelligence (AI) development in games. Once you have a solid understanding of its key concepts, you will be ready to start implementing a project leveraging these topics.

			This part includes the following chapters:

			
					Chapter 1, Getting Started with AI Game Development

					Chapter 2, Introducing the Unreal Engine AI System

			

		

		
			
			

		

		
			
			

		

	
		
			1

			Getting Started with AI Game Development

			Welcome to the fascinating world of artificial intelligence (AI) development in Unreal Engine! I am thrilled that you have chosen me and my book as your guide on this sometimes intimidating journey into the realm of AI programming. Rest assured that I am committed to making this experience as easy and enjoyable as possible.

			Throughout this book, you will acquire the skills required to create Unreal Engine games that involve the use of AI techniques and learn how to handle them at runtime. We will start from the basics, such as moving agents within a game level, and gradually progress to more advanced topics such as creating complex behaviors and managing multiple AI entities (even dozens or hundreds). By the end of this journey, you will be proficient in crafting formidable opponents that will challenge your players; what’s more, you will possess a deep understanding of the potential pitfalls in AI development and how to avoid them.

			In this chapter, I will introduce you to some basic keywords about AI development; these concepts will serve as a gentle introduction to the whole book, providing you with a foundation to delve deeper into the fascinating world of AI programming in Unreal Engine.

			In this chapter, we will be covering the following topics:

			
					Introducing AI

					Understanding AI in game development

					Explaining AI techniques in video games

			

			Technical requirements

			I guess you are already aware that the Unreal Engine Editor can be quite demanding in terms of hardware prerequisites. However, there is no need to be intimidated as this book primarily focuses on game programming rather than real-time visual effects.

			In this section, we will explore the hardware and software requirements necessary to follow along with this book. Additionally, we will discuss some prerequisite knowledge that will be beneficial for your journey.

			Prerequisite knowledge

			Before we dive into the exciting world of AI in game development, I want to kindly remind you that this book is designed for individuals who already possess some knowledge about working with Unreal Engine. Therefore, you must be already familiar with the following topics:

			
					Unreal Engine: It’s essential to have a basic understanding of this software interface, tools, and workflow.

					Game development basics: Having a good grasp of general game development principles and terminology will greatly aid your understanding of the concepts discussed in this book.

					Programming knowledge: As this book focuses on game development, it is assumed that you have some programming experience. Ideally, you should be familiar at least with the Unreal Engine visual scripting system (Blueprints) and, to some extent, with C++.

			

			Note

			If you are new to Unreal Engine, I highly recommend exploring some introductory books or resources to familiarize yourself with its fundamentals. One amazing starting point is Blueprints Visual Scripting for Unreal Engine 5 by Marcos Romero, Packt Publishing, which will guide you through the main features of programming in Unreal Engine with Blueprints.

			In this book, and whenever possible, I will be showing you techniques by using both Blueprints and C++. If you need a gentle introduction to C++, at the end of this book, you will find a valuable appendix that delves into the intricacies of C++ programming in the context of Unreal Engine. This quick guide is also designed to provide you with some understanding of how C++ works within the Unreal Engine framework.

			Hardware requirements

			At the time of writing this book, Epic Games is officially recommending the following basic requirements. If your hardware meets at least these specifications, you can expect to have a pleasant experience while reading through the chapters:

			
					Windows OS:	Operating system: Windows 10 or 11 64-bit version
	Processor: Quad-core Intel or AMD, 2.5 GHz or faster
	Memory: 8 GB RAM
	Graphics card: DirectX 11- or 12-compatible graphics card

					Linux:	Operating system: Ubuntu 22.04
	Processor: Quad-core Intel or AMD, 2.5 GHz or faster
	Memory: 32 GB RAM
	Video card: NVIDIA GeForce 960 GTX or higher with the latest NVIDIA binary drivers
	Video RAM: 8 GB or more

					macOS:	Operating system: Latest macOS Ventura
	Processor: Quad-core Intel, 2.5 GHz
	Memory: 8 GB RAM
	Video card: Metal 1.2-compatible graphics card

			

			I've written this book using the following hardware:

			
					Desktop:	Operating system: Windows 10 64-bit version
	Processor: Intel Core i9 9900K
	Memory: 64 GB RAM
	Graphics card: NVIDIA GeForce RTX 3090ti

					Laptop:	Operating system: Windows 11 64-bit version
	Processor: Intel Core i7 13650HX
	Memory: 8 GB RAM
	Graphics card: NVIDIA GeForce RTX 4060

			

			Software requirements

			This book assumes you have the Epic Games Launcher and Unreal Engine 5 installed and fully working on your computer.

			Note

			At the time of writing this book, the latest version of Unreal Engine is 5.4 but you will be able to follow along with any version more recent than 5.4.

			Additionally, as we will also be working with C++, you’ll need an IDE supporting this language and Unreal Engine. If you already have some experience, chances are you have already installed Visual Studio 2019/2022 or JetBrains Rider; if you don’t, you will need to install one of them to follow along with the C++ coding parts.

			Setting up Visual Studio for Unreal Engine development in C++

			Once you have Visual Studio installed, you’ll need the following extra components to make it work properly with Unreal Engine:

			
					C++ profiling tools

					C++ AddressSanitizer

					Windows 10 SDK

					Unreal Engine installer

			

			To include these tools, follow these steps:

			
					Open Visual Studio Installer.

					Select Modify from your Visual Studio installation, selecting the version you will be using:

			

			
				
					[image: Figure 1.1 – Selecting the Visual Studio Installer version]
				

			

			Figure 1.1 – Selecting the Visual Studio Installer version

			
					Once the Modifying modal window opens, in the top bar, make sure you are in the Workloads section.

					Then, activate the Game development with C++ option by clicking the checkmark.

					Next, if it is closed, open Installation details | Game development with C++ | Optional from the right sidebar.

					Select the following fields, as shown in Figure 1.2:	C++ profiling tools
	The latest Windows 11 SDK version available
	C++ AddressSanitizer
	IDE support for Unreal Engine (optional)
	Unreal Engine installer

			

			
				
					[image: Figure 1.2 – The Workload section]
				

			

			Figure 1.2 – The Workload section

			
					Click the Install while downloading button (or the Download all, then install one) to start the installation process.

			

			Note

			The IDE support for Unreal Engine integration is an extension introduced in Visual Studio 2022 and adds some nifty features such as Blueprint references, Blueprint assets, and CodeLens hints on top of the Unreal Engine classes, functions, and properties. Although not mandatory, I highly recommend using it as it will make your life as a developer much easier!

			After completing the download and installation process, you will be fully prepared to embark on the development of your own C++ games using Unreal Engine.

			Now that you have successfully set up your system, it is time to get acquainted with some of the key terminologies in the AI environment. This will provide you with a solid foundation to understand and navigate the world of AI more effectively.

			Introducing AI

			AI has emerged as a transformative force in various industries; in its broadest sense, AI involves the simulation of human intelligence in machines that are programmed to think and (sometimes) learn like humans.

			As such, developing AI means studying methods and software that enable machines to perceive their environment, learn from data, reason, and make decisions to achieve defined goals.

			AI encompasses various subfields and applications, including the following:

			
					Robotics: The development of intelligent machines that can interact with the physical world

					Natural language processing: The ability of computers to understand, interpret, and generate human language

					Machine learning: The use of algorithms and statistical models to enable computers to learn from data and make predictions or decisions without being explicitly programmed

					Deep learning: A branch of machine learning that leverages neural networks to emulate decision-making abilities observed in the human brain

					Computer vision: The ability of computers to understand and interpret visual information from images or videos

			

			What’s more, AI has been making significant strides in the entertainment industry, transforming the way content is created, consumed, and personalized. Here are some key points about AI’s impact on the entertainment industry:

			
					Generative AI: This kind of technology can create outputs such as stories, scripts, and images and has the potential to revolutionize content creation in the entertainment industry.

					Personalized recommendations: AI-enabled tools are being used to help users discover content tailored to their preferences by providing personalized suggestions. These recommendations are based on user behavior, viewing history, and other data, enhancing the user experience.

					Data-driven insights: By analyzing user behavior, AI allows the entertainment industry to gain valuable insights from data such as preferences and trends and can help companies understand their audiences better and make data-driven decisions regarding content production, distribution, and marketing.

			

			However, as the age-old adage suggests, “With great power comes great responsibility.” The adoption of AI brings forth many challenges and considerations. Discussions surrounding intellectual property and copyright matters pertaining to AI-generated content have taken place and still do. Furthermore, there is growing concern about the impact of AI on employment within various industries, as certain roles may face disruption or transformation due to the advancements in AI technologies.

			Ethics in utilizing AI is an essential subject that delves into the moral considerations and implications linked to the utilization of these systems. As AI technology continues to progress at a faster and faster pace, it evokes profound ethical concerns regarding its effects on society, individuals, and the environment.

			While it cannot be denied that AI has the potential to enhance efficiency and productivity, it may also result in job losses within specific sectors; as such, some people consider it mandatory to implement measures that alleviate adverse effects on workers and society.

			You have just been introduced to some of the most common terminology about AI in general. Now, let’s shift our focus to understanding how AI works specifically in the realm of game development. In this next section, we will delve into its fundamentals, providing you with a basic understanding of its principles and workings.

			Understanding AI in game development

			When applied to game development, AI is employed to create intelligent systems capable of performing tasks without explicit programming. These systems adapt and improve their performance based on experience, enhancing the overall gaming experience. For instance, game characters have been imbued with AI for many years, enabling them to exhibit seemingly intelligent behavior. Even the four iconic Pac-Man ghosts have been programmed with unique and distinct behaviors!

			AI in game development extends far beyond the control of non-playable characters (NPCs) or enemies. It encompasses a diverse range of applications that revolutionize game design, development, and player experience. By leveraging AI, game developers can introduce innovative and immersive gameplay elements that will captivate players during gameplay.

			If you have picked up this book, chances are you are eager to grasp the fundamental principles of AI programming in games and apply this knowledge to create your next big hit. As an AI programmer, you will have the power to craft stunning opponents, create NPCs that will help players achieve their goals, or simply invent new and engaging behaviors that will make your games enjoyable to the next level; this is going to be an immensely rewarding endeavor!

			However, it is important to note that AI video game programming can present significant challenges, demanding long hours and potentially inducing stress. Being aware of these potential pitfalls is crucial before embarking on this career path. To avoid such setbacks, it is essential to develop a solid understanding of how AI functions, enabling players to have a seamless and enjoyable gaming experience. What’s more, comprehending this subject also entails troubleshooting computer issues that may arise and effectively resolving them. Rest assured, these issues will inevitably surface sooner or later!

			In the following section, you will receive a gentle introduction to the major AI techniques used in games, along with the distinctive features that set them apart.

			Explaining AI techniques in video games

			AI plays a pivotal role in enhancing gaming experiences, making them more immersive and exciting. Therefore, it is crucial to have a comprehensive understanding of the underlying principles behind AI development and how they function. This knowledge will empower game developers to effectively harness AI’s potential, creating rich and captivating gameplay that keeps players engaged and enthralled.

			Just think about the Assassin’s Creed series, which is known for its open-world gameplay, where complex AI behaviors are used to control NPCs. On a more advanced level, games such as Counter-Strike introduced AI-controlled player characters – called bots – that can be created and managed to stand in place of real players.

			Finally, the future of AI in game development holds exciting possibilities and innovations as AI is being used to create dynamic and adaptive narratives in games. By observing player behavior and preferences, AI algorithms can construct narrative branches, challenges, and rewards tailored uniquely to each player.

			In this section, I will give a brief and non-exhaustive overview of AI techniques that are commonly used in games. In this book, you’ll get the chance to explore some of these techniques and see how they are used in Unreal Engine. For those techniques that won’t be covered in this book, there will be plenty of opportunities for you to explore and delve into them on your own. The world of AI in gaming is vast and ever-evolving, offering endless possibilities for experimentation and innovation. So, don’t be discouraged if a particular technique is not covered here – the journey of discovery continues, and there are countless resources available to help you unlock new horizons in AI game development.

			Pathfinding

			Pathfinding is essential for efficient navigation in game environments and refers to the process of determining the optimal path while simulating the movement from one point to another. It can be used by autonomous agents, such as NPCs or opponents, but it is also useful in point-and-click games, where your character needs to reach a specific location. Pathfinding involves finding the optimal path from one location to another while avoiding obstacles; algorithms such as A* are commonly used in these situations. NPCs can use this technique to plan their movement, whether to avoid enemy units, find shortcuts, or follow waypoints.

			One of the most common pathfinding techniques in game development is achieved by using a navigation mesh – or nav mesh, which is a data structure that represents the walkable surfaces of a level. Figure 1.3 shows an example of AI movement through a nav mesh:

			
				
					[image: Figure 1.3 – AI movement through a navigation mesh]
				

			

			Figure 1.3 – AI movement through a navigation mesh

			Rule-based

			Rule-based systems refer to a type of AI that operates based on a set of predefined rules. These rules are coded by humans and dictate the behavior and decision-making of the system itself; this means following the rules to produce predetermined outcomes based on some kind of input. Put simply, these rules are commonly referred to as if statements because they typically adhere to the structure of if something is true, then do something else. Although limited, these systems are relatively easy to implement and manage because the knowledge encoded in the rules is modular, and the rules can be coded in any order. This provides much flexibility in both coding and modifying the system.

			Finite state machines

			Finite state machines (FSMs) are a common technique used in AI development and they involve breaking down an opponent’s or NPC’s behavior into different states, where each state represents a specific behavior or action. Transitions between states are triggered when certain conditions or events are satisfied. For instance, a sentinel character may have states such as patrol, alert, or chase, with transitions occurring when the character has made some noise or has been spotted because they are in the line of sight. FSMs provide a clear and organized way to control NPC behavior, especially in games with predefined sequences of actions.

			Figure 1.4 shows an example of a simple FSM with states and conditions:

			
				
					[image: Figure 1.4 – A finite state machine]
				

			

			Figure 1.4 – A finite state machine

			Behavior trees

			Behavior trees are hierarchical structures used to control AI behavior. They consist of nodes representing specific actions or conditions. The tree structure allows for the sequencing of actions and decision-making based on the conditions themselves. The system will traverse the tree from the root to the leaf nodes, executing actions or evaluating conditions along the way. Behavior trees provide a flexible and modular approach to NPC behavior, allowing for complex and dynamic decision-making. A behavior tree can include nodes such as selectors, sequences, conditions, or action nodes. Figure 1.5 shows a behavior tree where a selector decides which part of the tree will execute, and sequence nodes will perform a list of tasks in a predefined order.

			
				
					[image: Figure 1.5 – A behavior tree]
				

			

			Figure 1.5 – A behavior tree

			If you are unfamiliar with these terms, have no fear! I’ll be explaining them in Chapter 7, Introducing Behavior Trees.

			Machine learning AI

			Machine learning involves training AI models using data and algorithms to enable NPCs to learn and improve their behavior over time. This technique allows NPCs to adapt, make decisions, and respond to unpredictable situations based on patterns and experiences from previous gameplay. Machine learning can provide more dynamic, realistic, and engaging interactions with NPCs, as their behavior evolves through iterations and learning from player actions.

			One example of a game that uses machine learning is AlphaGo (https://deepmind.google/technologies/alphago/), developed by DeepMind. AlphaGo is an AI system that mastered the ancient Chinese game of Go by using machine learning techniques to calculate probabilities and make strategic decisions in the game.

			Reinforcement learning

			Reinforcement learning is a type of machine learning system where NPCs learn through trial and error, receiving feedback or rewards based on their actions. NPCs explore the game environment, take action, and learn from the consequences. Reinforcement learning enables NPCs to optimize their behavior by maximizing rewards and minimizing penalties. This technique can result in NPCs that exhibit adaptive and strategic decision-making, enhancing the challenge and immersion of the game. Reinforcement learning is typically employed during the development process to create a functional system by the time a game is released. Due to the nature of reinforcement learning, sometimes results may not be as expected, and NPCs may exhibit weird or erratic behavior.

			Generative AI

			The aforementioned generative AI is being increasingly used in video game development, offering new possibilities and transforming various aspects of game development. Some of these aspects involve creating more realistic NPCs whose behaviors go beyond fixed patterns and making decision-making systems more adaptative and engaging for players.

			Although generative AI is still at its initial stages in game development and its full potential is still to be explored, it is already demonstrating promising capabilities to transform various aspects of the game industry.

			Summary

			In this chapter, we explored the fundamental principles of AI development and saw how it is applied in the game industry. In the upcoming chapter, I’ll introduce you to the incredible potential that Unreal Engine offers and how its framework can be leveraged to create intelligent and immersive AI in games. Brace yourself for a thrilling exploration of its possibilities and let’s dive into the fascinating realm of AI game programming with your favorite game engine!

			Credits

			The examples in this chapter were created with the help of Basic Miscellany Lineal icons from Flaticon (https://www.flaticon.com/).

		

	

		
			2

			Introducing the Unreal Engine AI System

			Welcome to the exciting world of AI programming with Unreal Engine! In this chapter, I’ll be introducing you to Unreal Engine’s powerful tools that will bring life and intelligence to your virtual worlds. By exploring various aspects of the Unreal Engine AI system, such as moving agents using the Navigation System, implementing semi-intelligent behaviors through behavior trees and Blackboards, and incorporating features such as smart objects and mass entities, you will gain a comprehensive understanding of the remarkable capabilities offered by this robust framework.

			Mastering these skills will elevate you to the ranks of elite game programmers – and who wouldn’t want to be one of those?

			By the end of this chapter, you will have a sharp vision of what can be accomplished using the Unreal Engine AI system, empowering you to create advanced AI pawns in your projects.

			In this chapter, we will be covering the following topics:

			
					Getting to know the Unreal Engine Gameplay Framework

					Presenting the Unreal Engine AI system

					Understanding advanced AI features

			

			Technical requirements

			There are no technical requirements to follow for this chapter.

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

		
		Contents

			
					Artificial Intelligence in Unreal Engine 5

					Contributors

					About the author

					About the reviewers

					Preface
					
							Who this book is for

							What this book covers

							To get the most out of this book

							Download the example code files

							Conventions used

							Get in touch

							Share Your Thoughts

							Download a free PDF copy of this book

					

				

					Part 1: Introducing Artificial Intelligence in Games

					Chapter 1: Getting Started with AI Game Development
					
							Technical requirements
							
									Prerequisite knowledge

									Hardware requirements

									Software requirements

							

						

							Introducing AI

							Understanding AI in game development

							Explaining AI techniques in video games
							
									Pathfinding

									Rule-based

									Finite state machines

									Behavior trees

									Machine learning AI

									Reinforcement learning

									Generative AI

							

						

							Summary

							Credits

					

				

					Chapter 2: Introducing the Unreal Engine AI System
					
							Technical requirements

							Getting to know the Unreal Engine Gameplay Framework
							
									Actors and components

									Main GF elements

									GameplayStatics

							

						

							Presenting the Unreal Engine AI system
							
									Navigation System

									Behavior trees

									Mass Entity

									State tree

									Smart objects

									Environment Query System

									AI Perception System

									AI debugging

							

						

							Understanding advanced AI features
							
									Learning Agents

									Neural network engine

									ML Deformer

									ML cloth simulation

							

						

							Summary

					

				

					Part 2: Understanding the Navigation System

					Chapter 3: Presenting the Unreal Engine Navigation System
					
							Technical requirements

							Introducing AI movement
							
									Understanding the Navigation Mesh

									Modifying the nav mesh

									AI agents

									Avoidance

							

						

							Understanding pathfinding

							Testing the Navigation System with a project template
							
									Setting up the project

									Analyzing the nav mesh

									Analyzing the character controller

									Testing the project

							

						

							Summary

					

				

					Chapter 4: Setting Up a Navigation Mesh
					
							Technical requirements

							Introducing Unreal Agility Arena
							
									Explaining the project brief

									Starting the project

							

						

							Creating an AI agent
							
									Creating the agent

									Adding the navigation logic

							

						

							Setting up a basic level
							
									Creating the level

									Adding the nav mesh

									Adding the agent

									Testing the gym

							

						

							Adding navigation modifiers
							
									Creating the level

									Incorporating a modifier

									Improving the level

									Creating custom modifiers

									Applying the custom modifiers

									Testing the level

							

						

							Working with navigation link proxies
							
									Creating the level

									Adding a Nav Link Proxy

									Testing the gym

							

						

							Summary

					

				

					Chapter 5: Improving Agent Navigation
					
							Technical requirements

							Generating navigation meshes at runtime
							
									Creating the level

									Adding a moving platform

									Making the nav mesh dynamic

							

						

							Influencing navigation with query filters
							
									Creating the level

									Creating the query filter class

									Modifying the agent

							

						

							Implementing agent avoidance
							
									Creating the level

									Adding the agents

									Activating avoidance

									Testing a worst-case scenario

							

						

							Summary

					

				

					Chapter 6: Optimizing the Navigation System
					
							Technical requirements

							Understanding the nav mesh debugging tool
							
									Enabling the AI debugging tools

									Inspecting the AI debugging tool

							

						

							Analyzing nav mesh resolution

							Refining nav mesh generation
							
									Influencing nav mesh resolution

									Changing nav mesh resolution

									Changing the tile size

							

						

							Making further improvements
							
									Tweaking resolution

									Disabling mesh influence

							

						

							Summary

					

				

					Part 3: Working with Decision Making

					Chapter 7: Introducing Behavior Trees
					
							Technical requirements

							Explaining behavior trees
							
									Behavior tree structure

									What is a behavior tree in Unreal Engine?

									Behavior tree node instancing

									Order of execution

							

						

							Understanding behavior trees in Unreal Engine
							
									The root node

									Task nodes

									Composite nodes

									Decorators

									Services

							

						

							Understanding the Blackboard

							Summary

					

				

					Chapter 8: Setting Up a Behavior Tree
					
							Technical requirements

							Extending the Unreal Agility Arena
							
									Updating the project brief

									Creating the project

									Creating the character

									Handling the battery status

									Implementing the character

							

						

							Creating a behavior tree
							
									Creating the AI controller

									Creating the Blackboard

									Creating the behavior tree

							

						

							Implementing behavior tree tasks and services
							
									Implementing the FindRandomLocation task

									Implementing the SpeedControl service

									Implementing the BatteryCheck service

							

						

							Setting up a behavior tree on an agent
							
									Editing the behavior tree

									Creating the AI agent Blueprints

									Testing an agent in a gym

							

						

							Summary

					

				

					Chapter 9: Extending Behavior Trees
					
							Technical requirements

							Presenting best practices for authoring behavior trees
							
									Listing best practices

									Implementing a gunner character logic

									Implementing a Target class

									Creating the Blueprints

							

						

							Understanding decorators
							
									Explaining the BTAuxiliaryNode class

									Creating C++ decorators

									Creating Blueprint decorators

									Implementing the CheckTagOnActor decorator

							

						

							Understanding services
							
									Creating C++ services

									Creating Blueprint services

									Implementing the SetAmmo service

							

						

							Understanding tasks
							
									Creating C++ tasks

									Creating Blueprint tasks

									Implementing the PlayMontage task

									Implementing the FindAvailableTarget task

							

						

							Debugging behavior trees
							
									Creating the Blackboard

									Creating the behavior tree

									Creating the AI controller

									Debugging the behavior tree on a gym

							

						

							Summary

					

				

					Chapter 10: Improving Agents with the Perception System
					
							Technical requirements

							Presenting the Perception System
							
									AI Perception System components

									AIPerceptionSenseConfig types

									Stimuli source

							

						

							Adding perception to an agent
							
									Creating the BaseSecurityCam class

									Creating the BaseSecurityCamAIController class

							

						

							Debugging perception
							
									Enhancing the roamer behavior tree

									Enhancing BaseDummyAIController

									Creating security camera Blueprints

									Creating the gym

									Enabling perception debugging

							

						

							Creating perception stimuli
							
									Creating the target actor

									Testing the gym

							

						

							Summary

					

				

					Chapter 11: Understanding the Environment Query System
					
							Technical requirements

							Introducing the Environment Query System
							
									Explaining generators

									Explaining contexts

									Explaining tests

							

						

							Setting up an environment query
							
									Creating the gym

									Creating the AI controller

									Creating an environment query

							

						

							Handling environment queries within a behavior tree

							Displaying EQS information

							Summary

					

				

					Part 4: Exploring Advanced Topics

					Chapter 12: Using Hierarchical State Machines with State Trees
					
							Technical requirements

							Introducing state trees
							
									Extending state trees

									Understanding the state tree flow

									Data binding

							

						

							Creating and managing state trees
							
									Enabling state trees plugins

									Implementing a noise emitter actor

							

						

							Using advanced state tree features
							
									Creating the C++ AI controller

									Implementing the AI controller Blueprint

									Implementing the state tree

									Assigning the state tree to the AI controller

									Creating the guard Blueprint

									Testing in a gym

							

						

							Summary

					

				

					Chapter 13: Implementing Data-Oriented Calculations with Mass
					
							Technical requirements

							Introducing the Mass framework
							
									Mass framework plugins

									Understanding Mass elements

									MassGameplay

							

						

							Setting up Mass
							
									Enabling plugins

									Creating a MassEntityConfigAsset

									Creating a spawn EQS

									Creating the gym

									Testing the gym

							

						

							Spawning Blueprints
							
									Creating the audience Blueprints

									Creating a MassEntityConfigAsset

									Enabling the automatic processor registration

									Creating the gym

							

						

							Summary

					

				

					Chapter 14: Implementing Interactable Elements with Smart Objects
					
							Technical requirements

							Introducing Smart Objects
							
									Presenting the main elements of the Smart Objects framework

							

						

							Creating a Smart Object Definition data asset
							
									Enabling the plugins

									Creating the workbench definition asset

							

						

							Implementing smart object logic

							Interacting with smart objects
							
									Creating the toss coin task

									Creating environment queries

									Creating the Blackboard

									Creating the behavior tree

									Creating the character Blueprints

									Testing smart objects in a gym

							

						

							Summary

							Epilogue

					

				

					Appendix – Understanding C++ in Unreal Engine
					
							Technical requirements

							Introducing basic concepts
							
									Understanding C++ classes

									Properties

									Functions

									The C++ Header Preview

							

						

							Explaining advanced features
							
									Casting

									Interfaces

									Delegates

							

						

							Exploring core mechanics
							
									Garbage collection

									The reflection system

							

						

							Summary

					

				

					Index
					
							Why subscribe?

					

				

					Other Books You May Enjoy
					
							Packt is searching for authors like you

							Share Your Thoughts

							Download a free PDF copy of this book

					

				

			

		
		
		Landmarks

			
					Cover

					Table of Contents

					Index

			

		

OEBPS/image/B31016_01_5.jpg
SELECTOR

2>

SEQUENCE

—

SEQUENCE

!—‘—\

[HEARD NOISE?] [INVESTIGATE]

[PLAYER IN LOS?] [CHASE]

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/image/B31016_01_1.jpg
Visual Studio Installer

Installed Available

3 nstalations have updats satie

"

o

Visual Studio Community 2019
enar

© Updato avsable

161135 View detas

Visual Studio Community 2022
764
© Updato avaable

1795 View detas

Visual Studio Build Tools 2019 (2)
nar

© Updato avaable

161135 View detas

® vposteat

Moy
More =

® Upae

Moy
More =

® Upase

Moy
More =

® Upae

Developer News
Invoducing he new Copit xprence i Vil
st

it Coplotyour Apomsred coig compa
How 015 Commrts o Prompt itk Copit

for it S

Astprbystep g 5 use comments s promp.

How o Instal G Copilotn Vil St
sty step g to enaie e A pomered ¢
e 2 aprie 2024

View more icrosot developr .

Necd help? Checkout heMicoscf Daveopet
Comminty o reac vz v Vs St

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/image/B31016_01_4.jpg
PLAYER MADE
NOISE

PATROL
PLAYER KILLED OR

PLAYER ON ESCAPED
SIGHT

CHASE

PLAYER ON

SIGHT

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

OEBPS/image/B31016_QR_Free_PDF.jpg

OEBPS/Fonts/MyriadPro-LightIt.otf

OEBPS/image/Packt_Logo_New.png
<PACKD

OEBPS/image/B31016_01_3.jpg

OEBPS/image/Cover.jpg
Artificial Intelligence in
Unreal Engine 5

Unleash the power of Al for next-gen
game development with UE5 by using Blueprints and C++

<> MARCO SECCHI

OEBPS/Fonts/CourierStd.otf

OEBPS/image/B31016_01_2.jpg
Mg — sl Stk Commoney 2022 — 17564
Workloads _ Individual components

Language packs Installation locations.

Moble developmentwith C++
Buid cross. o spicaton or 05 Andoidor
Vindosutng

Gaming (2)

Game development with 1+
Ust th ll o ofCofo il profesionsl games
poverd by Direc Unveal, or ocos2a

e deveopment it Uity
Coete 20 a0 30 games wth Uiy, powertl cos
Platiorm deiopmnt envicrment

Installation details

~ Game development with C++
PRIr—
' Vindons Uriers C Rortime
¥ o 2022 Reiviutable Updte
~ Optonal

B G profing ook

2 Windows 1 SDK (100220000)

B G stz
B

Other Toolsets (5)

Datasience and anlycal sppliatons
Languagesand toling forcresing d sence
spplcaons mcocing Pnon 1 5

Datasorage and procesing
‘Connec develop anstestcitaslutions wih SO Seve,
cure Do ok o Hacop.

Visul Stuo extension deveiopment {] e
Creste ad-ons snd stendions for Vil S incing Crete Offceand SharsPoi: k-, Snareoin:
e commands coe anazrs 3 ool wedows, B e

Loaton
Clprgram s Mirasaf Vi So 2022 Comminty.

By contnuing,you agee 1 hecense for th Visal St o yuslcted.Wie sl offer he iy 1o dowrlos thrsotware it Vsl
‘S Tis ofvar i kensd separatey.a s outn the 31 Bary Nties ot ccompanying kens, B contiing. ou 3o agre 0 those
e

(ot oo oo

2 Windows 11 SDK (1002262101
1 Windows 10 SDK (100203420)
Windows 10SDK (100.190410)
Windows 10 SDK (100.183520)

(€2 e Engre s

DESSReTES el Engine
Remove outofsuppor comparents

Tospsc e 06

nsl i dourioscing +

