
		
			[image: Cover.png]
		

	
		
			Mastering PostgreSQL 15

			Advanced techniques to build and manage scalable, reliable, and fault-tolerant database applications

			Hans-Jürgen Schönig

			[image:]

			BIRMINGHAM—MUMBAI

			Mastering PostgreSQL 15

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Reshma Raman

			Publishing Product Manager: Devika Battike

			Senior Editor: Nazia Shaikh

			Content Development Editor: Priyanka Soam

			Technical Editor: Sweety Pagaria

			Copy Editor: Safis Editing

			Project Coordinator: Farheen Fathima

			Proofreader: Safis Editing

			Indexer: Sejal Dsilva

			Production Designer: Vijay Kamble

			Marketing Coordinator: Nivedita Singh

			First published: Jan 2018

			Second edition: Oct 2018

			Third edition: Nov 2019

			Fourth edition: Nov 2020

			Fifth published: Jan 2023

			Production reference: 1270123

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-80324-834-9

			www.packtpub.com

			Contributors

			About the author

			Hans-Jürgen Schönig has 20 years’ experience with PostgreSQL. He is the CEO of a PostgreSQL consulting and support company called CYBERTEC PostgreSQL International GmbH. It has successfully served countless customers around the globe. Before founding CYBERTEC PostgreSQL International GmbH in 2000, he worked as a database developer at a private research company that focused on the Austrian labor market, where he primarily worked on data mining and forecast models. He has also written several books about PostgreSQL.

			About the reviewers

			Burhan Akbulut is the co-founder of PostgresTech. It is a company that provides PostgreSQL consultancy and support to start-ups and enterprise companies. Burhan Akbulut started his career as a PostgreSQL consultant at CookSoft, a well-known PostgreSQL consulting firm founded by Şahap Aşçı, where he provided consultancy and support to many international customers. Before founding PostgresTech, he worked at Vodafone as an open source database senior specialist responsible for all PostgreSQL databases. He has especially focused on database management with IaC, management of cloud databases, and migration from other databases to PostgreSQL during his career.

			I would like to thank my colleague Şeyma Mintaş who helped me review the book.

			Marcelo Diaz is a software engineer with more than 15 years of experience, with a special focus on PostgreSQL. He is passionate about open source software and has promoted its application in critical and high-demand environments, working as a software developer and consultant for both private and public companies. He currently works very happily at Cybertec and as a technical reviewer for Packt Publishing. He enjoys spending his leisure time with his daughter, Malvina, and his wife, Romina. He also likes playing football.

			Dinesh Kumar Chemuduru works as a principal architect (OSS) at Tessell Inc. He has been working with PostgreSQL since 2011, and he also worked as a consultant at AWS. He is also an author and contributor to a few popular open source solutions. He co-authored PostgreSQL High Performance Cookbook 9.6, which was released in 2016. He loves to code in Dart, Go, Angular, and C++ and loves to deploy them in Kubernetes.

			Thanks and love to my wife, Manoja Reddy, and my kids, Yashvi and Isha.

		

	
		
			Table of Contents

			Preface

			1

			PostgreSQL 15 Overview

			Making use of DBA-related features

			Removing support for old pg_dump

			Deprecating Python 2

			Fixing the public schema

			Adding pre-defined roles

			Adding permissions to variables

			Improving pg_stat_statements

			New wait events

			Adding logging functionality

			Understanding developer-related features

			Security invoker views

			ICU locales

			Better numeric

			Handling ON DELETE

			Working around NULL and UNIQUE

			Adding the MERGE command to PostgreSQL

			Using performance-related features

			Adding multiple compression algorithms

			Handling parallel queries more efficiently

			Improved statistics handling

			Prefetching during WAL recovery

			Additional replication features

			Two-phase commit for logical decoding

			Adding row and column filtering

			Improving ALTER SUBSCRIPTION

			Supporting compressed base backups

			Introducing archiving libraries

			Summary

			2

			Understanding Transactions and Locking

			Working with PostgreSQL transactions

			Handling errors inside a transaction

			Making use of SAVEPOINT

			Transactional DDLs

			Understanding basic locking

			Avoiding typical mistakes and explicit locking

			Making use of FOR SHARE and FOR UPDATE

			Understanding transaction isolation levels

			Considering serializable snapshot isolation transactions

			Observing deadlocks and similar issues

			Utilizing advisory locks

			Optimizing storage and managing cleanup

			Configuring VACUUM and autovacuum

			Watching VACUUM at work

			Limiting transactions by making use of snapshot too old

			Making use of more VACUUM features

			Summary

			Questions

			3

			Making Use of Indexes

			Understanding simple queries and the cost model

			Making use of EXPLAIN

			Digging into the PostgreSQL cost model

			Deploying simple indexes

			Making use of sorted output

			Using bitmap scans effectively

			Using indexes in an intelligent way

			Understanding index de-duplication

			Improving speed using clustered tables

			Clustering tables

			Making use of index-only scans

			Understanding additional B-tree features

			Combined indexes

			Adding functional indexes

			Reducing space consumption

			Adding data while indexing

			Introducing operator classes

			Creating an operator class for a B-tree

			Understanding PostgreSQL index types

			Hash indexes

			GiST indexes

			GIN indexes

			SP-GiST indexes

			BRINs

			Adding additional indexes

			Achieving better answers with fuzzy searching

			Taking advantage of pg_trgm

			Speeding up LIKE queries

			Handling regular expressions

			Understanding full-text searches

			Comparing strings

			Defining GIN indexes

			Debugging your search

			Gathering word statistics

			Taking advantage of exclusion operators

			Summary

			Questions

			4

			Handling Advanced SQL

			Supporting range types

			Querying ranges efficiently

			Handling multirange types

			When to use range types

			Introducing grouping sets

			Loading some sample data

			Applying grouping sets

			Investigating performance

			Combining grouping sets with the FILTER clause

			Making use of ordered sets

			Understanding hypothetical aggregates

			Utilizing windowing functions and analytics

			Partitioning data

			Ordering data inside a window

			Using sliding windows

			Abstracting window clauses

			Using on-board windowing functions

			Writing your own aggregates

			Creating simple aggregates

			Adding support for parallel queries

			Improving efficiency

			Writing hypothetical aggregates

			Handling recursions

			UNION versus UNION ALL

			Inspecting a practical example

			Working with JSON and JSONB

			Displaying and creating JSON documents

			Turning JSON documents into rows

			Accessing a JSON document

			Summary

			5

			Log Files and System Statistics

			Gathering runtime statistics

			Working with PostgreSQL system views

			Creating log files

			Configuring the postgresql.conf file

			Summary

			Questions

			6

			Optimizing Queries for Good Performance

			Learning what the optimizer does

			A practical example – how the query optimizer handles a sample query

			Understanding execution plans

			Approaching plans systematically

			Spotting problems

			Understanding and fixing joins

			Getting joins right

			Processing outer joins

			Understanding the join_collapse_limit variable

			Enabling and disabling optimizer settings

			Understanding genetic query optimization

			Partitioning data

			Creating inherited tables

			Applying table constraints

			Modifying inherited structures

			Moving tables in and out of partitioned structures

			Cleaning up data

			Understanding PostgreSQL 15.x partitioning

			Handling partitioning strategies

			Using range partitioning

			Utilizing list partitioning

			Handling hash partitions

			Adjusting parameters for good query performance

			Speeding up sorting

			Speeding up administrative tasks

			Making use of parallel queries

			What is PostgreSQL able to do in parallel?

			Parallelism in practice

			Introducing JIT compilation

			Configuring JIT

			Running queries

			Summary

			7

			Writing Stored Procedures

			Understanding stored procedure languages

			Understanding the fundamentals of stored procedures versus functions

			The anatomy of a function

			Exploring various stored procedure languages

			Introducing PL/pgSQL

			Writing stored procedures in PL/pgSQL

			Introducing PL/Perl

			Introducing PL/Python

			Improving functions

			Reducing the number of function calls

			Using functions for various purposes

			Summary

			Questions

			8

			Managing PostgreSQL Security

			Managing network security

			Understanding bind addresses and connections

			Managing the pg_hba.conf file

			Handling instance-level security

			Defining database-level security

			Adjusting schema-level permissions

			Working with tables

			Handling column-level security

			Configuring default privileges

			Digging into row-level security

			Inspecting permissions

			Reassigning objects and dropping users

			Summary

			Questions

			9

			Handling Backup and Recovery

			Performing simple dumps

			Running pg_dump

			Passing passwords and connection information

			Extracting subsets of data

			Handling various formats

			Replaying backups

			Handling global data

			Summary

			Questions

			10

			Making Sense of Backups and Replication

			Understanding the transaction log

			Looking at the transaction log

			Understanding checkpoints

			Optimizing the transaction log

			Transaction log archiving and recovery

			Configuring for archiving

			Using archiving libraries

			Configuring the pg_hba.conf file

			Creating base backups

			Replaying the transaction log

			Cleaning up the transaction log archive

			Setting up asynchronous replication

			Performing a basic setup

			Halting and resuming replication

			Checking replication to ensure availability

			Performing failovers and understanding timelines

			Managing conflicts

			Making replication more reliable

			Upgrading to synchronous replication

			Adjusting durability

			Making use of replication slots

			Handling physical replication slots

			Handling logical replication slots

			Making use of the CREATE PUBLICATION and CREATE SUBSCRIPTION commands

			Setting up an HA cluster using Patroni

			Understand how Patroni operates

			Installing Patroni

			Creating Patroni templates

			Summary

			Questions

			11

			Deciding on Useful Extensions

			Understanding how extensions work

			Checking for available extensions

			Making use of contrib modules

			Using the adminpack module

			Applying bloom filters

			Deploying btree_gist and btree_gin

			dblink – considering phasing out

			Fetching files with file_fdw

			Inspecting storage using pageinspect

			Investigating caching with pg_buffercache

			Encrypting data with pgcrypto

			Prewarming caches with pg_prewarm

			Inspecting performance with pg_stat_statements

			Inspecting storage with pgstattuple

			Fuzzy searching with pg_trgm

			Connecting to remote servers using postgres_fdw

			Other useful extensions

			Summary

			12

			Troubleshooting PostgreSQL

			Approaching an unknown database

			Inspecting pg_stat_activity

			Querying pg_stat_activity

			Checking for slow queries

			Inspecting individual queries

			Digging deeper with perf

			Inspecting the log

			Checking for missing indexes

			Checking for memory and I/O

			Understanding noteworthy error scenarios

			Facing clog corruption

			Understanding checkpoint messages

			Managing corrupted data pages

			Careless connection management

			Fighting table bloat

			Summary

			Questions

			13

			Migrating to PostgreSQL

			Migrating SQL statements to PostgreSQL

			Using LATERAL joins

			Using grouping sets

			Using the WITH clause – common table expressions

			Using the WITH RECURSIVE clause

			Using the FILTER clause

			Using windowing functions

			Using ordered sets – the WITHIN GROUP clause

			Using the TABLESAMPLE clause

			Using limit/offset

			Using the OFFSET clause

			Using temporal tables

			Matching patterns in time series

			Moving from Oracle to PostgreSQL

			Using the oracle_fdw extension to move data

			Using ora_migrator for fast migration

			CYBERTEC Migrator – migration for the “big boys”

			Using Ora2Pg to migrate from Oracle

			Common pitfalls

			Summary

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			Mastering the art of handling data is an ever more important skill that is important to have. In a digital world, “data” is more or less the “new oil” – an important asset that drives the world. Every sector of IT is data-driven. It does not matter whether you are at the forefront of machine learning or whether you are working on bookkeeping software – at the end of the day, IT is all about data.

			PostgreSQL has become a hot technology in the area of open source, and it is an excellent technology to store and process data in the most efficient way possible. This book will teach you how to use PostgreSQL in the most professional way and explain how to operate, optimize, and monitor this core technology, which has become so popular over the years.

			By the end of the book, you will be able to use PostgreSQL to its utmost capacity by applying advanced technology and cutting-edge features.

			Who this book is for

			This book is ideal for PostgreSQL developers and administrators alike who want to familiarize themselves with the technology. It will provide you with deep insights and explain advanced technologies such as clustering, modern analytics, and a lot more.

			Prior exposure to PostgreSQL and basic SQL knowledge is required to follow along.

			What this book covers

			Chapter 1, PostgreSQL 15 Overview, guides you through the most important features that have made it into the new release of PostgreSQL and explains how those features can be used.

			Chapter 2, Understanding Transactions and Locking, explains the fundamental concepts of transactions and locking. Both topics are key requirements to understand storage management in PostgreSQL.

			Chapter 3, Making Use of Indexes, introduces the concept of indexes, which are the key ingredient when dealing with performance in general. You will learn about simple indexes as well as more sophisticated concepts.

			Chapter 4, Handling Advanced SQL, unleashes the full power of SQL and outlines the most advanced functionality a query language has to offer. You will learn about windowing functions, ordered sets, hypothetical aggregates, and a lot more. All those techniques will open a totally new world of functionality.

			Chapter 5, Log Files and System Statistics, explains how you can use runtime statistics collected by PostgreSQL to make operations easier and to debug the database. You will be guided through the internal information-gathering infrastructure.

			Chapter 6, Optimizing Queries for Good Performance, is all about good query performance and outlines optimization techniques that are essential to bringing your database up to speed to handle even bigger workloads.

			Chapter 7, Writing Stored Procedures, introduces you to the concept of server-side code such as functions, stored procedures, and a lot more. You will learn how to write triggers and dive into server-side logic.

			Chapter 8, Managing PostgreSQL Security, helps you to make your database more secure, and explains what can be done to ensure safety and data protection at all levels.

			Chapter 9, Handling Backup and Recovery, helps you to make copies of your database to protect yourself against crashes and database failure.

			Chapter 10, Making Sense of Backups and Replication, follows up on backups and recovery and explains additional techniques, such as streaming replication, clustering, and a lot more. It covers the most advanced topics.

			Chapter 11, Deciding on Useful Extensions, explores extensions and additional useful features that can be added to PostgreSQL.

			Chapter 12, Troubleshooting PostgreSQL, completes the circle of topics and explains what can be done if things don’t work as expected. You will learn how to find the most common issues and understand how problems can be fixed.

			Chapter 13, Migrating to PostgreSQL, teaches you how to move your databases to PostgreSQL efficiently and quickly. It covers the most common database systems people will migrate from.

			To get the most out of this book

			This book has been written for a broad audience. However, some basic knowledge of SQL is necessary to follow along and make full use of the examples presented. In general, it is also a good idea to familiarize yourself with basic Unix commands as most of the book has been produced on Linux and macOS.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							Pgadmin4

						
							
							Windows, macOS, or Linux

						
					

					
							
							PostgreSQL 15

						
							
					

					
							
							SQL Shell (psql)

						
							
					

				
			

			Note:

			Some parts of chapters i.e., 8, 9, 10, 11,12 and 13 are mostly dedicated to unix / linux and mac users and rest runs fine on windows.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Mastering-PostgreSQL-15-. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “. You cannot run it inside a SELECT statement. Instead, you have to invoke CALL. The following listing shows the syntax of the CALL command.”

			A block of code is set as follows:

			
test=# \h CALL
Command: CALL
Description: invoke a procedure
Syntax:
CALL name ([argument] [, ...])
URL: https://www.postgresql.org/docs/15/sql-call.html

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
openssl req -x509 -in server.req -text
 -key server.key -out server.crt

			Any command-line input or output is written as follows:

			
- Connection Settings –
listen_addresses = 'localhost'
what IP address(es) to listen on;
comma-separated list of addresses;
defaults to 'localhost'; use '*' for all
(change requires restart)

			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Select System info from the Administration panel.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Mastering PostgreSQL 15, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781803248349

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	

		
			1

			PostgreSQL 15 Overview

			A full year has passed and the PostgreSQL community has released version 15 of the database, which includes various powerful new features that will benefit a large user base. The PostgreSQL project has also come a long way and improvements are being added constantly at a rapid pace that make the database more useful, more efficient, and more widely accepted. The times when PostgreSQL was some unknown obscure thing are long gone. PostgreSQL has reached the data center and has been widely adopted in many large companies as well as by governments around the world.

			In this chapter, you will learn about new features that made it into PostgreSQL 15. Those features add additional capabilities, more performance, as well as security and enhanced usability.

			The following topics are covered in this chapter:

			
					DBA-related features

					Developer-related features

					Performance-related features

					Additional replication features

			

			Of course, there is always more stuff. However, let us focus on the most important changes affecting most users.

			Making use of DBA-related features

			In PostgreSQL 15, a couple of developer-related features were added. Some features were also finally deprecated and have been removed from the server. In this section, we will go through the most important major changes.

			Removing support for old pg_dump

			One of the first things that is worth noting is that support for really old databases has been removed from pg_dump. PostgreSQL databases that are older than PostgreSQL 9.2 are not supported anymore. Considering that PostgreSQL 9.2.0 was released to the PostgreSQL community FTP server on September 10, 2012, most people should have gotten rid of their PostgreSQL 9.1 (and older) systems by now.

			If you have not been able to upgrade since then, we highly recommend doing that. It is still possible to upgrade from such an old version to PostgreSQL 15. However, you will need an intermediate step and to use pg_dump twice.

			Deprecating Python 2

			PostgreSQL allows developers to write stored procedures in various languages. This includes Python but is not limited to it. The trouble is that Python 2.x has been deprecated for a long time already. Starting with version 15, the PostgreSQL community has also dropped support for PL/Python2U and only supports version 3 from now on.

			This means that all code that is still in Python 2 should be moved to Python 3 in order to function properly.

			Fixing the public schema

			Up to PostgreSQL 14, the public schema that exists in every database has been available to every user. This has caused various security concerns among the user base. Basically it is easy to just use the following:

			
REVOKE ALL ON SCHEMA public FROM public;

			This was rarely done but caused security leaks people were generally not aware of. With the introduction of PostgreSQL, the situation has changed. The public schema is, from now on, not available to the general public and you have to be granted permission to use it like before. The new behavior will make applications a lot safer and ensure that permissions are not there accidentally.

			Adding pre-defined roles

			In recent versions of PostgreSQL, more and more pre-defined users have been added. The core idea is to ensure that people do not have to use their superuser accounts so often. For security reasons, it is not recommended to use superusers unless explicitly needed. However, with the introduction of pre-defined roles, it is a lot easier to run things without superusers:

			
test=# SELECT rolname
FROM pg_authid
WHERE oid < 16384
AND rolname <> CURRENT_USER;
 rolname

 pg_database_owner
 pg_read_all_data
 pg_write_all_data
 pg_monitor
 pg_read_all_settings
 pg_read_all_stats
 pg_stat_scan_tables
 pg_read_server_files
 pg_write_server_files
 pg_execute_server_program
 pg_signal_backend
 pg_checkpointer
(12 rows)

			With the introduction of PostgreSQL, a new role has been added, pg_checkpointer, which allows users to manually run checkpoints if needed.

			Adding permissions to variables

			However, there is more. It is now possible to define permissions on variables. This was not possible before version 15. Here is an example:

			
GRANT SET ON PARAMETER track_functions TO hans;

			This new feature allows administrators to disable bad behavior and prohibit bad parameter settings that can compromise the availability of the entire server.

			Improving pg_stat_statements

			Every version will also provide us with some improvements related to pg_stat_statements, which in my judgment is the key to good performance. Consider the following code snippet:

			
test=# \d pg_stat_statements
 View "public.pg_stat_statements"
 Column | Type | ...
------------------------+------------------+ ...
 userid | oid | ...
...
 jit_functions | bigint | ...
 jit_generation_time | double precision | ...
 jit_inlining_count | bigint | ...
 jit_inlining_time | double precision | ...
 jit_optimization_count | bigint | ...
 jit_optimization_time | double precision | ...
 jit_emission_count | bigint | ...
 jit_emission_time | double precision | ...

			The module is now able to display information about the JIT compilation process and helps to detect JIT-related performance problems. Those problems are not too frequent – however, it can happen that once in a while, a JIT compilation process takes too long. This is especially true if you are running a query containing hundreds of columns.

			New wait events

			What is also new in PostgreSQL is a couple of wait events that give you some insights into where time is the list. The following events have been added to the system:

			
					ArchiveCommand

					ArchiveCleanupCommand

					RestoreCommand

					RecoveryEndCommand

			

			Those events complement the existing wait event infrastructure and give some insights into replication-related issues.

			Adding logging functionality

			PostgreSQL 15 comes with a spectacular new feature: JSON logging. While JSON is comparatively large compared to the standard log format, it still comes with a couple of advantages, such as easy parsing.

			Let us configure JSON logging in postgresql.conf:

			
log_destination = 'jsonlog' # Valid values are combinations of
 # stderr, csvlog, jsonlog, syslog, and
 # eventlog, depending on platform.
 # csvlog and jsonlog require
 # logging_collector to be on.
This is used when logging to stderr:
logging_collector = on
 # Enable capturing of stderr, jsonlog,
 # and csvlog into log files. Required
 # to be on for csvlogs and jsonlogs.
 # (change requires restart)

			The output might look as follows:

			
[hs@hansmacbook log]$ head postgresql-Fri.json
{"timestamp":"2022-11-04 08:50:59.000
CET","pid":32183,"session_id":"6364c462.7db7","line_num":1,"session_start":"2022-11-04 08:50:58
CET","txid":0,"error_severity":"LOG","message":"ending log output to stderr","hint":"Future log
output will go to log destination \"jsonlog\".","backend_type":"postmaster","query_id":0}
{"timestamp":"2022-11-04 08:50:59.000
CET","pid":32183,"session_id":"6364c462.7db7","line_num":2,"session_start":"2022-11-04 08:50:58
CET","txid":0,"error_severity":"LOG","message":"starting PostgreSQL 15.0 on x86_64-apple-
darwin21.6.0, compiled by Apple clang version 13.1.6 (clang-1316.0.21.2.5), 64-
bit","backend_type":"postmaster","query_id":0}
…

			Reading a tightly packed file containing millions of JSON documents is not really user-friendly, so I recommend using a tool such as jq to make this stream more readable and user-friendly to process:

			
[hs@hansmacbook log]$ tail -f postgresql-Fri.json | jq
{
 "timestamp": "2022-11-04 08:50:59.000 CET",
 "pid": 32183,
 "session_id": "6364c462.7db7",
 "line_num": 1,
 "session_start": "2022-11-04 08:50:58 CET",
 "txid": 0,
 "error_severity": "LOG",
 "message": "ending log output to stderr",
 "hint": "Future log output will go to log destination \"jsonlog\".",
 "backend_type": "postmaster",
 "query_id": 0
}
{
 "timestamp": "2022-11-04 08:50:59.000 CET",
 "pid": 32183,
 "session_id": "6364c462.7db7",
 "line_num": 2,
 "session_start": "2022-11-04 08:50:58 CET",
 "txid": 0,
 "error_severity": "LOG",
 "message": "starting PostgreSQL 15.0 on x86_64-apple-darwin21.6.0, compiled by Apple clang version
13.1.6 (clang-1316.0.21.2.5), 64-bit",
 "backend_type": "postmaster",
 "query_id": 0
}
{
 "timestamp": "2022-11-04 08:50:59.006 CET",
 "pid": 32183,
 "session_id": "6364c462.7db7",
 "line_num": 3,
 "session_start": "2022-11-04 08:50:58 CET",
 "txid": 0,
 "error_severity": "LOG",
 "message": "listening on IPv6 address \"::1\", port 5432",
 "backend_type": "postmaster",
 "query_id": 0
}
...

			In general, it is recommended to not use JSON logs excessively as they occupy a fair amount of space.

			Understanding developer-related features

			Administration-related features are not everything. PostgreSQL 15 also provides some developer-related features that are useful to build even more powerful applications. In this section, you will learn which ones are available.

			Security invoker views

			In PostgreSQL, a view is a separate security context. It might happen that somebody is allowed to access a view but not the underlying table. Why does this matter? Consider the following scenario:

			
					Joe is allowed to see all sales

					Jane is only allowed to see total turnover by country

			

			Jane will be granted rights on a view that sums up the data. She will be able to read that view without having the right to read the sales table directly.

			However, in PostgreSQL, it is now possible to make PostgreSQL treat the view more like a preprocessor directive. By setting security_invoker, it will also check the underlying tables and not treat the view as a separate security context anymore:

			
CREATE VIEW sample_view WITH (security_invoker=true)
AS SELECT * FROM some_table WHERE id < 100;

			This feature is a classic example of open source sponsoring. It has been paid for by donations to a private company.

			ICU locales

			ICU locales are a truly important feature of PostgreSQL. Why is this relevant? The locale determines the sort order of characters. We all take our own sort order for granted (a, b, c, …). However, not all languages sort equally. In some languages, some characters simply show up in different sequences. For the better part of the last 35 years, the sort order used by PostgreSQL has been provided by the underlying C library (the standard OS library). The problem is that the sort order of characters can change over time. Why does this matter? Because it breaks indexing.

			Remember

			Indexes are basically sorted lists. The trouble is when the sort order changes, your sorted list will be wrong, which of course matters if we are talking about tables in the TB range. This is a real issue as a changing locale can result in silently corrupted indexes.

			The ICU library has been designed to fix those issues and provide a stable platform for such locale-related issues. Since PostgreSQL, it is now possible to use ICU locales on the instance as well as on the database library. The following code snippet shows an example:

			
initdb --locale-provider=icu --icu-locale=en_US
CREATE DATABASE foo TEMPLATE template0
LOCALE_PROVIDER 'icu'
ICU_LOCALE 'fi'

			It is highly recommended to make use of the ICU library to handle locales in general. It makes long-term deployments more future-proof.

			Better numeric

			Locales are not the only thing that has been improved. The numeric data type has also gotten a boost and some new features have been added. Consider the following code snippet:

			
test=# SELECT 1234::numeric(5,1),
 1234::numeric(5,0),
 1234::numeric(5,-1);
 numeric | numeric | numeric
---------+---------+---------
 1234.0 | 1234 | 1230
(1 row)

			It is now possible to define numeric types carrying a negative scale.

			In addition to that, PostgreSQL is not able to have a scale greater than the precision of the field:

			
test=# SELECT 0.01::numeric(2,3);
 numeric

 0.010
(1 row)

			All those features come in handy and make the data type more useful in general.

			Handling ON DELETE

			The ON DELETE SET NULL mechanism has been around for many decades. However, from version 15 onward, it is now possible to set only some of the NULL columns:

			
CREATE TABLE n_side_of_the_model (
...
FOREIGN KEY (col1, col2, col3)
REFERENCES one_side_of_the_er_model
ON DELETE SET NULL (col2, col3)
);

			This feature will greatly improve the functionality of foreign keys and make them even more useful.

			Working around NULL and UNIQUE

			There is also news around NULL handling. Normally, a UNIQUE constraint handles NULL values as different values. Remember: NULL means undefined and therefore we don’t know whether undefined 1 is the same as undefined 2. This constraint is not violated. Here is an example:

			
test=# CREATE TABLE t_null (id int UNIQUE);
CREATE TABLE
test=# INSERT INTO t_null VALUES (1);
INSERT 0 1
test=# INSERT INTO t_null VALUES (NULL);
INSERT 0 1
test=# INSERT INTO t_null VALUES (NULL);
INSERT 0 1

			As you can see, two NULL values are perfectly fine. However, this might not be desirable. Let us drop the table and start all over:

			
test=# DROP TABLE t_null;
DROP TABLE

			New syntax has been added to handle the NULL-related behavior:

			
test=# CREATE TABLE t_null (id int UNIQUE NULLS NOT DISTINCT);
CREATE TABLE
test=# INSERT INTO t_null VALUES (1);
INSERT 0 1
test=# INSERT INTO t_null VALUES (NULL);
INSERT 0 1
test=# INSERT INTO t_null VALUES (NULL);
ERROR: duplicate key value violates unique constraint "t_null_id_key"
DETAIL: Key (id)=(null) already exists.

			As we can see, the third INSERT will error out and throw a message.

			Adding the MERGE command to PostgreSQL

			The MERGE command is surely one of the most important new features provided by PostgreSQL 15. It has been in the making for many years and has finally been committed to the PostgreSQL core as part of the new release.

			What is the idea of MERGE? Well, INSERT … ON CONFLICT is basically “upsert” while MERGE solves a totally different problem.

			How does MERGE work? Let us take a look at the syntax first:

			
test=# \h MERGE
Command: MERGE
Description: conditionally insert, update, or delete rows of a table
Syntax:
[WITH with_query [, ...]]
MERGE INTO target_table_name [[AS] target_alias]
USING data_source ON join_condition
when_clause [...]
where data_source is:
{ source_table_name | (source_query) } [[AS] source_alias]
and when_clause is:
{ WHEN MATCHED [AND condition] THEN { merge_update |
merge_delete | DO NOTHING } |
 WHEN NOT MATCHED [AND condition] THEN { merge_insert | DO NOTHING } }
and merge_insert is:
INSERT [(column_name [, ...])]
[OVERRIDING { SYSTEM | USER } VALUE]
{ VALUES ({ expression | DEFAULT } [, ...]) | DEFAULT VALUES }
and merge_update is:
UPDATE SET { column_name = { expression | DEFAULT } |
 (column_name [, ...]) = ({ expression |
DEFAULT } [, ...]) } [, ...]
and merge_delete is:
DELETE
URL: https://www.postgresql.org/docs/15/sql-merge.html

			As we can see, this is really powerful. It allows us to control all kinds of behavior. To demonstrate how things work, the following code snippet contains a typical example:

			
MERGE INTO some_table t
 USING change_table c
 ON t.typeid = c.typeid
 WHEN NOT MATCHED AND c.delta > 0 THEN
 INSERT VALUES (c.name, c.delta)
 WHEN MATCHED AND t.num + c.delta > 0 THEN
 UPDATE SET num = t.num + c.delta
 WHEN MATCHED THEN
 DELETE

			The first part is mostly the syntax you might know from explicit joins. Then, we define what we want to do if various conditions are met. In every WHEN clause, you can decide whether to use INSERT, UPDATE, or DELETE.

			Using performance-related features

			Of course, there are also a couple of performance-related features that have made it into PostgreSQL core.

			Adding multiple compression algorithms

			It is now possible to define the compression algorithm for various things. This is especially important for TOAST. We can control this behavior using the ALTER TABLE command:

			
...
 ALTER [COLUMN] column_name
SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN }
 ALTER [COLUMN] column_name SET COMPRESSION compression_method
...

			Depending on what type of data is compressed, different algorithms can be really helpful and speed things up considerably.

			Handling parallel queries more efficiently

			In every major release since PostgreSQL 9.6, new features to handle parallelism have been added. The same is true for version 15. It is now possible to handle DISTINCT in parallel, which was previously not possible (only single core).

			With the introduction of DISTINCT, PostgreSQL has now pretty much completed the most important feature set to handle parallelism.

			Improved statistics handling

			Up to now, runtime statistics had to be transmitted inside the server using UDP packets. Yes, that’s right: the PostgreSQL statistics collector used UDP packages to transmit information.

			This has changed. Data is now aggregated in shared memory, which makes the infrastructure more robust and more efficient. From an end user point of view, no changes can be observed. This is purely an internal thing.

			Prefetching during WAL recovery

			WAL replay is performed in case of a database crash or replication. In both cases, the WAL is read and then applied. The problem is that while we wait for the WAL to be read into memory, the rest of the system can be pretty idle, leading to sub-optimal performance.

			In the new release, PostgreSQL is able to prefetch WAL and ensure that I/O does not delay replay so much anymore.

			Additional replication features

			Finally, there are a handful of replication-related features that made it into PostgreSQL, and that are mostly centered around logical decoding.

			Two-phase commit for logical decoding

			Two-phase commit (2PC) has been an integral part of PostgreSQL for many years. However, up to now, 2PC was not supported by logical decoding. While it was possible to use it with normal replication, logical decoding was not supported. This has now changed. We are now able to decode 2PC transactions and send them to the replica as a logical stream.

			Adding row and column filtering

			More changes also made it into CREATE PUBLICATION. Two features are especially noteworthy:

			
					Column filtering

					Row filtering

			

			Let us take a look at row filtering first:

			
CREATE PUBLICATION my_pub_1
FOR TABLE some_table
WHERE (col1 > 10);

			In this case, we only publish a subset of data to the other side. In addition to rows, we can also tailor our publications to only send the columns we need. The following code snippet contains an example:

			
CREATE PUBLICATION my_pub_2
FOR TABLE some_table (col1, col2, col3);

			This feature allows us to control the flow of data way more efficiently and in a more fine-grained way.

			Improving ALTER SUBSCRIPTION

			Along with the additional functionality described previously, the community has also extended the ALTER SUBSCRIPTION infrastructure to reflect the additional functionality:

			
test=# \h ALTER SUBSCRIPTION
Command: ALTER SUBSCRIPTION
Description: change the definition of a subscription
Syntax:
ALTER SUBSCRIPTION name CONNECTION 'conninfo'
ALTER SUBSCRIPTION name
SET PUBLICATION publication_name [, ...]
 [WITH (publication_option [= value] [, ...])]
ALTER SUBSCRIPTION name
ADD PUBLICATION publication_name [, ...]
 [WITH (publication_option [= value] [, ...])]
ALTER SUBSCRIPTION name
DROP PUBLICATION publication_name [, ...]
[WITH (publication_option [= value] [, ...])]
ALTER SUBSCRIPTION name
REFRESH PUBLICATION
 [WITH (refresh_option [= value] [, ...])]
ALTER SUBSCRIPTION name ENABLE
ALTER SUBSCRIPTION name DISABLE
ALTER SUBSCRIPTION name SET (subscription_parameter [= value] [, ...])
ALTER SUBSCRIPTION name SKIP (skip_option = value)
ALTER SUBSCRIPTION name OWNER TO { new_owner | CURRENT_ROLE |
CURRENT_USER | SESSION_USER }
ALTER SUBSCRIPTION name RENAME TO new_name
URL: https://www.postgresql.org/docs/15/sql-altersubscription.html

			The command is now more powerful and allows us to control a lot more of the performance outlined previously.

			Supporting compressed base backups

			In the past, PostgreSQL was only able to compress on the client side. This was a major issue as the full bandwidth was needed to transport the data from the server to the client before compression. This has changed as now you can decide whether things should be compressed on the server or on the client side. Usually, people will prefer to compress on the server to reduce the bandwidth needed to create a base backup.

			The following code snippet shows the relevant parameters provided by pg_basebackup to facilitate those new features:

			
hs$ pg_basebackup --help
pg_basebackup takes a base backup of a running PostgreSQL server.
Usage:
 pg_basebackup [OPTION]...
Options controlling the output:
...
 -t, --target=TARGET[:DETAIL]
 backup target (if other than client)
...
 -Z, --compress=[{client|server}-]METHOD[:DETAIL]
 compress on client or server as specified
 -Z, --compress=none do not compress tar output

			The -Z option allows us to specify where the compression is supposed to happen.

			Introducing archiving libraries

			What is also new in PostgreSQL 15 is the ability to use the archive_library command. The main question is: what is the purpose of this functionality? In the past, we had to use the archive_command setting to make sure that the transaction log (= WAL) was sent from the server to the backup infrastructure. The trouble is that archive_command is a shell command that has a lot of overhead, which makes it hard to integrate with backup solutions.

			What is new is that we can now add a library to the system that replaces the old mechanism. This allows people writing backup software to integrate more closely and to make backups more efficient in general.

			Summary

			PostgreSQL 15 offers various features, including performance improvements and simplified database handling. More parallelism, the introduction of MERGE, and better security are definitely some of the key features of this major new release. The community has also done a lot of groundwork that will allow for more functionality in the future.

			In the next chapter, you will be introduced to transactions and locking, which are important for scalability and storage management, as well as performance.

		

	
		
			2

			Understanding Transactions and Locking

			Now that we’ve been introduced to PostgreSQL 15, we want to focus our attention on the next important topic. Locking is a vital concept for any kind of database. It is not enough to understand just how locking works to write proper or better applications – it is also essential from a performance point of view. Without handling locks properly, your applications might not only be slow; they might also behave in very unexpected ways. In my opinion, locking is the key to performance, and having a good overview of this will certainly help. Therefore, understanding locking and transactions is important for administrators and developers alike.

			In this chapter, you will learn about the following topics:

			
					Working with PostgreSQL transactions

					Understanding basic locking

					Making use of FOR SHARE and FOR UPDATE

					Understanding transaction isolation levels

					Observing deadlocks and similar issues

					Utilizing advisory locks

					Optimizing storage and managing cleanups

			

			By the end of this chapter, you will be able to understand and utilize PostgreSQL transactions in the most efficient way possible. You will see that many applications can benefit from improved performance.

			Working with PostgreSQL transactions

			PostgreSQL provides you with highly advanced transaction machinery that offers countless features to developers and administrators alike. In this section, we will look at the basic concept of transactions. The first important thing to know is that, in PostgreSQL, everything is a transaction. If you send a simple query to the server, it is already a transaction. Here is an example:

			
test=# SELECT now(), now();
 now | now
-------------------------------+-------------------------------
 2022-09-27 08:29:14.597731+02 | 2022-09-27 08:29:14.597731+02
(1 row)

			In this case, the SELECT statement will be a separate transaction. If the same command is executed again, different timestamps will be returned.

			Tip

			Keep in mind that the now() function will return the transaction time. The SELECT statement will, therefore, always return two identical timestamps. If you want the real time, consider using clock_timestamp() instead of now().

			If more than one statement has to be a part of the same transaction, the BEGIN statement must be used, as follows:

			
test=# \h BEGIN
Command: BEGIN
Description: start a transaction block
Syntax:
 BEGIN [WORK | TRANSACTION] [transaction_mode [, ...]]
 where transaction_mode is one of:
 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ UNCOMMITTED }
 READ WRITE | READ ONLY
 [NOT] DEFERRABLE
URL: https://www.postgresql.org/docs/15/sql-begin.html

			The BEGIN statement will ensure that more than one command is packed into a transaction. Here is how it works:

			
test=# BEGIN;
BEGIN
test=*# SELECT now();
 now

 2022-09-27 08:30:19.83352+02
(1 row)
test=*# SELECT now();
 now

 2022-09-27 08:30:19.83352+02
(1 row)
test=*# COMMIT;
COMMIT

			The important point here is that both timestamps will be identical. As we mentioned earlier, we are talking about transaction time.

			To end the transaction, COMMIT can be used:

			
test=# \h COMMIT
Command: COMMIT
Description: commit the current transaction
Syntax:
 COMMIT [WORK | TRANSACTION] [AND [NO] CHAIN]
 URL: https://www.postgresql.org/docs/15/sql-commit.html

			There are a few syntax elements here. You can just use COMMIT, COMMIT WORK, or COMMIT TRANSACTION. All three commands have the same meaning. If this is not enough, there’s more:

			
test=# \h END
Command: END
Description: commit the current transaction
Syntax:
 END [WORK | TRANSACTION] [AND [NO] CHAIN]
 URL: https://www.postgresql.org/docs/15/sql-end.html

			The END clause is the same as the COMMIT clause.

			ROLLBACK is the counterpart of COMMIT. Instead of successfully ending a transaction, it will simply stop the transaction without ever making things visible to other transactions, as shown in the following code:

			
test=# \h ROLLBACK
Command: ROLLBACK
Description: abort the current transaction
Syntax:
 ROLLBACK [WORK | TRANSACTION] [AND [NO] CHAIN]
 URL: https://www.postgresql.org/docs/15/sql-rollback.html

			Some applications use ABORT instead of ROLLBACK. The meaning is the same. What was new in PostgreSQL 12 was the concept of a chained transaction. What is the point of all this? The following listing shows an example:

			
test=# SHOW transaction_read_only;
 transaction_read_only

 Off
 (1 row)
test=# BEGIN TRANSACTION READ ONLY ;
 BEGIN
test=*# SELECT 1;
 ?column?

 1
 (1 row)
 test=*# COMMIT AND CHAIN;
 COMMIT
test=*# SHOW transaction_read_only;
 transaction_read_only

 On
 (1 row)
 test=*# SELECT 1;
 ?column?

 1
 (1 row)
 test=*# COMMIT AND NO CHAIN;
 COMMIT
test=# SHOW transaction_read_only;
 transaction_read_only

 Of
(1 row)
 test=# COMMIT;
 WARNING: there is no transaction in progress
COMMIT

			Let’s go through this example step by step:

			
					Display the content of the transaction_read_only setting. It is off because, by default, we are in read/write mode.

					Start a read-only transaction using BEGIN. This will automatically adjust the transaction_read_only variable.

					Commit the transaction using AND CHAIN, and then PostgreSQL will automatically start a new transaction featuring the same properties as the previous transaction.

			

			In our example, we will also be in read-only mode, just like the transaction before. There is no need to explicitly open a new transaction and set whatever values again, which can dramatically reduce the number of roundtrips between the application and the server. If a transaction is committed normally (= NO CHAIN), the read-only attribute of the transaction will be gone.

			Handling errors inside a transaction

			It is not always the case that transactions are correct from beginning to end. Things might just go wrong for whatever reason. However, in PostgreSQL, only error-free transactions can be committed. The following listing shows a failing transaction, which errors out due to a division-by-zero error:

			
test=# BEGIN;
 BEGIN
test=*# SELECT 1;
 ?column?

 1
 (1 row)
 test=*# SELECT 1 / 0;
 ERROR: division by zero
test=!# SELECT 1;
 ERROR: current transaction is aborted, commands ignored until end of transaction block
test=!# SELECT 1;
 ERROR: current transaction is aborted, commands ignored until end of transaction block
test=!# COMMIT;
 ROLLBACK

			Note that division by zero did not work out.

			Note

			In any proper database, an instruction similar to this will instantly error out and make the statement fail.

			It is important to point out that PostgreSQL will error out. After an error has occurred, no more instructions will be accepted, even if those instructions are semantically and syntactically correct. It is still possible to issue COMMIT. However, PostgreSQL will roll back the transaction because it is the only correct thing to be done at that point.

			Making use of SAVEPOINT

			In professional applications, it can be pretty hard to write reasonably long transactions without ever encountering a single error. To solve this problem, users can utilize something called SAVEPOINT. As the name indicates, a savepoint is a safe place inside a transaction that the application can return to if things go terribly wrong. Here is an example:

			
test=# BEGIN;
 BEGIN
test=*# SELECT 1;
 ?column?

 1
 (1 row)
 test=*# SAVEPOINT a;
 SAVEPOINT
test=*# SELECT 2 / 0;
 ERROR: division by zero
test=!# SELECT 2;
 ERROR: current transaction is aborted, commands ignored until end of transaction block
test=!# ROLLBACK TO SAVEPOINT a;
 ROLLBACK
test=*# SELECT 3;
 ?column?

 3
 (1 row)
 test=*# COMMIT;
 COMMIT

			After the first SELECT clause, I decided to create a savepoint to make sure that the application can always return to this point inside the transaction. As you can see, the savepoint has a name, which is referred to later.

			After returning to the savepoint called a, the transaction can proceed normally. The code has jumped back to before the error, so everything is fine.

			The number of savepoints inside a transaction is practically unlimited. We have seen customers with over 250,000 savepoints in a single operation. PostgreSQL can easily handle this.

			If you want to remove a savepoint from inside a transaction, there’s the RELEASE SAVEPOINT command:

			
test=# \h RELEASE
Command: RELEASE SAVEPOINT
Description: destroy a previously defined savepoin
Syntax:
 RELEASE [SAVEPOINT] savepoint_name
URL: https://www.postgresql.org/docs/15/sql-release-savepoint.html

			Many people ask what will happen if you try to reach a savepoint after a transaction has ended. The answer is that the life of a savepoint ends as soon as the transaction ends. In other words, there is no way to return to a certain point in time after the transactions have been completed.

			Transactional DDLs

			PostgreSQL has a very nice feature that is unfortunately not present in many commercial database systems. In PostgreSQL, it is possible to run DDLs (commands that change the data’s structure) inside a transaction block. In a typical commercial system, a DDL will implicitly commit the current transaction. This does not occur in PostgreSQL.

			Apart from some minor exceptions (DROP DATABASE, CREATE TABLESPACE, DROP TABLESPACE, and so on), all DDLs in PostgreSQL are transactional, which is a huge advantage and a real benefit to end users.

			Here is an example:

			
test=# BEGIN;
 BEGI
test=*# CREATE TABLE t_test (id int);
 CREATE TABLE
test=*# ALTER TABLE t_test ALTER COLUMN id TYPE int8;
ALTER TABLE
test=*# \d t_test
 Table "public.t_test"
 Column | Type | Collation | Nullable | Default
--------+--------+-----------+----------+---------
 id | bigint | | |
test=*# ROLLBACK;
 ROLLBACK
test=# \d t_test
Did not find any relation named "t_test".

			In this example, a table has been created and modified, and the entire transaction has been aborted. As you can see, there is no implicit COMMIT command or any other strange behavior. PostgreSQL simply acts as expected.

			Transactional DDLs are especially important if you want to deploy software. Just imagine running a content management system (CMS). If a new version is released, you’ll want to upgrade. Running the old version would still be okay; running the new version would also be okay, but you really don’t want a mixture of old and new. Therefore, deploying an upgrade in a single transaction is highly beneficial, as it upgrades an atomic operation.

			Note

			To facilitate good software practices, we can include several separately coded modules from our source control system into a single deployment transaction.

			Understanding basic locking

			In this section, you will learn about basic locking mechanisms. The goal is to understand how locking works in general and how to get simple applications right.

			To show you how things work, we will create a simple table. For demonstrative purposes, I will add one row to the table using a simple INSERT command:

			
test=# CREATE TABLE t_test (id int);
CREATE TABLE
test=# INSERT INTO t_test VALUES (0);
INSERT 0 1

			The first important thing is that tables can be read concurrently. Many users reading the same data at the same time won’t block each other. This allows PostgreSQL to handle thousands of users without any problems.

			The question now is what happens if reads and writes occur at the same time? Here is an example. Let’s assume that the table contains one row and its id = 0:

			
				
					
					
				
				
					
							
							Transaction 1

						
							
							Transaction 2

						
					

					
							
							BEGIN;

						
							
							BEGIN;

						
					

					
							
							UPDATE t_test SET id = id + 1 RETURNING *;

						
							
					

					
							
							User will see 1

						
							
							SELECT * FROM t_test;

						
					

					
							
							
							User will see 0

						
					

					
							
							COMMIT;

						
							
							COMMIT;

						
					

				
			

			Table 2.1 – Transaction isolation

			Two transactions are opened. The first one will change a row. However, this is not a problem, as the second transaction can proceed. It will return to the old row as it was before UPDATE. This behavior is called Multi-Version Concurrency Control (MVCC).

			Note

			A transaction will only see data if it has been committed by the write transaction before the initiation of the read transaction. One transaction cannot inspect the changes that have been made by another active connection. A transaction can see only those changes that have already been committed.

			There is also a second important aspect – many commercial or open source databases are still unable to handle concurrent reads and writes. In PostgreSQL, this is absolutely not a problem – reads and writes can coexist.

			Note

			Write transactions won’t block read transactions.

			After the transaction has been committed, the table will contain 1. What will happen if two people change data at the same time? Here is an example:

			
				
					
					
				
				
					
							
							Transaction 1

						
							
							Transaction 2

						
					

				
				
					
							
							BEGIN;

						
							
							BEGIN;

						
					

					
							
							UPDATE t_test SET id = id + 1 RETURNING *;

						
							
					

					
							
							It will return 2

						
							
							UPDATE t_test SET id = id + 1 RETURNING *;

						
					

					
							
							
							It will wait for transaction 1

						
					

					
							
							COMMIT;

						
							
							It will wait for transaction 1

						
					

					
							
							
							It will reread the row, find 2, set the value, and return 3

						
					

					
							
							
							COMMIT;

						
					

				
			

			Table 2.2 – Handling concurrent updates

			Suppose you want to count the number of hits on a website. If you run the preceding code, no hits will be lost because PostgreSQL guarantees that one UPDATE statement is performed after another.

			Note

			PostgreSQL will only lock rows affected by UPDATE. So, if you have 1,000 rows, you can theoretically run 1,000 concurrent changes on the same table.

			It is also worth noting that you can always run concurrent reads. Our two writes will not block reads.

			Avoiding typical mistakes and explicit locking

			In my life as a professional PostgreSQL consultant (https://www.cybertec-postgresql.com), I have seen a couple of mistakes that are repeated frequently. If there are constants in life, these typical mistakes are definitely among them.

			Here is my favorite:

			
				
					
					
				
				
					
							
							Transaction 1

						
							
							Transaction 2

						
					

					
							
							BEGIN;

						
							
							BEGIN;

						
					

					
							
							SELECT max(id) FROM product;

						
							
							SELECT max(id) FROM product;

						
					

					
							
							The user will see 17

						
							
							The user will see 17

						
					

					
							
							The user will decide to use 18

						
							
							The user will decide to use 18

						
					

					
							
							INSERT INTO product ... VALUES (18, ...)

						
							
							INSERT INTO product ... VALUES (18, ...)

						
					

					
							
							COMMIT;

						
							
							COMMIT;

						
					

				
			

			Table 2.3 – Potential locking related problems

			In this case, there will be either a duplicate key violation or two identical entries. Neither variation of the problem is all that appealing.

			One way to fix this problem is to use explicit table locking. The following code shows us the syntax definition of LOCK:

			
test=# \h LOCK
Command: LOCK
Description: lock a table
Syntax:
 LOCK [TABLE] [ONLY] name [*] [, ...] [IN lockmode MODE] [NOWAIT]
 where lockmode is one of:
 ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE
 | SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE
URL: https://www.postgresql.org/docs/15/sql-lock.html

			As you can see, PostgreSQL offers eight types of locks to lock an entire table. In PostgreSQL, a lock can be as light as an ACCESS SHARE lock or as heavy as an ACCESS EXCLUSIVE lock. The following list shows what these locks do:

			
					ACCESS SHARE: This type of lock is taken by reads and conflicts only with ACCESS EXCLUSIVE, which is set by DROP TABLE and so on. Practically, this means that SELECT cannot start if a table is about to be dropped. This also implies that DROP TABLE has to wait until a reading transaction is complete.

					ROW SHARE: PostgreSQL takes this kind of lock in the case of SELECT FOR UPDATE/SELECT FOR SHARE. It conflicts with EXCLUSIVE and ACCESS EXCLUSIVE.

					ROW EXCLUSIVE: This lock is taken by INSERT, UPDATE, and DELETE. It conflicts with SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE.

					SHARE UPDATE EXCLUSIVE: This kind of lock is taken by CREATE INDEX CONCURRENTLY, ANALYZE, ALTER TABLE, VALIDATE, and some other flavors of ALTER TABLE, as well as by VACUUM (not VACUUM FULL). It conflicts with the SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes.

					SHARE: When an index is created, SHARE locks will be set. It conflicts with ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE.

					SHARE ROW EXCLUSIVE: This one is set by CREATE TRIGGER and some forms of ALTER TABLE and conflicts with everything except ACCESS SHARE.

					EXCLUSIVE: This type of lock is by far the most restrictive one. It protects against reads and writes alike. If this lock is taken by a transaction, nobody else can read or write to the table that’s been affected.

					ACCESS EXCLUSIVE: This lock prevents concurrent transactions from reading and writing.

			

			Given the PostgreSQL locking infrastructure, one solution to the max problem we outlined previously would be as follows. The example in the following code shows how to lock a table:

			
BEGIN;
LOCK TABLE product IN ACCESS EXCLUSIVE MODE;
INSERT INTO product SELECT max(id) + 1, ... FROM product;
COMMIT;

			Keep in mind that this is a pretty nasty way of doing this kind of operation because nobody else can read or write to the table during your operation. Therefore, ACCESS EXCLUSIVE should be avoided at all costs.

			Checking for locks

			Checking for locks is not a trivial matter. There are various options. The first one is to see whether a lock is causing an issue at all:

			
test=# SELECT pid, wait_event_type, wait_event, query
FROM pg_stat_activity
WHERE datname = 'test';
...
-[RECORD 3]---+---
pid | 23068
wait_event_type | Client
wait_event | ClientRead
query | lock table t_test in access exclusive mode ;
-[RECORD 4]---+---
pid | 23071
wait_event_type | Lock
wait_event | relation
query | SELECT count(*) FROM t_test;

			What we can see here is the query causing the lock, as well as the query waiting on the lock (as shown in the wait event).

			Considering alternative solutions

			There is an alternative solution to this problem. Consider an example where you are asked to write an application to generate invoice numbers. The tax office might require you to create invoice numbers without gaps and without duplicates. How would you do this? Of course, one solution would be a table lock. However, you can really do better. Here is what you can do to handle the numbering problem we are trying to solve:

			
test=# CREATE TABLE t_invoice (id int PRIMARY KEY);
CREATE TABLE
test=# CREATE TABLE t_watermark (id int);
CREATE TABLE
test=# INSERT INTO t_watermark VALUES (0);
INSERT 0
test=# WITH x AS (UPDATE t_watermark SET id = id + 1 RETURNING *)
 INSERT INTO t_invoice
 SELECT * FROM x RETURNING *;
id

 1
 (1 row)

			In this case, we introduced a table called t_watermark. It contains just one row. The WITH command will be executed first. The row will be locked and incremented, and the new value will be returned. Only one person can do this at a time. The value returned by the CTE is then used in the invoice table. It is guaranteed to be unique. The beauty is that there is only a simple row lock on the watermark table, which leads to no reads being blocked in the invoice table. Overall, this way is more scalable.

			Making use of FOR SHARE and FOR UPDATE

			Sometimes, data is selected from the database, then some processing happens in the application, and finally, some changes are made back on the database side. This is a classic example of SELECT FOR UPDATE.

			Here is an example that shows the way SELECT is often executed in the wrong way:

			
BEGIN;
 SELECT * FROM invoice WHERE processed = false;
** application magic will happen here **
UPDATE invoice SET processed = true ...
COMMIT;

			The problem here is that two people might select the same unprocessed data. Changes that are made to these processed rows will then be overwritten. In short, a race condition will occur.

			To solve this problem, developers can make use of SELECT FOR UPDATE. Here’s how it can be used. The following example will show a typical scenario:

			
BEGIN;
SELECT * FROM invoice WHERE processed = false FOR UPDATE;
** application magic will happen here **
UPDATE invoice SET processed = true ...
COMMIT;

			SELECT FOR UPDATE will lock rows just like UPDATE would. This means that no changes can happen concurrently. All locks will be released on COMMIT as usual.

			If one SELECT FOR UPDATE command is waiting for another SELECT FOR UPDATE command, you will have to wait until the other one completes (COMMIT or ROLLBACK). If the first transaction doesn’t want to end, for whatever reason, the second transaction may potentially wait forever. To avoid this, it is possible to use SELECT FOR UPDATE NOWAIT:

			
				
					
					
				
				
					
							
							Transaction 1

						
							
							Transaction 2

						
					

				
				
					
							
							BEGIN;

						
							
							BEGIN;

						
					

					
							
							SELECT ... FROM tab WHERE ... FOR UPDATE NOWAIT;

						
							
					

					
							
							Some processing

						
							
							SELECT ... FROM tab WHERE ... FOR UPDATE NOWAIT;

						
					

					
							
							Some processing

						
							
							ERROR: could not obtain lock on row in relation tab

						
					

				
			

			Table 2.4 – Managing NOWAIT

			If NOWAIT is not flexible enough for you, consider using lock_timeout. It will contain the amount of time you want to wait on locks. You can set this on a per-session level:

			
test=# SET lock_timeout TO 5000;
SET

			In this case, the value is set to 5 seconds.

			While SELECT does basically no locking, SELECT FOR UPDATE can be pretty harsh. Just imagine the following business process – we want to fill up an airplane that has 200 seats. Many people want to book seats concurrently. In this case, the following might happen:

			
				
					
					
				
				
					
							
							Transaction 1

						
							
							Transaction 2

						
					

				
				
					
							
							BEGIN;

						
							
							BEGIN;

						
					

					
							
							SELECT ... FROM flight LIMIT 1 FOR UPDATE;

						
							
					

					
							
							Waiting for user input

						
							
							SELECT ... FROM flight LIMIT 1 FOR UPDATE;

						
					

					
							
							Waiting for user input

						
							
							It has to wait

						
					

				
			

			Table 2.5 – Concurrent FOR UPDATE operations

			The trouble is that only one seat can be booked at a time. There are potentially 200 seats available, but everybody has to wait for the first person. While the first seat is blocked, nobody else can book a seat, even if people don’t care which seat they get in the end.

			SELECT FOR UPDATE SKIP LOCKED will fix the problem. Let’s create some sample data first:

			
test=# CREATE TABLE t_flight AS
 SELECT * FROM generate_series(1, 200) AS id;
SELECT 200

			Now comes the magic:

			
				
					
					
				
				
					
							
							Transaction 1

						
							
							Transaction 2

						
					

				
				
					
							
							BEGIN;

						
							
							BEGIN;

						
					

					
							
							SELECT * FROM t_flight LIMIT 2 FOR UPDATE SKIP LOCKED;

						
							
							SELECT * FROM t_flight LIMIT 2 FOR UPDATE SKIP LOCKED;

						
					

					
							
							It will return 1 and 2

						
							
							It will return 3 and 4

						
					

				
			

			Table 2.6 – Concurrent SKIP LOCKED operations

			If everybody wants to fetch two rows, we can serve 100 concurrent transactions at a time without having to worry about blocking transactions.

			Note

			Keep in mind that waiting is the slowest form of execution. If only one transaction can be active at a time, it is pointless to buy ever more expensive servers if your real problems are caused by locking and conflicting transactions in general.

			However, there’s more. In some cases, FOR UPDATE can have unintended consequences. Most people are not aware of the fact that FOR UPDATE will have an impact on foreign keys. Let’s assume that we have two tables – one to store currencies and the other to store accounts. The following code shows an example of this:

			
CREATE TABLE t_currency (id int, name text, PRIMARY KEY (id));
INSERT INTO t_currency VALUES (1, 'EUR');
INSERT INTO t_currency VALUES (2, 'USD');
CREATE TABLE t_account (
 id int,
 currency_id int REFERENCES t_currency (id)
 ON UPDATE CASCADE
 ON DELETE CASCADE,
 balance numeric);
INSERT INTO t_account VALUES (1, 1, 100);
INSERT INTO t_account VALUES (2, 1, 200);

			Now, we want to run SELECT FOR UPDATE on the account table:

			
				
					
					
				
				
					
							
							Transaction 1

						
							
							Transaction 2

						
					

				
				
					
							
							BEGIN;

						
							
					

					
							
							SELECT * FROM t_account FOR UPDATE;

						
							
							BEGIN;

						
					

					
							
							Waiting for the user to proceed

						
							
							UPDATE t_currency SET id = id * 10;

						
					

					
							
							Waiting for the user to proceed

						
							
							It will wait on transaction 1

						
					

				
			

			Table 2.7 – Handling FOR UPDATE

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/image/Packt_Logo_New.png
<PACKD

OEBPS/toc.xhtml

		

		Contents

			

						Mastering PostgreSQL 15

						Contributors

						About the author

						About the reviewers

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Chapter 1: PostgreSQL 15 Overview

					

								Making use of DBA-related features

							

										Removing support for old pg_dump

										Deprecating Python 2

										Fixing the public schema

										Adding pre-defined roles

										Adding permissions to variables

										Improving pg_stat_statements

										New wait events

										Adding logging functionality

							

						

								Understanding developer-related features

							

										Security invoker views

										ICU locales

										Better numeric

										Handling ON DELETE

										Working around NULL and UNIQUE

										Adding the MERGE command to PostgreSQL

							

						

								Using performance-related features

							

										Adding multiple compression algorithms

										Handling parallel queries more efficiently

										Improved statistics handling

										Prefetching during WAL recovery

							

						

								Additional replication features

							

										Two-phase commit for logical decoding

										Adding row and column filtering

										Improving ALTER SUBSCRIPTION

										Supporting compressed base backups

										Introducing archiving libraries

							

						

								Summary

					

				

						Chapter 2: Understanding Transactions and Locking

					

								Working with PostgreSQL transactions

							

										Handling errors inside a transaction

										Making use of SAVEPOINT

										Transactional DDLs

							

						

								Understanding basic locking

							

										Avoiding typical mistakes and explicit locking

							

						

								Making use of FOR SHARE and FOR UPDATE

								Understanding transaction isolation levels

							

										Considering serializable snapshot isolation transactions

							

						

								Observing deadlocks and similar issues

								Utilizing advisory locks

								Optimizing storage and managing cleanup

							

										Configuring VACUUM and autovacuum

										Watching VACUUM at work

										Limiting transactions by making use of snapshot too old

										Making use of more VACUUM features

							

						

								Summary

								Questions

					

				

						Chapter 3: Making Use of Indexes

					

								Understanding simple queries and the cost model

							

										Making use of EXPLAIN

										Digging into the PostgreSQL cost model

										Deploying simple indexes

										Making use of sorted output

										Using bitmap scans effectively

										Using indexes in an intelligent way

										Understanding index de-duplication

							

						

								Improving speed using clustered tables

							

										Clustering tables

										Making use of index-only scans

							

						

								Understanding additional B-tree features

							

										Combined indexes

										Adding functional indexes

										Reducing space consumption

										Adding data while indexing

							

						

								Introducing operator classes

							

										Creating an operator class for a B-tree

							

						

								Understanding PostgreSQL index types

							

										Hash indexes

										GiST indexes

										GIN indexes

										SP-GiST indexes

										BRINs

										Adding additional indexes

							

						

								Achieving better answers with fuzzy searching

							

										Taking advantage of pg_trgm

										Speeding up LIKE queries

										Handling regular expressions

							

						

								Understanding full-text searches

							

										Comparing strings

										Defining GIN indexes

										Debugging your search

										Gathering word statistics

										Taking advantage of exclusion operators

							

						

								Summary

								Questions

					

				

						Chapter 4: Handling Advanced SQL

					

								Supporting range types

							

										Querying ranges efficiently

										Handling multirange types

										When to use range types

							

						

								Introducing grouping sets

							

										Loading some sample data

										Applying grouping sets

										Investigating performance

										Combining grouping sets with the FILTER clause

							

						

								Making use of ordered sets

								Understanding hypothetical aggregates

								Utilizing windowing functions and analytics

							

										Partitioning data

										Ordering data inside a window

										Using sliding windows

										Abstracting window clauses

										Using on-board windowing functions

							

						

								Writing your own aggregates

							

										Creating simple aggregates

										Adding support for parallel queries

										Improving efficiency

										Writing hypothetical aggregates

							

						

								Handling recursions

							

										UNION versus UNION ALL

										Inspecting a practical example

							

						

								Working with JSON and JSONB

							

										Displaying and creating JSON documents

										Turning JSON documents into rows

										Accessing a JSON document

							

						

								Summary

					

				

						Chapter 5: Log Files and System Statistics

					

								Gathering runtime statistics

							

										Working with PostgreSQL system views

							

						

								Creating log files

							

										Configuring the postgresql.conf file

							

						

								Summary

								Questions

					

				

						Chapter 6: Optimizing Queries for Good Performance

					

								Learning what the optimizer does

							

										A practical example – how the query optimizer handles a sample query

							

						

								Understanding execution plans

							

										Approaching plans systematically

										Spotting problems

							

						

								Understanding and fixing joins

							

										Getting joins right

										Processing outer joins

										Understanding the join_collapse_limit variable

							

						

								Enabling and disabling optimizer settings

							

										Understanding genetic query optimization

							

						

								Partitioning data

							

										Creating inherited tables

										Applying table constraints

										Modifying inherited structures

										Moving tables in and out of partitioned structures

										Cleaning up data

										Understanding PostgreSQL 15.x partitioning

										Handling partitioning strategies

										Using range partitioning

										Utilizing list partitioning

										Handling hash partitions

							

						

								Adjusting parameters for good query performance

							

										Speeding up sorting

										Speeding up administrative tasks

							

						

								Making use of parallel queries

							

										What is PostgreSQL able to do in parallel?

										Parallelism in practice

							

						

								Introducing JIT compilation

							

										Configuring JIT

										Running queries

							

						

								Summary

					

				

						Chapter 7: Writing Stored Procedures

					

								Understanding stored procedure languages

							

										Understanding the fundamentals of stored procedures versus functions

										The anatomy of a function

							

						

								Exploring various stored procedure languages

							

										Introducing PL/pgSQL

										Writing stored procedures in PL/pgSQL

										Introducing PL/Perl

										Introducing PL/Python

							

						

								Improving functions

							

										Reducing the number of function calls

							

						

								Using functions for various purposes

								Summary

								Questions

					

				

						Chapter 8: Managing PostgreSQL Security

					

								Managing network security

							

										Understanding bind addresses and connections

										Managing the pg_hba.conf file

										Handling instance-level security

										Defining database-level security

										Adjusting schema-level permissions

										Working with tables

										Handling column-level security

										Configuring default privileges

							

						

								Digging into row-level security

								Inspecting permissions

								Reassigning objects and dropping users

								Summary

								Questions

					

				

						Chapter 9: Handling Backup and Recovery

					

								Performing simple dumps

							

										Running pg_dump

										Passing passwords and connection information

										Extracting subsets of data

							

						

								Handling various formats

								Replaying backups

								Handling global data

								Summary

								Questions

					

				

						Chapter 10: Making Sense of Backups and Replication

					

								Understanding the transaction log

							

										Looking at the transaction log

										Understanding checkpoints

										Optimizing the transaction log

							

						

								Transaction log archiving and recovery

							

										Configuring for archiving

										Using archiving libraries

										Configuring the pg_hba.conf file

										Creating base backups

										Replaying the transaction log

										Cleaning up the transaction log archive

							

						

								Setting up asynchronous replication

							

										Performing a basic setup

										Halting and resuming replication

										Checking replication to ensure availability

										Performing failovers and understanding timelines

										Managing conflicts

										Making replication more reliable

							

						

								Upgrading to synchronous replication

							

										Adjusting durability

							

						

								Making use of replication slots

							

										Handling physical replication slots

										Handling logical replication slots

							

						

								Making use of the CREATE PUBLICATION and CREATE SUBSCRIPTION commands

								Setting up an HA cluster using Patroni

							

										Understand how Patroni operates

										Installing Patroni

										Creating Patroni templates

							

						

								Summary

								Questions

					

				

						Chapter 11: Deciding on Useful Extensions

					

								Understanding how extensions work

							

										Checking for available extensions

							

						

								Making use of contrib modules

							

										Using the adminpack module

										Applying bloom filters

										Deploying btree_gist and btree_gin

										dblink – considering phasing out

										Fetching files with file_fdw

										Inspecting storage using pageinspect

										Investigating caching with pg_buffercache

										Encrypting data with pgcrypto

										Prewarming caches with pg_prewarm

										Inspecting performance with pg_stat_statements

										Inspecting storage with pgstattuple

										Fuzzy searching with pg_trgm

										Connecting to remote servers using postgres_fdw

							

						

								Other useful extensions

								Summary

					

				

						Chapter 12: Troubleshooting PostgreSQL

					

								Approaching an unknown database

								Inspecting pg_stat_activity

							

										Querying pg_stat_activity

							

						

								Checking for slow queries

							

										Inspecting individual queries

										Digging deeper with perf

							

						

								Inspecting the log

								Checking for missing indexes

								Checking for memory and I/O

								Understanding noteworthy error scenarios

							

										Facing clog corruption

										Understanding checkpoint messages

										Managing corrupted data pages

										Careless connection management

										Fighting table bloat

							

						

								Summary

								Questions

					

				

						Chapter 13: Migrating to PostgreSQL

					

								Migrating SQL statements to PostgreSQL

							

										Using LATERAL joins

										Using grouping sets

										Using the WITH clause – common table expressions

										Using the WITH RECURSIVE clause

										Using the FILTER clause

										Using windowing functions

										Using ordered sets – the WITHIN GROUP clause

										Using the TABLESAMPLE clause

										Using limit/offset

										Using the OFFSET clause

										Using temporal tables

										Matching patterns in time series

							

						

								Moving from Oracle to PostgreSQL

							

										Using the oracle_fdw extension to move data

										Using ora_migrator for fast migration

										CYBERTEC Migrator – migration for the “big boys”

										Using Ora2Pg to migrate from Oracle

										Common pitfalls

							

						

								Summary

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

	

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/Fonts/CourierStd.otf

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/image/Cover.png
<packt>

Mastering

PostgreSQL 15

Advanced techniques to build and manage scalable,
reliable, and fault-tolerant database applications

<> HANS-JURGEN SCHONIG

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/image/B18274_QR_Free_PDF.jpg

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

