
		
			[image: Cover.png]
		

	
		
			PLCs for Beginners

			An introductory guide to building robust PLC programs with Structured Text

			M. T. White

			[image:]

			PLCs for Beginners

			Copyright © 2024 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Preet Ahuja

			Publishing Product Manager: Suwarna Rajput

			Book Project Manager: Uma Devi

			Senior Editor: Isha Singh

			Technical Editor: Yash Bhanushali

			Copy Editor: Safis Editing

			Proofreader: Isha Singh

			Indexer: Subalakshmi Govindhan

			Production Designer: Vijay Kamble

			DevRel Marketing Coordinators: Linda Pearlson and Rohan Dobhal

			First published: May 2024

			Production reference: 2081124

			Published by Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB, UK

			ISBN 978-1-80323-093-1

			www.packtpub.com

			To mom and dad.

			Contributors

			About the author

			M. T. White has been programming since the age of 12. His fascination with robotics flourished when he was a child programming microcontrollers. He holds an undergraduate degree in mathematics, a master’s degree in software engineering, and an MBA in IT management. He is currently working as a software developer for a major US defense contractor and is an adjunct CIS instructor, where he teaches Python, C, and an array of other courses. His background mostly stems from the automation industry where he programmed PLCs and HMIs for many different types of applications. He has programmed many different brands of PLCs over the years and has developed HMIs using many different tools. Other technologies that he is fluent in include Linux, Ansible, Docker, AWS, C#, Java, and Python. Be sure to check out his channel AlchemicalComputing on YouTube.

			About the reviewers

			Keith Lyding is an electrical engineer for a manufacturing company in Columbus, Ohio. He has over 15 years of experience in the electrical field, as well as more than 9 years of experience in automation. He graduated from Thomas Edison State University in 2019. He served in the US Navy for six years and has also worked for Nucor Steel. He currently works for Sonoco Products Company, where he works primarily with Allen Bradley PLCs, Inductive Automation’s Ignition platform, EXOR and Panelview HMIs, and many other platforms. He enjoys troubleshooting, as well as automating complex operations. In his spare time, he loves to serve in his church, coach his son’s baseball team, and spend time with his family.

			I extend my deepest gratitude to my wife, Katie, for her unending support. I am grateful to my colleagues and mentors for their guidance throughout my journey: Kyle Ahrendt, William Carleton, and K. Andy Steinacker. I am also appreciative of the men in my life for continuing to sharpen, push, and encourage me to become more like Jesus: Paul Cassidy, Brian Babin, Ken Lyding, K. Andy Steinacker, Jon Krull, David Bout, Isaac Dye, and many, many others.

			Ninad Deshpande is an author, storyteller, international speaker, and technology evangelist known in the industrial automation fraternity. He has over 15 years of extensive hands-on experience in varied fields of the automation industry, such as application development, testing, R&D, marketing, corporate communication, and global product management. He is the co-author of the Packt book The Art of Manufacturing. Today, as a co-founder and director of Passion Minds Private Limited, he helps organizations across the globe in various industries with services focusing primarily on technologically and strategically driven content generation.

			I thank my family and friends for teaching me life lessons and consistently inspiring me. I admire my mother’s and my wife’s fighting spirit; their constant support and motivation enable me to achieve my dreams.

		

	
		
			Table of Contents

			Preface

			Part 1: Basics of Computer Science for PLC Programmers

			1

			Computer Science Versus Automation Programming

			Technical requirements

			What is computer science?

			Why study computer science?

			What is automation programming?

			What is a PLC?

			Exploring automation through computer science

			How does computer science help automation programmers?

			Why should automation programmers care?

			Cloud technologies

			The internet of things

			Machine learning

			What does this mean for automation engineering?

			PLCs versus microcontrollers

			What are microcontrollers?

			Surface-level differences

			PLC and microcontroller programming languages

			Use cases

			PLC versus computers

			What is a computer?

			PLC versus computers

			Summary

			Questions

			2

			PLC Components – Integrating PLCs with Other Modules

			Technical requirements

			PLC types

			Common PLC modules

			Power supply

			Chassis

			CPU modules

			I/O modules

			Safety modules

			Sinking versus sourcing

			NPN versus PNP

			Sensors

			Motors and motor controls

			What is a motor?

			Open and closed-loop control systems

			Stepper motors

			Servo motors

			Encoders

			Motor drives

			Communication protocols

			What is a communication protocol, and what is it used for?

			Wiring diagrams

			Final project

			Specs

			BOM

			Summary

			Questions

			Further reading

			3

			The Basics of Programming

			Technical requirements

			Understanding what a program is

			What is the purpose of a program?

			Why use software over hardware?

			How to view software and hardware in a system

			Software is not a cure-all solution

			Understanding programming languages

			Syntax

			Translators

			Machine instruction

			Language paradigms

			Keywords

			Dos and don’ts of learning keywords and syntax

			Program flow

			Program iteration

			Exploring the IEC 61131-3 standard

			IEC 61131-3 pitfalls

			Final project

			Strategy

			Summary

			Further reading

			Questions

			4

			Unleashing Computer Memory

			Technical requirements

			What is memory?

			Memory

			Storage

			How computer/PLC memory and storage work

			HDDs

			SSDs

			Volatile versus non-volatile memory

			Volatile memory

			Non-volatile memory

			Memory addresses

			How memory works

			Computer memory – an analogy

			Common storage devices

			USB drives

			External hard-drives

			SD cards

			Cloud storage

			Obsolete storage devices

			Floppy drives

			Summary

			Questions

			Further reading

			5

			Designing Programs – Unleashing Pseudocode and Flowcharts

			Technical requirements

			What are pseudocode programs and flowcharts?

			Pseudocode

			What does pseudocode look like?

			Flowcharting

			What do flowcharts look like?

			Why use pseudocode and flowcharts in PLC programming?

			Why use pseudocode?

			Why use flowcharting?

			When to use one over the other?

			Tools needed for flowcharts and pseudocode

			Pseudocode tools

			Flowchart tools

			Whiteboarding

			Design exercises

			The quadradic equation

			The beer program

			Final project – Robot startup system

			Design requirements

			Design logic

			Wait sequence

			Pseudocode

			Flowchart

			Summary

			Questions

			6

			Boolean Algebra

			Technical requirements

			What is Boolean algebra?

			Boolean operators

			The basic operators

			The OR operator

			The NOT operator

			Boolean expressions

			Exploring NOT

			The OR operator

			The AND operator

			Operator laws

			Idempotent law

			Solving Boolean equations

			Examples

			Getting to know truth tables

			Basic operators

			Final project: Creating custom truth tables from scratch

			Row 1

			Row 2

			Row 3

			Row 4

			Final truth table

			Summary

			Questions

			Further reading

			Part 2: Introduction to Structured Text Programming

			7

			Unlocking the Power of ST

			Technical requirements

			What is ST?

			Area of a circle program in ST

			Why is ST important?

			ST versus LL

			Example 1 – The area of a circle program – LL

			Example 2 – Toggling a light

			What is CODESYS?

			Installing CODESYS

			A CODESYS exploration

			Exploring the PLC_PRG file

			The final project – Hello World

			Step 1 – Creating a new project!

			Step 2 – Code implementation

			Step 3 – Running the program!

			Chapter challenge

			Summary

			Further reading

			Questions

			8

			Exploring Variables and Tags

			Technical requirements

			What are variables/tags?

			Applications of variables

			Variables/tags under the hood

			Why use variables?

			Data types

			What is a data type?

			The IEC 61131-3 data types

			Bits and bytes

			Common data types

			How to declare variables

			Variable section of a file

			Declaring a variable

			Initializing a variable

			Variable naming

			Rules to naming a variable

			Naming conventions

			Final project – declare the variables of a triangle

			Code implementation

			Challenge – declare the variable for a rectangle’s perimeter

			Summary

			Further reading

			Questions

			9

			Performing Calculations in Structured Text

			Technical requirements

			Math in ST

			Assigning numbers

			Basic calculations

			Solution variable

			The four basic functions

			Basic operation demonstration

			Complex mathematical functions

			Square root function

			Exponent function

			ABS function

			Trigonometric functions

			Arc functions

			Order of operations for math calculations

			Computing complex equations

			Distance between two points

			Final projects

			Final project 1 – programming the perimeter of a rectangle

			Final project 2 – Pythagorean theorem

			Summary

			Questions

			Further reading

			10

			Unleashing Built-In Function Blocks

			Technical requirements

			What are prebuilt function blocks?

			Functions, function blocks, and keywords

			Function blocks under the hood

			What is a function block?

			Rising and falling edges

			Common PLC function blocks

			Counter function blocks

			Timer function blocks

			Final project

			Variables

			Summary

			Questions

			Further reading

			11

			Unlocking the Power of Flow Control

			Technical requirements

			Exploring what flow control is

			Exploring why flow control is important

			Exploring logical expressions

			Exploring the IF statement

			IF statement syntax

			Checking if two values are the same!

			Exploring the not equals operator

			Designing control statements

			Overdraft program

			Exploring the CASE statement

			State machines and CASE statements

			Implementing the state machine

			Flowcharting and CASE statements

			Real-world applications for the CASE statement

			Final project

			Requirements

			Program design

			Code implementation

			Final challenge

			Summary

			Questions

			12

			Unlocking Advanced Control Statements

			Technical requirements

			Nested control statements

			ELSE statements

			ELSIF statements

			Challenge

			Logical operators

			Exploring the OR operator

			Exploring the XOR operator

			Exploring the NOT operator

			Final project

			Requirements

			Variables

			Color and shape sorter logic

			Testing conditions

			Summary

			Further reading

			Questions

			13

			Implementing Tight Loops

			Technical requirements

			Exploring the different types of loops

			Counter loop

			Precheck loops

			Post check loops

			Infinite loops

			Exploring loops in pseudocode and flowcharts

			Exploring loops with pseudocode

			Representing a loop in a flowchart

			Implementing a FOR loop

			Implementing the WHILE loop

			Exploring the REPEAT loop

			Exporting the EXIT keyword

			Understanding nested loops

			Challenge – creating a behavior report

			Final project

			Design

			Code implementation

			Testing the program

			Summary

			Questions

			Further reading

			Part 3: Algorithms, AI, Security, and More

			14

			Sorting with Loops

			Technical requirements

			How to use this chapter

			What is sorting?

			Exploring what arrays are and how to use them!

			What is an array?

			Array elements

			Initializing an array

			Retrieving the number of elements in an array

			Why are arrays important for sorting algorithms?

			Exploring sorting algorithms

			What is an algorithm?

			What is a sorting algorithm?

			Algorithm efficiency metrics

			Exploring the Big O notation

			Exploring the Big Ω notation

			Common sorting algorithms

			Exploring bubble sort

			Exploring insertion sort

			Challenge – Merge sort

			Final project – cement bag sorter

			Requirements

			Analysis

			Implementation

			Summary

			Questions

			Further reading

			15

			Secure PLC Programming – Stopping Cyberthreats

			Technical requirements

			What cybersecurity is and why it’s important

			The basics of cybersecurity

			Vulnerabilities, threats, and risk

			Threat actors

			Exploring AAA

			Air-gapped systems

			Common cyberattacks

			Exploring information gathering

			Exploring social engineering

			Exploring password hacking

			Malware

			Attack prevention methods

			Stopping social engineering

			Defending against password crackers

			Password length

			Malware defense

			Final project – a PLC-based activation system

			Design

			Certifications

			Summary

			Questions

			Further reading

			16

			Troubleshooting PLCs – Fixing Issues

			Technical requirements

			Common causes of PLC issues

			Broken software

			Exploring environmental issues

			Understanding non-environmental issues

			Common hardware issues

			Exploring power supply issues

			Common PLC problems

			Bad batteries

			Exploring troubleshooting techniques

			The PLC toolkit

			Diagnosing power supply issues

			Diagnosing temperature issues

			Diagnosing networks

			Troubleshooting software

			The basics of troubleshooting software

			Final project

			Troubleshooting

			Summary

			Questions

			17

			Leveraging Artificial Intelligence (AI)

			Technical requirements

			What is GenAI?

			What is AI?

			What GenAI can’t do

			Reasonable expectations with GenAI

			What not to expect with GenAI

			What to expect when using GenAI

			The basics of prompt engineering

			Creating a prompt

			Producing workable code with ChatGPT

			Final project

			Prompt and code

			Summary

			Questions

			Further reading

			18

			The Final Project – Programming a Simulated Robot

			Technical requirements

			Project scope

			Project requirements

			Flowchart for the system

			Designing the pseudocode

			Implementing the program

			Using ChatGPT to implement bubble sort

			Final project variables

			Main program logic

			Testing the program

			Summary

			Assessments

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			Until recently, automation programming has been, for the most part, unchanging. However, with the recent boom in computing power, that is rapidly changing. New technologies are being introduced at a rapid pace, and these are drastically altering the automation landscape. These new, disruptive technologies are rendering the days of only programming in Ladder Logic a relic of the past. In today’s automation landscape, to get the most out of a PLC, one must use Structured Text. This book is an in-depth look at writing very robust and well-written programs in Structured Text while also providing a general education for programming logic and design as well as other core tenets that will be required to future-proof projects.

			Who this book is for

			This book is for anyone who is interested in learning Structured Text programming. It is designed for beginners who have never programmed before and for those who wish to transition from Ladder Logic to Structured Text.

			What this book covers

			Chapter 1, Computer Science Versus Automation Programming, introduces you to computer science and contrasts it with automation programming. This chapter will explore the various types of controllers, emerging technologies, and more.

			Chapter 2, PLC Components – Integrating PLCs with Other Modules, focuses on introducing the various components that make up a traditional PLC. This chapter will introduce you to analog and digital principles as well as all the needed components that a PLC will need to operate.

			Chapter 3, The Basics of Programming, lays the foundation for programming. This chapter will introduce you to what programs are, how they work, and much more.

			Chapter 4, Unleashing Computer Memory, lays the foundation for more advanced chapters by introducing you to the basics of memory. Topics explored will include what memory is, how memory works, and common storage devices.

			Chapter 5, Designing Programs – Unleashing Pseudocode and Flowcharts, teaches you how to create a design for a program. Concepts explored will be designing a program in pseudocode and with a flowchart.

			Chapter 6, Boolean Algebra, covers the basics of Boolean algebra. The core principles will be to learn how to compute logical equations, understand logical operators, and create truth tables.

			Chapter 7, Unlocking the Power of ST, explores what Structured Text truly is and why it is important. The key takeaways from this chapter are understanding why Structured Text is important, why it should be used, and how to set up the programming environment.

			Chapter 8, Exploring Variables and Tags, expands on and applies the material presented in Chapter 4 to implement what are called variables or tags. This chapter will cover concepts such as data types, naming conventions, and much more.

			Chapter 9, Performing Calculations in Structured Text, covers one of the most pivotal skills any PLC programmer can have: programming mathematical calculations. Topics will include how to program math equations and common math functions.

			Chapter 10, Unleashing Built-In Function Blocks, explores the built-in function blocks. The main takeaway will be for you to understand what a built-in function block is and how to use common function blocks such as timers and counters.

			Chapter 11, Unlocking the Power of Flow Control, introduces flow control with conditionals. This chapter will explore how the flow of a program can be altered and basic intelligence can be introduced to a program.

			Chapter 12, Unlocking Advanced Control Statements, expands on concepts that were explored in the previous chapter, and examines topics such as embedded conditional statements, complex logical expressions, and much more.

			Chapter 13, Implementing Tight Loops, provides an in-depth exploration of loops. This chapter will explore various types of loops in Structured Text as well as their applications.

			Chapter 14, Sorting with Loops, introduces you to the basics of sorting algorithms. The key takeaway from this chapter is to introduce you to concepts such as algorithms, Big O notation, the basics of arrays, common sorting algorithms, and more.

			Chapter 15, Secure PLC Programming – Stopping Cyberthreats, provides an overview of the cybersecurity landscape in relation to PLC-based systems. This chapter will present a lot of theoretical knowledge that can be applied to the design of PLC-based systems, networks, and more.

			Chapter 16, Troubleshooting PLCs – Fixing Issues, provides the necessary steps to troubleshoot a malfunctioning PLC-based machine. Topics will include common issues, necessary tools, IT diagnostics, and more.

			Chapter 17, Leveraging Artificial Intelligence (AI), explores how generative AI (ChatGPT) can be used to help automatically write software. This chapter will explore what generative AI is, how to use it, reasonable expectations, and how to write prompts.

			Chapter 18, The Final Project – Programming a Simulated Robot, draws on material explored throughout the book. This chapter will focus on programming a theoretical robot that sorts parts and sends lots down the proper production line.

			To get the most out of this book

			This book assumes no prior knowledge of PLC programming or programming in general. To get the most out of this book, only a basic understanding of mathematics is required. Ideally, you should be familiar with basic algebra and maybe trigonometry.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							CODESYS

						
							
							Windows

						
					

					
							
							ChatGPT

						
							
							N/A

						
					

				
			

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/PLCs-for-Beginners. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “We had a CASE conditional with an IF statement inside it .”

			A block of code is set as follows:

			
PROGRAM PLC_PRG
VAR
currentHopperWeight : REAL := 250;
bag1Weight : REAL;
bag2Weight : REAL;
END_VAR
			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
PROGRAM PLC_PRG
VAR
 password : STRING(255) := 'password';
 length : UINT;
 acceptPass : bool;
END_VAR
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance: "Air gapped systems are simply systems that are not connected to the internet.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read PLCs for Beginners we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781803230931

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	

		
			Part 1: Basics of Computer Science for PLC Programmers

			Programming is much more than just writing code. There is a lot of theoretical knowledge that goes into crafting a well-written program, and this part will lay the foundation for just that. This part will provide all the theoretical knowledge needed to understand the rest of the book and will cover the basics of PLCs, including PLC hardware, memory, logic, and design, how programs work under the hood, Boolean algebra, and more.

			This part has the following chapters:

			
					Chapter 1, Computer Science Versus Automation Programming

					Chapter 2, PLC Components – Integrating PLCs with Other Modules

					Chapter 3, The Basics of Programming

					Chapter 4, Unleashing Computer Memory

					Chapter 5, Designing Programs – Unleashing Pseudocode and Flowcharts

					Chapter 6, Boolean Algebra

			

		

		
			
			

		

	

		
			1

			Computer Science Versus Automation Programming

			If you were to ask an everyday automation professional what computer scientists are, you would probably get an answer along the lines of math nerds, computer geniuses, and so on. Most automation professionals are usually engineers or trade persons who stem from a field with little to no computer science exposure. This means very few automation professionals are classically trained in computer principles. For many automation professionals, there is a barrier between complex computing and automation.

			This book is going to be different from most automation programming books on the market. This book is going to focus on developing software for Programmable Logic Controllers (PLCs); however, this book is designed to teach you, the reader, to be more than a PLC programmer or tech. This book is designed to turn you into a genuine software developer. In short, this book will cover everything from program design to security. This book will also utilize Structured Text over the more traditional Ladder Logic. The reason for utilizing Structured Text is twofold. First, Structured Text is the future of PLC programming. As PLC applications become more advanced, the programming apparatus will need to be more robust. Structured Text offers much tighter control over a program than Ladder Logic. Second, implanting a well-designed program in Structured Text will be much easier to implement than it would be in Ladder Logic. With that said, there are no prerequisites for this book. You do not need to have any special math skills, logic skills, or anything of the sort to follow along. Those skills will be introduced in the book, but they will be easy to master and implement.

			To begin, the brain of most modern machines is a PLC. PLCs, for many, are just programmable devices, but they are miniature computers that are governed by the same laws of computing that govern any other device, such as a personal computer or smartphone. This poses a problem in the automation world because software is usually considered an easily replaceable component that exists to complement the hardware. In other words, many automation engineers often have an “if it works it’ll do” attitude towards software. This is a faulty philosophy, as poorly written software can hinder a machine and put it in the cyber trash heap before its time. Therefore, to become more than a simple PLC programmer, a mastery of computer science is a must.

			To begin our journey into computer science, we’re going to first explore the following topics:

			
					What is computer science?

					What is automation programming?

					Why is computer science important in automation programming?

					Why should automation programmers care about automation programming?

					The differences between a PLC and a microcontroller

			

			Finally, to round out the chapter, we will explore the differences between a PLC and a computer.

			Technical requirements

			This chapter is theoretical and will not require any specific software.

			What is computer science?

			Computer science is the study of computer systems, with a strong emphasis on software. In a more lay sense, computer science is the study of computational systems such as computers, phones, or anything that runs software, including PLCs. In short, the scope of computer science usually encompasses fields that involve software development or computer architecture. Computer science is a broad field that ties into many other disciplines, such as the following:

			
					Software engineering

					Artificial intelligence (AI)

					Networking

					Cyber security

					Database systems

					Bioinformatics

					Distributed computing

					Computer architecture

			

			The field of robotics and automation can also loosely be considered a field of computer science.

			As can be seen, computer science encompasses a lot of different disciplines. For some, this may seem scary, but rest assured that a mastery of each of these subfields is not necessary to be successful at computer science or programming. The focus of this book is going to be mostly on software engineering, which means there is going to be a heavy emphasis on software design and implementation. So, why should one learn computer science?

			Why study computer science?

			The ultimate goal of computer science is to create faster and more powerful computer systems that can solve increasingly complex problems. To put it briefly, a person would want to study computer science to build more efficient hardware, software, and networks, improve computer system security, and more. In other words, a person will study computer science to build faster, smarter, safer, and more reliable systems. With that, why should automation programmers or engineers care about computer science?

			Before the benefits of computer science can be appreciated for automation programming, it is important to understand what automation programming is. As such, the following section is going to explore what automation programming is and where it is used.

			What is automation programming?

			Automation programming can take on many different interpretations depending on the context and industry. For this book, automation programming will be considered industrial automation programming. Industrial automation programming and control programming can be considered the same thing. When one mentions controls or automation programming, they are usually referring to writing software that lives on some type of controller that is used to automate the use of machinery. In all, automation software is designed to reduce the amount of human intervention in a process.

			Automation programming starts with a programmable device. There are many types of automation controllers, with some being the following:

			
					PLCs

					Remote terminal unit (RTU)

					Proportional – integral – derivative (PID)

					Miscellaneous control boards

			

			What is considered automation software should include more than software that simply lives on controllers. This means that what is considered industrial control software can also branch out into other families of software, such as the following:

			
					Human–machine interfaces (HMIs)

					Supervisory control and data acquisition (SCADA)

					Databases

			

			When someone mentions automation programming, they are usually referring to software that lives on the most common types of industrial controllers, PLCs. PLCs are often the main type of controllers for industrial applications and are often seen as the backbone for many machines. This means that when it comes to automation programming, knowing how to program a PLC effectively is necessary.

			For this book, automation programming refers to writing software for PLC devices. With that, before the links between automation programming and computer science can be fully appreciated, it is important to establish a high-level understanding of what a PLC is and what it does.

			What is a PLC?

			A PLC is a specialized programmable device designed to be very rugged and operate for extended periods. PLCs are responsible for operating industrial or heavy equipment and are commonly used in the following:

			
					Streetlights

					Amusement parks

					Factories

					Cranes

					Nuclear reactors

					Space launch systems

					Dams

			

			Anywhere a program is required to operate a piece of industrial or heavy equipment, a PLC will usually be present.

			For beginners and even some experienced automation professionals, all this computer science stuff may seem dubious, unnecessary, and more trouble than it’s worth. However, before any rash judgments are made, let us explore why automation engineers need to understand computer science.

			Exploring automation through computer science

			In automation, software is often seen as a second-class citizen to the hardware. If you speak to an automation professional, chances are they are going to tout the hardware as the main focal point of the system. Automation engineers love to brag about the latest controllers that are being utilized, how they integrated the finest motors and motor drives into the system, and so on. However, it is rare to hear a typical automation engineer brag about the efficiency of the software or tout the design patterns they used to architect the software.

			A lot of this attitude towards software boils down to tangible assets. Often, an engineer can hand a customer the latest power supply or brag about how easy it is to swap out a new motor drive. If the customer ever sells the machine off, they can use all those features as selling points to raise the value of the machine. However, there is a major flaw in this logic. Without quality software, the machine will be an expensive paperweight. With low-quality software, the machine will be a high-quality paperweight that can move and perform certain tasks marginally well at best. Put bluntly, the quality of a machine starts with the software. A machine can have the most advanced hardware in the world, but if it has poorly written software, it will be a poorly performing machine at best. With that, how does computer science help?

			How does computer science help automation programmers?

			If you think about the way computer science was defined in the past, it was mainly concerned with producing quality software. Computer science has many principles that, when followed, will produce fast, safe, and reliable software. In other words, the computer science principles that are going to be explored in this book are going to allow you to get the most out of that advanced hardware. If you can understand and even master the principles that will be explored, your code will be light years ahead of your competition, and all that fancy hardware will be used to its full potential.

			Many experienced automation professionals may be wondering why they should care about computer science and how it relates to automation programming. After all, automation software, for years, has been written with little concern given to software execution performance. There are also a lot of beginners who are more infatuated with robots and building smart factories than with writing quality code. So, to give some context as to why someone should care about computer science, we are going to explore a few reasons why.

			Why should automation programmers care?

			The world is changing rapidly, and the computer industry is leading the charge. For those who work in the automation industry, where systems can easily be 20 years old, it can often be difficult to see how rapidly the IT world is morphing. In the past, most of the then-emerging technologies were decentralized and did not factor into industrial automation. However, with the widespread adaptation of the internet and interconnected devices, that all changed.

			Recently, the world has seen the rise of things such as cloud computing, the IoT, machine learning, and many other things. The new elements have exploded so fast that they are starting to be integrated into the industrial automation realm. To understand why automation programmers should care about computer science, we first need to understand what these modern technologies are. Now, it is important to remember that this list is not exhaustive, but the following technologies will give an insight into why we need to care about computer science principles.

			Cloud technologies

			The term cloud has been making the rounds over the past few years. In a very lay sense, the cloud is a bunch of interconnected data centers where you can rent resources. These resources vary and have many different applications. For example, some common, high-level services include the following:

			
					Virtual machines (VMs)

					Data storage, such as databases and cloud storage

					Containerization

					Microservice support

					Machine learning

					Data analytics

					Networking

			

			The best way to conceptualize the cloud is an all-in-one resource that has all the computing infrastructure needed to power your application. There is a lot to understand about the cloud and its various levels that go well beyond the scope of this book. However, it is important to know the most popular cloud service providers (CSPs):

			
					AWS (Amazon)

					Azure (Microsoft)

					GCP (Google)

					OCI (Oracle)

					IBM Cloud (IBM)

			

			It is important to note that this list is not complete, and from this list, AWS and Azure are the most popular.

			Most of the services offered through these CSPs charge either via usage, the number of requests to the service, or the amount of time used. What is also interesting is that the cloud is being adopted by the automation industry because it is often cheaper and requires less skill to create resources in the cloud than having to create those resources in-house and maintain the service on a custom server. Even if the automation company you are working for does not utilize the cloud, it is likely that a customer would require the machine to be interfaced with cloud services. With that, the next major technology that we need to explore is the IoT.

			The internet of things

			The Internet of Things (IoT) is another buzzword that has been popping up recently. To summarize, the IoT is a group of devices that are networked together to form an integrated smart system, such as a smart house or smart factory. Typically, devices are connected via a network and can pass data freely to any other device in the network, which allows for easy access to real-time production data. The IoT allows for the following:

			
					Problems can be identified more rapidly.

					Personnel can have real-time status updates.

					Machine(s) can adjust to changing situations more readily.

					Processes can be better orchestrated.

			

			Overall, the IoT is becoming a very prominent tool in automation and is the backbone of smart factories. Although the IoT is the backbone of many smart factories, another emerging technology is AI and machine learning (ML).

			Machine learning

			Of all the buzzwords, machine learning is by far the most famous. Machine learning and AI are all over the news, and systems such as ChatGPT are quickly changing the world. Much like the rest of the modern world, AI and ML have infiltrated the realm of automation. Currently, there are libraries that can be utilized to give PLCs the ability to leverage the power of AI and ML. AI and Machine Learning is a complex field that incorporates aspects of mathematics and computer science to understand and properly implement. Additionally, AI and ML are not singular concepts; instead, machine learning and, by extension, AI encompass many different algorithms that do different things. Common algorithms include the following:

			
					Deep learning algorithms that mimic the human brain

					Regression algorithms that are used to make predictions

					Clustering algorithms that cluster things into groups

			

			These are just a few broad types of algorithms. There are other types of algorithms, and many of those algorithms have different categories. For example, regression algorithms can be simple regression algorithms, multiple regression algorithms, or logistic regression algorithms. These algorithms can open vast new avenues that many would never have dreamed of; however, to effectively use ML, a developer must select a machine learning algorithm, collect and process the data, train the model, and finally deploy the model. This can be an exceedingly challenging job, and depending on the algorithm, formatting the data can be a daunting task that requires a lot of knowledge in computer science. So, what does all this equate to?

			What does this mean for automation engineering?

			So, with all this, why should an automation engineer care about computer science? After all, automation engineers have spent decades doing just fine with simple Ladder Logic and little thought into the guts of software, so why should automation professionals care now?

			Well, the answer is quite simple. Effective programming must be implemented to cut costs, secure the system, and ensure that the system runs efficiently. In terms of the cloud, if a machine is constantly uploading useless data to the cloud, it is going to add an extra cost to the system’s operation. For example, if the data is being uploaded to the cloud and the cloud is utilizing services such as computer instances and data resources, each useless byte of data is going to compound the cost of operating the machine. In terms of ML, if those data are being used to train a machine learning model, it can create errors in the model that make it perform poorly. It may also cause the system to take too long to train, which could render it useless. In terms of the IoT, if poor security practices are baked into the system, it can cause the system to become vulnerable to cyberattack. This means that if something is not coded correctly, whole smart factories could be rendered inoperable by simply exploiting something akin to a sensor or voice controller. More than anything else, following computer science principles will simply create better, more robust, and more durable machines. In all, even if you do not use innovative technologies, such as ML, the cloud, or the IoT, it will still pay to learn the core of computer science.

			Overall, computer science principles will help secure systems from attack, create smarter systems, and, most importantly, save money. The core of this stems from good coding practices, quality logic, and learning how to implement efficient software. So, now that we know why we need to understand computer science, let us take a step back and look at what a PLC is at the application level. For beginners, especially those who have programmed microcontrollers in the past, the concept of a PLC may not seem necessary. However, in terms of applications, there is a vast difference between microcontrollers and PLCs. With that, let us explore how they differentiate.

			PLCs versus microcontrollers

			Over the past 15 years, microcontrollers have become quite common for electronics education and hobbyists in general. At first glance, a PLC is a lot like a microcontroller, and if you were to compare a microcontroller to a PLC from 30 years ago, a PLC basically was a rugged microcontroller. Based on the PLC definition established before, it is quite easy to confuse the two types of controllers or, at the very least, confuse the applications. The nature of PLCs has changed, and the two types of controllers are worlds apart. Therefore, it is especially important to understand the differences between the two types of controllers, as it is often more appropriate to use one type over the other. To understand how a PLC differs from a microcontroller, let us explore what a microcontroller is.

			What are microcontrollers?

			A microcontroller can best be thought of as a low-level computer on a chip. Common microcontrollers include the following:

			
					PICs

					AVRs

					Arduino

					BASIC Stamp

					PICAXE

					Raspberry Pico

			

			It is important to note that many of these devices, such as Arduinos, BASIC Stamps, and Raspberry Picos, are not microcontrollers in the same sense as a PIC. These devices are best thought of as developer boards since they come packaged with a lot of external hardware that AVRs and PICs do not have. It is also important to know that these devices, especially the PICAXE, come with a bootloader loaded on them to understand their special programming interfaces, such as the Arduino programming language or PBASIC. For this discussion, we are going to keep things high-level and group all those devices into the microcontroller category.

			In terms of architecture, a microcontroller will often come packaged with its RAM, ROM, CPU, and other peripherals baked onto the chip. Microcontrollers do not run operating systems and can only run one program at a time. In short, most microcontrollers are best described as embedded components. So, what are some of the surface-level differences between a PLC and a microcontroller?

			Surface-level differences

			On the surface, PLCs and microcontrollers are vastly different. A PLC is a self-contained electronic computing apparatus that will usually have built-in programming connectors and expansion ports. On the other hand, a true microcontroller, such as a PIC, is a chip that requires external components, such as external clocks, resistors, and so on, to operate.

			It can be said that PLCs have more in common with Arduinos and other development boards that are microcontroller-based. For example, most development boards can be programmed with a USB or ethernet cable and do not usually require external components other than a power supply to run. However, the similarities usually end there. A major difference between a PLC and a microcontroller is the programming system that they use.

			PLC and microcontroller programming languages

			In general, microcontrollers are programmed in a derivative of a traditional programming language, typically a C, Assembly, Python, or BASIC dialect. For the most part, each microcontroller will have a corresponding programming language. For example, Arduinos use the Arduino programming language, which is a variant of C++, PICAXE chips use a version of BASIC, PIC microcontrollers use C, Parallax’s BASIC Stamp uses BASIC, and so on.

			PLCs, on the other hand, are programmed using Ladder Logic, Structured Text or other dedicated PLC programming languages. Most PLCs are programmed in Ladder Logic, which is a programming language designed to simulate relay logic and digital circuits; however, recently, Structured Text (a text-based programming language that is reminiscent of a cross between BASIC and Ada) has been on the rise. Ladder Logic is, right now, more popular than Structured Text, but when it comes to architecting quality and secure code, Structured Text is much easier to use.

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/image/Packt_Logo_New.png
<PACKD

OEBPS/toc.xhtml

		

		Contents

			

						PLCs for Beginners

						Contributors

						About the author

						About the reviewers

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Part 1: Basics of Computer Science for PLC Programmers

						Chapter 1: Computer Science Versus Automation Programming

					

								Technical requirements

								What is computer science?

							

										Why study computer science?

							

						

								What is automation programming?

							

										What is a PLC?

							

						

								Exploring automation through computer science

							

										How does computer science help automation programmers?

							

						

								Why should automation programmers care?

							

										Cloud technologies

										The internet of things

										Machine learning

										What does this mean for automation engineering?

							

						

								PLCs versus microcontrollers

							

										What are microcontrollers?

										Surface-level differences

										PLC and microcontroller programming languages

										Use cases

							

						

								PLC versus computers

							

										What is a computer?

										PLC versus computers

							

						

								Summary

								Questions

					

				

						Chapter 2: PLC Components – Integrating PLCs with Other Modules

					

								Technical requirements

								PLC types

								Common PLC modules

							

										Power supply

										Chassis

										CPU modules

										I/O modules

										Safety modules

							

						

								Sinking versus sourcing

							

										NPN versus PNP

							

						

								Sensors

								Motors and motor controls

							

										What is a motor?

										Open and closed-loop control systems

										Stepper motors

										Servo motors

										Encoders

										Motor drives

							

						

								Communication protocols

							

										What is a communication protocol, and what is it used for?

							

						

								Wiring diagrams

								Final project

							

										Specs

										BOM

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 3: The Basics of Programming

					

								Technical requirements

								Understanding what a program is

							

										What is the purpose of a program?

										Why use software over hardware?

										How to view software and hardware in a system

										Software is not a cure-all solution

							

						

								Understanding programming languages

							

										Syntax

										Translators

										Machine instruction

										Language paradigms

							

						

								Keywords

							

										Dos and don’ts of learning keywords and syntax

							

						

								Program flow

							

										Program iteration

							

						

								Exploring the IEC 61131-3 standard

							

										IEC 61131-3 pitfalls

							

						

								Final project

							

										Strategy

							

						

								Summary

								Further reading

								Questions

					

				

						Chapter 4: Unleashing Computer Memory

					

								Technical requirements

								What is memory?

							

										Memory

										Storage

							

						

								How computer/PLC memory and storage work

							

										HDDs

										SSDs

							

						

								Volatile versus non-volatile memory

							

										Volatile memory

										Non-volatile memory

							

						

								Memory addresses

							

										How memory works

										Computer memory – an analogy

							

						

								Common storage devices

							

										USB drives

										External hard-drives

										SD cards

										Cloud storage

										Obsolete storage devices

										Floppy drives

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 5: Designing Programs – Unleashing Pseudocode and Flowcharts

					

								Technical requirements

								What are pseudocode programs and flowcharts?

							

										Pseudocode

										What does pseudocode look like?

										Flowcharting

										What do flowcharts look like?

							

						

								Why use pseudocode and flowcharts in PLC programming?

							

										Why use pseudocode?

										Why use flowcharting?

										When to use one over the other?

							

						

								Tools needed for flowcharts and pseudocode

							

										Pseudocode tools

										Flowchart tools

										Whiteboarding

							

						

								Design exercises

							

										The quadradic equation

										The beer program

							

						

								Final project – Robot startup system

							

										Design requirements

										Design logic

										Wait sequence

										Pseudocode

										Flowchart

							

						

								Summary

								Questions

					

				

						Chapter 6: Boolean Algebra

					

								Technical requirements

								What is Boolean algebra?

								Boolean operators

							

										The basic operators

										The OR operator

										The NOT operator

							

						

								Boolean expressions

							

										Exploring NOT

										The OR operator

										The AND operator

										Operator laws

										Idempotent law

							

						

								Solving Boolean equations

							

										Examples

							

						

								Getting to know truth tables

							

										Basic operators

							

						

								Final project: Creating custom truth tables from scratch

							

										Row 1

										Row 2

										Row 3

										Row 4

										Final truth table

							

						

								Summary

								Questions

								Further reading

					

				

						Part 2: Introduction to Structured Text Programming

						Chapter 7: Unlocking the Power of ST

					

								Technical requirements

								What is ST?

							

										Area of a circle program in ST

							

						

								Why is ST important?

								ST versus LL

							

										Example 1 – The area of a circle program – LL

										Example 2 – Toggling a light

							

						

								What is CODESYS?

								Installing CODESYS

							

										A CODESYS exploration

										Exploring the PLC_PRG file

							

						

								The final project – Hello World

							

										Step 1 – Creating a new project!

										Step 2 – Code implementation

										Step 3 – Running the program!

							

						

								Chapter challenge

								Summary

								Further reading

								Questions

					

				

						Chapter 8: Exploring Variables and Tags

					

								Technical requirements

								What are variables/tags?

							

										Applications of variables

							

						

								Variables/tags under the hood

							

										Why use variables?

							

						

								Data types

							

										What is a data type?

							

						

								The IEC 61131-3 data types

							

										Bits and bytes

										Common data types

							

						

								How to declare variables

							

										Variable section of a file

										Declaring a variable

										Initializing a variable

							

						

								Variable naming

							

										Rules to naming a variable

										Naming conventions

							

						

								Final project – declare the variables of a triangle

							

										Code implementation

										Challenge – declare the variable for a rectangle’s perimeter

							

						

								Summary

								Further reading

								Questions

					

				

						Chapter 9: Performing Calculations in Structured Text

					

								Technical requirements

								Math in ST

								Assigning numbers

								Basic calculations

							

										Solution variable

										The four basic functions

										Basic operation demonstration

							

						

								Complex mathematical functions

							

										Square root function

										Exponent function

										ABS function

							

						

								Trigonometric functions

							

										Arc functions

							

						

								Order of operations for math calculations

								Computing complex equations

							

										Distance between two points

							

						

								Final projects

							

										Final project 1 – programming the perimeter of a rectangle

										Final project 2 – Pythagorean theorem

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 10: Unleashing Built-In Function Blocks

					

								Technical requirements

								What are prebuilt function blocks?

							

										Functions, function blocks, and keywords

							

						

								Function blocks under the hood

							

										What is a function block?

							

						

								Rising and falling edges

								Common PLC function blocks

							

										Counter function blocks

										Timer function blocks

							

						

								Final project

							

										Variables

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 11: Unlocking the Power of Flow Control

					

								Technical requirements

								Exploring what flow control is

								Exploring why flow control is important

								Exploring logical expressions

								Exploring the IF statement

							

										IF statement syntax

										Checking if two values are the same!

										Exploring the not equals operator

							

						

								Designing control statements

							

										Overdraft program

							

						

								Exploring the CASE statement

							

										State machines and CASE statements

										Implementing the state machine

										Flowcharting and CASE statements

										Real-world applications for the CASE statement

							

						

								Final project

							

										Requirements

										Program design

										Code implementation

										Final challenge

							

						

								Summary

								Questions

					

				

						Chapter 12: Unlocking Advanced Control Statements

					

								Technical requirements

								Nested control statements

								ELSE statements

								ELSIF statements

							

										Challenge

							

						

								Logical operators

							

										Exploring the OR operator

										Exploring the XOR operator

										Exploring the NOT operator

							

						

								Final project

							

										Requirements

										Variables

										Color and shape sorter logic

										Testing conditions

							

						

								Summary

								Further reading

								Questions

					

				

						Chapter 13: Implementing Tight Loops

					

								Technical requirements

								Exploring the different types of loops

							

										Counter loop

										Precheck loops

										Post check loops

										Infinite loops

							

						

								Exploring loops in pseudocode and flowcharts

							

										Exploring loops with pseudocode

										Representing a loop in a flowchart

							

						

								Implementing a FOR loop

							

										Implementing the WHILE loop

										Exploring the REPEAT loop

										Exporting the EXIT keyword

							

						

								Understanding nested loops

							

										Challenge – creating a behavior report

							

						

								Final project

							

										Design

										Code implementation

										Testing the program

							

						

								Summary

								Questions

								Further reading

					

				

						Part 3: Algorithms, AI, Security, and More

						Chapter 14: Sorting with Loops

					

								Technical requirements

								How to use this chapter

								What is sorting?

								Exploring what arrays are and how to use them!

							

										What is an array?

										Array elements

										Initializing an array

										Retrieving the number of elements in an array

										Why are arrays important for sorting algorithms?

							

						

								Exploring sorting algorithms

							

										What is an algorithm?

										What is a sorting algorithm?

							

						

								Algorithm efficiency metrics

							

										Exploring the Big O notation

										Exploring the Big Ω notation

							

						

								Common sorting algorithms

							

										Exploring bubble sort

										Exploring insertion sort

										Challenge – Merge sort

							

						

								Final project – cement bag sorter

							

										Requirements

										Analysis

										Implementation

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 15: Secure PLC Programming – Stopping Cyberthreats

					

								Technical requirements

								What cybersecurity is and why it’s important

								The basics of cybersecurity

							

										Vulnerabilities, threats, and risk

										Threat actors

										Exploring AAA

										Air-gapped systems

							

						

								Common cyberattacks

							

										Exploring information gathering

										Exploring social engineering

										Exploring password hacking

										Malware

							

						

								Attack prevention methods

							

										Stopping social engineering

										Defending against password crackers

										Password length

										Malware defense

							

						

								Final project – a PLC-based activation system

							

										Design

							

						

								Certifications

								Summary

								Questions

								Further reading

					

				

						Chapter 16: Troubleshooting PLCs – Fixing Issues

					

								Technical requirements

								Common causes of PLC issues

							

										Broken software

										Exploring environmental issues

										Understanding non-environmental issues

							

						

								Common hardware issues

							

										Exploring power supply issues

										Common PLC problems

										Bad batteries

							

						

								Exploring troubleshooting techniques

							

										The PLC toolkit

										Diagnosing power supply issues

										Diagnosing temperature issues

										Diagnosing networks

										Troubleshooting software

										The basics of troubleshooting software

							

						

								Final project

							

										Troubleshooting

							

						

								Summary

								Questions

					

				

						Chapter 17: Leveraging Artificial Intelligence (AI)

					

								Technical requirements

								What is GenAI?

							

										What is AI?

							

						

								What GenAI can’t do

								Reasonable expectations with GenAI

							

										What not to expect with GenAI

										What to expect when using GenAI

							

						

								The basics of prompt engineering

							

										Creating a prompt

							

						

								Producing workable code with ChatGPT

								Final project

							

										Prompt and code

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 18: The Final Project – Programming a Simulated Robot

					

								Technical requirements

								Project scope

								Project requirements

								Flowchart for the system

								Designing the pseudocode

								Implementing the program

							

										Using ChatGPT to implement bubble sort

										Final project variables

										Main program logic

										Testing the program

							

						

								Summary

					

				

						Assessments

					

								Chapter 1

								Chapter 2

								Chapter 3

								Chapter 4

								Chapter 5

								Chapter 6

								Chapter 7

								Chapter 8

								Chapter 9

								Chapter 10

								Chapter 11

								Chapter 12

								Chapter 13

								Chapter 14

								Chapter 15

								Chapter 16

								Chapter 17

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

	

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/image/B21673_QR_Free_PDF.jpg

OEBPS/Fonts/CourierStd.otf

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/image/Cover.png
<packt>

PLCs for Beginners

An introductory guide to building robust PLC programs

with Structured Text

M. T. WHITE

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

