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			Preface

			Until recently, automation programming has been, for the most part, unchanging. However, with the recent boom in computing power, that is rapidly changing. New technologies are being introduced at a rapid pace, and these are drastically altering the automation landscape. These new, disruptive technologies are rendering the days of only programming in Ladder Logic a relic of the past. In today’s automation landscape, to get the most out of a PLC, one must use Structured Text. This book is an in-depth look at writing very robust and well-written programs in Structured Text while also providing a general education for programming logic and design as well as other core tenets that will be required to future-proof projects.

			Who this book is for

			This book is for anyone who is interested in learning Structured Text programming. It is designed for beginners who have never programmed before and for those who wish to transition from Ladder Logic to Structured Text.

			What this book covers

			Chapter 1, Computer Science Versus Automation Programming, introduces you to computer science and contrasts it with automation programming. This chapter will explore the various types of controllers, emerging technologies, and more.

			Chapter 2, PLC Components – Integrating PLCs with Other Modules, focuses on introducing the various components that make up a traditional PLC. This chapter will introduce you to analog and digital principles as well as all the needed components that a PLC will need to operate.

			Chapter 3, The Basics of Programming, lays the foundation for programming. This chapter will introduce you to what programs are, how they work, and much more.

			Chapter 4, Unleashing Computer Memory, lays the foundation for more advanced chapters by introducing you to the basics of memory. Topics explored will include what memory is, how memory works, and common storage devices.

			Chapter 5, Designing Programs – Unleashing Pseudocode and Flowcharts, teaches you how to create a design for a program. Concepts explored will be designing a program in pseudocode and with a flowchart. 

			Chapter 6, Boolean Algebra, covers the basics of Boolean algebra. The core principles will be to learn how to compute logical equations, understand logical operators, and create truth tables.

			Chapter 7, Unlocking the Power of ST, explores what Structured Text truly is and why it is important. The key takeaways from this chapter are understanding why Structured Text is important, why it should be used, and how to set up the programming environment.

			Chapter 8, Exploring Variables and Tags, expands on and applies the material presented in Chapter 4 to implement what are called variables or tags. This chapter will cover concepts such as data types, naming conventions, and much more.

			Chapter 9, Performing Calculations in Structured Text, covers one of the most pivotal skills any PLC programmer can have: programming mathematical calculations. Topics will include how to program math equations and common math functions.

			Chapter 10, Unleashing Built-In Function Blocks, explores the built-in function blocks. The main takeaway will be for you to understand what a built-in function block is and how to use common function blocks such as timers and counters.

			Chapter 11, Unlocking the Power of Flow Control, introduces flow control with conditionals. This chapter will explore how the flow of a program can be altered and basic intelligence can be introduced to a program.

			Chapter 12, Unlocking Advanced Control Statements, expands on concepts that were explored in the previous chapter, and examines topics such as embedded conditional statements, complex logical expressions, and much more.

			Chapter 13, Implementing Tight Loops, provides an in-depth exploration of loops. This chapter will explore various types of loops in Structured Text as well as their applications.

			Chapter 14, Sorting with Loops, introduces you to the basics of sorting algorithms. The key takeaway from this chapter is to introduce you to concepts such as algorithms, Big O notation, the basics of arrays, common sorting algorithms, and more.

			Chapter 15, Secure PLC Programming – Stopping Cyberthreats, provides an overview of the cybersecurity landscape in relation to PLC-based systems. This chapter will present a lot of theoretical knowledge that can be applied to the design of PLC-based systems, networks, and more.

			Chapter 16, Troubleshooting PLCs – Fixing Issues, provides the necessary steps to troubleshoot a malfunctioning PLC-based machine. Topics will include common issues, necessary tools, IT diagnostics, and more.

			Chapter 17, Leveraging Artificial Intelligence (AI), explores how generative AI (ChatGPT) can be used to help automatically write software. This chapter will explore what generative AI is, how to use it, reasonable expectations, and how to write prompts.

			Chapter 18, The Final Project – Programming a Simulated Robot, draws on material explored throughout the book. This chapter will focus on programming a theoretical robot that sorts parts and sends lots down the proper production line.

			To get the most out of this book

			This book assumes no prior knowledge of PLC programming or programming in general. To get the most out of this book, only a basic understanding of mathematics is required. Ideally, you should be familiar with basic algebra and maybe trigonometry.
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			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/PLCs-for-Beginners. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “We had a CASE conditional with an IF statement inside it .”

			A block of code is set as follows:

			
PROGRAM PLC_PRG
VAR
currentHopperWeight    : REAL := 250;
bag1Weight             : REAL;
bag2Weight             : REAL;
END_VAR
			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
PROGRAM PLC_PRG
VAR
    password    : STRING(255) := 'password';
    length    : UINT;
    acceptPass : bool;
END_VAR
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance: "Air gapped systems are simply systems that are not connected to the internet.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read PLCs for Beginners we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below
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			https://packt.link/free-ebook/9781803230931

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	


		
			Part 1: Basics of Computer Science for PLC Programmers

			Programming is much more than just writing code. There is a lot of theoretical knowledge that goes into crafting a well-written program, and this part will lay the foundation for just that. This part will provide all the theoretical knowledge needed to understand the rest of the book and will cover the basics of PLCs, including PLC hardware, memory, logic, and design, how programs work under the hood, Boolean algebra, and more.

			This part has the following chapters:

			
					Chapter 1, Computer Science Versus Automation Programming

					Chapter 2, PLC Components – Integrating PLCs with Other Modules

					Chapter 3, The Basics of Programming

					Chapter 4, Unleashing Computer Memory

					Chapter 5, Designing Programs – Unleashing Pseudocode and Flowcharts

					Chapter 6, Boolean Algebra

			

		

		
			
			

		

	


		
			1

			Computer Science Versus Automation Programming

			If you were to ask an everyday automation professional what computer scientists are, you would probably get an answer along the lines of math nerds, computer geniuses, and so on. Most automation professionals are usually engineers or trade persons who stem from a field with little to no computer science exposure. This means very few automation professionals are classically trained in computer principles. For many automation professionals, there is a barrier between complex computing and automation.

			This book is going to be different from most automation programming books on the market. This book is going to focus on developing software for Programmable Logic Controllers (PLCs); however, this book is designed to teach you, the reader, to be more than a PLC programmer or tech. This book is designed to turn you into a genuine software developer. In short, this book will cover everything from program design to security. This book will also utilize Structured Text over the more traditional Ladder Logic. The reason for utilizing Structured Text is twofold. First, Structured Text is the future of PLC programming. As PLC applications become more advanced, the programming apparatus will need to be more robust. Structured Text offers much tighter control over a program than Ladder Logic. Second, implanting a well-designed program in Structured Text will be much easier to implement than it would be in Ladder Logic. With that said, there are no prerequisites for this book. You do not need to have any special math skills, logic skills, or anything of the sort to follow along. Those skills will be introduced in the book, but they will be easy to master and implement.

			To begin, the brain of most modern machines is a PLC. PLCs, for many, are just programmable devices, but they are miniature computers that are governed by the same laws of computing that govern any other device, such as a personal computer or smartphone. This poses a problem in the automation world because software is usually considered an easily replaceable component that exists to complement the hardware. In other words, many automation engineers often have an “if it works it’ll do” attitude towards software. This is a faulty philosophy, as poorly written software can hinder a machine and put it in the cyber trash heap before its time. Therefore, to become more than a simple PLC programmer, a mastery of computer science is a must.

			To begin our journey into computer science, we’re going to first explore the following topics:

			
					What is computer science?

					What is automation programming?

					Why is computer science important in automation programming?

					Why should automation programmers care about automation programming?

					The differences between a PLC and a microcontroller

			

			Finally, to round out the chapter, we will explore the differences between a PLC and a computer.

			Technical requirements

			This chapter is theoretical and will not require any specific software.

			What is computer science?

			Computer science is the study of computer systems, with a strong emphasis on software. In a more lay sense, computer science is the study of computational systems such as computers, phones, or anything that runs software, including PLCs. In short, the scope of computer science usually encompasses fields that involve software development or computer architecture. Computer science is a broad field that ties into many other disciplines, such as the following:

			
					Software engineering

					Artificial intelligence (AI)

					Networking

					Cyber security

					Database systems

					Bioinformatics

					Distributed computing

					Computer architecture

			

			The field of robotics and automation can also loosely be considered a field of computer science.

			As can be seen, computer science encompasses a lot of different disciplines. For some, this may seem scary, but rest assured that a mastery of each of these subfields is not necessary to be successful at computer science or programming. The focus of this book is going to be mostly on software engineering, which means there is going to be a heavy emphasis on software design and implementation. So, why should one learn computer science?

			Why study computer science?

			The ultimate goal of computer science is to create faster and more powerful computer systems that can solve increasingly complex problems. To put it briefly, a person would want to study computer science to build more efficient hardware, software, and networks, improve computer system security, and more. In other words, a person will study computer science to build faster, smarter, safer, and more reliable systems. With that, why should automation programmers or engineers care about computer science?

			Before the benefits of computer science can be appreciated for automation programming, it is important to understand what automation programming is. As such, the following section is going to explore what automation programming is and where it is used.

			What is automation programming?

			Automation programming can take on many different interpretations depending on the context and industry. For this book, automation programming will be considered industrial automation programming. Industrial automation programming and control programming can be considered the same thing. When one mentions controls or automation programming, they are usually referring to writing software that lives on some type of controller that is used to automate the use of machinery. In all, automation software is designed to reduce the amount of human intervention in a process.

			Automation programming starts with a programmable device. There are many types of automation controllers, with some being the following:

			
					PLCs

					Remote terminal unit (RTU)

					Proportional – integral – derivative (PID)

					Miscellaneous control boards

			

			What is considered automation software should include more than software that simply lives on controllers. This means that what is considered industrial control software can also branch out into other families of software, such as the following:

			
					Human–machine interfaces (HMIs)

					Supervisory control and data acquisition (SCADA)

					Databases

			

			When someone mentions automation programming, they are usually referring to software that lives on the most common types of industrial controllers, PLCs. PLCs are often the main type of controllers for industrial applications and are often seen as the backbone for many machines. This means that when it comes to automation programming, knowing how to program a PLC effectively is necessary.

			For this book, automation programming refers to writing software for PLC devices. With that, before the links between automation programming and computer science can be fully appreciated, it is important to establish a high-level understanding of what a PLC is and what it does.

			What is a PLC?

			A PLC is a specialized programmable device designed to be very rugged and operate for extended periods. PLCs are responsible for operating industrial or heavy equipment and are commonly used in the following:

			
					Streetlights

					Amusement parks

					Factories

					Cranes

					Nuclear reactors

					Space launch systems

					Dams

			

			Anywhere a program is required to operate a piece of industrial or heavy equipment, a PLC will usually be present.

			For beginners and even some experienced automation professionals, all this computer science stuff may seem dubious, unnecessary, and more trouble than it’s worth. However, before any rash judgments are made, let us explore why automation engineers need to understand computer science.

			Exploring automation through computer science

			In automation, software is often seen as a second-class citizen to the hardware. If you speak to an automation professional, chances are they are going to tout the hardware as the main focal point of the system. Automation engineers love to brag about the latest controllers that are being utilized, how they integrated the finest motors and motor drives into the system, and so on. However, it is rare to hear a typical automation engineer brag about the efficiency of the software or tout the design patterns they used to architect the software.

			A lot of this attitude towards software boils down to tangible assets. Often, an engineer can hand a customer the latest power supply or brag about how easy it is to swap out a new motor drive. If the customer ever sells the machine off, they can use all those features as selling points to raise the value of the machine. However, there is a major flaw in this logic. Without quality software, the machine will be an expensive paperweight. With low-quality software, the machine will be a high-quality paperweight that can move and perform certain tasks marginally well at best. Put bluntly, the quality of a machine starts with the software. A machine can have the most advanced hardware in the world, but if it has poorly written software, it will be a poorly performing machine at best. With that, how does computer science help?

			How does computer science help automation programmers?

			If you think about the way computer science was defined in the past, it was mainly concerned with producing quality software. Computer science has many principles that, when followed, will produce fast, safe, and reliable software. In other words, the computer science principles that are going to be explored in this book are going to allow you to get the most out of that advanced hardware. If you can understand and even master the principles that will be explored, your code will be light years ahead of your competition, and all that fancy hardware will be used to its full potential.

			Many experienced automation professionals may be wondering why they should care about computer science and how it relates to automation programming. After all, automation software, for years, has been written with little concern given to software execution performance. There are also a lot of beginners who are more infatuated with robots and building smart factories than with writing quality code. So, to give some context as to why someone should care about computer science, we are going to explore a few reasons why.

			Why should automation programmers care?

			The world is changing rapidly, and the computer industry is leading the charge. For those who work in the automation industry, where systems can easily be 20 years old, it can often be difficult to see how rapidly the IT world is morphing. In the past, most of the then-emerging technologies were decentralized and did not factor into industrial automation. However, with the widespread adaptation of the internet and interconnected devices, that all changed.

			Recently, the world has seen the rise of things such as cloud computing, the IoT, machine learning, and many other things. The new elements have exploded so fast that they are starting to be integrated into the industrial automation realm. To understand why automation programmers should care about computer science, we first need to understand what these modern technologies are. Now, it is important to remember that this list is not exhaustive, but the following technologies will give an insight into why we need to care about computer science principles.

			Cloud technologies

			The term cloud has been making the rounds over the past few years. In a very lay sense, the cloud is a bunch of interconnected data centers where you can rent resources. These resources vary and have many different applications. For example, some common, high-level services include the following:

			
					Virtual machines (VMs)

					Data storage, such as databases and cloud storage

					Containerization

					Microservice support

					Machine learning

					Data analytics

					Networking

			

			The best way to conceptualize the cloud is an all-in-one resource that has all the computing infrastructure needed to power your application. There is a lot to understand about the cloud and its various levels that go well beyond the scope of this book. However, it is important to know the most popular cloud service providers (CSPs):

			
					AWS (Amazon)

					Azure (Microsoft)

					GCP (Google)

					OCI (Oracle)

					IBM Cloud (IBM)

			

			It is important to note that this list is not complete, and from this list, AWS and Azure are the most popular.

			Most of the services offered through these CSPs charge either via usage, the number of requests to the service, or the amount of time used. What is also interesting is that the cloud is being adopted by the automation industry because it is often cheaper and requires less skill to create resources in the cloud than having to create those resources in-house and maintain the service on a custom server. Even if the automation company you are working for does not utilize the cloud, it is likely that a customer would require the machine to be interfaced with cloud services. With that, the next major technology that we need to explore is the IoT.

			The internet of things

			The Internet of Things (IoT) is another buzzword that has been popping up recently. To summarize, the IoT is a group of devices that are networked together to form an integrated smart system, such as a smart house or smart factory. Typically, devices are connected via a network and can pass data freely to any other device in the network, which allows for easy access to real-time production data. The IoT allows for the following:

			
					Problems can be identified more rapidly.

					Personnel can have real-time status updates.

					Machine(s) can adjust to changing situations more readily.

					Processes can be better orchestrated.

			

			Overall, the IoT is becoming a very prominent tool in automation and is the backbone of smart factories. Although the IoT is the backbone of many smart factories, another emerging technology is AI and machine learning (ML).

			Machine learning

			Of all the buzzwords, machine learning is by far the most famous. Machine learning and AI are all over the news, and systems such as ChatGPT are quickly changing the world. Much like the rest of the modern world, AI and ML have infiltrated the realm of automation. Currently, there are libraries that can be utilized to give PLCs the ability to leverage the power of AI and ML. AI and Machine Learning is a complex field that incorporates aspects of mathematics and computer science to understand and properly implement. Additionally, AI and ML are not singular concepts; instead, machine learning and, by extension, AI encompass many different algorithms that do different things. Common algorithms include the following:

			
					Deep learning algorithms that mimic the human brain

					Regression algorithms that are used to make predictions

					Clustering algorithms that cluster things into groups

			

			These are just a few broad types of algorithms. There are other types of algorithms, and many of those algorithms have different categories. For example, regression algorithms can be simple regression algorithms, multiple regression algorithms, or logistic regression algorithms. These algorithms can open vast new avenues that many would never have dreamed of; however, to effectively use ML, a developer must select a machine learning algorithm, collect and process the data, train the model, and finally deploy the model. This can be an exceedingly challenging job, and depending on the algorithm, formatting the data can be a daunting task that requires a lot of knowledge in computer science. So, what does all this equate to?

			What does this mean for automation engineering?

			So, with all this, why should an automation engineer care about computer science? After all, automation engineers have spent decades doing just fine with simple Ladder Logic and little thought into the guts of software, so why should automation professionals care now?

			Well, the answer is quite simple. Effective programming must be implemented to cut costs, secure the system, and ensure that the system runs efficiently. In terms of the cloud, if a machine is constantly uploading useless data to the cloud, it is going to add an extra cost to the system’s operation. For example, if the data is being uploaded to the cloud and the cloud is utilizing services such as computer instances and data resources, each useless byte of data is going to compound the cost of operating the machine. In terms of ML, if those data are being used to train a machine learning model, it can create errors in the model that make it perform poorly. It may also cause the system to take too long to train, which could render it useless. In terms of the IoT, if poor security practices are baked into the system, it can cause the system to become vulnerable to cyberattack. This means that if something is not coded correctly, whole smart factories could be rendered inoperable by simply exploiting something akin to a sensor or voice controller. More than anything else, following computer science principles will simply create better, more robust, and more durable machines. In all, even if you do not use innovative technologies, such as ML, the cloud, or the IoT, it will still pay to learn the core of computer science.

			Overall, computer science principles will help secure systems from attack, create smarter systems, and, most importantly, save money. The core of this stems from good coding practices, quality logic, and learning how to implement efficient software. So, now that we know why we need to understand computer science, let us take a step back and look at what a PLC is at the application level. For beginners, especially those who have programmed microcontrollers in the past, the concept of a PLC may not seem necessary. However, in terms of applications, there is a vast difference between microcontrollers and PLCs. With that, let us explore how they differentiate.

			PLCs versus microcontrollers

			Over the past 15 years, microcontrollers have become quite common for electronics education and hobbyists in general. At first glance, a PLC is a lot like a microcontroller, and if you were to compare a microcontroller to a PLC from 30 years ago, a PLC basically was a rugged microcontroller. Based on the PLC definition established before, it is quite easy to confuse the two types of controllers or, at the very least, confuse the applications. The nature of PLCs has changed, and the two types of controllers are worlds apart. Therefore, it is especially important to understand the differences between the two types of controllers, as it is often more appropriate to use one type over the other. To understand how a PLC differs from a microcontroller, let us explore what a microcontroller is.

			What are microcontrollers?

			A microcontroller can best be thought of as a low-level computer on a chip. Common microcontrollers include the following:

			
					PICs

					AVRs

					Arduino

					BASIC Stamp

					PICAXE

					Raspberry Pico

			

			It is important to note that many of these devices, such as Arduinos, BASIC Stamps, and Raspberry Picos, are not microcontrollers in the same sense as a PIC. These devices are best thought of as developer boards since they come packaged with a lot of external hardware that AVRs and PICs do not have. It is also important to know that these devices, especially the PICAXE, come with a bootloader loaded on them to understand their special programming interfaces, such as the Arduino programming language or PBASIC. For this discussion, we are going to keep things high-level and group all those devices into the microcontroller category.

			In terms of architecture, a microcontroller will often come packaged with its RAM, ROM, CPU, and other peripherals baked onto the chip. Microcontrollers do not run operating systems and can only run one program at a time. In short, most microcontrollers are best described as embedded components. So, what are some of the surface-level differences between a PLC and a microcontroller?

			Surface-level differences

			On the surface, PLCs and microcontrollers are vastly different. A PLC is a self-contained electronic computing apparatus that will usually have built-in programming connectors and expansion ports. On the other hand, a true microcontroller, such as a PIC, is a chip that requires external components, such as external clocks, resistors, and so on, to operate.

			It can be said that PLCs have more in common with Arduinos and other development boards that are microcontroller-based. For example, most development boards can be programmed with a USB or ethernet cable and do not usually require external components other than a power supply to run. However, the similarities usually end there. A major difference between a PLC and a microcontroller is the programming system that they use.

			PLC and microcontroller programming languages

			In general, microcontrollers are programmed in a derivative of a traditional programming language, typically a C, Assembly, Python, or BASIC dialect. For the most part, each microcontroller will have a corresponding programming language. For example, Arduinos use the Arduino programming language, which is a variant of C++, PICAXE chips use a version of BASIC, PIC microcontrollers use C, Parallax’s BASIC Stamp uses BASIC, and so on.

			PLCs, on the other hand, are programmed using Ladder Logic, Structured Text or other dedicated PLC programming languages. Most PLCs are programmed in Ladder Logic, which is a programming language designed to simulate relay logic and digital circuits; however, recently, Structured Text (a text-based programming language that is reminiscent of a cross between BASIC and Ada) has been on the rise. Ladder Logic is, right now, more popular than Structured Text, but when it comes to architecting quality and secure code, Structured Text is much easier to use.
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