

 [image: Unity 2021 Cookbook]

Unity 2021 Cookbook

Fourth Edition

Over 140 recipes to take your Unity game development skills to the next level

Matt Smith

Shaun Ferns

BIRMINGHAM - MUMBAI

Unity 2021 Cookbook

Fourth Edition

Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Associate Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Pavan Ramchandani

Senior Editor: Sofi Rogers

Content Development Editor: Rakhi Patel

Technical Editor: Simran Udasi

Copy Editor: Safis Editing

Project Coordinator: Manthan Patel

Proofreader: Safis Editing

Indexer: Tejal Soni

Production Designer: Shankar Kalbhor

First published: June 2013

Second edition: October 2015

Third edition: August 2018

Fourth edition: September 2021

Production reference: 1030921

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-83921-761-6

www.packt.com

I dedicate this book to my daughter, Charlotte.

– Matt Smith

I dedicate this book to Martina, Tomás, and Sénan.

– Shaun Ferns

 Foreword

Not so long ago, developing professional quality games meant licensing an expensive game engine or writing your own from scratch. Then, you needed to hire a small army of developers to use it. Today, game engines like Unity have democratized game development to the point where you can simply download the tools and start making the game of your dreams right away.

Well... kinda. Having a powerful game creation tool is not the same thing as having the technical knowledge and skills to use it effectively.

I started coding games as a kid on my trusty ZX Spectrum, Commodore 64 & later the Amiga. I've been working as a professional game developer since 2003. When I first took the plunge into learning Unity development to create the Fungus storytelling tool, I found a huge amount of online documentation, tutorials, and forum answers available for Unity developers. This makes getting started with Unity development relatively easy, but the information can also be quite fragmented. Often, the last piece of the puzzle you need is buried 40 minutes into an hour-long tutorial video or on the 15th page of a forum thread. The hours you spend looking for these nuggets of wisdom is time that would be better spent working on your game.

The beauty of the Unity Cookbooks is that Matt, Chico, and Shaun have distilled this knowledge into a neat collection of easy-to-follow recipes, and they have provided the scripts and complete working projects so that you can put it to use straight away.

In this latest edition for Unity 2021, Matt and Shaun have updated the recipes from the previous book and added new recipes to introduce many of the latest Unity features. These include topics such as Augmented Reality and XR web publishing, particle systems, 2D physics, the 2021 Unity Starter Assets packages, code coverage, and running Python scripts in Unity.

Getting started with Unity development is free and easy. When you're ready to take your skills to the next level, this book is an effective way to do just that. It covers a great deal in its hundreds of pages, and if you can master even half of what's here, you'll be well on the way to becoming a great Unity developer!

Chris Gregan

Chief Architect, Romero Games: www.romerogames.ie

Author of Fungus: fungusgames.com

 Contributors

About the authors

Matt Smith is a computing academic at TU Dublin, the Technological University of Dublin, Ireland, where he leads the DRIVE Research Group (Digital Realities, Interaction, and Virtual Environments). He has been researching and teaching interactive game and web technologies since he moved to Ireland in 2002. Matt started computer programming on a brand new ZX80 and submitted two games for his computing O-level exam in 1985. After nearly 10 years as a full-time student on a succession of scholarships, he gained several degrees in computing, including a Ph.D. in computational musicology. Since 1994, he has been a full-time computer science lecturer at the University of Winchester (UK), then Middlesex University (UK), and now TU Dublin (Ireland).

In 1985, Matt wrote the lyrics and was in the band whose music appeared on the B-side of the audio cassette carrying the computer game Confuzion (look up the game's Wikipedia page!). Matt is one of the documentation authors for the free, open source Fungus Unity visual scripting and dialogue system. He enjoys sports, martial arts, and music, playing several instruments enthusiastically, if not very well. To get away from the computer completely, he has taken up carpentry and is currently planning to build an oak staircase (with a landing!), which will be his biggest project yet...

Thanks to my family for all their support. Thanks also to the editors, reviewers, and readers who provided feedback and suggestions. Thanks to my students, who continue to challenge and surprise me with their enthusiasm for multimedia and game development. Special thanks to Kris for help with the VR recipes and Nina for the AR recipes. Also thanks to Justin in Limerick for keeping me sane with snooker, golf breaks, and the newly installed full-size table tennis table – and congratulations on getting that first-class degree summa cum laude in 2021! Many thanks to Shaun for coming on board to coauthor this edition; given all the additional challenges this year, I don't think this book would have been completed without him, and I look forward to future collaborations.

Shaun Ferns is an academic at TU Dublin, the Technological University of Dublin, Ireland, where he is a researcher in the DRIVE Research Group (Digital Realities, Interaction, and Virtual Environments) and an associate researcher at the Educational Informatics Lab (EILab) at OntarioTechU. Since 2016, he has been primarily researching and teaching multimedia development, and prior to that was involved in the delivery of several engineering programs. He is currently exploring the opportunities transmedia provides in improving user experience and engagement in cultural archive artifacts and serious games for the built environment.

Shaun began to "play" with Unity when designing and building his house in 2010, developing an architectural walk-through to support the development of the design of the new home. Since then, he has been working on several Unity-based cultural projects and hopes to complete one soon!

Since 2011, Shaun has taken up the challenge of playing the Irish tenor banjo and currently enjoys playing in Irish traditional music sessions with his friends. When not practicing, he can be found wandering the cliffs and mountains around Donegal or swimming its Atlantic shores.

Thanks to the students I have been fortunate to work with over the last 20 years; the energy, excitement, and courage in their work have been truly inspirational and continue to have an influence. Thanks also to the editors, reviewers, and readers who provided feedback and suggestions. I began to enjoy our conversations through your comments! Special thanks to Matt, a source of guidance and support throughout this process, and for sharing his love of multimedia development.

About the reviewers

Alessandro Salvati is a bulky, bearded geekbear born in Sardinia, Italy and living in Liverpool. A nerd from the 80s, he is a passionate freelance self-taught Unity game developer and a proud gameplay programmer at Skyhook Games Ltd. He was the lead dev of several top-rated and featured games on mobile stores. His most renowned works are gamification experiences preserving cultural heritage – commissioned by the most prestigious Italian museums. He programmed and led “Father and Son” for The MANN in Naples, thricely praised by the Italian Prime Minister himself on public media, and the first game funded by an international archaeological museum. Alessandro raised awareness about anxiety/panic attacks with his little game “Anxiety Attacks.”

I want to thank:

	My mother, Elisa, who’s on my side while Covid forcefully keeps dividing us, in two different countries for over a year.

	All the friends in Oristano that I miss so much.

	My dearest Antonio from Pomezia.

	Kinjal Bari (Project Coordinator) and Manthan Patel (Associate Project Manager) from Packt Publishing, for being so patient and understanding during these months of worldwide craziness.

	The UK government in the hope it lets me continue to live in the UK.

Sungkuk Park is a Berlin-based game developer. He majored in art studies at Hongik University in Seoul, Korea but turned into a software engineer in the gaming industry. He is interested in almost everything about gaming. He is now turning into a technical artist!

These are his publications:

	Author of Seamless Society, 21 July 2020, in collaboration with an online exhibition platform, DDDD

	Author of Wallpeckers: Breaking down the barriers between media, an article in the Korean art magazine Misulsegye, March 2019

	Author of The Possibility of the Impossibility of the "Art Games", an article in the Korean Art magazine Misulsegye, February 2017

	Translator and Editor of Game Level Generation Using Neural Networks, a featured post of Gamasutra

 Table of Contents

 	Title Page
	Copyright and Credits	Unity 2021 Cookbook
Fourth Edition

	Dedication
	Foreword
	Contributors	About the authors
	About the reviewers

	Preface	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used
	Get in touch
	Reviews

	Displaying Data with Core UI Elements	Technical requirements
	Displaying a "Hello World" UI text message
	Getting ready
	How to do it...
	How it works...
	There's more...
	Styling substrings with rich text
	Displaying a digital clock
	Getting ready
	How to do it...
	How it works...
	Displaying a digital countdown timer
	Getting ready
	How to do it...
	How it works...
	Creating a message that fades away
	Getting ready
	How to do it...
	How it works...
	Displaying a perspective 3D Text Mesh
	Getting ready
	How to do it...
	How it works...
	There's more...
	Making the text crawl as it does in the movie
	Where to learn more
	Creating sophisticated text with TextMeshPro
	Getting ready
	How to do it...
	How it works...
	There's more...
	Rich text substrings for colors, effects, and sprites
	Displaying an image
	Getting ready
	How to do it...
	How it works...
	There's more...
	Working with 2D sprites and UI Image components
	See also
	Creating UIs with the Fungus open source dialog system
	How to do it...
	How it works...
	Creating a Fungus character dialog with images
	How to do it...
	How it works...
	There's more...
	Further reading

	Responding to User Events for Interactive UIs	Technical requirements
	Creating UI Buttons to move between scenes
	How to do it...
	How it works...
	There's more...
	Animating button properties on mouseover
	How to do it...
	How it works...
	Organizing image panels and changing panel depths via buttons
	Getting ready
	How to do it...
	How it works...
	There's more...
	Moving up or down by just one position, using scripted methods
	Displaying the value of an interactive UI Slider
	How to do it...
	How it works...
	Displaying a countdown timer graphically with a UI Slider
	Getting ready
	How to do it...
	How it works...
	Setting custom mouse cursors for 2D and 3D GameObjects
	Getting ready
	How to do it...
	How it works...
	Setting custom mouse cursors for UI controls
	Getting ready
	How to do it...
	How it works...
	Interactive text entry with Input Field
	How to do it...
	How it works...
	There's more...
	Toggles and radio buttons via toggle groups
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating text and image icon UI Drop-down menus
	Getting ready
	How to do it...
	How it works...
	There's more...
	Adding images to a Dropdown control
	Displaying a radar to indicate the relative locations of objects
	Getting ready
	How to do it...
	How it works...
	The Start() method
	The Update() method
	The FindAndDisplayBlipsForTag(...) method
	The CalculateBlipPositionAndDrawBlip (...) method
	The NormalizedPosition(...) method
	The CalculateBlipPosition(...) method
	The DrawBlip() method
	There's more...

	Inventory and Advanced UIs	Technical requirements
	Creating a simple 2D mini-game – SpaceGirl
	Getting ready
	How to do it...
	How it works...
	Displaying single object pickups with carrying and not-carrying text
	Getting ready
	How to do it...
	How it works...
	The PlayerInventory script class
	The PlayerInventoryDisplay script class
	There's more...
	Collecting multiple items and display the total number carried
	Alternative – combining all the responsibilities into a single script
	Displaying single-object pickups with carrying and not-carrying icons
	Getting ready
	How to do it...
	How it works...
	Displaying multiple pickups of the same object with multiple status icons
	Getting ready
	How to do it...
	How it works...
	There's more...
	Revealing icons for multiple object pickups by changing the size of a tiled image
	Using panels to visually outline the inventory UI area and individual items
	Getting ready
	How to do it...
	How it works...
	Creating a C# inventory slot UI to display scripted components
	Getting ready
	How to do it...
	How it works...
	There's more...
	Modifying the game for a second inventory panel for keys
	Using UI Grid Layout Groups to automatically populate a panel
	Getting ready
	How to do it...
	How it works...
	There's more...
	Automatically inferring the number of inventory slots based on the number of GameObjects tagged Star
	Adding a horizontal scroll bar to the inventory slot display
	Automatically changing the grid cell size based on the number of slots in the inventory
	Displaying multiple pickups of different objects as a list of text via a dynamic list of scripted PickUp objects
	Getting ready
	How to do it...
	How it works...
	There's more...
	Ordering items in the inventory list alphabetically
	Using a Dictionary and Enums to display text totals for different objects
	Getting ready
	How to do it...
	How it works...
	Creating a runtime UI Toolkit interface
	Getting ready
	How to do it...
	How it works...
	Further reading

	Playing and Manipulating Sounds	Technical requirements
	Playing different one-off sound effects with a single AudioSource component
	Getting ready
	How to do it...
	How it works...
	There's more...
	Playing a sound at a static point in 3D world space
	Playing and controlling different sounds each with its own AudioSource component
	Getting ready
	How to do it...
	How it works...
	Creating just-in-time AudioSource components at runtime through C# scripting
	Getting ready
	How to do it...
	How it works...
	There's more...
	Adding the CreateAudioSource(...) method as an extension to the MonoBehavior class
	Delaying before playing a sound
	Getting ready
	How to do it...
	How it works...
	Preventing an audio clip from restarting if it is already playing
	Getting ready
	How to do it...
	How it works...
	Waiting for the audio to finish playing before auto-destructing an object
	Getting ready
	How to do it...
	How it works...
	See also
	Scheduling a sound to play at a certain time
	Getting ready
	How to do it...
	How it works...
	Audio visualization from sample spectral data
	Getting ready
	How to do it...
	How it works...
	There's more...
	Adding visualizations to a second AudioSource component
	Trying out different Fast Fourier Transform (FFT) window types
	Synchronizing simultaneous and sequential music to create a simple 140 bpm music-loop manager
	Getting ready
	How to do it...
	How it works...
	There's more...
	Adding visualizations to the four playing loops
	Further reading

	Creating 3D Objects, Terrains, Textures, and Materials	Technical requirements
	Creating 3D primitives and adding materials and textures
	Getting ready
	How to do it...
	How it works...
	There's more...
	Enhancing the scene – adding a spotlight and wood material
	Creating a new Material asset file in the Project window and then setting its Albedo to a texture
	Converting and importing 3D models into a project
	Getting ready
	How to do it...
	How it works...
	Highlighting GameObject materials on mouseover
	Getting ready
	How to do it...
	How it works...
	There's more...
	Collider needed for custom meshes
	Changing the material's color in response to mouse events
	Fading the transparency of a material
	How to do it...
	How it works...
	There's more...
	Destroying objects when fading is complete
	Using the GameObject's alpha as our starting alpha value
	Using a coroutine for our fading loop
	Creating geometry with ProBuilder
	How to do it...
	How it works...
	Creating a house with ProBuilder
	How to do it...
	How it works...
	Creating and texture-painting terrains
	How to do it...
	How it works...
	Height painting terrains
	Getting ready
	How to do it...
	How it works...
	Adding Terrain holes
	Getting ready
	How to do it...
	How it works...
	There's more...
	Further reading

	2D Animation and Physics	Technical requirements
	Flipping a sprite horizontally – the DIY approach
	Getting ready
	How to do it...
	How it works...
	There's more...
	Flipping a sprite horizontally – using Animator State Chart and transitions
	Getting ready
	How to do it...
	How it works...
	There's more...
	Instantaneous swapping
	Animating body parts for character movement events
	Getting ready
	How to do it...
	How it works...
	Creating a three-frame animation clip to make a platform continually animate
	Getting ready
	How to do it...
	How it works...
	There's more...
	Copying the animation relative to a new parent GameObject
	Making a platform start falling once stepped on using a Trigger to move the animation from one state to another
	Getting ready
	How to do it...
	How it works...
	Creating animation clips from sprite sheet sequences
	Getting ready
	How to do it...
	How it works...
	Creating a platform game with tiles and tilemaps
	Getting ready
	How to do it...
	How it works...
	There's more...
	Tile palettes for objects and walls
	Using sprite placeholders to create a simple physics scene
	Getting ready
	How to do it...
	How it works...
	There's more...
	Editing polygon Colliders for more realistic 2D physics
	Getting ready
	How to do it...
	How it works...
	Creating an explosionForce method for 2D physics objects
	Getting ready
	How to do it...
	How it works...
	There's more...
	Clipping via Sprite Masking
	Getting ready
	How to do it...
	How it works...
	There's more...
	Further reading

	Characters, Game Kits, and Starter Assets	Technical requirements
	Creating a game with the 3D Game Kit
	How to do it...
	How it works...
	There's more...
	Creating a game with the 2D Game Kit
	Getting ready
	How to do it...
	How it works...
	Importing third-party 3D models and animations from Mixamo
	Getting ready
	How to do it...
	How it works...
	There's more...
	Looping the animation
	Scripting events to control when animation clips are played
	Swapping the Standard Assets Ethan for a different character
	Getting ready
	How to do it...
	How it works...
	Importing a 3D model and adding an Animation Controller
	How to do it...
	How it works...
	Using scripts to control 3D animations
	Getting ready
	How to do it...
	How it works...
	There's more...
	Importing and using a UMA free character
	How to do it...
	How it works...
	There's more...
	Getting started with the 2021 Starter Assets package
	How to do it...
	How it works...
	Further reading

	Web Server Communication and Online Version Control	Technical requirements
	Setting up a leaderboard using PHP and a database
	Getting ready
	How to do it...
	How it works...
	There's more...
	SQLite, PHP, and database servers
	phpLiteAdmin
	See also
	Unity game communication with a web server leaderboard
	Getting ready
	How to do it...
	How it works...
	There's more...
	Extracting the full leaderboard data for display within Unity
	Using secret game codes to secure your leaderboard scripts
	See also
	Creating and cloning a GitHub repository
	Getting ready
	How to do it...
	How it works...
	There's more...
	Learn more about DVCS
	Learn more about Git at the command line
	Using Bitbucket and Sourcetree visual applications
	Learning about Mercurial rather than Git
	Adding a Unity project to a local Git repository, and pushing files up to GitHub
	Getting ready
	How to do it...
	How it works...
	Unity project version control using GitHub for Unity
	Getting ready
	How to do it...
	How it works...
	There's more...
	Further reading on GitHub for Unity
	Pulling down updates from other developers
	Unity Collaborate from Unity Technologies
	Further reading

	Controlling and Choosing Positions	Technical requirements
	Using a rectangle to constrain 2D Player object movement
	Getting ready
	How to do it...
	How it works...
	There's more...
	Drawing a gizmo yellow rectangle to visually show a bounding rectangle
	Player control of a 3D GameObject (and limiting movement within a rectangle)
	How to do it...
	How it works...
	There's more...
	Drawing a gizmo yellow rectangle to visually show a bounding rectangle
	Drawing thick gizmo lines
	Choosing destinations – finding a random spawn point
	Getting ready
	How to do it...
	How it works...
	See also
	Choosing destinations – finding the nearest spawn point
	Getting ready
	How to do it...
	How it works...
	There's more...
	Avoiding errors due to an empty array
	See also
	Choosing destinations – respawning to the most recently passed checkpoint
	Getting ready
	How to do it...
	How it works...
	Moving objects by clicking on them
	Getting ready
	How to do it...
	How it works...
	Firing projectiles in the direction of movement
	Getting ready
	How to do it...
	How it works...

	Navigation Meshes and Agents	Technical requirements
	NPC to travel to destination while avoiding obstacles
	Getting ready
	How to do it...
	How it works...
	NPC to seek or flee from a moving object
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using a Debug Ray to show a source-to-destination line
	Constantly updating the NavMeshAgent's destination to flee from the player's current location
	Maintaining a constant distance from the target ("lurking" mode!)
	Point-and-click move to object
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating a mouseover yellow highlight
	Point-and-click move to tile
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using a yellow debug ray to show the destination of the AI agent
	Point-and-click raycast with user-defined, higher-cost navigation areas
	Getting ready
	How to do it...
	How it works...
	There's more...
	More intelligent pathfinding by setting different costs for custom-defined navigation areas such as mud and water
	Improving the UX by updating a "gaze" cursor each frame
	NPC NavMeshAgent to follow waypoints in a sequence
	Getting ready
	How to do it...
	How it works...
	There's more...
	Working with arrays of waypoints
	Increased flexibility with the WayPoint class
	Controlling object group movement through flocking
	Getting ready
	How to do it...
	How it works...
	Creating a movable NavMesh Obstacle
	Getting ready
	How to do it...
	How it works...
	Further reading

	Cameras and Rendering Pipelines	Technical requirements
	Creating the basic scene for this chapter
	Getting ready
	How to do it...
	How it works...
	There's more...
	Working with a fixed Main Camera
	Getting ready
	How to do it...
	How it works...
	Changing how much of the screen a camera renders to
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using Render Textures to send camera output to places other than the screen
	Getting ready
	How to do it...
	How it works...
	There's more...
	Inverting our mirror camera horizontally
	A simple snapshot of a scene at runtime
	Working with Unity's multipurpose camera rig
	How to do it...
	How it works...
	Using Cinemachine ClearShot to switch cameras to keep the player in shot
	Getting ready
	How to do it...
	How it works...
	There's more...
	Unity Cinemachine tutorials
	Will Goldstone's ClearShot tutorial
	Adam Myhill's Cinemachine blog posts
	Reading the installed Cinemachine documentation
	Cinemachine and Timeline
	Letting the player switch to a Cinemachine FreeLook camera
	Getting ready
	How to do it...
	How it works...
	Creating a project with the URP
	Getting ready
	How to do it...
	How it works...
	Adding a vignette effect
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating an HDRP project with an HDRI skybox
	Getting ready
	How to do it...
	How it works...
	Further reading

	Shader Graphs and Video Players	Technical requirements
	Playing videos by manually adding a VideoPlayer component to a GameObject
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using scripting to control video playback on scene textures
	Getting ready
	How to do it...
	How it works...
	There's more...
	Downloading an online video (rather than a clip)
	Ensuring a movie is prepared before playing
	Getting ready
	How to do it...
	How it works...
	There's more...
	Ensuring that the movie has been prepared before playing it with coroutines
	Outputting video playback to a RenderTexture asset
	Getting ready
	How to do it...
	How it works...
	Using scripting to play a sequence of videos back to back
	Getting ready
	How to do it...
	How it works...
	Creating and using a simple Shader Graph
	How to do it...
	How it works...
	Creating a glow effect with Shader Graph
	Getting ready
	How to do it...
	How it works...
	Toggling a Shader Graph color glow effect through C# code
	Getting ready
	How to do it...
	How it works...
	There's more...
	Further reading
	Shader Graph online resources
	Video player online resources

	Advanced Topics - Gizmos, Automated Testing, and More	Technical requirements
	Using Gizmo to show the currently selected object in the Scene window
	How to do it...
	How it works...
	See also
	Creating an editor snap-to-grid drawn by a Gizmo
	How to do it...
	How it works...
	There's more...
	Saving and loading player data – using static properties
	Getting ready
	How to do it...
	How it works...
	There's more...
	Hiding the score before the first attempt is completed
	See also
	Saving and loading player data – using PlayerPrefs
	Getting ready
	How to do it...
	How it works...
	See also
	Loading game data from a text file map
	Getting ready
	How to do it...
	How it works...
	Saving data to a file while the game is running
	How to do it...
	How it works...
	See also
	Generating and running a default test script class
	How to do it...
	How it works...
	There's more...
	Creating a default test script from the Project window's Create menu
	Edit mode minimum skeleton unit test script
	A simple unit test
	How to do it...
	How it works...
	There's more...
	Shorter tests with values in the assertion
	Expected value followed by the actual value
	Parameterizing tests with a data provider
	How to do it...
	How it works...
	Unit testing a simple health script class
	How to do it...
	How it works...
	Health.cs
	TestHealth.cs
	Creating and executing a unit test in PlayMode
	How to do it...
	How it works...
	PlayMode testing a door animation
	Getting ready
	How to do it...
	How it works...
	There's more...
	PlayMode and unit testing a player health bar with events, logging, and exceptions
	Getting ready
	How to do it...
	How it works...
	PlayMode testing
	Unit tests
	See also
	Reporting Code Coverage testing
	Getting ready
	How to do it...
	How it works...
	Running simple Python scripts inside Unity
	How to do it...
	How it works...
	Further reading

	Particle Systems and Other Visual Effects	Technical requirements
	Exploring Unity's Particle Pack and reusing samples for your own games
	How to do it...
	How it works...
	Creating a simple particle system from scratch
	How to do it...
	How it works...
	Using Texture Sheets to simulate fire with a particle system
	Getting ready
	How to do it...
	How it works...
	Making particles collide with scene objects
	How to do it...
	How it works...
	There's more...
	Simulating an explosion
	Getting ready
	How to do it...
	How it works...
	Using Invoke to delay the execution of an explosion
	Getting ready
	How to do it...
	How it works...
	There's more...
	Further reading

	Virtual and Augmented Reality (VR/AR)	Technical requirements
	Setting up Unity for VR
	How to do it...
	How it works...
	Setting up an Oculus Quest/2 in Developer Mode
	Getting ready
	How to do it...
	How it works...
	Creating a VR project for the Oculus Quest/2
	Getting ready
	How to do it...
	How it works...
	There's more...
	Build failure due to Android version
	Build failure due to "namespace cannot be found" error
	Sideloading APK files to an Android device (such as the Quest headset)
	Creating a VR project using the Mock HMD device
	Getting ready
	How to do it...
	How it works...
	Working with the Mozilla demo WebXR project
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using GitHub Pages to publish your WebXR project for free
	Learning more about the WebXR example project
	Fixing pink (shader/material) problems
	The community maintaining more up-to-date XR resources
	Fixing obsolete code errors
	Adding 360-degree videos to a VR project
	Getting ready
	How to do it...
	How it works...
	There's more...
	Playing 360-degree videos on the surface of a 3D object
	Exploring the Unity AR samples
	Getting ready
	How to do it...
	How it works...
	There's more...
	Targeting iOS device builds
	Allowing Android APK file downloads on your phone
	Setting up Unity for AR
	How to do it...
	How it works...
	There's more...
	Build failure due to Android version
	Build failure due to Vulkan API graphics settings
	Creating a simple AR Foundation project
	Getting ready
	How to do it...
	How it works...
	Detecting and highlighting planes with AR Foundation
	Getting ready
	How to do it...
	How it works...
	Creating an AR furniture previewer by detecting horizontal planes
	Getting ready
	How to do it...
	How it works...
	Creating a floating 3D model over an image target
	Getting ready
	How to do it...
	How it works...
	Further reading

 Preface

Game development is a broad and complex task. It is an interdisciplinary field, covering subjects as diverse as artificial intelligence, character animation, digital painting, and sound editing. All these areas of knowledge can materialize as the production of hundreds (or thousands!) of multimedia and data assets. A special software application—the game engine—is required to consolidate all these assets into a single product. Game engines are specialized pieces of software, which used to belong to an esoteric domain. They were expensive, inflexible, and extremely complicated to use. They were for big studios or hardcore programmers only. Then, along came Unity.

Unity represents the true democratization of game development. It is an engine and multimedia editing environment that is user-friendly and versatile. It has free and Pro versions; the latter includes even more features. Unity offers deployment to many platforms, including the following:

	Mobile: Android, iOS, Windows Phone, and BlackBerry

	Web: WebGL (and WebXR)

	Desktop: PC, Mac, and Linux platforms

	Console: Nintendo Switch, PS5/4/3, Xbox SeriesX/One/360, PlayStation Mobile, PlayStation Vita, and Wii U

	Virtual Reality (VR)/Augmented Reality (AR): Oculus Quest/2 and Rift, Samsung Gear VR, HTC Vive Focus, Google Daydream, and Microsoft Hololens

Today, Unity is used by a diverse community of developers all around the world. Some are students and hobbyists, but many are commercial organizations, ranging from garage developers to international studios, who use Unity to make a huge number of games—you might have already played some on one platform or another.

This book provides over 140 Unity game development recipes. Some recipes demonstrate Unity application techniques for multimedia features, including working with animations and using preinstalled package systems. Other recipes develop game components with C# scripts, ranging from working with data structures and data file manipulation to artificial intelligence algorithms for computer-controlled characters.

If you want to develop quality games in an organized and straightforward way, and you want to learn how to create useful game components and solve common problems, then both Unity and this book are for you.

Who this book is for

This book is for anyone who wants to explore a wide range of Unity scripting and multimedia features and find ready-to-use solutions for many game features. Programmers can explore multimedia features, and multimedia developers can try their hand at scripting. From intermediate to advanced users, from artists to coders, this book is for you, and everyone in your team! It is intended for everyone who has the basics of using Unity and a little programming knowledge in C#.

What this book covers

Chapter 1, Displaying Data with Core UI Elements, is filled with User Interface (UI) recipes to help you increase the entertainment and enjoyment value of your games through the quality of the visual elements displaying text and data. You'll learn a wide range of UI techniques, including displaying text and images, 3D text effects, and an introduction to displaying text and image dialogues with the free Fungus package.

Chapter 2, Responding to User Events for Interactive UIs, teaches you about updating displays (for example basic on timers), and detecting and responding to user input actions, such as mouseovers, while the first chapter introduced code UI for displaying values to the user. Among other things, there are recipes for panels in visual layers, radio buttons and toggle groups, interactive text entry, directional radars, countdown timers, and custom mouse cursors.

Chapter 3, Inventory and Advanced UIs, relates to the many games that involve the player collecting items, such as keys to open doors, ammo for weapons, or choosing from a selection of items, such as from a collection of spells to cast. The recipes in this chapter offer a range of text and graphical solutions for displaying inventory status to the player, including whether they are carrying an item or not, or the maximum number of items they are able to collect. It also includes an introduction to Unity new input system.

Chapter 4, Playing and Manipulating Sounds, suggests ways to use sound effects and soundtrack music to make your game more interesting. The chapter demonstrates how to manipulate sound during runtime through the use of scripts, Reverb Zones, and the Audio Mixer. It also includes recipes for real-time graphics visualizations of playing sounds, a recipe to create a simple 140 bpm loop manager, with visualizations of each playing loop and ends with a recipe on ambisonic sound for 360 video.

Chapter 5, 3D Objects, Terrains, Textures and Materials, contains recipes that will give you a better understanding of how to create, import and modify 3D objects in scenes, including creating new 3D geometry with Probuilder and the Unity terrain tools. Having worked through this chapter you'll be able to create the large-scale geography of a scene, and also work with inanimate props in that scene.

Chapter 6, 2D Animation and Physics, introduces some of Unity's powerful 2D animation and physics features. In this chapter, we present recipes to help you understand the relationships between the different animation elements in Unity, exploring the movement of different parts of the body and the use of sprite-sheet image files that contain sequences of sprite frames pictures. In this chapter core Unity Animation concepts are presented, including Animation State Charts, Transitions, and Trigger events, as well as clipping via Sprite Masking. Finally, the use of Tiles and Tilemaps for 2D games are introduced.

Chapter 7, Characters, GameKits, and Starter Assets, focuses on character animation and demonstrates how to take advantage of Unity's animation system—Mecanim. It covers a range of subjects, from basic character setup to procedural animation and ragdoll physics. It also offers introductions to some of the newer Unity 3D features, such as the Unity 2D and 3D Gamekits.

Chapter 8, Web Server Communication and Online Version Control, explores how games running on devices can benefit from communication with other networked applications. In this chapter, a range of recipes are presented, which illustrate how to set up an online, database-driven leaderboard, how to write Unity games that can communicate with such online systems and ways to protect your games from running on unauthorized servers (to prevent your WebGL games being illegally copied and published on other people's servers). In addition, the recipes illustrate how to structure your projects so that they can be easily backed up using online version control systems such as GitHub, and also how to download projects from online sites to edit and run on our own machine.

Chapter 9, Controlling and Choosing Positions, presents a range of recipes for 2D and 3D user- and computer-controlled objects and characters, which can lead to games with a richer and more exciting user experience. Examples of these recipes include spawn-points, checkpoints, and physics-based approaches, such as applying forces when clicking on objects and firing projectiles into the scene.

Chapter 10, Navigation Meshes and Agents, explores ways that Unity's Nav Meshes and Nav Mesh Agents offer for the automation of object and character movement and pathfinding in your games. Objects can follow predefined sequences of waypoints, or be controlled by mouse clicks for point-and-click control. Objects can be made to flock together based on the average location and movement of all members of their flock. Additional recipes illustrate how the "cost" of navigation areas can be defined, simulating hard-to-travel areas such as mud and water. Finally, although much navigation behavior is pre-calculated at Design Time (the "baking" process), a recipe is presented illustrating how movable objects can influence pathfinding at runtime, through the use of the NavMesh Obstacle component.

Chapter 11, Camera and Rendering Pipelines, presents recipes covering techniques for controlling and enhancing your game's cameras. It offers solutions to work with both single and multiple cameras, illustrates how to apply Post-Processing effects, such as vignettes and grainy grey-scale CCTVs. The chapter introduces ways to work with Unity's powerful Cinemachine components. It concludes with a recipe detailing how to create a project using the Universal Rendering Pipeline (URP) and the High Definition Rendering Pipeline (HDRP).

Chapter 12, Shader Graphs and Video Players, covers two powerful visual components in Unity: Shader Graphs and the Video Player. Both make it easy to add impressive visuals to your games with little or no programming. It includes recipes on how to simulate CCTV playback, and download and play an online video as well as an introduction to applying Shader Graphs in projects. Several recipes are presented for each of these features in this chapter.

Chapter 13, Advanced Topics: Gizmos, Automated Testing and More, explores a range of advanced topics, including creating your own gizmos to enhance design-time work in the scene through visual grid guides with snapping. Automated code and runtime testing is also introduced, in addition to different approaches to saving and loading game data, and a final recipe introducing the new Python for Unity package, allowing scripting in the popular Python programming language.

Chapter 14, Particle Systems and Other Visual Effects, offers a hands-on approach to both using and repurposing Unity's particle systems package, and also creating your own particle system from scratch. Other recipes in this chapter introduce visual effects including emissive materials, and "cookie" textures, simulating objects casting shadows between the light source and the surfaces lights shine onto.

Chapter 15, Virtual and Augmented Reality (VR/AR), provides an overview and introduction to VR and AR projects in Unity. Recipes guide you through creating and configuring projects for VR and AR, adding content, and building apps, and deploying them onto devices, or publishing them as WebXR via the web.

Chapter 16, Additional Unity Recipes, this is an additional chapter and contains some nice to know recipes. It presents recipes related to AssetBundles and solutions to create, load, and download them for your project. It also contains recipes to help you implement visual effects. Please note the chapter is not a part of the main book. It can be accessed here: https://github.com/PacktPublishing/Unity-2021-Cookbook-Fourth-Edition/tree/master/Bonus%20Recipes

To get the most out of this book

All you need is a copy of Unity 2021 (and most recipes work in Unity 2020 as well), which can be downloaded for free from unity.com/.

If you wish to create your own image files, for the recipes in Chapter 14, Particle Systems and Other Visual Effects you will also need an image editor, such as Adobe Photoshop, which can be found at www.photoshop.com, or GIMP, which is free and can be found at www.gimp.org/.

Download the example code files

You'll find the recipes assets and completed Unity projects for each chapter at: https://github.com/PacktPublishing/Unity-2021-Cookbook-Fourth-Edition.

You can either download these files as Zip archives or use free Git software to download (clone) these files. These GitHub repositories will be updated with any improvements.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781839217616_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "The playerInventoryDisplay variable is a reference to an instance object of the PlayerInventoryDisplay class."

A block of code is set as follows:

using UnityEngine;
using UnityEngine.UI;

[RequireComponent(typeof(PlayerInventoryTotal))]
public class PlayerInventoryDisplay : MonoBehaviour {
 public Text starText;
 public void OnChangeStarTotal(int numStars) {
 string starMessage = "total stars = " + numStars;
 starText.text = starMessage;
 }
}

Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "In the Inspector window, set the font of Text-carrying-star to Xolonium-Bold, and set its color to yellow."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

 Displaying Data with Core UI Elements

A key element that contributes to the entertainment and enjoyment of most games is the quality of the visual experience, and an important part of this is the user interface (UI). UI elements involve ways for the user to interact with the game (such as buttons, cursors, and text boxes), as well as ways for the game to present up-to-date information to the user (such as the time remaining, current health, score, lives left, or location of enemies). This chapter is filled with UI recipes to give you a range of examples and ideas for creating game UIs.

Every game and interactive multimedia application is different, and so this chapter attempts to fulfill two key roles:

	The first aim is to provide step-by-step instructions on how to create a range of Unity 2021 basic UI elements and, where appropriate, associate them with game variables in code.

	The second aim is to provide a rich illustration of how UI components can be used for a variety of purposes. This will help you get good ideas about how to make the Unity UI set of controls deliver the particular visual experience and interactions for the games that you are developing.

Basic UI components can provide static images and text to just make the screen look more interesting. By using scripts, we can change the content of these images and text objects so that the players' numeric scores can be updated, or we can show stickmen images to indicate how many lives the player has left. Other UI elements are interactive, allowing users to click on buttons, choose options, enter text, and so on. More sophisticated kinds of UI can involve collecting and calculating data about the game (such as percentage time remaining or enemy hit damage; or the positions and types of key GameObjects in the scene and their relationship to the location and orientation of the player), and then displaying these values in a natural, graphical way (such as with progress bars or radar screens).

Core GameObjects, components, and concepts relating to Unity UI development include the following:

	Canvas: Every UI element is a child (or sub-child) of a Canvas. There can be multiple Canvas GameObjects in a single scene. If a Canvas is not already present, then one will automatically be created when a new UI GameObject is created, with that UI object as the child of the new Canvas GameObject.

	EventSystem: An EventSystem GameObject is required to manage the interaction events for UI controls. One will automatically be created with the first UI element. Unity generally only allows one EventSystem in any scene (some proposed code for multiple event systems can be found at https://bitbucket.org/Unity-Technologies/ui/pull-requests/18/support-for-multiple-concurrent-event/diff).

	Visual UI controls: The visible UI controls include Button, Image, Text, and Toggle.

	The Rect Transform component: UI GameObjects are special 2D GameObjects that take up a rectangle on a 2D plane. Unity gives all UI GameObjects the special Rect Transform component, which has some different properties to the scene's GameObject Transform component (with its straightforward X/Y/Z position, rotation, and scale properties). Associated with Rect Transforms are pivot points (reference points for scaling, resizing, and rotations) and anchor points.

The following diagram shows the four main categories of UI controls, each in a Canvas GameObject and interacting via an EventSystem GameObject. UI controls can have their own Canvas, or several UI controls can be in the same Canvas. The four categories are static (display-only) and interactive UI controls, non-visible components (such as ones to group a set of mutually exclusive radio buttons), and C# script classes to manage UI control behavior through logic written in the program code.

Note that UI controls that are not a child or descendant of a Canvas will not work properly, and interactive UI controls will not work properly if the EventSystem GameObject is missing.

Both the Canvas and EventSystem GameObjects are automatically added to the Hierarchy window as soon as the first UI GameObject is added to a scene:

Figure 1.1 – Canvas and EventSystem

Rect Transforms for UI GameObjects represent a rectangular area rather than a single point, which is the case for scene GameObject transforms. Rect Transforms describe how a UI element should be positioned and sized relative to its parent. Rect Transforms have a width and height that can be changed without affecting the local scale of the component. When the scale is changed for the Rect Transform of a UI element, this will also scale font sizes and borders on sliced images, and so on. If all four anchors are at the same point, resizing Canvas will not stretch the Rect Transform. It will only affect its position. In this case, we'll see the Pos X and Pos Y properties, and the Width and Height properties of the rectangle in the Inspector window. However, if the anchors are not all at the same point, Canvas resizing will result in stretching the element's rectangle. So, instead of Width, we'll see the values for left and right – the position of the horizontal sides of the rectangle to the sides of Canvas, where Width will depend on the actual Canvas width (and the same for top/bottom/height).

Unity provides a set of preset values for pivots and anchors, making the most common values very quick and easy to assign to an element's Rect Transform. The following screenshot shows the 3 x 3 grid of the Anchor Presets window, which allows you to make quick choices about the left, right, top, bottom, middle, horizontal, and vertical values. Also, the extra column on the right offers horizontal stretch presets, while the extra row at the bottom offers vertical stretch presets. Pressing the Shift + Alt keys sets the pivot and anchors when a preset is clicked:

Figure 1.2 – The Rect Transform component in the Inspector window

There are three Canvas render modes:

	Screen Space: Overlay: In this mode, the UI elements are displayed without any reference to any camera (there is no need for any Camera in the scene). The UI elements are presented in front of (overlaying) any sort of camera display of the scene's contents.

	Screen Space: Camera: In this mode, Canvas is treated as a flat plane in the frustum (viewing space) of a Camera scene – where this plane is always facing the camera. So, any scene objects in front of this plane will be rendered in front of the UI elements on Canvas. The Canvas GameObject is automatically resized if the screen size, resolution, or camera settings are changed.

	World Space: In this mode, Canvas acts as a flat plane in the frustum (viewing space) of a Camera scene – but the plane is not made to always face Camera. How the Canvas GameObject appears is just as with any other objects in the scene, relative to where (if anywhere), in the camera's viewing frustum, the Canvas window is located and oriented.

In this chapter, we are going to use the Screen Space: Overlay mode. However, all these recipes can be used with the other two modes as well.

Be creative! This chapter aims to act as a launching pad of ideas, techniques, and reusable C# scripts for your own projects. Get to know the range of Unity UI elements, and try to work smart. Often, a UI component exists with most of the components that you may need for something in your game, but you may need to adapt it somehow. An example of this can be seen in the recipe that makes a UI Slider non-interactive, instead of using it to display a red-green progress bar for the status of a countdown timer. We will take a detailed look at this in Displaying countdown times graphically with a UI Slider section in Chapter 2, Responding to User Events for Interactive UIs.

Many of these recipes involve C# script classes that make use of the Unity scene-start event sequence of Awake() for all GameObjects, Start() for all GameObjects, and then Update() every frame to every GameObject. Therefore, you'll see many recipes in this chapter (and the whole book) where we cache references to GameObject components in the Awake() method, and then make use of these components in Start() and other methods once the scene is up and running.

 In this chapter, we will cover the following recipes:

	Displaying a "Hello World" UI text message

	Displaying a digital clock

	Displaying a digital countdown timer

	Creating a message that fades away

	Displaying a perspective 3D Text Mesh

	Creating sophisticated text with TextMeshPro

	Displaying an image

	Creating UIs with the Fungus open source dialog system

	Creating a Fungus character dialog with images

Technical requirements

For this chapter, you will need Unity 2021.1 or later, plus one of the following:

	Microsoft Windows 10 (64-bit)/GPU: DX10, DX11, and DX12-capable

	macOS Sierra 10.12.6+/GPU Metal-capable Intel or AMD

	Linux Ubuntu 16.04, Ubuntu 18.04, and CentOS 7/GPU: OpenGL 3.2+ or Vulkan-capable, Nvidia or AMD

For each chapter, there is a folder that contains the asset files you will need in this book's GitHub repository at https://github.com/PacktPublishing/Unity-2021-Cookbook-Fourth-Edition.

Displaying a "Hello World" UI text message

The first traditional problem to be solved with new computing technology is to display the Hello World message, as shown in the following screenshot:

Figure 1.3 – Displaying the "Hello World" message

In this recipe, you'll learn how to create a simple UI text object with this message, in large white text with a selected font, in the center of the screen.

Getting ready

For this recipe, we have prepared the font that you need in a folder named Fonts in the 01_01 folder.

How to do it...

To display a Hello World text message, follow these steps:

	Create a new Unity 2D project.

	Import the provided Fonts folder, as described in the Getting ready section. Copy these font files into your Unity project – they need to be in your Assets folder.

	In the Hierarchy window, add a Text GameObject to the scene by going to GameObject | UI | Text. Name this GameObject Text-hello.

Alternatively, you can use the Create menu immediately below the Hierarchy tab. To do so, go to Create | UI | Text.

	Ensure that your new Text-hello GameObject is selected in the Hierarchy window.

Now, in the Inspector window, ensure the following properties are set:

	Text set to read Hello World

	Font set to Xolonium-Bold

	Font Size as per your requirements (large – this depends on your screen; try 50 or 100)

	Alignment set to horizontal and vertical-center

	Horizontal and Vertical Overflow set to Overflow

	Color set to white

The following screenshot shows the Inspector window with these settings:

Figure 1.4 – Settings of the Inspector window

	In the Inspector window, click Rect Transform to make a dropdown appear, and click on the Anchor Presets square icon, which should result in several rows and columns of preset position squares appearing. Hold down Shift + Alt and click on the center one (middle row and center column):

Figure 1.5 – Selecting the center row and column in Rect Transform

	Your Hello World text will now appear, centered nicely in the Game window.

How it works...

In this recipe, you added a new Text-hello GameObject to the scene. A parent Canvas and UI EventSystem will have also been automatically created. Also, note that by default, a new UI GameObject is added to the UI Layer – we can see this illustrated at the top right of the Inspector window in Figure 1.4. This is useful since, for example, it is easy to hide/reveal all UI elements by hiding/revealing this layer in the Culling Mask property of the Camera component of the Main Camera GameObject.

You set the text content and presentation properties and used the Rect Transform anchor presets to ensure that whatever way the screen is resized, the text will stay horizontally and vertically centered.

There's more...

Here are some more details you don't want to miss.

Styling substrings with rich text

Each separate UI Text component can have its own color, size, boldness styling, and so on. However, if you wish to quickly add a highlighting style to the part of a string to be displayed to the user, you can apply HTML-style markups. The following are examples that are available without the need to create separate UI text objects:

	Change the font to Xolonium-Regular

	Embolden text with the b markup: I am bold

	Italicize text with the i markup: I am <i>italic</i>

	Set the text color with hex values or a color name: I am a <color=green>green text </color>, but I am <color=#FF0000>red</color>

You can learn more by reading the Unity online manual's Rich Text page at http://docs.unity3d.com/Manual/StyledText.html.

Displaying a digital clock

Whether it is real-world time or an in-game countdown clock, many games are enhanced by some form of clock or timer display. The following screenshot shows the kind of clock we will be creating in this recipe:

Figure 1.6 – Displaying a digital clock when the scene is run

The most straightforward type of clock to display is a string composed of the integers for hours, minutes, and seconds, which is what we'll create in this recipe.

Getting ready

For this recipe, we have prepared the font that you will need in a folder named Fonts in the 01_01 folder.

How to do it...

To create a digital clock, follow these steps:

	Create a new Unity 2D project.

	Import the provided Fonts folder, as described in the Getting ready section. Copy these font files into your Unity project – they need to be in your Assets folder.

	In the Hierarchy window, add a UI Text GameObject to the scene named Text-clock.

	Ensure that the Text-clock GameObject is selected in the Hierarchy window. Now, in the Inspector window, ensure that the following properties are set:

	

	Font Type set to Xolonium Bold

	Font Size set to 20

	Alignment set to horizontal and vertical-center

	Horizontal and Vertical Overflow settings set to Overflow

	Color set to white

	In Rect Transform, click on the Anchor Presets square icon, which will result in the appearance of several rows and columns of preset position squares. Hold down Shift + Alt and click on the top and center column rows.

	In the Project window, create a folder named _Scripts and create a C# script class (Create | C# Script) called ClockDigital in this new folder:

using UnityEngine;
using UnityEngine.UI;
using System;

public class ClockDigital : MonoBehaviour {
 private Text textClock;

 void Awake (){
 textClock = GetComponent<Text>();
 }

 void Update (){
 DateTime time = DateTime.Now;
 string hour = LeadingZero(time.Hour);
 string minute = LeadingZero(time.Minute);
 string second = LeadingZero(time.Second);

 textClock.text = hour + ":" + minute + ":" + second;
 }

 string LeadingZero (int n){
 return n.ToString().PadLeft(2, '0');
 }
}

It can be useful to prefix important folders with an underscore character so that items appear first in a sequence.

Since scripts and scenes are things that are most often accessed, prefixing their folder names with an underscore character, as in _Scenes and _Scripts, means they are always easy to find at the top in the Project window.

 Although the preceding code is useful for illustrating how to access the time component of a DateTime object individually, the Format(...) method of the String class can be used to format a DateTime object all in a single statement. For example, the preceding could be written more succinctly in a single statement; that is, String.Format("HH:mm:ss", DateTime.Now). For more examples, see http://www.csharp-examples.net/string-format-datetime/.

	Ensure the Text-clock GameObject is selected in the Hierarchy window.

	In the Inspector window, add an instance of the ClockDigital script class as a component by clicking the Add Component button, selecting Scripts, and choosing the ClockDigital script class:

Figure 1.7 – Adding Clock Digital as a component

Add script components through drag and drop.

Script components can also be added to GameObjects via drag and drop. For example, with the Text-clock GameObject selected in the Hierarchy window, drag your ClockDigital script onto it to add an instance of this script class as a component to the Text-clock GameObject.

	When you run the scene, you will now see a digital clock that shows hours, minutes, and seconds in the top-center part of the screen.

How it works...

In this recipe, you added a Text GameObject to a scene. Then, you added an instance of the ClockDigital C# script class to that GameObject.

Notice that as well as the standard two C# packages (UnityEngine and System.Collections) that are written by default for every new script, you added the using statements to two more C# script packages, UnityEngine.UI and System. The UI package is needed since our code uses the UI text object, and the System package is needed since it contains the DateTime class that we need to access the clock on the computer where our game is running.

There is one variable, textClock, which will be a reference to the Text component, whose text content we wish to update in each frame with the current time in hours, minutes, and seconds.

The Awake() method (executed when the scene begins) sets the textClock variable to be a reference to the Text component in the GameObject, to which our scripted object has been added. Storing a reference to a component in this way is referred to as caching – this means that code that's executed later does not need to repeat the computationally expensive task of searching the GameObject hierarchy for a component of a particular type.

Note that an alternative approach would be to make textClock a public variable. This would allow us to assign it via drag and drop in the Inspector window.

The Update() method is executed in every frame. The current time is stored in the time variable, and strings are created by adding leading zeros to the number values for the hours, minutes, and seconds properties of the variable. Finally, this method updates the text property (that is, the letters and numbers that the user sees) to be a string, concatenating the hours, minutes, and seconds with colon separator characters.

The LeadingZero(...) method takes an integer as input and returns a string of this number with leading zeros added to the left if the value was less than 10.

Displaying a digital countdown timer

As a game mechanic, countdown clocks are a popular feature in many games:

Figure 1.8 – Countdown clock

This recipe, which will adapt the digital clock shown in the previous recipe, will show you how to display a digital countdown clock that will count down from a predetermined time to zero in Figure 1.8.

Getting ready

This recipe adapts to the previous one. So, make a copy of the project for the previous recipe, and work on this copy.

For this recipe, we have prepared the script that you need in a folder named _Scripts inside the 01_03 folder.

How to do it...

To create a digital countdown timer, follow these steps:

	Import the provided _Scripts folder.

	In the Inspector window, remove the scripted component, ClockDigital, from the Text-clock GameObject. You can do this by choosing Remove Component from the 3-dot options menu icon for this component the Inspector window.

	In the Inspector window, add an instance of the CountdownTimer script class as a component by clicking the Add Component button, selecting Scripts, and choosing the CountdownTimer script class.

	Create a DigitalCountdown C# script class that contains the following code, and add an instance as a scripted component to the Text-clock GameObject:

using UnityEngine;
using UnityEngine.UI;

public class DigitalCountdown : MonoBehaviour {
 private Text textClock;
 private CountdownTimer countdownTimer;

 void Awake() {
 textClock = GetComponent<Text>();
 countdownTimer = GetComponent<CountdownTimer>();
 }
 void Start() {
 countdownTimer.ResetTimer(30);
 }

 void Update () {
 int timeRemaining = countdownTimer.GetSecondsRemaining();
 string message = TimerMessage(timeRemaining);
 textClock.text = message;
 }

 private string TimerMessage(int secondsLeft) {
 if (secondsLeft <= 0){
 return "countdown has finished";
 } else {
 return "Countdown seconds remaining = " + secondsLeft;
 }
 }
}

	When you run the scene, you will now see a digital clock counting down from 30. When the countdown reaches zero, a message stating Countdown has finished will be displayed.

Automatically add components with [RequireComponent(...)].

The DigitalCountdown script class requires the same GameObject to also have an instance of the CountdownTimer script class. Rather than having to manually attach an instance of a required script, you can use the [RequireComponent(...)] C# attribute immediately before the class declaration statement. This will result in Unity automatically attaching an instance of the required script class.

For example, by writing the following code, Unity will add an instance of CountdownTimer as soon as an instance of the DigitalCountdown script class has been added as a component of a GameObject:

using UnityEngine;
using UnityEngine.UI;

[RequireComponent (typeof (CountdownTimer))]
public class DigitalCountdown : MonoBehaviour {

You can learn more by reading the Unity documentation at https://docs.unity3d.com/ScriptReference/RequireComponent.html.

How it works...

In this recipe, you added instances of the DigitalCountdown and CountdownTimer C# script classes to your scene's UI Text GameObject.

The Awake() method caches references to the Text and CountdownTimer components in the countdownTimer and textClock variables. The textClock variable will be a reference to the UI Text component, whose text content we wish to update in each frame with a time-remaining message (or a timer-complete message).

The Start() method calls the countdown timer object's CountdownTimerReset(...) method, passing an initial value of 30 seconds.

The Update() method is executed in every frame. This method retrieves the countdown timer's remaining seconds and stores this value as an integer (whole number) in the timeRemaining variable. This value is passed as a parameter to the TimerMessage() method, and the resulting message is stored in the string (text) variable message. Finally, this method updates the text property (that is, the letters and numbers that the user sees) of the textClock UI Text GameObject to be equal to the string message about the remaining seconds.

The TimerMessage() method takes an integer as input, and if the value is zero or less, a message stating the timer has finished is returned. Otherwise (if more than zero seconds remain), a message stating the number of remaining seconds is returned.

Creating a message that fades away

Sometimes, we want a message to only be displayed for a certain time, and then fade away and disappear. This recipe will describe the process for displaying an image and then making it fade away completely after 5 seconds. It could be used for providing instructions or warnings to a player that disappears so as not to take up screen space.

Getting ready

This recipe adapts the previous one. So, make a copy of the project for that recipe and work on this copy.

How to do it...

To display a text message that fades away, follow these steps:

	In the Inspector window, remove the scripted component, DigitalCountdown, from the Text-clock GameObject.

	Create a C# script class called FadeAway that contains the following code, and add an instance as a scripted component to the Text-hello GameObject:

using UnityEngine;
using UnityEngine.UI;

[RequireComponent(typeof(CountdownTimer))]
public class FadeAway : MonoBehaviour
{
 private CountdownTimer countdownTimer;
 private Text textUI;

 void Awake()
 {
 textUI = GetComponent<Text>();
 countdownTimer = GetComponent<CountdownTimer>();
 }

 void Start()
 {
 countdownTimer.ResetTimer(5);
 }

 void Update()
 {
 float alphaRemaining =
 countdownTimer.GetProportionTimeRemaining();
 print(alphaRemaining);
 Color c = textUI.color;
 c.a = alphaRemaining;
 textUI.color = c;
 }
}

	When you run the scene, you will see that the message on the screen slowly fades away, disappearing after 5 seconds.

How it works...

In this recipe, you added an instance of the FadeAway scripted class to the Text-hello GameObject. Due to the RequireComponent(...) attribute, an instance of the CountdownTimer script class was also automatically added.

The Awake() method caches references to the Text and CountdownTimer components in the countdownTimer and textUI variables.

The Start() method reset the countdown timer so that it starts counting down from 5 seconds.

The Update() method (executed every frame) retrieves the proportion of time remaining in our timer by calling the GetProportionTimeRemaining() method. This method returns a value between 0.0 and 1.0, which also happens to be the range of values for the alpha (transparency) property of the color property of a UI Text GameObject.

Flexible range of 0.0–1.0.

It is often a good idea to represent proportions as values between 0.0 and 1.0. Either this will be just the value we want for something, or we can multiply the maximum value by our decimal proportion, and we get the appropriate value. For example, if we wanted the number of degrees of a circle for a given 0.0–0.1 proportion, we would just multiply by the maximum of 360, and so on.

The Update() method then retrieves the current color of the text being displayed (via textUI.color), updates its alpha property, and resets the text object to having this updated color value. The result is that each frame in the text object's transparency represents the current value of the proportion of the timer remaining until it fades to fully transparent when the timer gets to zero.

Displaying a perspective 3D Text Mesh

Unity provides an alternative way to display text in 3D via the Text Mesh component. While this is really suitable for a text-in-the-scene kind of situation (such as billboards, road signs, and the general wording on the side of 3D objects that might be seen close up), it is quick to create and is another way of creating interesting menus or instruction scenes.

In this recipe, you'll learn how to create scrolling 3D text, simulating the famous opening credits of the movie Star Wars, which looks something like this:

Figure 1.9 – Scrolling 3D text

Getting ready

For this recipe, we have prepared the fonts that you need in a folder named Fonts, and the text file that you need in a folder named Text, both of which can be found inside the 01_05 folder.

How to do it...

To display perspective 3D text, follow these steps:

	Create a new Unity 3D project. This will ensure that we start off with a Perspective camera, suitable for the 3D effect we want to create.

If you need to mix 2D and 3D scenes in your project, you can always manually set any camera's Camera Projection property to Perspective or Orthographic via the Inspector window.

	In the Hierarchy window, select the Main Camera item and, in the Inspector window, set its properties as follows: Camera Clear Flags to Solid color, Background color to Black, and Field of View to 150.

	Import the provided Fonts and Text folders.

	In the Hierarchy window, add a UI | Text GameObject to the scene by going to GameObject | UI | Text. Name this GameObject Text-star-wars.

	Set the UI Text Text-star-wars GameObject's Text Content to Star Wars (with each word on a new line). Then, set its Font to Xolonium Bold, its Font Size to 50, and its Color to White. Use Anchor presets in Rect Transform to position this UI text object at the top-center of the screen. Set Vertical Overflow to Overflow. Then, set Alignment Horizontal to the center (leaving Alignment Vertical as top).

	In the Hierarchy window, add a 3D Text GameObject to the scene by going to GameObject | 3D Object | 3D Text. Name this GameObject Text-crawler.

	In the Inspector window, set the Transform properties for the Text-crawler GameObject as Position (100, -250, 0), Rotation (15, 0, 0).

	In the Inspector window, set the Text Mesh properties for the Text-crawler GameObject as follows:

	Paste the content of the provided text file, star_wars.txt, into Text.

	Set Offset Z to -20, Line Spacing to 1, and Anchor to Middle center.

	Set Font Size to 200 and Font to SourceSansPro-BoldIt.

	When the scene is made to run, the Star Wars story text will now appear nicely squashed in a 3D perspective on the screen.

How it works...

In this recipe, you simulated the opening screen of Star Wars, with a flat UI text object title at the top of the screen and a 3D Text Mesh with settings that appear to be disappearing into the horizon with 3D perspective "squashing."

There's more...

There are some details you don't want to miss.

Making the text crawl as it does in the movie

With a few lines of code, we can make this text scroll in the horizon, just as it does in the movie. Add the following C# script class, called ScrollZ, as a component of the Text-crawler GameObject:

using UnityEngine;
using System.Collections;

public class ScrollZ : MonoBehaviour
{
 // variable letting us change how fast we'll move text into the 'distance'
 public float scrollSpeed = 20;

 //-----------------
 void Update ()
 {
 // get current position of parent GameObject
 Vector3 pos = transform.position;

 // get vector pointing into the distance
 Vector3 localVectorUp = transform.TransformDirection(0,1,0);

 // move the text object into the distance to give our 3D scrolling effect
 pos += localVectorUp * scrollSpeed * Time.deltaTime;
 transform.position = pos;
 }
}

In each frame, via the Update() method, the position of the 3D text object is moved in the direction of this GameObject's local up direction.

Where to learn more

You can learn more about 3D Text and Text Meshes in the Unity online manual at http://docs.unity3d.com/Manual/class-TextMesh.html.

An alternative way of achieving perspective text like this would be to use a Canvas with the World Space render mode.

Creating sophisticated text with TextMeshPro

In 2017, Unity purchased the TextMeshPro Asset Store product and has integrated it into Unity as a free core feature. TextMeshPro uses a Signed Distance Field (SDF) rendering method, resulting in clear and sharply drawn characters at any point size and resolution. You will need them, but it's easy to create them. Just use the ones provided for now and let's focus on something else.

Getting ready

For this recipe, we have prepared the fonts that you need in a folder named Fonts & Materials inside the 01_06 folder.

How to do it...

To display a text message with sophisticated TextMeshPro visual styling, follow these steps:

	Create a new Unity 3D project.

	Add a new UI TextMeshPro - Text GameObject in the scene by going to GameObject | UI | TextMeshPro – Text. Name this GameObject Text-sophisticated. Choose Import TMP Essentials if prompted.

TextMeshPro GameObjects do not have to be part of the UI Canvas. You can add a TextMeshPro GameObject to the scene directly by choosing Create | 3D Object | TextMeshPro – Text from the Scene window.

	Ensure that your new Text-sophisticated GameObject is selected in the Hierarchy window. In the Inspector window for Rect Transform, click on the Anchor Presets square icon, hold down Shift + Alt, and click on the top and stretch rows.

	Ensure the following properties are set:

Font Settings:

	Font Asset set to Anton SDF

	Material Preset set to Anton SDF - Outline

	Font size set to 200

	Alignment set to the horizontal center

Face:

	Color set to white

	Dilate set to 0

Outline:

	Color set to Red

	Thickness set to 0.1

Underlay (shadow):

	Offset X set to 1

	Offset Y set to -1

	Dilate set to 1

The following screenshot shows the Inspector window with these settings:

Figure 1.10 – Inspector window settings

	The Text-sophisticated GameObject will now be very large with a white inner, red outline, and a drop shadow to the lower right.

How it works...

In this recipe, you added a new UI Text TextMeshPro GameObject to a scene. You chose one of the SDF fonts and an outline material preset. You then adjusted the settings for the face (the inner part of each character), outline, and drop shadow (Underlay).

There are hundreds of settings for the TextMeshPro component, which means much experimentation may be required to achieve a particular effect.

There's more...

Here are some more details you don't want to miss.

Rich text substrings for colors, effects, and sprites

TextMeshPro offers over 30 HTML-style markups for substrings. The following code illustrates some:

<sprite=5> inline sprite graphics

<smallcaps>...</smallcaps> small-caps and colors

<#ffa000>...</color> substring colors

One powerful piece of markup is the <page> tag, which allows a single set of text to be made interactive and presented to the user as a sequence of pages.

You can learn more by reading the online manual Rich Text page at http://digitalnativestudios.com/textmeshpro/docs/rich-text/.

Displaying an image

There are many cases where we wish to display an image onscreen, including logos, maps, icons, and splash graphics. In this recipe, we will display an image centered at the top of the screen.

The following screenshot shows Unity displaying an image:

Figure 1.11 – Displaying the Unity logo as an image

Getting ready

For this recipe, we have prepared the image that you need in a folder named Images in the 01_07 folder.

How to do it...

To display an image, follow these steps:

	Create a new Unity 2D project.

	Set the Game window to 400 x 300. Do this by displaying the Game window, and then creating a new Resolution in the drop-down menu at the top of the panel.

	Click the plus (+) symbol at the bottom of this menu, setting Label to Core UI, Width to 400, and Height to 300. Click OK; the Game window should be set to this new resolution:

Figure 1.12 – Adding a new screen Resolution to the Game window

Alternatively, you can set the default Game window's resolution by going to Edit | Project Settings | Player and then the width and height of Resolution and Presentation in the Inspector window (having turned off the Full-Screen option).

	Import the provided Images folder. In the Inspector window, ensure that the unity_logo image has Texture Type set to Default. If it has some other type, then choose Default from the drop-down list and click on the Apply button.

	In the Hierarchy window, add a UI | RawImage GameObject named RawImage-logo to the scene.

	Ensure that the RawImage-logo GameObject is selected in the Hierarchy window. In the Inspector window for the RawImage (Script) component, click the file viewer circle icon at the right-hand side of the Texture property and select image unity_logo, as shown in the following screenshot:

Figure 1.13 – Setting a Texture for a Raw Image UI GameObject

An alternative way of assigning this Texture is to drag the unity_logo image from your Project folder (Images) into the Raw Image (Script) public property Texture.

	Click on the Set Native Size button to resize the image so that it is no longer stretched and distorted.

	In Rect Transform, click on the Anchor Presets square icon, which will result in several rows and columns of preset position squares appearing. Hold down Shift + Alt and click on the top row and the center column.

	The image will now be positioned neatly at the top of the Game window and will be horizontally centered.

How it works...

In this recipe, you ensured that an image has its Texture Type set to Default. You also added a UI RawImage control to the scene. The RawImage control has been made to display the unity_logo image file. This image has been positioned at the top-center of the Game window.

There's more...

Here are some details you don't want to miss.

Working with 2D sprites and UI Image components

If you simply wish to display non-animated images, then Texture images and UI RawImage controls are the way to go. However, if you want more options regarding how an image should be displayed (such as tiling and animation), the UI Image control should be used instead. This control needs image files to be imported as the Sprite (2D and UI) type.

Once an image file has been dragged into the UI Image control's Sprite property, additional properties will be available, such as Image Type, and options to preserve the aspect ratio.

If you wish to prevent a UI Sprite GameObject from being distorted and stretched, go to the Inspector window and check the Preserve Aspect option in its Image (Script) component.

See also

An example of tiling a sprite image can be found in the Revealing icons for multiple object pickups by changing the size of a tiled image recipe in Chapter 3, Inventory UIs and Advanced UIs.

Creating UIs with the Fungus open source dialog system

Rather than constructing your own UI and interactions from scratch each time, there are plenty of UI and dialogue systems available for Unity. One powerful, free, and open source dialog system is called Fungus, which uses a visual flowcharting approach to dialog design:

Figure 1.14 – An example of dialogue generated by Fungus

In this recipe, we'll create a very simple, one-sentence piece of dialogue to illustrate the basics of Fungus. The preceding screenshot shows the Fungus-generated dialog for the sentence How are you today?.

How to do it...

To create a one-sentence piece of dialog using Fungus, follow these steps:

	Create a new Unity 2D project and ensure you are logged into your Unity account in the Unity Editor.

	Open the Unity asset store in a web browser and log into your Unity account on the Asset Store.

	On the Asset Store website, search for Fungus Games and select this asset. Click on Add to My Assets. Then, after the tab changes, click on Open in Unity.

	In your Unity Editor, the Package Manager panel should open, and the Fungus assets should be selected in the list of My Assets. Click Download. Once they've been downloaded, click Import.

	In the Project window, you should now see two new folders named Fungus and FungusExamples.

	Create a new Fungus Flowchart GameObject by going to Tools | Fungus | Create | Flowchart.

	In the Hierarchy window, select the new Flowchart GameObject. Then, in the Inspector window, click the Open Flowchart Window button. A new Fungus Flowchart window should appear – dock this panel next to the Game window.

	There will be one block in Flowchart Window. Click on this block to select it (a green border will appear around the block to indicate that it is selected). In the Inspector window, change its Block Name to Start:

Figure 1.15 – Naming a Fungus block

	Each block in a Flowchart follows a sequence of commands. So, in the Inspector window, we are now going to create a sequence of (Say) commands to display two sentences to the user when the game runs.

	Ensure that the Start block is still selected in the Flowchart window. Click on the plus (+) button at the bottom section of the Inspector window to display a menu containing commands and select the Narrative/Say command:

Figure 1.16 – Adding a Say command

Since we only have one command for this block, that command will be automatically selected (highlighted green) in the top part of the Inspector window. The bottom half of the Inspector window presents the properties for the currently selected command, as shown in the following screenshot. In the bottom half of the Inspector window, for the Story Text property, enter the text of the question that you wish to be presented to the user, which is How are you today?:

Figure 1.17 – Setting the text for the Say command

	Create another Say command using the same plus (+) button as before, and type in Very well thank you for its Story Text property.

	When you run the game, the user will be presented with the How are you today? text (hearing a clicking noise as each letter is typed on the screen). After the user clicks on the continue triangle button (at the bottom-right part of the dialog window), they will be presented with the second sentence; that is, Very well thank you.

How it works...

In this recipe, you created a new Unity project and imported the Fungus asset package, which contains the Fungus Unity menus, windows, and commands, as well as the example projects.

Then, you added a Fungus Flowchart to your scene with a single block that you named Start. Your block starts to execute when the game begins (since the default for the first block is to be executed upon receiving the Game Started event).

In the Start block, you added a sequence of two Say commands. Each command presents a sentence to the user and then waits for the continue button to be clicked before proceeding to the next command.

As can be seen, the Fungus system handles the work of creating a nicely presented panel to the user, displaying the desired text and the Continue button. Fungus offers many more features, including menus, animations, and controls for sounds and music, the details of which can be found in the next recipe and by exploring their provided example projects and their websites:

	http://fungusgames.com/

	https://github.com/FungusGames/Fungus

Creating a Fungus character dialog with images

The Fungus dialog system that we introduced in the previous recipe supports multiple characters, whose dialogs can be highlighted through their names, colors, sound effects, and even portrait images. In this recipe, we'll create a two-character dialog between Sherlock Holmes and Watson to illustrate the system:

Figure 1.18 – Highlighting the speaking character by name, color, and portrait image

How to do it...

To create a character dialog with portrait images using Fungus, follow these steps:

	Create a new Unity 2D project.

	Open the Asset Store window, Import the Fungus dialogue asset package (this includes the Fungus examples, whose images we'll use for the two characters).

	Create a new Fungus Flowchart GameObject by going to Tools | Fungus | Create | Flowchart.

	Display and dock the Fungus Flowchart window.

	Change the name of the only block in Flowchart to The case of the missing violin.

	Create a new character by going to Tools | Fungus | Create | Character.

	You should now see a new Character GameObject in the Hierarchy window.

	With the Character 1 GameObject selected in the Project window, edit its properties in the Inspector window, like so:

	Rename this GameObject Character 1 – Sherlock.

	In its Character(Script) component, set Name Text to Sherlock and Name Color to green.

	In the Inspector window click the Add Portrait button (the plus (+) sign) to get a "slot" that you can add a portrait image to.

	Drag the appropriate image into your new portrait image slot (in this screenshot, we used the confident image from the Sherlock example project by going to Fungus Examples | Sherlock | Portraits | Sherlock):

Figure 1.19 – Adding a portrait image to a character

	Repeat steps 6 to 8 to create a second character, John, using Name Color set to blue and Portrait Image set to annoyed.

	Select your block in Fungus Flowchart so that you can add some commands to be executed.

	Create a Say command for Character 1 - Sherlock stating Watson, have you seen my violin? and choose the confident portrait (since this is the only one we added to the character):

Figure 1.20 – Specifying the portrait image to use with a Say command

	Add a second Say command, this time for Character 2 – John, stating No, why don't you find it yourself using your amazing powers of deduction. and choose the annoyed portrait:

Figure 1.21 – Adding a second Say command

	Run the scene. You should see a sequence of statements, clearly showing who is saying both with (colored) name text AND the portrait image you selected for each Say command (after Sherlock's text has finished appearing, click the box to start John's sentence).

How it works...

In this recipe, you created a new Unity project with the Fungus asset package.

You then added a Fungus Flowchart to your scene, and also added two characters (each with a text color and a portrait image).

For the block in the Flowchart, you added two Say commands, stating which character was saying each sentence and which portrait to use (if you had added more portrait images, you could have selected different images to indicate the emotion of the character speaking).

There's more...

Fungus offers a data-driven approach to conversations. The character and portrait (facing direction, movement onto and off the stage, and so on) can be defined through text in a simple format by using the Say command's Narrative | Conversation option. This recipe's conversation with portrait images can be declared with just two lines of text in a Conversation:

Sherlock confident: Watson, have you seen my violin?
John annoyed: No, why don't you find it yourself using your amazing powers of deduction...

You can learn more about the Fungus conversation system by reading their documentation pages: https://github.com/snozbot/fungus/wiki/conversation_system.

Further reading

The following are some useful resources for learning more about working with core UI elements in Unity:

	
The Unity manual provides a very good introduction to UI Basic layout: http://docs.unity3d.com/Manual/UIBasicLayout.html.

	
The Unity manual also provides an introduction to Rect Transform: https://docs.unity3d.com/ScriptReference/RectTransform.html.

	
In addition, Ray Wenderlich's two-part Unity UI web tutorial also presents a helpful overview of Rect Transform, pivots, and anchors. Both parts of Wenderlich's tutorial make great use of animated GIFs to illustrate the effect of different values for pivots and anchors: http://www.raywenderlich.com/78675/unity-new-gui-part-1.

	To learn more about TextMeshPro, take a look at the following link: https://blogs.unity3d.com/2018/10/16/making-the-most-of-textmesh-pro-in-unity-2018/.

	Background to how TextMeshPro uses Signed Distance Functions: https://en.wikipedia.org/wiki/Signed_distance_function.

 Responding to User Events for Interactive UIs

Almost all the recipes in this chapter involve different interactive UI controls. Although there are different kinds of interactive UI controls, the basic way to work with them, as well as to have scripted actions respond to user actions, is all based on the same idea: events triggering the execution of object method functions.

Then, for fun, and as an example of a very different kind of UI, the final recipe will demonstrate how to add sophisticated, real-time communication for the relative positions of objects in the scene to your game (that is, radar!).

The UI can be used for three main purposes:

	To display static (unchanging) values, such as the name or logo image of the game, or word labels such as Level and Score, that tell us what the numbers next to them indicate (the recipes for these can be found in Chapter 1, Displaying Data with Core UI Elements).

	To display values that change due to our scripts, such as timers, scores, or the distance from our Player character to some other object (an example of this is the radar recipe at the end of this chapter, Displaying a radar to indicate the relative locations of objects).

	Interactive UI controls, whose purpose is to allow the player to communicate with the game scripts via their mouse or touchscreen. These are the ones we'll look at in detail in this chapter.

The core concept of working with Unity interactive UI controls is to register an object's public method so that we're informed when a particular event occurs. For example, we can add a UI dropdown to a scene named DropDown1, and then write a MyScript script class containing a NewValueAction() public method to perform an action. However, nothing will happen until we do two things:

	We need to add an instance of the script class as a component of a GameObject in the scene (which we'll name go1 for our example – although we can also add the script instance to the UI GameObject itself if we wish to).

	In the UI dropdown's properties, we need to register the GameObject's public method of its script component so that it responds to the On Value Changed event messages:

Figure 2.1 – Graphical representation of the UI at design time

The NewValueAction() public method of the MyScript script will typically retrieve the value that's been selected by the user in the dropdown and do something with it – for example, confirm it to the user, change the music volume, or change the game's difficulty. The NewValueAction() method will be invoked (executed) each time the go1 GameObject receives the NewValueAction() message. In the properties of DropDown1, we need to register go1's scripted component – that is, MyScript's NewValueAction() public method – as an event listener for On Value Changed events. We need to do all this at design time (that is, in the Unity Editor before running the scene):

Figure 2.2 – Graphical representation of the runtime of the UI

At runtime (when the scene in the application is running), we must do the following:

	If the user changes the value in the drop-down menu of the DropDown1 GameObject (step 1 in the preceding diagram), this will generate an On Value Changed event.

	DropDown1 will update its display on the screen to show the user the newly-selected value (step 2a). It will also send messages to all the GameObject components registered as listeners to On Value Changed events (step 2b).

	In our example, this will lead to the NewValueAction() method in the go1 GameObject's scripted component being executed (step 3).

Registering public object methods is a very common way to handle events such as user interaction or web communications, which may occur in different orders, may never occur, or may happen several times in a short period. Several software design patterns describe ways to work with these event setups, such as the Observer pattern and the Publisher-Subscriber design pattern.

Core GameObjects, components, and concepts related to interactive Unity UI development include the following:

	Visual UI controls: The visible UI controls themselves include Button, Image, Text, and Toggle. These are the UI controls the user sees on the screen and uses their mouse/touchscreen to interact with. These are the GameObjects that maintain a list of object methods that have subscribed to user-interaction events.

	Interaction UI controls: These are non-visible components that are added to GameObjects; examples include Input Field and Toggle Group.

	Panel: UI objects can be grouped together (logically and physically) with UI Panels. Panels can play several roles, including providing a GameObject parent in the Hierarchy window for a related group of controls. They can provide a visual background image to graphically relate controls on the screen, and they can also have scripted resize and drag interactions added if desired.

	Sibling Depth: The bottom-to-top display order (what appears on the top of what) for a UI element is determined initially by its place in the sequence in the Hierarchy window. At design time, this can be manually set by dragging GameObjects into the desired sequence in the Hierarchy window. At runtime, we can send messages to the Rect Transforms of GameObjects to dynamically change their Hierarchy position (and therefore, the display order) as the game or user interaction demands. This is illustrated in the Organizing images inside panels and changing panel depths via buttons recipe.

Often, a UI element exists with most of the components that you may need for something in your game, but you may need to adapt it somehow. An example of this can be seen in the Displaying a countdown timer graphically with a UI Slider recipe, which makes a UI Slider non-interactive, instead of using it to display a red-green progress bar for the status of a countdown timer.

In this chapter, we will cover the following recipes:

	Creating UI Buttons to move between scenes

	Animating UI Button properties on mouseover

	Organizing image panels and changing panel depths via UI Buttons

	Displaying the value of an interactive UI Slider

	Displaying a countdown timer graphically with a UI Slider

	Setting custom mouse cursors for 2D and 3D GameObjects

	Setting custom mouse cursors for UI controls

	Interactive text entry with Input Field

	Toggles and radio buttons via toggle groups

	Creating text and image icon UI Drop-down menus

	Displaying a radar to indicate the relative locations of objects

Technical requirements

For this chapter, you will need Unity 2021.1 or later, plus one of the following:

	Microsoft Windows 10 (64-bit)/GPU: DX10, DX11, and DX12-capable

	macOS Sierra 10.12.6+/GPU Metal-capable Intel or AMD

	Linux Ubuntu 16.04, Ubuntu 18.04, and CentOS 7/GPU: OpenGL 3.2+ or Vulkan-capable, NVIDIA or AMD

For each chapter, there is a folder that contains the asset files you will need in this book's GitHub repository at https://github.com/PacktPublishing/Unity-2021-Cookbook-Fourth-Edition.

Creating UI Buttons to move between scenes

The majority of games include a menu screen that displays messages to the user about instructions, high scores, the level they have reached so far, and so on. Unity provides UI Buttons to offer users a simple way to indicate their choices:

Figure 2.3 – Example of a Main Menu UI Button

In this recipe, we'll create a very simple game consisting of two screens, each with a button to load the other one, as illustrated in the preceding screenshot.

How to do it...

To create a button-navigable multi-scene game, follow these steps:

	Create a new Unity 2D project.

	Save the current (empty) scene in a new folder called _Scenes, naming the scene page1.

	Add a UI Text object positioned at the top center of the scene containing large white text that says Main Menu (page 1).

	Add a UI Button to the scene positioned in the middle-center of the screen. In the Hierarchy window, click on the show children triangle to display the Text child of this GameObject button. Select the Text GameObject and, in the Inspector window for the Text property of the Text (Script) component, enter the text goto page 2:

Figure 2.4 – UI Button Text child

	Create a second scene, named page2, with UI Text = Instructions (page 2) and a UI Button with the goto page 1 text. You can either repeat the preceding steps or you can duplicate the page1 scene file, naming the duplicate page2, and then edit the UI Text and UI Button Text appropriately.

	Add both scenes to the build, which is the set of scenes that will end up in the actual application built by Unity. To add scene1 to the build, open the page1 scene and go to File | Build Settings.... Then, click on the Add Open Scenes button so that the page1 scene becomes the first scene in the list of Scenes in the build. Now open page2 and repeat this process so that both scenes have been added to the build.

We cannot tell Unity to load a scene that has not been added to the list of scenes in the build. This makes sense since when an application is built, we should never try to open a scene that isn't included as part of that application.

	Ensure you have the page1 scene open.

	Create a C# script class called SceneLoader, in a new folder called _Scripts that contains the following code. Then, add an instance of the SceneLoader as a scripted component to Main Camera:

using UnityEngine;
using UnityEngine.SceneManagement;

public class SceneLoader : MonoBehaviour {
 public void LoadOnClick(int sceneIndex) {
 SceneManager.LoadScene(sceneIndex);
 }
}

	Select Button in the Hierarchy window and click on the plus (+) button at the bottom of the Button (Script) component, in the Inspector window, to create a new OnClick event handler for this button (that is, an action to perform when the button is clicked).

	Drag Main Camera from the Hierarchy window over the Object slot immediately below the menu that says Runtime Only. This means that when the button receives an OnClick event, we can call a public method from a scripted object inside Main Camera.

	Select the LoadOnClick method from the SceneLoader drop-down list (initially showing No Function). Type 1 (the index of the scene we want to be loaded when this button is clicked) in the text box, below the method's drop-down menu. This integer, 1, will be passed to the method when the button receives an OnClick event message, as shown here:

Figure 2.5 – Button (Script) settings

	Save the current scene (page1).

	Open page2 and follow the same steps to make the page2 button load page1. That is, add an instance of the SceneLoader script class to Main Camera and then add an OnClick event action to the button that calls LoadOnClick and passes an integer of 0 so that page1 is loaded.

	Save page2.

	When you run the page1 scene, you will be presented with your Main Menu text and a button that, when clicked, makes the game load the page2 scene. On page2, you'll have a button to take you back to page1.

How it works...

In this recipe, you created two scenes and added both of these scenes to the game's build. You added a UI Button and some UI Text to each scene.

Note that the build sequence of scenes is actually a scripted array that counts from 0, then 1, and so on, so that page1 has index 0 and page2 has index 1.

When a UI Button is added to the Hierarchy window, a child UI Text object is also automatically created, and the content of the Text property of this UI Text child is the text that the user sees on the button.

Here, you created a script class and added an instance as a component to Main Camera. In fact, it didn't really matter where this script instance was added, so long as it was in one of the GameObjects of the scene. This is necessary since the OnClick event action of a button can only execute a method (function) of a component in a GameObject in the scene.

For the buttons for each scene, you added a new OnClick event action that invokes (executes) the LoadOnClick method of the SceneLoader scripted component in Main Camera. This method inputs the integer index of the scene in the project's Build settings so that the button on the page1 scene gives integer 1 as the scene to be loaded and the button for page2 gives integer 0.

There's more...

There are several ways in which we can visually inform the user that the button is interactive when they move their mouse over it. The simplest way is to add a Color Tint that will appear when the mouse is over the button – this is the default Transition. With Button selected in the Hierarchy window, choose a tint color (for example, red), for the Highlighted Color property of the Button (Script) component in the Inspector window:

Figure 2.6 – Adjusting the mouseover settings for buttons

Another form of visual Transition to inform the user of an active button is Sprite Swap. In this case, the properties of different images for Targeted/Highlighted/Pressed/Disabled are available in the Inspector window. The default Targeted Graphic is the built-in Unity Button (Image) – this is the gray rounded rectangle default when GameObject buttons are created. Dragging in a very different-looking image for the Highlighted sprite is an effective alternative to setting a Color Tint:

Figure 2.7 – Example of an image as a button

We have provided a rainbow.png image with the project for this recipe that can be used for the Button mouseover's Highlighted sprite. You will need to ensure this image asset has its Texture Type set to Sprite (2D and UI) in the Inspector window. The preceding screenshot shows the button with this rainbow background image.

Animating button properties on mouseover

At the end of the previous recipe, we illustrated two ways to visually communicate buttons to users. The animation of button properties can be a highly effective and visually interesting way to reinforce to the user that the item their mouse is currently over is a clickable, active button. One common animation effect is for a button to become larger when the mouse is over it, and then shrink back to its original size when the mouse is moved away. Animation effects are achieved by choosing the Animation option for the Transition property of a Button GameObject, and by creating an animation controller with triggers for the Normal, Highlighted, Pressed, and Disabled states.

How to do it...

To animate a button for enlargement when the mouse is over it (the Highlighted state), do the following:

	Create a new Unity 2D project.

	Create a UI Button.

	In the Inspector Button (Script) component, set the Transition property to Animation.

	Click the Auto Generate Animation button (just below the Disabled Trigger property) for the Button (Script) component:

Figure 2.8 – Auto Generate Animation

	Save the new controller (in a new folder called Animations), naming it button-animation-controller.

	Ensure that the Button GameObject is selected in the Hierarchy window. Open Window | Animation | Animation. In the Animation window, select the Highlighted clip from the drop-down menu:

Figure 2.9 – Selecting the Button GameObject in the Hierarchy window

OEBPS/assets/71da03de-b87e-4982-ae60-38a14e020ff5.png
v ™ ¥ Raw Image (scripy)

Texture - unity_Iogo
Color]
Material None (Material)
Raycast Target 4
UV Rect
X0 Yo

Ppefault-Particle

OEBPS/assets/2c71fa3a-b466-4eed-bca8-42fea6455b23.png
+/Sherlock (Charact

j‘j g

Watson, have you seen my violin?

OEBPS/assets/bd4cff72-10e9-4916-8076-8f6ac369e73a.png
X Game 550 Inspector at
bipiay 1+ | free apect scale O— 26w

| Text-sophisticated | Static ™
Tag Untagged~ Layer Ul ~

Rect Transform
Canvas Renderer

Text Input Enable RTL Editor

New Text

TextStyle Normal

Font Asset ©
Material Preset Anton SDF - Outlinc~

FontStyle B|I|U[s
ab | AB[SC
Font Size 200

- Anton SDF - Outline CE
Shader TextMeshPro/Mobile/Di

Face

- Click to collapse -

Color
Softness. . o
Dilate *— o

| Outline - Click to collapse -
Color P

Thickness @ 01

OEBPS/assets/c3c1f59b-2780-4db5-9a28-7e10d6c59a00.png

OEBPS/assets/d63112fa-3606-47cd-a78e-a6017077e262.png
lerarchy =

+v a v @ Canvas Renderer
v € pagel
) Main Camera Cull Transparent Mesh
v (D Canvas
e v v Text
Te!

OEBPS/assets/0226b331-a147-4e9f-bbd4-f4f475219dd7.png
Commands

The case of the missing say Snerlock: "Watson, have you seer

say John: No, why don't you fid ity

OEBPS/assets/329f16e5-99ae-4a9c-bc45-41bae5ef566d.png
¥ # v Character (Script) LI

Name Text Sherlock

Name Color Vi
Sound Effect None (Audio Clip) [5)
SetSay Dialog None (Say Dialog))
Description

¥ Portraits

None (Sprite)

OEBPS/assets/5fe62661-893a-4cef-96fe-fdcc5495381b.png
Commands

S Type text to be displayed

Character <None> v
None (Character) ©®
Ston

How are you today?

q

OEBPS/assets/ed125bfc-3309-4c6a-af61-4646a4097d26.png
Hierarchy El ® - Button L

Interactable v
= Transition Color Tint -
Target Graphic

Normal Color e
9 Button

D Text
D Eventsystem

Highlighted Color 7
Pressed Color

Sceneloader.LoadOnClick

Click 0

Runtime Only _ ~ | SceneLoader.LoadOnClick
Main Camera 1© |1

OEBPS/assets/35a8bc73-7d4e-4ca9-8f59-4daed9ace911.png

OEBPS/assets/f7008752-eed8-4532-9f61-4f70016f429b.png
= 8

DropDown 1 updates s dispey. GameObject got executes the actons
1 inside metnod NewValueAction() of
MyScript component
User changes selection to Option B. GameObject go1
(On Value Changed even)
MyScrpt
Optlon A 2b void Awake()
Option A public NewValueAction() {
Option B <<<< ropboun 1 sends message o al acion
e0sered On alus Changed isteners sction
)

OEBPS/assets/fd36d4f3-765b-46f6-82be-b05c297b0018.png

OEBPS/assets/edd2f623-bbdc-424e-b77f-d5003549c55e.png
Watson, have you seen my violin?

No, why don't you find it yourself using your amazing

powers of deduction

Iy

OEBPS/assets/eedacd59-4bc9-47cd-ab1b-fa919b033cd6.png

OEBPS/assets/eb080a49-158a-49ec-8b2b-04f65fd39cdd.png
How are you today?

OEBPS/assets/fb3abe0e-e171-4d08-9da7-8b7841abd16f.png

OEBPS/assets/9f071349-19b7-45b0-b527-7c614d0ae285.png

OEBPS/assets/ba78489b-d6c9-4ffb-996f-6976f2904636.png

OEBPS/assets/199b6f32-028b-43e3-9429-bcf7a1f5d8d5.png
(Block Inspector)

Block Name Start

OEBPS/assets/42fdbad1-ac15-439b-9a3c-de79f9a34386.png
Design-Time

GameObject got

EEE—
=
void Awake()

public NewValueAction() [+

[component 2

IEEE—

GameObject DropDown 1

\

NewValueAction(

Ul Dropdown

Option A
Option B

Rect Transform

On Value Changed
event isteners:

got->MyScript.NewValueAction()

OEBPS/assets/f4ec7cf7-f355-419f-963d-1dec67a0e813.png
K2 +

narrative/|

Narrative/Control Stage
Narrative/Conversation
Narrative/Menu
Narrative/Menu Shuffle
Narrative/Menu Timer

Narrative/Say

Narrative/| Writes textin a dialog box.

Narrative/Set Say Dialog

OEBPS/assets/2426a461-abd8-4289-9b99-54ea0ffbe7bf.png
static controls

—— Hello ~Panel Text
+Image, Raw Image

Interactive

Canvas —— e MO

+Button, Toggle
& »slider, Scrollbar

EventSystem non-visble interaction

components

«Toggle Group
~Input Field

c#
scripted
behaviors

OEBPS/assets/b146ce11-4af2-4677-916b-d5f4e1bc30cb.png

OEBPS/assets/46035c13-ff0c-4b9b-91c4-195aacbe787e.png
Sl it
+-
v < pagel
) Main Camera
v @ Canvas
@ Text

© Inspector

@ ¢ Button

7 Tag Untagged

v 4 RectTransform

S TN © - Guton

() EventSystem

Choose red

Interactable
Transition
Target Graphic
Normal Color
Highlighted Color

a8
Static ¥

~ | Layer Ul -

Ttton (image) [
d
I

OEBPS/assets/431d1c6f-1e1a-477d-b69a-ab6734a95eb0.png
7 77 time ago, in a gataxy tex,
S away....

2475 zperiod of civil wax.
At/ spaceships, striking

Sy 7 frdden base, hone W
A/ 75t victory against

v/ Galactic Em

OEBPS/assets/32a551dc-a542-4b0f-a3e7-78d40e039e57.png
+v

Hierarchy

v & SampleScene
) Main Camera

[Project

S Console . © Animation
AL

Add Property

0+

OEBPS/assets/063b549b-3375-4ff9-b258-fed7919b1400.png
Packb

OEBPS/assets/8bc2b3fd-9cb6-4ea8-92de-d5f693e191ce.png

OEBPS/assets/04caa091-b719-45b1-aa55-a87034a48ec8.png
ierarchy

< Samplescene*

& Main Camera
v @ Canvas

@ Text-hello

@ EventSystem

© inspactor

a

@ | Text-hello Static ¥ q
Tag Untagged - Layer Ui -
v RectTransform o
v v Text o
Hello World | e
Font = 1 Xolonium-Bold
FontStyle Normal =
FontSize =>
Line Spacing T
Rich Text v
Flrlﬂvagh
Alignment =]
AignBy Geometry LS
Horizontal Overflow Overfiow =
Vertical Overflow Overflow E I

[oer

— E |

OEBPS/assets/7857ee24-c9f1-4246-af07-a64078346faa.png
P . N
Unity 2021

Cookbook .

Fourth Edition

r
Over 140 recipes to take your Unity game
development skills to the next level
e
128 \\ ‘
Nom
D M

Matt Smith | Shaun Ferns

Foreword by Chris Gregan, Chief Architect, Romero Games

Iv

OEBPS/assets/70557d55-6d32-42fc-9045-b2bfde0d0f81.png
Scene o®Game | W Asset Store

Came - | Display1 ~ FreeAspect |

v Low Resolution Aspect Ratios
VSync (Game view only)

v Free Aspect
16:9 Aspect
16:10 Aspect
Full HD (1920x1080)
WXGA (1366x768)
QHD (2560x1440)
4K UHD (3840x2160)

Label CORE UI

Width & Heigt X 400 [30
ORE U

OEBPS/assets/aae7b354-aeec-4f1a-be39-5b4678d2b8a2.png
© Inspector 3]

@ 7 Text-clock G
Tag Untagged ~ Layer Ul -

» i RectTransform S

v © Canvas Renderer o

Cull Transparent Mes

| Text
Default Ul Material o:
Shader Ul/Default -

Add Component

Scripts
[Clock Digital
Countdown Timer
Digital Countdown
+ Fade Away
#/ScrollZ

OEBPS/assets/9b95aabc-4e18-4b5c-9639-fb03c320a58c.png
Main Menu (page 1)

OEBPS/assets/e44d3077-0c5e-4d5c-a9eb-9ce62d97479c.png
¥ 20V Button (Script) LA
Interactable o
Transition Aoimaion :
Normal Trigger Normal |
Highighted TriggelFighiighted
Pressed Trigger Pressed
Disabled Trigger D)

_—

