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    Preface

    Linux has been the mainstay of embedded computing for many years. And yet, there are remarkably few books that cover the topic as a whole: this book is intended to fill that gap. The term embedded Linux is not well-defined and can be applied to the operating system inside a wide range of devices ranging from thermostats to Wi-Fi routers to industrial control units. However, they are all built on the same basic open source software. Those are the technologies that I describe in this book, based on my experience as an engineer.

    Technology does not stand still. The industry based around embedded computing is just as susceptible to Moore’s law as mainstream computing. The exponential growth that this implies has meant that a surprisingly large number of things have changed since the first edition of this book was published. This fourth edition is fully revised to use the latest versions of the major open source components, which include Linux 6.6, Yocto Project 5.0 Scarthgap, and Buildroot 2024.02 LTS. In addition to Autotools, the book now covers CMake, a modern build system that has seen increased adoption in recent years.

    Who this book is for

    This book is written for developers with an interest in embedded computing and Linux, who want to extend their knowledge into the various branches of the subject. In writing the book, I assume a basic understanding of the Linux command line, and in the programming examples, a working knowledge of the C and Python languages. Several chapters focus on the hardware that goes into an embedded target board, so a familiarity with hardware and hardware interfaces will be a definite advantage in these cases.

    What this book covers

    Chapter 1, Starting Out, sets the scene by describing the embedded Linux ecosystem and the choices available to you as you start your project.

    Chapter 2, Learning about Toolchains, describes the components of a toolchain and where to obtain a toolchain for cross-compiling code for your target board.

    Chapter 3, All about Bootloaders, explains the role of the bootloader in loading the Linux kernel into memory, and uses U-Boot as an example. It also introduces device trees as the mechanism used to encode the details of hardware in almost all embedded Linux systems.

    Chapter 4, Configuring and Building the Kernel, provides information on how to select a Linux kernel for an embedded system and configure it for the hardware within the device. It also covers how to port Linux to the new hardware.

    Chapter 5, Building a Root Filesystem, introduces the ideas behind the user space part of an embedded Linux implementation by means of a step-by-step guide on how to configure a root filesystem.

    Chapter 6, Selecting a Build System, covers two commonly used embedded Linux build systems, Buildroot and The Yocto Project, which automate the steps described in the previous four chapters.

    Chapter 7, Developing with Yocto, demonstrates how to build system images on top of an existing BSP layer, develop onboard software packages with Yocto’s extensible SDK, and roll your own embedded Linux distribution complete with runtime package management.

    Chapter 8, Yocto under the Hood, is a tour of Yocto’s build workflow and architecture, including an explanation of Yocto’s unique multi-layer approach. It also breaks down the basics of BitBake syntax and semantics with examples from actual recipe files.

    Chapter 9, Creating a Storage Strategy, discusses the challenges created by managing flash memory, including raw flash chips and embedded MMC (eMMC) packages. It describes the filesystems that are applicable to each type of technology.

    Chapter 10, Updating Software in the Field, examines various ways of updating the software after the device has been deployed, and includes fully managed Over-the-Air (OTA) updates. The key topics under discussion are reliability and security.

    Chapter 11, Interfacing with Device Drivers, describes how kernel device drivers interact with the hardware by implementing a simple driver. It also describes the various ways of calling device drivers from user space.

    Chapter 12, Prototyping with Add-On Boards, demonstrates how to prototype hardware and software quickly using a pre-built Debian image for the BeaglePlay together with MikroElektronika peripheral add-on boards.

    Chapter 13, Starting Up – The init Program, explains how the first user space program, init, starts the rest of the system. It describes three versions of the init program, each suitable for a different group of embedded systems, ranging from the simplicity of the BusyBox init, through System V init, to the current state-of-the-art, systemd.

    Chapter 14, Managing Power, considers the various ways that Linux can be tuned to reduce power consumption, including dynamic frequency and voltage scaling, selecting deeper idle states, and system suspend. The aim is to make devices that run longer on a battery charge and also run cooler.

    Chapter 15, Packaging Python, explains what choices are available for bundling Python modules together for deployment and when to use one method over another. It covers pip, virtual environments, and conda.

    Chapter 16, Deploying Container Images, introduces the principles of the DevOps movement and demonstrates how to apply them to embedded Linux. First, we use Docker to bundle a Python application together with its user space environment inside a container image. Then we use GitHub Actions to set up a CI/CD pipeline for our container image. Lastly, we use Docker to perform containerized software updates on a Raspberry Pi 4.

    Chapter 17, Learning about Processes and Threads, describes embedded systems from the point of view of the application programmer. This chapter looks at processes and threads, inter-process communications, and scheduling policies.

    Chapter 18, Managing Memory, examines the ideas behind virtual memory and how the address space is divided into memory mappings. It also describes how to measure memory usage accurately and how to detect memory leaks.

    Chapter 19, Debugging with GDB, shows you how to use the GNU debugger, GDB, together with the debug agent, gdbserver, to debug applications running remotely on the target device. It goes on to show how you can extend this model to debug kernel code, making use of the kernel debug stubs, KGDB.

    Chapter 20, Profiling and Tracing, covers the techniques available to measure system performance, starting from whole system profiles and then zeroing in on specific areas where bottlenecks are causing poor performance. It also describes how to use Valgrind to check the correctness of an application’s use of thread synchronization and memory allocation.

    Chapter 21, Real-Time Programming, provides a detailed guide to real-time programming on Linux using the recently merged PREEMPT_RT real-time kernel patch.

    To get the most out of this book

    The software used in this book is entirely open source. In almost all cases, I have used the latest stable versions available at the time of writing. While I have tried to describe the main features in a manner that is not version-specific, it is inevitable that some of the examples will need adaptation to work with later software. Here is the primary hardware and software used throughout the book:

    
      	QEMU (64-bit Arm)

      	Raspberry Pi 4

      	BeaglePlay

      	Yocto Project 5.0 Scarthgap

      	Buildroot 2024.02

      	Bootlin aarch64 glibc stable toolchain 2024.02-1

      	Arm GNU AArch32 bare-metal target (arm-none-eabi) toolchain 13.2.Rel1

      	U-Boot v2024.04

      	Linux kernel 6.6

    

    Embedded development involves two systems: the host, which is used for developing the programs, and the target, which runs them. For the host system, I chose Ubuntu 24.04 LTS because of its widespread adoption and long-term maintenance guarantees. You may decide to run Linux on Docker, a virtual machine, or Windows Subsystem for Linux, but be aware that some tasks, such as building a distribution using The Yocto Project, are quite demanding and run better on a native installation of Linux.

    For the targets, I chose the QEMU emulator, the Raspberry Pi 4, and the BeaglePlay. Using QEMU means that you can try out most of the examples without having to invest in any additional hardware. On the other hand, some things work better with real hardware. For that, I picked the Raspberry Pi 4 because it is inexpensive, widely available, and has very good community support. The BeaglePlay replaces the BeagleBone Black used in previous editions of the book. Of course, you are not limited to just these three targets. The idea behind the book is to provide you with general solutions to problems so that you can apply them to a wide range of target boards.

    Download the example code files

    The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/Mastering-Embedded-Linux-Development. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing. Check them out!

    Download the color images

    We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/gbp/9781803232591.

    Conventions used

    There are a number of text conventions used throughout this book.

    CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Execute the make menuconfig command:”

    A block of code is set as follows:

    require recipes-core/images/core-image-minimal.bb
IMAGE_INSTALL:append = " helloworld strace"


    Any command-line input or output is written as follows:

    $ bitbake -c populate_sdk nova-image


    Bold: Indicates a new term, an important word, or words that you see on the screen. For instance, words in menus or dialog boxes appear in the text like this. For example: “Back out of External toolchain and open the Toolchain submenu.”

    
      Warnings or important notes appear like this. 

    

    
      Tips and tricks appear like this.

    

    Get in touch

    Feedback from our readers is always welcome.

    General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

    Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

    Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

    If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com/.
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    Part 1

    Elements of Embedded Linux

    In this part, you will explore the four key elements of any embedded Linux project. You will learn how to select a toolchain, build the bootloader, and build the kernel for your target device. Chapter 5 requires you to build a root filesystem step by step from scratch. These manual exercises are difficult, but by the end of this section, you with have a deeper understanding of how embedded Linux works and a greater appreciation for tools that can automate this board bring-up phase.

    This part has the following chapters:

    
      	Chapter 1, Starting Out

      	Chapter 2, Learning about Toolchains

      	Chapter 3, All about Bootloaders

      	Chapter 4, Configuring and Building the Kernel

      	Chapter 5, Building a Root Filesystem

    

  



  
    1

    Starting Out

    You are about to begin working on your next project, and this time, it is going to run Linux. What should you think about before you put finger to keyboard? Let’s begin with a high-level look at embedded Linux and see why it is popular, what the implications of open source licenses are, and what kind of hardware you need to run it.

    Linux first became a viable choice for embedded devices around 1999. That was when AXIS released the 2100 Network Camera and TiVo released their first Digital Video Recorder (DVR). Both were the first Linux-powered devices in their category. Since 1999, Linux has become increasingly popular to the point that today it is the Operating System (OS) of choice for many classes of product. In 2024, there were over three billion devices running Linux. That includes all the smartphones running Android, which uses a Linux kernel, and hundreds of millions of set-top boxes, smart TVs, and Wi-Fi routers. We must not forget other devices, such as vehicle diagnostics, industrial equipment, and medical monitoring units, that ship in smaller volumes.

    In this chapter, we will cover the following topics:

    
      	Choosing Linux

      	When not to choose Linux

      	Meeting the players

      	Moving through the project life cycle

      	Navigating open source

      	Selecting hardware for embedded Linux

      	Obtaining the hardware for this book

      	Provisioning your development environment

    

    Choosing Linux

    Why is Linux so pervasive? And why does something as simple as a TV need to run something as complex as Linux just to display streaming video on a screen?

    The simple answer is Moore’s law. Gordon Moore, cofounder of Intel, observed in 1965 that the density of components on a chip doubles approximately every two years. That applies to the devices that we design and use in our everyday lives just as much as it does to desktops, laptops, and servers. At the heart of most embedded devices is a highly integrated chip that contains one or more processor cores and interfaces with main memory, mass storage, and peripherals of many types. This is referred to as a System on Chip (SoC). SoCs are increasing in complexity in accordance with Moore’s law. A typical SoC has a technical reference manual that stretches to thousands of pages.

    Your TV isn’t simply displaying a video stream like the analog sets of old. The stream is digital, possibly encrypted, and needs processing to produce an image. Your TV is (or soon will be) connected to the internet. It can receive content from smartphones, tablets, laptops, desktops, and home media servers. It can be used to play games, stream video, and display live feeds from security cameras. You need a full OS to manage this degree of complexity.

    Here are some points that drive the adoption of Linux:

    
      	Linux has the necessary functionality. It has a good scheduler, a good network stack, support for USB, Wi-Fi, Bluetooth, many kinds of storage media, multimedia devices, and so on. It ticks all the boxes.

      	Linux has been ported to a wide range of processor architectures, including some that are very commonly found in SoC designs – Arm, RISC-V, x86, PowerPC, and MIPS.

      	Linux is open source, so you have the freedom to get the source code and modify it to meet your needs. You or someone working on your behalf can create a board support package for your device. You can add protocols, features, and technologies that may be missing from the mainline source code. You can remove features that you don’t need to reduce memory and storage requirements. Linux is flexible.

      	Linux has an active community (in the case of the Linux kernel, very active). There is a new release of the kernel every 8 to 10 weeks, and each release contains code from more than 1,000 developers. An active community means that Linux is up to date and supports current hardware, protocols, and standards. The Linux Foundation is a non-profit organization with backing from big tech. 

    

    The foundation acts as a steward for several major open source projects besides Linux, including Kubernetes and PyTorch. It also hosts yearly events around the world like the Open Source Summit and Linux Plumbers Conference.

    
      	Open source licenses guarantee that you have access to the source code. There is no vendor lock-in.

    

    For these reasons, Linux is an ideal choice for complex devices. But there are a few caveats I should mention here. Complexity makes it harder to understand. Coupled with the fast-moving development process and the decentralized structures of open source, you need to put some effort into learning how to use it and to keep on re-learning as it changes. I hope that this book helps in the process.

    When not to choose Linux

    Is Linux suitable for your project? Linux works well where the problem being solved justifies the complexity. It is especially good where connectivity, robustness, and complex user interfaces are required. However, it cannot solve every problem, so here are some things to consider before you jump in:

    
      	Is your hardware up to the job? Compared to a traditional Real-Time Operating System (RTOS) such as VxWorks or QNX, Linux requires a lot more resources. It needs at least a 32-bit processor and lots more memory. I will go into more detail in the Selecting hardware for embedded Linux section.

      	Do you have the right skill set? The early parts of a project, the board bring-up, require detailed knowledge of Linux and how it relates to your hardware. Likewise, when debugging and tuning your application you will need to be able to interpret the results. If you don’t have the skills in-house you may want to outsource some of the work. Of course, reading this book helps!

      	Is your system real time? Linux can handle many real-time activities as long as you pay attention to certain details, which I cover in depth in Chapter 21.

      	Will your code require regulatory approval (medical, automotive, aerospace, and so on)? The burden of regulatory verification and validation might make another OS a better choice. Even if you do choose Linux for use in these environments, it may make sense to purchase a commercially available distribution from a company that has supplied Linux for existing products like the one you are building. These commercial Linux vendors include Siemens, Timesys, and Wind River.

    

    Consider these points carefully. Probably the best indicator of success is to look around for similar products that run Linux and see how they did it, and follow best practices.

    Meeting the players

    Where does open source software come from? Who writes it? In particular, how does it relate to the key components of embedded development – the toolchain, bootloader, kernel, and basic utilities found in the root filesystem?

    
      	Open source community: This, after all, is the engine that generates the software you are going to be using. The community is a loose alliance of developers many of whom are funded in some way by a non-profit organization, an academic institution, or a commercial company. They work together to further the aims of the various projects. There are many of them – some small, some large. Some that we will make use of are Linux itself, U-Boot, BusyBox, Buildroot, The Yocto Project, and the many projects under the GNU umbrella.

      	CPU architects: These are the organizations that design the CPUs we use. The important ones here are Arm/Linaro (Arm Cortex-A), Intel (x86 and x86-64), SiFive (RISC-V), and IBM (PowerPC). They implement or at the very least influence support for the basic CPU architecture.

      	SoC vendors: These include Broadcom, Intel, Microchip, NXP, Qualcomm, TI, and many others. They take the kernel and toolchain from the CPU architects and modify them to support their chips. They also create reference boards: designs that are used by the next level down to create development boards and working products.

      	Board vendors and OEMs: These people take the reference designs from SoC vendors and build them into specific products like set-top boxes or cameras. They also create more general-purpose development boards such as those from Advantech and Kontron. An important category is the cheap Single-Board Computers (SBCs) such as BeagleBoard and Raspberry Pi, which have created their own ecosystems of software and hardware add-ons.

      	Commercial Linux vendors: Companies such as Siemens, Timesys, and Wind River offer commercial Linux distributions that have undergone strict regulatory verification and validation across multiple industries (medical, automotive, aerospace, and so on).

    

    These form a chain, with your project usually at the end, which means that you do not have a free choice of components. You cannot simply take the latest kernel from kernel.org, except in rare cases, because it does not have support for the chip or board that you are using.

    This is an ongoing problem with embedded development. Ideally, the developers at each link in the chain would push their changes upstream but they don’t. Developers are under constant time pressure and getting patches accepted into the Linux kernel takes major effort. It is not uncommon to find a kernel that has many thousands of patches that are not merged. In addition, SoC vendors tend to actively develop open source components only for their latest chips, meaning that support for any chip more than a couple of years old will be frozen and not receive any updates.

    The consequence is that most embedded designs are based on old versions of software. They do not receive security fixes, performance enhancements, or features that are in newer versions. Problems such as Heartbleed (a bug in the OpenSSL library) and Shellshock (a bug in the Bash shell) go unfixed.

    What can you do about it? First, ask questions of your vendors (NXP, TI, and Xilinx to name just a few): what is their update policy, how often do they revise kernel versions, what is the current kernel version, what was the one before that, and what is their policy for merging changes upstream? Some vendors are making great strides in this direction. You should prefer their chips.

    Secondly, you can take steps to make yourself more self-sufficient. The chapters in Part 1 explain the dependencies in more detail and show you where you can help yourself. Don’t just take the package offered to you by the SoC or board vendor and use it blindly without considering the alternatives.

    Moving through the project life cycle

    This book is divided into five sections that reflect the phases of a project. The phases are not necessarily sequential. Usually, they overlap, and you will need to jump back to revisit things that were done previously. However, they are representative of a developer’s preoccupations as the project progresses:

    
      	Elements of Embedded Linux (Chapters 1 to 5) will help you set up the development environment and create a working platform for the later phases. It is often referred to as the board bring-up phase.

      	Building Embedded Linux Images (Chapters 6 to 8) shows you how to automate the process of building an embedded Linux image by leveraging a build system like Buildroot or The Yocto Project. Automating complex build tasks accelerates the project life cycle so that teams can deliver higher-quality products in less time.

      	System Architecture and Design Choices (Chapters 9 to 14) will inform some of the design decisions you will have to make concerning the storage of programs and data, how to divide work between kernel device drivers and applications, and how to initialize the system.

      	Developing Applications (Chapters 15 to 18) shows you how to package and deploy Python applications, make effective use of the Linux process and thread model, and manage memory in a resource-constrained device. What do packaging and deploying Python applications have to do with embedded Linux? The answer is “not much”, but bear in mind that the word “development” also happens to be in the title of this book. And Chapters 15 and 16 have everything to do with modern-day software development.

      	Debugging and Optimizing Performance (Chapters 19 to 21) describes how to trace, profile, and debug your code in both the application and the kernel. The last chapter explains how to design for real-time behavior when required.

    

    Now, let’s focus on the four basic elements of embedded Linux that comprise the first section of the book.

    The four elements of embedded Linux

    Every project begins by obtaining, customizing, and deploying these four elements: the toolchain, the bootloader, the kernel, and the root filesystem. This is the topic of the first section of this book.

    
      	Toolchain: This is the cross compiler and other tools needed to create code for your target device. A cross compiler generates machine code for a target CPU architecture while running on a different host CPU architecture.

      	Bootloader: This is a bare metal program that initializes the board and the Linux kernel. The term “bare metal” means the program runs directly on the CPU, not on top of an OS.

      	Kernel: This is the heart of the system, managing system resources and interfacing with the hardware.

      	Root filesystem: This contains the libraries and programs that are run once the kernel has completed its initialization.

    

    There is also a fifth element not mentioned here. That is the collection of programs specific to your embedded application that make the device do whatever it is supposed to do, be it weighing groceries, displaying movies, controlling a robot, or flying a drone.

    Typically, you will be offered some or all of these elements as a package when you buy your SoC or board. But for the reasons mentioned earlier, they may not be the best choices for you. In the first eight chapters, I will give you the background to make the right selection and introduce two tools that automate the whole process for you: Buildroot and The Yocto Project.

    Navigating open source

    The components of embedded Linux are open source so now is a good time to consider what that means, why open source licenses work the way they do, and how this affects the often proprietary embedded device you will be creating from it.

    Licenses

    When talking about open source the word free is often used. People new to the subject often take it to mean nothing to pay and open source software licenses do indeed guarantee that you can use the software to develop and deploy systems for no charge. However, the more important meaning here is freedom since you are free to obtain the source code, modify it in any way you see fit, and redeploy it in other systems. Open source licenses give you this right, but some also require you to share these changes with the public.

    Compare that with freeware licenses, which allow you to copy the binaries for no cost but do not give you the source code. Other licenses allow you to use the software for free under certain circumstances, for example, for personal use, but not commercial. These are not open source.

    I will provide the following comments in the interest of helping you understand the implications of working with open source licenses, but I would like to point out that I am an engineer and not a lawyer. What follows is my understanding of the licenses and how they are interpreted.

    Open source licenses fall broadly into two categories:

    
      	Copyleft licenses such as the GNU General Public License (GPL)

      	Permissive licenses such as the BSD and MIT licenses

    

    The permissive licenses say, in essence, that you may modify the source code and use it in systems of your own choosing as long as you do not modify the terms of the license in any way. In other words, apart from that one restriction, you can do with it what you want, including building it into possibly proprietary systems.

    The GPL licenses are similar but have clauses that compel you to pass the rights to obtain and modify the software on to your end users. In other words, you share your source code. One option is to make it completely public by putting it onto a public server. Another is to offer it only to your end users by means of a written offer to provide the code when requested.

    The GPL goes further to say that you cannot incorporate GPL code into proprietary programs. Any attempt to do so would make the GPL apply to the whole. In other words, you cannot combine GPL and proprietary code in the same program. Aside from the Linux kernel, the GNU Compiler Collection and GNU Debugger, as well as many other freely available tools associated with the GNU project, fall under the umbrella of the GPL.

    So, what about libraries? If they are licensed with the GPL, any program linked with them becomes GPL also. However, most libraries are licensed under the GNU Lesser General Public License (LGPL). If this is the case, you are allowed to link with them from a proprietary program.

    
      IMPORTANT NOTE

      All of the preceding descriptions relate specifically to the GPL v2 and LGPL v2. I should mention the latest versions of the GPL v3 and LGPL v3. These are controversial and I will admit that I don’t fully understand the implications. However, the intention is to ensure that the GPL v3 and LGPL v3 components in any system can be replaced by the end user, which is in the spirit of open source software for everyone.

    

    The GPL v3 and LGPL v3 have their problems though. There are security issues. If the owner of a device has access to the system code, then so might an unwelcome intruder. Often the defense is to have kernel images signed by an authority such as the vendor so that unauthorized updates are not possible. Is that an infringement of my right to modify my device? Opinions differ.

    
      IMPORTANT NOTE

      The TiVo set-top box is an important part of this debate. It uses a Linux kernel, which is licensed under the GPL v2. TiVo has released the source code of their version of the kernel in compliance with the license. TiVo also has a bootloader that will only load a kernel binary that is signed by them. Consequently, you can build a modified kernel for a TiVo box, but you cannot load it on the hardware.

      The Free Software Foundation (FSF) takes the position that this is not in the spirit of open source software and refers to this procedure as tivoization. The GPL v3 and LGPL v3 were written explicitly to prevent this from happening. Some projects, the Linux kernel in particular, have been reluctant to adopt the GPL version 3 licenses because of the restrictions they place on device manufacturers.

    

    Selecting hardware for embedded Linux

    If you are designing or selecting hardware for an embedded Linux project, what do you look out for?

    
      	First, a CPU architecture that is supported by the kernel – unless you plan to add a new architecture yourself of course! Looking at the source code for Linux 5.15 there are 23 architectures each represented by a subdirectory in the arch/ directory. They are all 32-or 64-bit architectures, most with an MMU, but some without. The ones most often found in embedded devices are Arm, RISC-V, PowerPC, MIPS, and x86 each in 32-and 64-bit variants all of which have Memory Management Units (MMUs).

      	Most of this book is written with this class of processor in mind. There is another group that doesn’t have an MMU and that runs a subset of Linux known as a microcontroller Linux or uClinux. These processor architectures include ARC (Argonaut RISC Core), Blackfin, MicroBlaze, and Nios. I will mention uClinux from time to time, but I will not go into detail because it is a rather specialized type.

      	Second, you will need a reasonable amount of RAM. 16 MB is a good minimum, although it is quite possible to run Linux using half of that. It is even possible to run Linux with 4 MB if you are prepared to go to the trouble of optimizing every part of the system. It may even be possible to get lower, but there comes a point at which it is no longer Linux.

      	Third, there is non-volatile storage, usually flash memory. 8 MB is enough for a simple device such as a webcam or basic router. As with RAM, you can create a workable Linux system with less storage if you really want to, but the lower you go the harder it becomes. Linux has extensive support for flash storage devices, including raw NOR and NAND flash chips, and managed flash in the form of SD cards, eMMC chips, USB flash memory, and so on.

      	Fourth, a serial port is very useful, preferably a UART-based serial port. It does not have to be fitted on production boards but makes board bring-up, debugging, and development much easier.

      	Fifth, you need some means of loading software when starting from scratch. Many microcontroller boards are fitted with a Joint Test Action Group (JTAG) interface for this purpose. Modern SoCs can also load boot code directly from the removable media, especially SD and microSD cards, or serial interfaces such as QSPI or USB.

    

    In addition to these basics, there are interfaces to the specific bits of hardware your device needs to get its job done. Mainline Linux comes with open source drivers for many thousands of different devices, and there are drivers available (of variable quality) from the SoC manufacturer and from the OEMs of third-party chips that may be included in the design.

    Remember my comments on the commitment and ability of some manufacturers. As a developer of embedded systems, you will find that you spend quite a lot of time evaluating and adapting third-party code, if you have it, or liaising with the manufacturer if you don’t. Finally, you will have to write the device support for the interfaces that are unique to the device or find someone to do it for you.

    Obtaining the hardware for this book

    The examples in this book are intended to be generic. To make them relevant and easy to follow I have had to choose specific hardware. I have chosen three exemplary devices: the Raspberry Pi 4, BeaglePlay, and QEMU. The first is by far the most popular Arm-based SBC on the market. The second is a widely available SBC that can also be used in serious embedded hardware. The third is a machine emulator that can be used to create a range of systems that are typical of embedded hardware.

    It was tempting to use QEMU exclusively, but like all emulations, it is not quite the same as the real thing. Using the Raspberry Pi 4 and BeaglePlay, you have the satisfaction of interacting with real hardware and seeing real LEDs flash. The BeaglePlay, like the BeagleBone Black before it, is open source hardware, unlike the Raspberry Pi 4. This means that the board design materials are freely available for anyone to build the BeaglePlay or a derivative into their products.

    In any case, I encourage you to try out as many of the examples as you can, using either of these three platforms or any embedded hardware you may have on hand.

    The Raspberry Pi 4

    From June 2019 until October 2023, the Raspberry Pi 4 Model B was the flagship SBC produced by the Raspberry Pi Foundation. The Raspberry Pi 4’s technical specs include the following:

    
      	A Broadcom BCM2711 1.5 GHz quad-core Cortex-A72 (Arm v8) 64-bit SoC

      	2, 4, or 8 GB DDR4 RAM

      	2.4 GHz and 5 GHz 802.11ac wireless, Bluetooth 5.0, BLE

      	A serial port for debugging and development

      	A microSD slot, which can be used as a boot device

      	A USB-C connector to power the board

      	Two full-size USB 3.0 and two full-size USB 2.0 host ports

      	A Gigabit Ethernet port

      	Two micro HDMI ports for video and audio output

    

    In addition, there is a 40-pin expansion header for which there are a great variety of daughter boards known as Hardware Attached on Top (HATs) that allow you to adapt the board to do many different things. However, you will not need any HATs for the examples in this book.

    In addition to the board itself you will require the following:

    
      	A microSD card and a means of writing to it from your development PC or laptop

      	A USB-to-TTL serial cable with a 3.3 V logic level

      	A 5 V USB-C power supply capable of delivering 3 A

      	An Ethernet cable and a router to plug it into as some of the examples require network connectivity

    

    The BeaglePlay

    The BeaglePlay is an open source hardware design for an SBC produced by the BeagleBoard.org Foundation. The main points of the specification are:

    
      	A TI AM6254 1.4 GHz Arm quad-core Cortex-A53 (Arm v8) 64-bit Sitara SoC

      	2 GB DDR4 RAM

      	16 GB eMMC on-board flash

      	2.4 GHz and 5 GHz MIMO Wi-Fi, BLE, Zigbee

      	A serial port for debugging and development

      	A microSD slot, which can be used as a boot device

      	A USB-C connector to power the board

      	A full-size USB 2.0 host port

      	A Gigabit Ethernet port

      	A full-size HDMI port for video and audio output

    

    Instead of a large expansion header, the BeaglePlay has mikroBUS, Grove, and Qwiic interfaces for connecting add-on boards.

    In addition to the board itself, you will require the following:

    
      	A microSD card and a means of writing to it from your development PC or laptop

      	A USB-to-TTL serial cable with a 3.3 V logic level

      	A 5 V USB-C power supply capable of delivering 3 A

      	An Ethernet cable and a router to plug it into as some of the examples require network connectivity

    

    In addition to the above, Chapter 12 also requires the following:

    
      	A MikroE-5764 GNSS 7 Click add-on board 

      	An external active GNSS antenna with an SMA connector

      	A MikroE-5546 Environment Click add-on board

      	A MikroE-5545 OLED C Click add-on board

    

    QEMU

    QEMU is a machine emulator. It comes in different flavors, each of which can emulate a processor architecture and various boards built using that architecture. For example, we have the following:

    
      	qemu-system-arm: 32-bit Arm

      	qemu-system-aarch64: 64-bit Arm

      	qemu-system-mips: MIPS

      	qemu-system-ppc: Power PC

      	qemu-system-x86: x86 and x86-64

    

    For each architecture, QEMU emulates a range of hardware that you can see by using the -machine help option. Each architecture emulates most of the hardware that would normally be found on that board. There are options to link hardware to local resources, such as using a local file for the emulated disk drive. Here is a concrete example:

    $ qemu-system-arm -machine vexpress-a9 -m 256M -drive file=rootfs.ext4,sd -net nic -net use -kernel zImage -dtb vexpress-v2p-ca9.dtb -append "console=ttyAMA0,115200 root=/dev/mmcblk0" -serial stdio -net nic,model=lan9118 -net tap,ifname=tap0


    
      IMPORTANT NOTE

      The preceding command is not meant to be executed and will fail since qemu-system-arm is not installed and the rootfs.ext4.sd, zImage, and vexpress-v2p-ca9.dtb files do not exist on your host system. It is just an example for us to expand on.

    

    The options used in the preceding command line are as follows:

    
      	-machine vexpress -a9: Creates an emulation of an Arm Versatile Express development board with a Cortex-A9 processor.

      	-m 256M: Populates it with 256 MB of RAM.

      	-drive file=rootfs.ext4,sd: Connects the SD interface to the local rootfs.ext4 file, which contains a filesystem image.

      	-kernel zImage: Loads the Linux kernel from the local file named zImage.

      	-dtb vexpress-v2p-ca9.dtb: Loads the device tree from the local vexpress-v2p-ca9.dtb file.

      	-append "…": Appends the string in quotes as the kernel command line.

      	-serial stdio: Connects the serial port to the terminal that launched QEMU so that you can log on to the emulated machine via the serial console.

      	-net nic,model=lan9118: Creates a network interface.

      	-net tap,ifname=tap0: Connects the network interface to the virtual network interface tap0.

    

    To configure the host side of the network you need the tunctl command from the User Mode Linux (UML) project. On Debian and Ubuntu, the package is named uml-utilities:

    $ sudo tunctl -u $(whoami) -t tap0


    This creates a network interface named tap0 that is connected to the network controller in the emulated QEMU machine. You configure tap0 the same way as any other network interface.

    All these options are described in the following chapters. I will be using Versatile Express for most of my examples, but it should be easy to use a different machine or architecture.

    Provisioning your development environment

    I have only used open source software for both the development tools and the target OS/applications. I assume you will be using Linux on your development system.

    I tested all the host commands using Ubuntu 24.04 LTS, so I recommend using that version throughout the book to prevent any unexpected problems.

    Besides Ubuntu, The Yocto Project only supports a select few Linux distributions: Fedora, Debian, openSUSE, AlmaLinux, and Rocky. If you absolutely cannot use Ubuntu, then make sure to choose one of those supported distros for The Yocto Project exercises.

    Summary

    Embedded hardware continues to get more complex following the trajectory set by Moore’s law. Linux has the power and flexibility to make use of hardware in an efficient way. Together, we will learn how to harness that power so we can build robust products that delight our users. This book will take you through the five phases of an embedded project’s life cycle, beginning with the four elements of embedded Linux.

    The sheer variety of embedded platforms and the fast pace of development lead to isolated pools of software. In many cases, you will become dependent on this software, especially the Linux kernel that is provided by your SoC or board vendor, and to a lesser extent, the toolchain.

    Some SoC manufacturers are getting better at pushing their changes upstream and the maintenance of these changes is getting easier. Despite these improvements, selecting the right hardware for your embedded Linux project is still an exercise fraught with peril. Open source license compliance is another topic you need to be aware of when building products atop the embedded Linux ecosystem.

    In this chapter, you were introduced to the hardware and some of the software you will use throughout this book (namely QEMU). Later on, we will examine some powerful tools that can help you create and maintain the software for your device. We cover Buildroot and dig deep into The Yocto Project. Before we tackle these build tools, we will deconstruct the four elements of embedded Linux, which you can apply to all embedded Linux projects regardless of how they are built.

    Join our community on Discord

    Join our community’s Discord space for discussions with the authors and other readers: https://packt.link/embeddedsystems
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    Learning about Toolchains

    The toolchain is the first element of embedded Linux and the starting point of your project. You will use it to compile all the code that will run on your device. The choices you make at this early stage will have a profound impact on the final outcome.

    Your toolchain should be capable of making effective use of your hardware by using the optimum instruction set for your processor. It should support the languages that you require and have a solid implementation of the Portable Operating System Interface (POSIX) and other system interfaces.

    Your toolchain should remain constant throughout the project. In other words, once you have chosen your toolchain, it is important to stick with it. Changing compilers and development libraries inconsistently during a project will lead to subtle bugs. That being said, it is still best to update your toolchain when security flaws or bugs are found.

    Obtaining a toolchain can be as simple as downloading and installing a TAR file or it can be as complex as building the whole thing from source code. In this chapter, we take the first approach. Later on, in Chapter 6, we will switch to using the toolchain generated by the build system. This is the more usual means of obtaining a toolchain.

    In this chapter, we will cover the following topics:

    
      	Introducing toolchains

      	Finding a toolchain

      	Anatomy of a toolchain

      	Linking with libraries ‒ static and dynamic linking

      	Art of cross-compiling

    

    Technical requirements

    I recommend using Ubuntu 24.04 or a later LTS release since the exercises in this chapter were all tested against that Linux distro at the time of writing.

    Here is the command to install all the packages required for this chapter on Ubuntu 24.04 LTS:

    $ sudo apt-get install autoconf automake bison bzip2 cmake flex g++ gawk gcc gettext git gperf help2man libstdc++6 libtool libtool-bin make patch texinfo unzip wget xz-utils


    The code used in this chapter can be found in the chapter folder in this book’s GitHub repository: https://github.com/PacktPublishing/Mastering-Embedded-Linux-Development/tree/main/Chapter02.

    Introducing toolchains

    A toolchain is a set of tools that compiles source code into executables that can run on your target device. It includes a compiler, a linker, and runtime libraries. You need a toolchain to build the other three elements of an embedded Linux system:

    
      	Bootloader

      	Kernel

      	Root filesystem

    

    It has to be able to compile code written in C, C++, and an assembly language since these are the languages used in the base open source packages.

    Usually, toolchains for Linux are based on components from the GNU project and that is still true at the time of writing. However, over the past few years, the Clang compiler and the associated Low-Level Virtual Machine (LLVM) project have progressed to the point that LLVM is now a viable alternative to a GNU toolchain. One major distinction between LLVM and GNU-based toolchains is the licensing; LLVM has the Apache License v2.0 with LLVM Exceptions while GNU has the GPL.

    There are some technical advantages to Clang as well, such as faster compilation, better diagnostics, and more support for the latest C and C++ standards. But GCC (GNU C Compiler) has the advantage of compatibility with the existing code base and support for a wider range of architectures and Operating Systems (OS). While it took some years to get there, Clang can now compile all the components needed for embedded Linux and is a viable alternative to GCC. To learn more, see https://docs.kernel.org/kbuild/llvm.html.

    There is a good description of how to use Clang for cross-compilation at https://clang.llvm.org/docs/CrossCompilation.html. If you would like to use it as part of an embedded Linux build system, various people are working on using Clang with Buildroot and The Yocto Project. I will cover embedded build systems in Chapter 6. Meanwhile, this chapter focuses on the GNU toolchain as it is still the most popular and mature toolchain for Linux.

    A standard GNU toolchain consists of three main components:

    
      	Binutils: A set of binary utilities including the assembler and the linker.

      	GCC: Compilers for C and other languages, which include C++, Objective-C, Objective-C++, Java, Fortran, Ada, Go, and D. They all use a common backend that produces assembler code that is fed to the GNU assembler.

      	C library: A standardized Application Program Interface (API) based on the POSIX specification, which is the main interface to the OS kernel for applications. There are several C libraries to consider, as we shall see later in this chapter.

    

    Along with these, you will also need a copy of the Linux kernel headers. The kernel headers contain definitions and constants that are needed when accessing the kernel directly. You need the kernel headers to compile the C library, programs, and libraries. This user space code interacts indirectly with Linux devices, for example, to display graphics via the Linux frame buffer driver. This is in stark contrast to kernel modules/drivers inside kernel space with direct access to peripheral hardware.

    This is not simply a question of making a copy of the header files in the include directory of your kernel source code. Those headers are intended for use in the kernel only and contain definitions that will cause conflicts if used in their raw state to compile regular Linux applications. Instead, you will need to generate a set of sanitized kernel headers, which I have illustrated in Chapter 5.

    When compiling for user space, the kernel headers do not need to be generated from the exact version of Linux you are going to be running on. Since the kernel interfaces are always backward compatible, it is only necessary that the headers are from a kernel that is the same as or older than the one you are using on the target.

    Most people consider the GNU Debugger (GDB) to be part of the toolchain as well since it is also normally built at this point. When building a cross compiler, you also need to build a corresponding cross debugger to debug code on the target remotely from your host machine. I will talk about GDB in Chapter 19.

    Now that we’ve talked about kernel headers and seen what the components of a toolchain are, let’s look at the different types of toolchains.

    Types of toolchains

    For our purposes, there are two types of toolchains:

    
      	Native: A toolchain that runs on the same type of system (or even the actual system) as the programs it generates. This is usually the case for desktops and servers, and it is becoming popular on certain classes of embedded devices. For example, the Raspberry Pi 4 running Debian for ARM has self-hosted native compilers.

      	Cross: A toolchain that runs on a different type of system than the target allowing development to be done on a fast desktop PC and then loaded onto the embedded target for execution.

    

    Almost all embedded Linux development is done using a cross-development toolchain. This is partly because most embedded devices are not well suited for development since they lack computing power, memory, and storage, but also because it keeps the host and target environments separate. The latter point is especially important when the host and the target are using the same architecture, x86_64, for example. In this case, it is tempting to compile natively on the host and simply copy the binaries to the target.

    This works up to a point. However, it is likely that the host distribution will receive updates more often than the target or that different engineers building code for the target will have slightly different versions of the host development libraries. Over time, the development and target systems will diverge. You can upgrade the toolchain if you ensure that the host and the target build environments are in lockstep with each other. However, a much better approach is to keep the host and the target separate, and a cross toolchain is the way to do that.

    There is a counterargument in favor of native development. Cross-development creates the burden of having to cross-compile all the libraries and tools that you need for your target. We will see later, in the section titled Art of cross-compiling, that cross-development is not always simple because many open source packages are not designed to be built in this way.

    Integrated build tools like Buildroot and The Yocto Project help by encapsulating the rules for cross-compiling a range of packages needed by most embedded systems. But if you want to compile lots of additional packages, then it is better to compile them natively. For example, building a Debian distribution for the Raspberry Pi 4 or BeaglePlay using a cross compiler is very hard. Instead, they are natively compiled.

    Creating a native build environment from scratch is not easy. You still need a cross compiler at first to create the native build environment on the target, which you then use to build the packages. Then, to perform the native build in a reasonable amount of time, you need a build farm of well-provisioned target boards or Quick Emulator (QEMU) to emulate the target.

    In this chapter, we will focus on a pre-built cross-compiler environment that is relatively easy to set up and administer. We will start by looking at what distinguishes one target CPU architecture from another.

    CPU architectures

    The toolchain must be built according to the capabilities of the target CPU, which includes:

    
      	CPU architecture: ARM, RISC-V, PowerPC, Microprocessor without Interlocked Pipelined Stages (MIPS), or x86_64.

      	Big- or little-endian operation: Some CPUs can operate in both modes, but the machine code is different for each.

      	Floating point support: Not all versions of embedded processors implement a hardware floating point unit. In these cases, the toolchain must be configured to call a software floating point library instead.

      	Application Binary Interface (ABI): The calling convention used for passing parameters between function calls.

    

    With many architectures, the ABI is constant across the family of processors. One notable exception is ARM. The ARM architecture transitioned to the Extended Application Binary Interface (EABI) in the late 2000s resulting in the previous ABI being named the Old Application Binary Interface (OABI). While the OABI is now obsolete, you continue to see references to EABI. Since then, the EABI has split into three based on the way floating point parameters are passed: softfloat, softfp, and hardfp.

    The original EABI uses software emulation (softfloat) or general-purpose integer registers (softfp), while the newer Extended Application Binary Interface Hard-Float (EABIHF) uses floating point registers (hardfp). The original EABI’s softfloat and softfp modes are ABI-compatible. In softfloat mode, the compiler does not generate Floating Point Unit (FPU) instructions. All floating point operations are done in software, resulting in suboptimal performance. In softfp mode, float values are passed via the stack or integer registers for better performance. EABIHF is significantly faster at floating point operations since hardfp mode removes the need for copying between integer and floating point registers. 

    The downside of EABIHF is that hardfp mode is incompatible with CPUs that do not have a floating point unit. The choice then is between two incompatible ABIs. You cannot mix and match the two, so you must decide at this stage.

    GNU adds a prefix to the name of each tool in the toolchain that identifies the various combinations that can be generated. This prefix consists of a tuple of three or four components separated by dashes, as described here:

    
      	CPU: The CPU architecture such as ARM, RISC-V, PowerPC, MIPS, or x86_64. If the CPU has both endian modes, they may be differentiated by adding el for little-endian or eb for big-endian. Good examples are little-endian MIPS (mipsel) and big-endian ARM (armeb).

      	Vendor: Identifies the provider of the toolchain. Examples include buildroot, poky, and just unknown. Sometimes, it is left out altogether.

      	OS: For our purposes, it is always linux.

      	User space: A name for the user space component, which might be gnu or musl. The ABI may be appended here as well. So, for ARM toolchains, you may see gnueabi, gnueabihf, musleabi, or musleabihf.

    

    You can find the tuple used when building the toolchain by using the -dumpmachine option of gcc. For example, you may see the following on the host computer:

    $ gcc -dumpmachine
x86_64-linux-gnu


    This tuple indicates a CPU of x86_64, a kernel of linux, and a user space of gnu.

    
      IMPORTANT NOTE

      When a native compiler is installed on a machine it is normal to create links to each of the tools in the toolchain with no prefixes so that you can call the C compiler with the gcc command.

    

    Here is an example using a cross compiler:

    $ mipsel-unknown-linux-gnu-gcc -dumpmachine
mipsel-unknown-linux-gnu


    This tuple indicates a CPU of little-endian MIPS, an unknown vendor, a kernel of linux, and a user space of gnu. Your choice of user space (gnu or musl) determines which C library (glibc or musl) your programs are linked with.

    Choosing the C library

    The programming interface to the Unix OS is defined in the C language in adherence to POSIX standards. The C library is the implementation of that interface. It is the gateway to the kernel for Linux programs. Even if you are writing programs in another language like Go or Python, the respective runtime support libraries will eventually have to call the C library, as shown here:

    [image: Figure 2.1 – C library]
    Figure 2.1 – C library

    Whenever the C library needs the services of the kernel, it will use the kernel system call interface to transition between user space and kernel space. It is possible to bypass the C library by making the kernel system calls directly but that is a lot of trouble and almost never necessary.

    There are several C libraries to choose from. The main options are as follows:

    
      	glibc: This is the standard GNU C library available at https://gnu.org/software/libc/. It is big and, until recently, not very configurable, but it is the most complete implementation of the POSIX API. The license is LGPL 2.1.

      	musl libc: This is comparatively new but has been gaining a lot of attention as a small and standards-compliant alternative to glibc. It is a good choice for systems with a limited amount of RAM and storage. It has an MIT license and is available at https://musl.libc.org.

      	uClibc-ng: u is really the Greek mu character, indicating that this is the microcontroller C library. uClibc-ng is available at https://uclibc-ng.org. It was first developed to work with uClinux (Linux for microcontrollers without a memory management unit) but has since been adapted to be used with full Linux. The uClibc-ng library is a fork of the original uClibc project, which has fallen into disrepair. Both are licensed with LGPL 2.1.

    

    So, which to choose? My advice is to use uClibc-ng only if you are using uClinux. If you have a very limited amount of storage or RAM, then musl libc is a good choice. Otherwise, use glibc, as shown in this flow chart:
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    Figure 2.2 – Choosing a C library

    Your choice of C library could limit your choice of toolchain since not all pre-built toolchains support all C libraries. Once you know what you need in a toolchain, where do you find one?

    Finding a toolchain

    You have three choices for your cross-development toolchain: you may find a ready-built toolchain that matches your needs, you can use the one generated by an embedded build tool (which is covered in Chapter 6), or you can create one yourself.

    A pre-built cross toolchain is an attractive option in that you only have to download and install it. But you are limited to the configuration of that particular toolchain, and you are dependent on the person or organization you got it from. Most likely, it will be one of these:

    
      	An SoC or board vendor. Most vendors offer a Linux toolchain.

      	A consortium dedicated to providing system-level support for a given architecture. For example, Linaro (https://www.linaro.org) has pre-built toolchains for the ARM architecture.

      	A third-party Linux tool vendor such as Siemens, Timesys, or Wind River.

      	The cross-tool packages for your desktop Linux distribution. For example, Debian-based distributions have packages for cross-compiling for ARM, PowerPC, and MIPS targets.

      	A binary SDK produced by one of the integrated embedded build tools. The Yocto Project has some available for download at https://downloads.yoctoproject.org/releases/yocto/yocto-<version>/toolchain/. (replace <version> with a valid Yocto Project version such as 5.0 in the preceding URL).

      	A link from a forum that you can’t find anymore.
          IMPORTANT NOTE

          In all these cases, you must decide whether the pre-built toolchain on offer meets your requirements. Does it use the C library you prefer? Will the provider give you updates for security fixes and bugs? Bear in mind my comments on support and updates from Chapter 1. If your answer is no to any of these, then you should consider creating your own.

        

      

    

    Unfortunately, building a toolchain is no easy task. If you truly want to do the whole thing yourself, take a look at Cross Linux From Scratch (https://trac.clfs.org). There, you will find step-by-step instructions on how to create each component.

    A simpler alternative is to use crosstool-NG, which encapsulates the process into a set of scripts and has a menu-driven frontend. You still need a fair degree of knowledge though just to make the right choices.

    It is simpler still to use a build system such as Buildroot or The Yocto Project since they generate a toolchain as part of the build process. This is my preferred solution, as we shall see in Chapter 6.

    You will need a working cross toolchain to complete the exercises in the next section. We will employ a pre-built toolchain from Bootlin. Bootlin’s toolchains are built using Buildroot.

    To download the pre-built cross toolchain needed for Chapters 2 through 5:

    $ wget https://toolchains.bootlin.com/downloads/releases/toolchains/aarch64/tarballs/aarch64--glibc--stable-2024.02-1.tar.bz2


    To download the latest version of this toolchain, visit https://toolchains.bootlin.com. Select aarch64 for architecture and glibc for libc. Once these choices have been made, download the stable version of the toolchain.

    Install the pre-built toolchain on your Linux host machine by extracting and decompressing it to your home directory:

    $ bzip2 -d aarch64--glibc--stable-2024.02-1.tar.bz2
$ tar -xvf aarch64--glibc--stable-2024.02-1.tar
<…>


    You will use this toolchain for the remainder of this chapter. Let’s start by looking at its internals.

    Anatomy of a toolchain

    To get an idea of what is in a typical toolchain, let’s examine the toolchain you downloaded from Bootlin. The examples use the aarch64 toolchain, which has the prefix aarch64-buildroot-linux-gnu.

    The aarch64 toolchain is in the directory ~/aarch64--glibc--stable-2024.02-1/bin. In there, you will find the cross compiler aarch64-buildroot-linux-gnu-gcc. To make use of it, you need to add the directory to your path using the following command:

    $ PATH=~/aarch64--glibc--stable-2024.02-1/bin:$PATH


    If you downloaded a different version, make sure to replace 2024.02-1 with the actual version of the stable toolchain.

    Now you can take a simple helloworld program, which, in the C language, looks like this:

    #include <stdio.h>
#include <stdlib.h>
int main (int argc, char *argv[])
{
    printf ("Hello, World!\n");
    return 0;
}


    And compile it like this:

    $ aarch64-buildroot-linux-gnu-gcc helloworld.c -o helloworld


    Confirm that it has been cross-compiled by using the file command to print the type of the file:

    $ file helloworld
helloworld: ELF 64-bit LSB pie executable, ARM aarch64, version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-aarch64.so.1, for GNU/Linux 3.7.0,  not stripped


    Now that you’ve verified that your cross compiler works, let’s take a closer look at it.

    Finding out about your cross compiler

    Imagine that you have just received a toolchain and that you would like to know more about how it was configured. You can find out a lot by querying gcc. For example, to find the version, you use --version:

    $ aarch64-buildroot-linux-gnu-gcc --version
aarch64-buildroot-linux-gnu-gcc.br_real (Buildroot 2021.11-11272-ge2962af) 12.3.0
Copyright (C) 2022 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.  There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.


    To find how it was configured, use -v:

    $ aarch64-buildroot-linux-gnu-gcc -v
Using built-in specs.
COLLECT_GCC=/home/frank/aarch64--glibc--stable-2024.02-1/bin/aarch64-buildroot-linux-gnu-gcc.br_real
COLLECT_LTO_WRAPPER=/home/frank/aarch64--glibc--stable-2024.02-1/bin/../libexec/gcc/aarch64-buildroot-linux-gnu/12.3.0/lto-wrapper
Target: aarch64-buildroot-linux-gnu
Configured with: ./configure --prefix=/builds/buildroot.org/toolchains-builder/build/aarch64--glibc--stable-2024.02-1 --sysconfdir=/builds/buildroot.org/toolchains-builder/build/aarch64--glibc--stable-2024.02-1/etc --enable-static --target=aarch64-buildroot-linux-gnu --with-sysroot=/builds/buildroot.org/toolchains-builder/build/aarch64--glibc--stable-2024.02-1/aarch64-buildroot-linux-gnu/sysroot --enable-__cxa_atexit --with-gnu-ld --disable-libssp --disable-multilib --disable-decimal-float --enable-plugins --enable-lto --with-gmp=/builds/buildroot.org/toolchains-builder/build/aarch64--glibc--stable-2024.02-1 --with-mpc=/builds/buildroot.org/toolchains-builder/build/aarch64--glibc--stable-2024.02-1 --with-mpfr=/builds/buildroot.org/toolchains-builder/build/aarch64--glibc--stable-2024.02-1 --with-pkgversion='Buildroot 2021.11-11272-ge2962af' --with-bugurl=http://bugs.buildroot.net/ --without-zstd --disable-libquadmath --disable-libquadmath-support --enable-tls --enable-threads --without-isl --without-cloog --with-abi=lp64 --with-cpu=cortex-a53 --enable-languages=c,c++,fortran --with-build-time-tools=/builds/buildroot.org/toolchains-builder/build/aarch64--glibc--stable-2024.02-1/aarch64-buildroot-linux-gnu/bin --enable-shared --enable-libgomp
Thread model: posix
Supported LTO compression algorithms: zlib
gcc version 12.3.0 (Buildroot 2021.11-11272-ge2962af)
<…>


    There is a lot of output there but the interesting things to note are:

    
      	--with-sysroot=/builds/buildroot.org/toolchains-builder/build/aarch64--glibc--stable-2024.02-1/aarch64-buildroot-linux-gnu/sysroot: The location of the sysroot directory at build time. See the following section for an explanation.

      	--enable-languages=c,c++,fortran: Both the C and C++ languages are enabled.

      	--with-cpu=cortex-a53: Generates code for an ARM Cortex-A53 core.

      	--enable-threads: Enables POSIX threads.

    

    These are the default settings for the compiler. You can override most of them on the gcc command line. For example, if you want to compile for a different CPU, you can override the configured setting --with-cpu by adding -mcpu=cortex-a72 to the command line, as follows:

    $ aarch64-buildroot-linux-gnu-gcc -mcpu=cortex-a72 helloworld.c -o helloworld


    You can print out the range of architecture-specific options available using --target-help, as follows:

    $ aarch64-buildroot-linux-gnu-gcc --target-help


    You may be wondering if it matters that you get the configuration exactly right at this point since you can always change it. The answer depends on the way you anticipate using it. If you plan to create a new toolchain for each target, then it makes sense to set everything up at the beginning because it will reduce the risks of getting it wrong later.

    I call this the Buildroot philosophy, which we will revisit in Chapter 6. If, on the other hand, you want to build a toolchain that is generic, and you are prepared to provide the correct settings when you build for a particular target, then you should make the base toolchain generic, which is the way The Yocto Project handles things.

    Now that we’ve seen the location of the sysroot directory at build time, let’s look inside the default sysroot directory installed on your host machine.

    sysroot, library, and header files

    The toolchain sysroot directory contains subdirectories for libraries, header files, and other configuration files. It can be set when the toolchain is configured through --with-sysroot= or it can be set on the command line using --sysroot=. You can see the location of the default sysroot by using -print-sysroot:

    $ aarch64-buildroot-linux-gnu-gcc -print-sysroot
/home/frank/aarch64--glibc--stable-2024.02-1/aarch64-buildroot-linux-gnu/sysroot


    You will find the following subdirectories in sysroot:

    
      	lib: Contains the shared objects for the C library and the dynamic linker/loader ld-linux

      	usr/lib: Contains the static library archive files for the C library and any other libraries that may be subsequently installed

      	usr/include: Contains the headers for all the libraries

      	usr/bin: Contains the utility programs that run on the target such as the ldd command

      	usr/share: Used for localization and internationalization

      	sbin: Provides the ldconfig utility that is used to optimize library loading paths

    

    Some of these are needed on the development host to compile programs and others, like the shared libraries and ld-linux, are needed on the target at runtime.

    Other tools in the toolchain

    Below is a list of commands to invoke the various other components of a GNU toolchain. Like aarch64-buildroot-linux-gnu-gcc, these tools are all located inside the ~/aarch64--glibc--stable-2024.02-1/bin/ directory that you added to your PATH. Here are brief descriptions of these tools:

    
      	addr2line: Converts program addresses into source code filenames and line numbers by reading the debug symbol tables in an executable file. It is very useful when decoding addresses printed out in a system crash report.

      	ar: An archive utility used to create static libraries.

      	as: GNU assembler.

      	c++filt: Demangles C++ and Java symbols.

      	cpp: C preprocessor used to expand #define, #include, and other similar directives. You seldom need to use this by itself.

      	elfedit: Updates the ELF header of the ELF files.

      	g++: GNU C++ frontend, which assumes that source files contain C++ code.

      	gcc: GNU C frontend, which assumes that source files contain C code.

      	gcov: Code coverage tool.

      	gdb: GNU debugger.

      	gprof: Program profiling tool.

      	ld: GNU linker.

      	nm: Lists symbols from object files.

      	objcopy: Copies and translates object files.

      	objdump: Displays information from object files.

      	ranlib: Creates or modifies an index in a static library making the linking stage faster.

      	readelf: Displays information about files in ELF object format.

      	size: Lists section sizes and the total size.

      	strings: Displays strings of printable characters in files.

      	strip: Strips an object file of debug symbol tables, making it smaller. Typically, you would strip all the executable code that is put onto the target.

    

    We will now switch gears from command-line tools and return to the topic of the C library.

    Looking at the components of the C library

    The C library is not a single library file. It is composed of four main parts that together implement the POSIX API:

    
      	libc: The main C library that contains the well-known POSIX functions such as printf, open, close, read, write, and so on

      	libm: Contains math functions such as cos, exp, and log

      	libpthread: Contains all the POSIX thread functions with names beginning with pthread_

      	librt: Has real-time extensions to POSIX including shared memory and asynchronous I/O

    

    The first one, libc, is always linked in but the others must be explicitly linked with the -l option. The parameter to -l is the library name with lib stripped off. For example, a program that calculates a sine function by calling sin() would be linked with libm using -lm:

    $ aarch64-buildroot-linux-gnu-gcc myprog.c -o myprog -lm


    You can verify which libraries have been linked in this or any other program by using the readelf command:

    $ aarch64-buildroot-linux-gnu-readelf -a myprog | grep "Shared library"
0x0000000000000001 (NEEDED)             Shared library: [libm.so.6]
0x0000000000000001 (NEEDED)             Shared library: [libc.so.6]


    Shared libraries need a runtime linker, which you can expose using:

    $ aarch64-buildroot-linux-gnu-readelf -a myprog | grep "program interpreter"
      [Requesting program interpreter: /lib/ld-linux-aarch64.so.1]


    This is so useful that I have a script file named list-libs, which you will find in the book code archive in MELD/list-libs. It contains the following commands:

    ${CROSS_COMPILE}readelf -a $1 | grep "program interpreter"
${CROSS_COMPILE}readelf -a $1 | grep "Shared library"


    There are other library files we can link to other than the four components of the C library. We will look at how to do that in the next section.

    Linking with libraries – static and dynamic linking

    Any application you write for Linux, whether it be in C or C++, will be linked with the C library libc. This is so fundamental that you don’t even have to tell gcc or g++ to do it because it always links libc. Other libraries that you may want to link with have to be explicitly named through the -l option.

    Library code can be linked in two different ways:

    
      	Statically: This means that all the library functions your application calls and their dependencies are pulled from the library archive and bound into your executable.

      	Dynamically: This means that references to the library files and functions in those files are generated in the code but the actual linking is done dynamically at load time.

    

    You will find the code for the examples that follow in the book code archive in MELD/Chapter02/library.

    Static libraries

    Static linking is useful in a few circumstances. For example, if you are building a small system that consists of only BusyBox and some script files, it is simpler to link BusyBox statically and avoid having to copy the runtime library files and linker. The footprint will also be smaller because you only link in the code that your application uses rather than supplying the entire C library. Static linking is also useful if you need to run a program before the filesystem that holds the runtime libraries is available.

    You can link all the libraries statically by adding -static to the command line:

    $ aarch64-buildroot-linux-gnu-gcc -static helloworld.c -o helloworld-static


    You will note that the size of the binary increases dramatically:

    $ ls -l helloworld*
-rwxrwxr-x 1 frank frank   8928 Apr 28 23:34 helloworld
-rw-rw-r-- 1 frank frank    123 Apr 28 23:30 helloworld.c
-rwxrwxr-x 1 frank frank 718472 Apr 28 23:33 helloworld-static


    Static linking pulls code from a library archive usually named lib<name>.a. In the preceding case, it is libc.a, which is in <sysroot>/usr/lib:

    $ export SYSROOT=$(aarch64-buildroot-linux-gnu-gcc -print-sysroot)
$ cd $SYSROOT
$  ls -l usr/lib/libc.a
-rw-r--r-- 1 frank frank 5551484 Mar  3  2024 usr/lib/libc.a


    Note that the syntax export SYSROOT=$(aarch64-buildroot-linux-gnu-gcc -print-sysroot) places the path to the sysroot in the shell variable SYSROOT, which makes the example a little clearer.

    Creating a static library is as simple as creating an archive of object files using the ar command. If I have two source files named test1.c and test2.c (this exercise has no Git examples – you are expected to generate your own test1.c and test2.c files) and I want to create a static library named libtest.a, then I would do the following:

    $ aarch64-buildroot-linux-gnu-gcc -c test1.c
$ aarch64-buildroot-linux-gnu-gcc -c test2.c
$ aarch64-buildroot-linux-gnu-ar rc libtest.a test1.o test2.o
$ ls -l
total 24
-rw-rw-r--  1 frank frank 2392 Nov  9 09:28 libtest.a
-rw-rw-r--  1 frank frank  116 Nov  9 09:26 test1.c
-rw-rw-r--  1 frank frank 1080 Nov  9 09:27 test1.o
-rw-rw-r--  1 frank frank  121 Nov  9 09:26 test2.c
-rw-rw-r--  1 frank frank 1088 Nov  9 09:27 test2.o


    The book’s Git repository contains source and makefiles to assist with the linking exercises that follow:

    $ cd MELD/Chapter02/library
$ tree
.
├── hello-arm
│   ├── hello-arm.c
│   └── Makefile
├── inc
│   └── testlib.h
├── shared
│   ├── Makefile
│   └── testlib.c
└── static
    ├── Makefile
    └── testlib.c


    Compile the static libtest.a library:

    $ cd static
$ CC=aarch64-buildroot-linux-gnu-gcc make
aarch64-buildroot-linux-gnu-gcc -Wall -g -I../inc -c testlib.c
ar rc libtest.a testlib.o


    Compile hello-arm.c and link it with libtest.a to produce a hello-arm-static executable:

    $ cd ../hello-arm
$ CC=aarch64-buildroot-linux-gnu-gcc make hello-arm-static
aarch64-buildroot-linux-gnu-gcc -c -Wall -I../inc -o hello-arm.o hello-arm.c
aarch64-buildroot-linux-gnu-gcc -o hello-arm-static hello-arm.o -L../static -ltest


    Now let’s rebuild the same program using dynamic linking.

    Shared libraries

    A more common way to deploy libraries is as shared objects that are linked at runtime, which makes more efficient use of storage and system memory since only one copy of the code needs to be loaded. It also makes it easy to update the library files without having to relink all the programs that use them.

    The object code for a shared library must be position independent so that the runtime linker is free to locate it in memory at the next free address. To do this, add the -fPIC parameter to gcc and then link it using the -shared option:

    $ aarch64-buildroot-linux-gnu-gcc -fPIC -c test1.c
$ aarch64-buildroot-linux-gnu-gcc -fPIC -c test2.c
$ aarch64-buildroot-linux-gnu-gcc -shared -o libtest.so test1.o test2.o


    This creates the shared library libtest.so. To link an application with this library, you add -ltest just like you did for the static case, but this time, the code is not included in the executable. Instead, there is a reference to the library that the runtime linker will have to resolve.

    Compile the shared libtest.so library:

    $ cd MELD/Chapter02/library
$ cd shared
$ CC=aarch64-buildroot-linux-gnu-gcc make
aarch64-buildroot-linux-gnu-gcc -Wall -g -fPIC -I../inc -c testlib.c
aarch64-buildroot-linux-gnu-gcc -shared -o libtest.so testlib.o


    Compile hello-arm.c and link it with libtest.so to produce a hello-arm-shared executable:

    $ cd ../hello-arm
$ CC=aarch64-buildroot-linux-gnu-gcc make hello-arm-shared
aarch64-buildroot-linux-gnu-gcc -c -Wall -I../inc -o hello-arm.o hello-arm.c
aarch64-buildroot-linux-gnu-gcc -o hello-arm-shared hello-arm.o -L../shared -ltest
$ ~/MELD/list-libs hello-arm-shared
      [Requesting program interpreter: /lib/ld-linux-aarch64.so.1]
 0x0000000000000001 (NEEDED)             Shared library: [libtest.so]
 0x0000000000000001 (NEEDED)             Shared library: [libc.so.6]


    The runtime linker for this program is /lib/ld-linux-aarch64.so.1, which must be present in the target’s filesystem. The linker will look for libtest.so in the default search path: /lib and /usr/lib. If you want it to look for libraries in other directories as well, you can place a colon-separated list of paths in the shell variable LD_LIBRARY_PATH:

    $ export LD_LIBRARY_PATH=/opt/lib:/opt/usr/lib


    Because shared libraries are separate from executables, you need to ensure the correct versions of shared libraries are installed on the target so that you don’t encounter runtime errors.

    Understanding shared library version numbers

    One of the benefits of shared libraries is that they can be updated independently of the programs that use them. Library updates are of two types:

    
      	Those that fix bugs or add new functions in a backward-compatible way

      	Those that break compatibility with existing applications

    

    GNU/Linux has a versioning scheme to handle both these cases.

    Each library has a release version and an interface number. The release version is simply a string that is appended to the library name. For example, the JPEG image library libjpeg is currently at release 8.2.2 and so the library is named libjpeg.so.8.2.2. There is a symbolic link named libjpeg.so to libjpeg.so.8.2.2 so that when you compile a program with -ljpeg, you link with the current version. If you install version 8.2.3, the link is updated, and you will link with that one instead.

    Now suppose that version 9.0.0 comes along and that breaks the backward compatibility. The link from libjpeg.so now points to libjpeg.so.9.0.0 so that any new programs are linked with the new version. When the interface to libjpeg changes, the result is compilation errors that a developer can fix.

    Any programs on the target that are not recompiled are going to fail in some way because they are still using the old interface. This is where an object known as the soname helps. The soname encodes the interface number from when the library was built and is used by the runtime linker when it loads the library. It is formatted as <library name>.so.<interface number>. For libjpeg.so.8.2.2, the soname is libjpeg.so.8 because the interface number when that libjpeg shared library was built is 8:

    $ readelf -a /usr/lib/x86_64-linux-gnu/libjpeg.so.8.2.2 | grep SONAME
0x000000000000000e (SONAME)    Library soname: [libjpeg.so.8]


    Any program compiled with it will request libjpeg.so.8 at runtime, which will be a symbolic link on the target to libjpeg.so.8.2.2. When version 9.0.0 of libjpeg is installed, it will have a soname of libjpeg.so.9 and so it is possible to have two incompatible versions of the same library installed on the same system. Programs that were linked with libjpeg.so.8.*.* will load libjpeg.so.8 and those linked with libjpeg.so.9.*.* will load libjpeg.so.9.

    This is why, when you look at the directory listing of /usr/lib/x86_64-linux-gnu/libjpeg*, you find these four files:

    
      	libjpeg.a: The library archive used for static linking

      	libjpeg.so -> libjpeg.so.8.2.2: A symbolic link used for dynamic linking

      	libjpeg.so.8 -> libjpeg.so.8.2.2: A symbolic link used when loading the library at runtime

      	libjpeg.so.8.2.2: The actual shared library used at both compile time and runtime

    

    The first two are only needed on the host computer for building and the last two are needed on the target at runtime.

    While you can invoke the various GNU cross-compilation tools directly from the command line, this technique does not scale beyond toy examples like helloworld. To really be effective at cross-compiling, we need to combine a cross toolchain with a build system.

    Art of cross-compiling

    Having a working cross toolchain is the starting point of a journey not the end of it. At some point, you will want to begin cross-compiling the various tools, applications, and libraries that you need for your target. Many of them will be open source packages, each of which has its own method of compiling and its own peculiarities.

    Some common build systems include:

    
      	Pure makefiles where the toolchain is usually controlled by the make variable CROSS_COMPILE

      	GNU Autotools build system

      	CMake

    

    Both Autotools and makefiles are needed to build even a basic embedded Linux system. CMake is cross-platform and has seen increased adoption over the years, especially among the C++ community. In this section, we will cover all three build tools.

    Simple makefiles

    Some important packages are very simple to cross-compile, including the Linux kernel, the U-Boot bootloader, and BusyBox. For each of these, you only need to put the toolchain prefix in the make variable CROSS_COMPILE, for example, aarch64-buildroot-linux-gnu-. Note the trailing hyphen.

    To compile BusyBox, you type:

    $ make CROSS_COMPILE=aarch64-buildroot-linux-gnu-


    Or you can set it as a shell variable:

    $ export CROSS_COMPILE=aarch64-buildroot-linux-gnu-
$ make


    In the case of U-Boot and Linux, you also need to set the make variable ARCH to one of the machine architectures they support, which I will cover in Chapters 3 and 4.

    Both Autotools and CMake can generate makefiles. Autotools only generates makefiles, whereas CMake supports other ways of building projects depending on which platform(s) you are targeting (strictly Linux in our case). Let’s look at cross-compiling with Autotools first.

    Autotools

    The name Autotools refers to a group of tools that are used as the build system in many open source projects. The components, together with the appropriate project pages, are:

    
      	GNU autoconf (https://www.gnu.org/software/autoconf/ )

      	 GNU automake (https://www.gnu.org/software/automake/)

      	GNU libtool (https://www.gnu.org/software/libtool/)

      	gnulib (https://www.gnu.org/software/gnulib/)

    

    The role of Autotools is to smooth over the differences between the different types of systems that the package may be compiled for, accounting for different versions of compilers, different versions of libraries, different locations of header files, and dependencies with other packages.

    Packages that use Autotools come with a script named configure that checks dependencies and generates makefiles according to what it finds. The configure script may also give you the opportunity to enable or disable certain features. You can find the options on offer by running ./configure --help.

    To configure, build, and install a package for the native OS, you would typically run the following three commands:

    $ ./configure
$ make
$ sudo make install


    Autotools can handle cross-development as well. You can influence the behavior of the configured script by setting these shell variables:

    
      	CC: C compiler command

      	CFLAGS: Additional C compiler flags

      	CXX: C++ compiler command

      	CXXFLAGS: Additional C++ compiler flags

      	LDFLAGS: Additional linker flags; for example, if you have libraries in a non-standard directory, <lib dir>, you would add it to the library search path by adding -L<lib dir>

      	LIBS: A list of additional libraries to pass to the linker; for instance, -lm for the math library

      	CPPFLAGS: C/C++ preprocessor flags; for example, you would add -I<include dir> to search for headers in a non-standard directory, <include dir>

      	CPP: C preprocessor to use

    

    Sometimes, it is sufficient to set only the CC variable, as follows:

    $ CC=aarch64-buildroot-linux-gnu-gcc ./configure


    Other times, that will result in an error like this:

    <…>
checking for suffix of executables...
checking whether we are cross compiling... configure: error: in '/home/frank/sqlite-autoconf-3440000':
configure: error: cannot run C compiled programs.
If you meant to cross compile, use '--host'.
See 'config.log' for more details


    The reason for the failure is that configure often tries to discover the capabilities of the toolchain by compiling snippets of code and running them to see what happens, which cannot work if the program has been cross-compiled.

    
      IMPORTANT NOTE

      Pass --host=<host> to configure when you are cross-compiling so that configure searches your system for the cross-compiling toolchain targeting the specified <host> platform. That way, configure does not try to run snippets of non-native code as part of the configuration step.

    

    Autotools understands three different types of machines that may be involved when compiling a package:

    
      	build: The computer that builds the package, which defaults to the current machine.

      	host: The computer the program will run on. For a native compile, this is left blank and defaults to the same computer as build. When you are cross-compiling, set it to be the tuple of your toolchain.

      	target: The computer the program will generate code for. You would set this when building a cross compiler.

    

    To cross-compile, you just need to override the host as follows:

    $ CC=aarch64-buildroot-linux-gnu-gcc ./configure --host=aarch64-buildroot-linux-gnu


    One final thing to note is that the default install directory is <sysroot>/usr/local. You would usually install it in <sysroot>/usr so that the header files and libraries would be picked up from their default locations.

    The complete command to configure a typical Autotools package is as follows:

    $ CC=aarch64-buildroot-linux-gnu-gcc ./configure --host=aarch64-buildroot-linux-gnu --prefix=/usr


    Let’s dive deeper into Autotools and use it to cross-compile a popular library.

    An example: SQLite

    The SQLite library implements a simple relational database and is quite popular on embedded devices.

    First, begin by getting a copy of SQLite:

    $ wget http://www.sqlite.org/2023/sqlite-autoconf-3440000.tar.gz
$ tar xf sqlite-autoconf-3440000.tar.gz
$ cd sqlite-autoconf-3440000


    Version 3.44.0 of SQLite may no longer be available. If so, then download a more up-to-date version of the source code from the SQLite Download page at https://www.sqlite.org/download.html. Modify the preceding tar and cd commands to match the filename of the new tarball.

    Next, run the configure script:

    $ CC=aarch64-buildroot-linux-gnu-gcc ./configure --host=aarch64-buildroot-linux-gnu --prefix=/usr


    That seems to work! If it had failed, there would have been error messages printed to the terminal and recorded in config.log. Note that several makefiles have been created so now you can build it:

    $ make


    Finally, you install it into the toolchain directory by setting the make variable, DESTDIR. If you don’t, it will try to install it into the host computer’s /usr directory, which is not what you want:

    $ make DESTDIR=$(aarch64-buildroot-linux-gnu-gcc -print-sysroot) install


    You may find that the final command fails with a file permissions error because the toolchain is installed in a system directory such as /opt or /usr/local. In that case, you will need root permissions when running the installation.

    After installing, you should find that various files have been added to your toolchain:

    
      	<sysroot>/usr/bin: sqlite3: A command-line interface for SQLite that you can install and run on the target

      	<sysroot>/usr/lib: libsqlite3.so.0.8.6, libsqlite3.so.0, libsqlite3.so, libsqlite3.la, libsqlite3.a: The shared and static libraries

      	<sysroot>/usr/lib/pkgconfig: sqlite3.pc: The package configuration file, as described in the following section

      	<sysroot>/usr/include: sqlite3.h, sqlite3ext.h: The header files

      	<sysroot>/usr/share/man/man1: sqlite3.1: The manual page

    

    Now you can compile programs that use sqlite3 by adding -lsqlite3 at the link stage:

    $ aarch64-buildroot-linux-gnu-gcc -lsqlite3 sqlite-test.c -o sqlite-test


    Here, sqlite-test.c is a hypothetical program that calls SQLite functions. Since sqlite3 has been installed into the sysroot, the compiler will find the header and library files without any problem. If they had been installed elsewhere, you would have had to add -L<lib dir> and -I<include dir>.

    Naturally, there will be runtime dependencies as well and you will have to install the appropriate files into the target directory, as described in Chapter 5.

    To cross-compile a library or package, you first need to cross-compile its dependencies. Autotools relies on a utility called pkg-config to gather vital information about packages cross-compiled by Autotools.

    Package configuration

    Tracking package dependencies is quite complex. The package configuration utility pkg-config helps track which packages are installed and which compile flags each package needs by keeping a database of Autotools packages in <sysroot>/usr/lib/pkgconfig. For instance, the one for SQLite3 is named sqlite3.pc and contains essential information needed by other packages that depend on it:

    cat $(aarch64-buildroot-linux-gnu-gcc -print-sysroot)/usr/lib/pkgconfig/sqlite3.pc
# Package Information for pkg-config
prefix=/usr
exec_prefix=${prefix}
libdir=${exec_prefix}/lib
includedir=${prefix}/include
Name: SQLite
Description: SQL database engine
Version: 3.44.0
Libs: -L${libdir} -lsqlite3
Libs.private: -lm -ldl -lpthread
Cflags: -I${includedir}


    You can use pkg-config to extract information in a form that you can feed straight to gcc. In the case of a library like libsqlite3, you want to know the library name (--libs) and any special C flags (--cflags):

    $ pkg-config sqlite3 --libs --cflags
Package sqlite3 was not found in the pkg-config search path.
Perhaps you should add the directory containing 'sqlite3.pc' to the PKG_CONFIG_PATH environment variable
No package 'sqlite3' found


    Oops! That failed because it was looking in the host’s sysroot, and the development package for libsqlite3 has not been installed on the host. You need to point it at the sysroot of the target toolchain by setting the shell variable PKG_CONFIG_LIBDIR:

    $ export PKG_CONFIG_LIBDIR=$(aarch64-buildroot-linux-gnu-gcc -print-sysroot)/usr/lib/pkgconfig
$ pkg-config sqlite3 --libs --cflags
-lsqlite3


    Now the output is -lsqlite3. In this case, you knew that already, but generally, you wouldn’t, so this is a valuable technique. The final commands to compile are:

    $ export PKG_CONFIG_LIBDIR=$(aarch64-buildroot-linux-gnu-gcc -print-sysroot)/usr/lib/pkgconfig
$ aarch64-buildroot-linux-gnu-gcc $(pkg-config sqlite3 --cflags --libs) sqlite-test.c -o sqlite-test


    Many configure scripts read the information generated by pkg-config. This can lead to errors when cross-compiling, as we shall see next.

    Problems with cross-compiling

    sqlite3 is a well-behaved package that cross-compiles nicely, but not all packages are the same. Typical pain points include:

    
      	Home-grown build systems for libraries like zlib that have a configure script that does not behave like the Autotools configure described in the previous section

      	configure scripts that read pkg-config information, headers, and other files from the host disregarding the --host override

      	Scripts that insist on trying to run cross-compiled code

    

    Each case requires careful analysis of the error. We can either pass additional parameters to the configure script to provide the correct information or apply patches to the code to avoid the problem altogether. Bear in mind that a single package can have many dependencies. This is especially true for programs that have a graphical interface or that handle multimedia content. As an example, MPlayer has dependencies on over 100 libraries. It would take weeks of effort to build them all.

    Therefore, I would not recommend manually cross-compiling components for the target in this way, except when there is no alternative or the number of packages to build is small. 

    A much better approach is to use a build tool such as Buildroot or The Yocto Project or avoid the problem altogether by setting up a native build environment for your target architecture. Now you can see why distributions like Debian are always compiled natively.

    CMake

    CMake is more of a meta build system in the sense that it relies on an underlying platform’s native tools to build software. On Windows, CMake can generate project files for Microsoft Visual Studio, and on macOS, it can generate project files for Xcode. Integrating with the principal IDEs for each of the major platforms is no simple task and explains the success of CMake as the leading cross-platform build system solution. CMake also runs on Linux where it can be used in conjunction with a cross-compiling toolchain of your choice.

    To configure, build, and install a package for a native Linux OS, run the following commands:

    $ cmake .
$ make
$ sudo make install


    On Linux, the native build tool is GNU make so CMake generates makefiles by default for us to build with. Often, we want to perform out-of-source builds so that object files and other build artifacts remain separate from source files.

    To configure an out-of-source build in a subdirectory named build, run the following commands:

    $ mkdir build
$ cd build
$ cmake ..


    This will generate the makefiles inside a build subdirectory within the project directory where the CMakeLists.txt is located. The CMakeLists.txt file is the CMake equivalent of the configure script for Autotools-based projects.

    We can then build the project out of source from inside the build directory and install the package just as before:

    $ make
$ sudo make install


    CMake uses absolute paths so the build subdirectory cannot be copied or moved once the makefiles have been generated or any subsequent make step will likely fail. Note that CMake defaults to installing packages into system directories like /usr/bin, even for out-of-source builds.

    To generate the makefiles so that CMake installs the package in the build subdirectory, replace the previous cmake command with the following:

    $ cmake .. -D CMAKE_INSTALL_PREFIX=../build


    We no longer need to preface make install with sudo because we do not need elevated permissions to copy the package files into the build directory.

    Similarly, we can use another CMake command-line option to generate makefiles for cross-compilation:

    $ cmake .. -D CMAKE_C_COMPILER="/home/frank/aarch64--glibc--stable-<version>/bin/aarch64-buildroot-linux-gnu-gcc"


    But the best practice for cross-compiling with CMake is to create a toolchain file that sets CMAKE_C_COMPILER and CMAKE_CXX_COMPILER in addition to other relevant variables for targeting embedded Linux.

    CMake works best when we design our software in a modular way by enforcing well-defined API boundaries between libraries and components.

    Here are some key terms that come up time and time again in CMake:

    
      	target: A software component such as a library or executable.

      	properties: The source files, compiler options, and linked libraries needed to build a target.

      	package: A CMake file that configures an external target for building just as if it was defined within your CMakeLists.txt itself.

    

    For example, if we had a CMake-based executable named dummy that needed to take a dependency on SQLite, we could define the following CMakeLists.txt:

    cmake_minimum_required (VERSION 3.0)
project (Dummy)
add_executable(dummy dummy.c)
find_package (SQLite3)
target_include_directories(dummy PRIVATE ${SQLITE3_INCLUDE_DIRS})
target_link_libraries (dummy PRIVATE ${SQLITE3_LIBRARIES})


    The find_package command searches for a package (SQLite3, in this case) and imports it so that the external target can be added as a dependency to the dummy executable’s list of target_link_libraries for linking.

    CMake comes with numerous finders for popular C and C++ packages, including OpenSSL, Boost, and protobuf, making native development much more productive than if we were to use just pure makefiles.

    The PRIVATE qualifier prevents details like headers and flags from leaking outside of the dummy target. Using PRIVATE makes more sense when the target being built is a library instead of an executable. Think of targets as modules and attempt to minimize their exposed surface areas when using CMake to define your own targets. Only employ the PUBLIC qualifier when absolutely necessary and utilize the INTERFACE qualifier for header-only libraries.

    Model your application as a dependency graph with edges between targets. This graph should not only include the libraries that your application links to directly but any transitive dependencies as well. For best results, remove any cycles or other unnecessary independencies seen in the graph. It is often best to perform this exercise before you start coding. A little planning can make the difference between a clean, easily maintainable CMakeLists.txt and an inscrutable mess that nobody wants to touch.

    Summary

    The toolchain is always your starting point. Everything that follows from that is dependent on having a working, reliable toolchain.

    You may start with nothing but a toolchain downloaded from Bootlin or Linaro and use it to compile all the packages that you need on your target. Or you may obtain the toolchain as part of a distribution generated from source code using a build system such as Buildroot or The Yocto Project.

    Beware of toolchains or distributions that are offered to you for free as part of a hardware package. They are often poorly configured and not maintained.

    Once you have a toolchain, you can use it to build the other components of your embedded Linux system. In the next chapter, you will learn about the bootloader, which brings your device to life and begins the boot process. We will use the toolchain we built in this chapter to build a working bootloader for the BeaglePlay.

    Further study

    
      	Toolchain Options in 2023: What’s new in compilers and libcs? by Bernhard “Bero” Rosenkränzer – https://www.youtube.com/watch?v=Vgm3GJ2ItDA

      	Modern CMake for modular design, by Mathieu Ropert – https://www.youtube.com/watch?v=eC9-iRN2b04
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    All about Bootloaders

    The bootloader is the second element of embedded Linux. It is the part that starts the system and loads the operating system kernel. In this chapter, we will look at the role of the bootloader and how it passes control from itself to the kernel using a data structure called a device tree, also known as a flattened device tree or FDT.

    I will cover the basics of device trees so that you will be able to follow the connections described in a device tree and relate them to real hardware. I will focus on a popular open source bootloader known as U-Boot and show you how to use it to boot a target device. I will also show you how to customize U-Boot to run on a new device using BeaglePlay as an example.

    In this chapter, we will cover the following topics:

    
      	What does a bootloader do?

      	Boot sequence

      	Moving from the bootloader to the kernel

      	Introducing device trees

      	U-Boot

    

    Technical requirements

    To work through the examples, make sure you have the following:

    
      	An Ubuntu 24.04 or later LTS host system with device-tree-compiler, git, make, patch, and u-boot-tools installed

      	A Bootlin toolchain for BeaglePlay from Chapter 2

      	A microSD card reader and card

      	A USB-to-TTL serial cable with a 3.3 V logic level

      	BeaglePlay

      	A 5 V USB-C power supply capable of delivering 3 A

    

    All of the code for this chapter can be found in the Chapter03 folder from the book’s GitHub repository: https://github.com/PacktPublishing/Mastering-Embedded-Linux-Development/tree/main/Chapter03.

    What does a bootloader do?

    In an embedded Linux system, the bootloader has two main jobs: initializing the system to a basic level and loading the kernel. In fact, the first job is somewhat subsidiary to the second in that it is only necessary to get as much of the system working as is needed to load the kernel.

    When the first lines of the bootloader code are executed, following a power-on or reset, the system is in a very minimal state. The Dynamic Random Access Memory (DRAM) controller is not set up, so the main memory is not accessible. Likewise, other interfaces are not configured, so storage that’s accessed via NAND (NOT AND) flash controllers, MultiMediaCard (MMC) controllers, and so on is unavailable. Typically, the only resources that are operational at the beginning are a single CPU core, some on-chip Static Random Access Memory (SRAM), and the boot Read-Only Memory (ROM).

    A system bootstrap consists of several phases of code, each bringing more of the system into operation. The final act of the bootloader is to load the kernel into RAM and create an execution environment for it. The details of the interface between the bootloader and the kernel are architecture-specific, but in each case, it has to do two things. First, the bootloader has to pass a pointer to a structure containing information about the hardware configuration. Second, it has to pass a pointer to the kernel command line.

    The kernel command line is a text string that controls the behavior of Linux. Once the kernel has begun executing, the bootloader is no longer needed and all the memory it was using can be reclaimed.

    A subsidiary job of the bootloader is to provide a maintenance mode for updating boot configurations, loading new boot images into memory, and maybe running diagnostics. This is usually controlled by a simple command-line user interface, commonly over a serial console.

    Boot sequence

    Some years ago, we only needed to place the bootloader in non-volatile memory at the reset vector of the processor. NOR (NOT OR) flash memory was common at that time and, since it can be mapped directly into the address space, it was the ideal method of storage. The following diagram shows such a configuration with the reset vector at 0xfffffffc at the top end of an area of flash memory:

    [image: Figure 3.1 – NOR flash]
    Figure 3.1 – NOR flash

    The bootloader is linked so that there is a jump instruction at that location that points to the start of the bootloader code. From that point on, the bootloader code running in NOR flash memory can initialize the DRAM controller so that the main memory – the DRAM – becomes available, and then it copies itself into the DRAM. Once fully operational, the bootloader can load the kernel from flash memory into DRAM and transfer control to it.

    However, once you move away from a simple linearly addressable storage medium such as NOR flash, the boot sequence becomes a complex, multi-stage procedure. The details are very specific to each SoC, but they generally go through the following phases.

    Phase 1 – ROM code

    In the absence of reliable external memory, the code that runs immediately after a reset or power-on is stored on-chip in the SoC. This is known as ROM code. It is loaded into the chip when it is manufactured, and hence the ROM code is proprietary and cannot be replaced by an open source equivalent.

    ROM code does not include code to initialize the memory controller because DRAM configurations are highly device-specific, and so it can only use SRAM, which does not require a memory controller. Most embedded SoC designs have a small amount of SRAM on chip, varying in size from as little as 4 KB to several hundred KB.

    [image: Figure 3.2 – Phase 1 – ROM code]
    Figure 3.2 – Phase 1 – ROM code

    The ROM code can load a small chunk of code from one of several pre-programmed locations into SRAM. As an example, TI Sitara chips try to load code from the first few pages of NAND flash memory, or from flash memory connected through a Serial Peripheral Interface (SPI). They also try to load code from the first sectors of an MMC device like an eMMC chip or SD card, or from a file named MLO (Memory Loader) on the first partition of an MMC device. If reading from all these memory devices fails, then it tries reading a byte stream from Ethernet, USB, or UART. The latter is provided mainly as a way to load code into flash memory at production rather than for use in normal operation.

    Most embedded SoCs have ROM code that works in a similar way. In SoCs where the SRAM is not large enough to load a full bootloader such as U-Boot, there needs to be an intermediate loader called the Secondary Program Loader (SPL). At the end of the ROM code phase, the SPL is present in the SRAM and the ROM code jumps to the beginning of that code.

    Phase 2 – Secondary Program Loader

    The SPL must set up the memory controller and other essential parts of the system in preparation for loading the Tertiary Program Loader (TPL) into DRAM. The functionality of the SPL is limited by the size of the SRAM. It can read a program from a list of storage devices, as can the ROM code, once again using pre-programmed offsets from the start of a flash device.

    If the SPL has filesystem drivers built into it, it can read well-known filenames such as u-boot.img from a disk partition. The SPL usually doesn’t allow any user interaction, but it may print version information and progress messages that you can see on the console. The following diagram displays the phase 2 architecture:

    [image: Figure 3.3 – Phase 2 – SPL]
    Figure 3.3 – Phase 2 – SPL

    The preceding diagram shows the jump from ROM code to SPL. As the SPL executes within SRAM, it loads the TPL into DRAM. At the end of the second phase, the TPL is present in DRAM and the SPL can make a jump to that area.

    The SPL may be open source, as is the case with Atmel AT91Bootstrap, but it is quite common for it to contain proprietary code that is supplied by the manufacturer as a binary blob.

    Phase 3 – Tertiary Program Loader

    At this point, we are running a full bootloader, such as U-Boot, which we will learn about a bit later in this chapter. Usually, there is a simple command-line user interface that lets you perform maintenance tasks such as loading new boot and kernel images into flash storage, as well as a way to load the kernel automatically without user intervention. The following diagram explains the phase 3 architecture:

    [image: Figure 3.4 – Phase 3 – TPL]
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